Properties

Label 368.2.j.c.93.1
Level $368$
Weight $2$
Character 368.93
Analytic conductor $2.938$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(93,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 93.1
Root \(-1.14441 - 0.830857i\) of defining polynomial
Character \(\chi\) \(=\) 368.93
Dual form 368.2.j.c.277.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40983 - 0.111202i) q^{2} +(-1.70582 - 1.70582i) q^{3} +(1.97527 + 0.313554i) q^{4} +(-2.61219 + 2.61219i) q^{5} +(2.21524 + 2.59462i) q^{6} +1.66171i q^{7} +(-2.74993 - 0.661714i) q^{8} +2.81967i q^{9} +O(q^{10})\) \(q+(-1.40983 - 0.111202i) q^{2} +(-1.70582 - 1.70582i) q^{3} +(1.97527 + 0.313554i) q^{4} +(-2.61219 + 2.61219i) q^{5} +(2.21524 + 2.59462i) q^{6} +1.66171i q^{7} +(-2.74993 - 0.661714i) q^{8} +2.81967i q^{9} +(3.97323 - 3.39227i) q^{10} +(3.35563 - 3.35563i) q^{11} +(-2.83459 - 3.90433i) q^{12} +(1.50815 + 1.50815i) q^{13} +(0.184787 - 2.34274i) q^{14} +8.91186 q^{15} +(3.80337 + 1.23871i) q^{16} -0.812201 q^{17} +(0.313554 - 3.97527i) q^{18} +(-3.81967 - 3.81967i) q^{19} +(-5.97883 + 4.34071i) q^{20} +(2.83459 - 2.83459i) q^{21} +(-5.10404 + 4.35773i) q^{22} -1.00000i q^{23} +(3.56213 + 5.81967i) q^{24} -8.64704i q^{25} +(-1.95853 - 2.29395i) q^{26} +(-0.307612 + 0.307612i) q^{27} +(-0.521037 + 3.28233i) q^{28} +(-7.12138 - 7.12138i) q^{29} +(-12.5642 - 0.991020i) q^{30} +10.7058 q^{31} +(-5.22437 - 2.16932i) q^{32} -11.4482 q^{33} +(1.14507 + 0.0903187i) q^{34} +(-4.34071 - 4.34071i) q^{35} +(-0.884119 + 5.56960i) q^{36} +(3.80475 - 3.80475i) q^{37} +(4.96035 + 5.80986i) q^{38} -5.14528i q^{39} +(8.91186 - 5.45482i) q^{40} -0.765711i q^{41} +(-4.31152 + 3.68109i) q^{42} +(3.75797 - 3.75797i) q^{43} +(7.68044 - 5.57609i) q^{44} +(-7.36550 - 7.36550i) q^{45} +(-0.111202 + 1.40983i) q^{46} +2.18890 q^{47} +(-4.37486 - 8.60089i) q^{48} +4.23871 q^{49} +(-0.961571 + 12.1909i) q^{50} +(1.38547 + 1.38547i) q^{51} +(2.50612 + 3.45189i) q^{52} +(-1.48798 + 1.48798i) q^{53} +(0.467889 - 0.399475i) q^{54} +17.5311i q^{55} +(1.09958 - 4.56960i) q^{56} +13.0314i q^{57} +(9.24805 + 10.8319i) q^{58} +(9.46671 - 9.46671i) q^{59} +(17.6033 + 2.79435i) q^{60} +(0.442628 + 0.442628i) q^{61} +(-15.0933 - 1.19051i) q^{62} -4.68548 q^{63} +(7.12427 + 3.63934i) q^{64} -7.87914 q^{65} +(16.1401 + 1.27307i) q^{66} +(-7.97172 - 7.97172i) q^{67} +(-1.60431 - 0.254669i) q^{68} +(-1.70582 + 1.70582i) q^{69} +(5.63698 + 6.60238i) q^{70} -2.88774i q^{71} +(1.86581 - 7.75390i) q^{72} -7.28135i q^{73} +(-5.78716 + 4.94097i) q^{74} +(-14.7503 + 14.7503i) q^{75} +(-6.34720 - 8.74254i) q^{76} +(5.57609 + 5.57609i) q^{77} +(-0.572167 + 7.25399i) q^{78} +1.36206 q^{79} +(-13.1708 + 6.69937i) q^{80} +9.50847 q^{81} +(-0.0851489 + 1.07953i) q^{82} +(6.09040 + 6.09040i) q^{83} +(6.48788 - 4.71028i) q^{84} +(2.12162 - 2.12162i) q^{85} +(-5.71602 + 4.88023i) q^{86} +24.2956i q^{87} +(-11.4482 + 7.00729i) q^{88} +4.98060i q^{89} +(9.56508 + 11.2032i) q^{90} +(-2.50612 + 2.50612i) q^{91} +(0.313554 - 1.97527i) q^{92} +(-18.2621 - 18.2621i) q^{93} +(-3.08598 - 0.243411i) q^{94} +19.9554 q^{95} +(5.21139 + 12.6123i) q^{96} -7.46120 q^{97} +(-5.97588 - 0.471354i) q^{98} +(9.46176 + 9.46176i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8} - 6 q^{10} - 4 q^{11} - 8 q^{12} + 18 q^{13} - 2 q^{14} + 8 q^{16} - 8 q^{17} - 4 q^{18} - 8 q^{19} - 32 q^{20} + 8 q^{21} - 34 q^{22} + 12 q^{24} - 14 q^{26} + 14 q^{27} + 12 q^{28} + 2 q^{29} - 30 q^{30} + 20 q^{31} - 8 q^{32} - 36 q^{33} + 10 q^{34} + 4 q^{35} + 4 q^{36} - 4 q^{37} + 24 q^{38} - 14 q^{42} + 20 q^{43} + 4 q^{44} - 20 q^{45} - 2 q^{46} - 16 q^{47} - 12 q^{48} + 52 q^{49} + 6 q^{50} - 4 q^{51} - 16 q^{53} + 16 q^{54} + 28 q^{56} + 14 q^{58} + 8 q^{59} + 48 q^{60} + 12 q^{61} - 44 q^{62} - 4 q^{63} + 24 q^{64} - 52 q^{65} + 34 q^{66} - 4 q^{67} - 16 q^{68} + 2 q^{69} + 28 q^{70} + 8 q^{72} - 26 q^{74} - 46 q^{75} - 8 q^{76} - 12 q^{77} - 44 q^{78} - 4 q^{79} + 4 q^{80} + 48 q^{81} - 6 q^{82} + 28 q^{83} + 12 q^{84} - 8 q^{85} + 44 q^{86} - 36 q^{88} + 4 q^{90} - 4 q^{92} - 14 q^{93} + 48 q^{95} + 32 q^{96} + 36 q^{97} - 2 q^{98} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40983 0.111202i −0.996904 0.0786320i
\(3\) −1.70582 1.70582i −0.984858 0.984858i 0.0150292 0.999887i \(-0.495216\pi\)
−0.999887 + 0.0150292i \(0.995216\pi\)
\(4\) 1.97527 + 0.313554i 0.987634 + 0.156777i
\(5\) −2.61219 + 2.61219i −1.16821 + 1.16821i −0.185575 + 0.982630i \(0.559415\pi\)
−0.982630 + 0.185575i \(0.940585\pi\)
\(6\) 2.21524 + 2.59462i 0.904367 + 1.05925i
\(7\) 1.66171i 0.628069i 0.949412 + 0.314034i \(0.101681\pi\)
−0.949412 + 0.314034i \(0.898319\pi\)
\(8\) −2.74993 0.661714i −0.972248 0.233951i
\(9\) 2.81967i 0.939890i
\(10\) 3.97323 3.39227i 1.25645 1.07273i
\(11\) 3.35563 3.35563i 1.01176 1.01176i 0.0118300 0.999930i \(-0.496234\pi\)
0.999930 0.0118300i \(-0.00376570\pi\)
\(12\) −2.83459 3.90433i −0.818276 1.12708i
\(13\) 1.50815 + 1.50815i 0.418286 + 0.418286i 0.884613 0.466327i \(-0.154423\pi\)
−0.466327 + 0.884613i \(0.654423\pi\)
\(14\) 0.184787 2.34274i 0.0493863 0.626124i
\(15\) 8.91186 2.30103
\(16\) 3.80337 + 1.23871i 0.950842 + 0.309677i
\(17\) −0.812201 −0.196988 −0.0984938 0.995138i \(-0.531402\pi\)
−0.0984938 + 0.995138i \(0.531402\pi\)
\(18\) 0.313554 3.97527i 0.0739054 0.936980i
\(19\) −3.81967 3.81967i −0.876292 0.876292i 0.116857 0.993149i \(-0.462718\pi\)
−0.993149 + 0.116857i \(0.962718\pi\)
\(20\) −5.97883 + 4.34071i −1.33691 + 0.970612i
\(21\) 2.83459 2.83459i 0.618559 0.618559i
\(22\) −5.10404 + 4.35773i −1.08818 + 0.929071i
\(23\) 1.00000i 0.208514i
\(24\) 3.56213 + 5.81967i 0.727118 + 1.18794i
\(25\) 8.64704i 1.72941i
\(26\) −1.95853 2.29395i −0.384100 0.449881i
\(27\) −0.307612 + 0.307612i −0.0592000 + 0.0592000i
\(28\) −0.521037 + 3.28233i −0.0984668 + 0.620302i
\(29\) −7.12138 7.12138i −1.32241 1.32241i −0.911823 0.410584i \(-0.865325\pi\)
−0.410584 0.911823i \(-0.634675\pi\)
\(30\) −12.5642 0.991020i −2.29391 0.180935i
\(31\) 10.7058 1.92281 0.961405 0.275136i \(-0.0887229\pi\)
0.961405 + 0.275136i \(0.0887229\pi\)
\(32\) −5.22437 2.16932i −0.923547 0.383484i
\(33\) −11.4482 −1.99288
\(34\) 1.14507 + 0.0903187i 0.196378 + 0.0154895i
\(35\) −4.34071 4.34071i −0.733713 0.733713i
\(36\) −0.884119 + 5.56960i −0.147353 + 0.928267i
\(37\) 3.80475 3.80475i 0.625497 0.625497i −0.321435 0.946932i \(-0.604165\pi\)
0.946932 + 0.321435i \(0.104165\pi\)
\(38\) 4.96035 + 5.80986i 0.804674 + 0.942484i
\(39\) 5.14528i 0.823904i
\(40\) 8.91186 5.45482i 1.40909 0.862483i
\(41\) 0.765711i 0.119584i −0.998211 0.0597920i \(-0.980956\pi\)
0.998211 0.0597920i \(-0.0190437\pi\)
\(42\) −4.31152 + 3.68109i −0.665282 + 0.568005i
\(43\) 3.75797 3.75797i 0.573086 0.573086i −0.359904 0.932989i \(-0.617190\pi\)
0.932989 + 0.359904i \(0.117190\pi\)
\(44\) 7.68044 5.57609i 1.15787 0.840628i
\(45\) −7.36550 7.36550i −1.09798 1.09798i
\(46\) −0.111202 + 1.40983i −0.0163959 + 0.207869i
\(47\) 2.18890 0.319284 0.159642 0.987175i \(-0.448966\pi\)
0.159642 + 0.987175i \(0.448966\pi\)
\(48\) −4.37486 8.60089i −0.631457 1.24143i
\(49\) 4.23871 0.605530
\(50\) −0.961571 + 12.1909i −0.135987 + 1.72405i
\(51\) 1.38547 + 1.38547i 0.194005 + 0.194005i
\(52\) 2.50612 + 3.45189i 0.347536 + 0.478691i
\(53\) −1.48798 + 1.48798i −0.204390 + 0.204390i −0.801878 0.597488i \(-0.796166\pi\)
0.597488 + 0.801878i \(0.296166\pi\)
\(54\) 0.467889 0.399475i 0.0636717 0.0543617i
\(55\) 17.5311i 2.36389i
\(56\) 1.09958 4.56960i 0.146937 0.610639i
\(57\) 13.0314i 1.72605i
\(58\) 9.24805 + 10.8319i 1.21433 + 1.42230i
\(59\) 9.46671 9.46671i 1.23246 1.23246i 0.269444 0.963016i \(-0.413160\pi\)
0.963016 0.269444i \(-0.0868399\pi\)
\(60\) 17.6033 + 2.79435i 2.27258 + 0.360749i
\(61\) 0.442628 + 0.442628i 0.0566727 + 0.0566727i 0.734875 0.678202i \(-0.237241\pi\)
−0.678202 + 0.734875i \(0.737241\pi\)
\(62\) −15.0933 1.19051i −1.91686 0.151194i
\(63\) −4.68548 −0.590316
\(64\) 7.12427 + 3.63934i 0.890534 + 0.454917i
\(65\) −7.87914 −0.977287
\(66\) 16.1401 + 1.27307i 1.98671 + 0.156704i
\(67\) −7.97172 7.97172i −0.973901 0.973901i 0.0257672 0.999668i \(-0.491797\pi\)
−0.999668 + 0.0257672i \(0.991797\pi\)
\(68\) −1.60431 0.254669i −0.194552 0.0308831i
\(69\) −1.70582 + 1.70582i −0.205357 + 0.205357i
\(70\) 5.63698 + 6.60238i 0.673748 + 0.789135i
\(71\) 2.88774i 0.342712i −0.985209 0.171356i \(-0.945185\pi\)
0.985209 0.171356i \(-0.0548149\pi\)
\(72\) 1.86581 7.75390i 0.219888 0.913806i
\(73\) 7.28135i 0.852218i −0.904672 0.426109i \(-0.859884\pi\)
0.904672 0.426109i \(-0.140116\pi\)
\(74\) −5.78716 + 4.94097i −0.672744 + 0.574376i
\(75\) −14.7503 + 14.7503i −1.70322 + 1.70322i
\(76\) −6.34720 8.74254i −0.728074 1.00284i
\(77\) 5.57609 + 5.57609i 0.635455 + 0.635455i
\(78\) −0.572167 + 7.25399i −0.0647852 + 0.821353i
\(79\) 1.36206 0.153243 0.0766217 0.997060i \(-0.475587\pi\)
0.0766217 + 0.997060i \(0.475587\pi\)
\(80\) −13.1708 + 6.69937i −1.47254 + 0.749013i
\(81\) 9.50847 1.05650
\(82\) −0.0851489 + 1.07953i −0.00940313 + 0.119214i
\(83\) 6.09040 + 6.09040i 0.668508 + 0.668508i 0.957371 0.288863i \(-0.0932771\pi\)
−0.288863 + 0.957371i \(0.593277\pi\)
\(84\) 6.48788 4.71028i 0.707885 0.513934i
\(85\) 2.12162 2.12162i 0.230122 0.230122i
\(86\) −5.71602 + 4.88023i −0.616374 + 0.526248i
\(87\) 24.2956i 2.60477i
\(88\) −11.4482 + 7.00729i −1.22038 + 0.746980i
\(89\) 4.98060i 0.527942i 0.964531 + 0.263971i \(0.0850324\pi\)
−0.964531 + 0.263971i \(0.914968\pi\)
\(90\) 9.56508 + 11.2032i 1.00825 + 1.18092i
\(91\) −2.50612 + 2.50612i −0.262712 + 0.262712i
\(92\) 0.313554 1.97527i 0.0326903 0.205936i
\(93\) −18.2621 18.2621i −1.89370 1.89370i
\(94\) −3.08598 0.243411i −0.318295 0.0251059i
\(95\) 19.9554 2.04738
\(96\) 5.21139 + 12.6123i 0.531885 + 1.28724i
\(97\) −7.46120 −0.757571 −0.378785 0.925485i \(-0.623658\pi\)
−0.378785 + 0.925485i \(0.623658\pi\)
\(98\) −5.97588 0.471354i −0.603655 0.0476140i
\(99\) 9.46176 + 9.46176i 0.950943 + 0.950943i
\(100\) 2.71131 17.0802i 0.271131 1.70802i
\(101\) −4.78167 + 4.78167i −0.475794 + 0.475794i −0.903784 0.427989i \(-0.859222\pi\)
0.427989 + 0.903784i \(0.359222\pi\)
\(102\) −1.79922 2.10735i −0.178149 0.208659i
\(103\) 2.63340i 0.259477i −0.991548 0.129738i \(-0.958586\pi\)
0.991548 0.129738i \(-0.0414137\pi\)
\(104\) −3.14935 5.14528i −0.308819 0.504536i
\(105\) 14.8090i 1.44521i
\(106\) 2.26327 1.93234i 0.219829 0.187685i
\(107\) 2.82518 2.82518i 0.273121 0.273121i −0.557234 0.830355i \(-0.688138\pi\)
0.830355 + 0.557234i \(0.188138\pi\)
\(108\) −0.704069 + 0.511163i −0.0677491 + 0.0491867i
\(109\) 3.66953 + 3.66953i 0.351477 + 0.351477i 0.860659 0.509182i \(-0.170052\pi\)
−0.509182 + 0.860659i \(0.670052\pi\)
\(110\) 1.94950 24.7159i 0.185877 2.35657i
\(111\) −12.9805 −1.23205
\(112\) −2.05838 + 6.32011i −0.194498 + 0.597194i
\(113\) 12.9321 1.21655 0.608273 0.793728i \(-0.291863\pi\)
0.608273 + 0.793728i \(0.291863\pi\)
\(114\) 1.44912 18.3721i 0.135722 1.72070i
\(115\) 2.61219 + 2.61219i 0.243588 + 0.243588i
\(116\) −11.8337 16.2996i −1.09873 1.51338i
\(117\) −4.25249 + 4.25249i −0.393143 + 0.393143i
\(118\) −14.3992 + 12.2938i −1.32555 + 1.13173i
\(119\) 1.34965i 0.123722i
\(120\) −24.5070 5.89710i −2.23717 0.538329i
\(121\) 11.5205i 1.04732i
\(122\) −0.574811 0.673253i −0.0520409 0.0609535i
\(123\) −1.30617 + 1.30617i −0.117773 + 0.117773i
\(124\) 21.1467 + 3.35683i 1.89903 + 0.301453i
\(125\) 9.52674 + 9.52674i 0.852097 + 0.852097i
\(126\) 6.60576 + 0.521037i 0.588488 + 0.0464177i
\(127\) −16.2134 −1.43870 −0.719352 0.694646i \(-0.755561\pi\)
−0.719352 + 0.694646i \(0.755561\pi\)
\(128\) −9.63934 5.92310i −0.852005 0.523533i
\(129\) −12.8209 −1.12882
\(130\) 11.1083 + 0.876180i 0.974261 + 0.0768460i
\(131\) 4.32736 + 4.32736i 0.378083 + 0.378083i 0.870410 0.492327i \(-0.163854\pi\)
−0.492327 + 0.870410i \(0.663854\pi\)
\(132\) −22.6133 3.58964i −1.96824 0.312438i
\(133\) 6.34720 6.34720i 0.550372 0.550372i
\(134\) 10.3523 + 12.1253i 0.894306 + 1.04747i
\(135\) 1.60708i 0.138315i
\(136\) 2.23350 + 0.537445i 0.191521 + 0.0460855i
\(137\) 11.7584i 1.00459i 0.864698 + 0.502293i \(0.167510\pi\)
−0.864698 + 0.502293i \(0.832490\pi\)
\(138\) 2.59462 2.21524i 0.220869 0.188574i
\(139\) −7.86498 + 7.86498i −0.667099 + 0.667099i −0.957044 0.289944i \(-0.906363\pi\)
0.289944 + 0.957044i \(0.406363\pi\)
\(140\) −7.21301 9.93511i −0.609611 0.839670i
\(141\) −3.73387 3.73387i −0.314449 0.314449i
\(142\) −0.321124 + 4.07124i −0.0269481 + 0.341651i
\(143\) 10.1216 0.846410
\(144\) −3.49274 + 10.7242i −0.291062 + 0.893687i
\(145\) 37.2047 3.08968
\(146\) −0.809704 + 10.2655i −0.0670116 + 0.849579i
\(147\) −7.23049 7.23049i −0.596360 0.596360i
\(148\) 8.70839 6.32240i 0.715825 0.519698i
\(149\) −0.992711 + 0.992711i −0.0813261 + 0.0813261i −0.746600 0.665274i \(-0.768315\pi\)
0.665274 + 0.746600i \(0.268315\pi\)
\(150\) 22.4358 19.1552i 1.83187 1.56402i
\(151\) 20.4191i 1.66168i −0.556508 0.830842i \(-0.687859\pi\)
0.556508 0.830842i \(-0.312141\pi\)
\(152\) 7.97631 + 13.0314i 0.646964 + 1.05698i
\(153\) 2.29014i 0.185147i
\(154\) −7.24130 8.48145i −0.583520 0.683454i
\(155\) −27.9654 + 27.9654i −2.24624 + 2.24624i
\(156\) 1.61332 10.1633i 0.129169 0.813716i
\(157\) 12.4153 + 12.4153i 0.990847 + 0.990847i 0.999958 0.00911182i \(-0.00290042\pi\)
−0.00911182 + 0.999958i \(0.502900\pi\)
\(158\) −1.92027 0.151464i −0.152769 0.0120498i
\(159\) 5.07647 0.402590
\(160\) 19.3137 7.98038i 1.52688 0.630904i
\(161\) 1.66171 0.130961
\(162\) −13.4054 1.05737i −1.05323 0.0830744i
\(163\) −5.10777 5.10777i −0.400072 0.400072i 0.478187 0.878258i \(-0.341294\pi\)
−0.878258 + 0.478187i \(0.841294\pi\)
\(164\) 0.240092 1.51248i 0.0187480 0.118105i
\(165\) 29.9049 29.9049i 2.32809 2.32809i
\(166\) −7.90919 9.26372i −0.613872 0.719004i
\(167\) 21.0732i 1.63069i −0.578972 0.815347i \(-0.696546\pi\)
0.578972 0.815347i \(-0.303454\pi\)
\(168\) −9.67063 + 5.91925i −0.746105 + 0.456680i
\(169\) 8.45096i 0.650074i
\(170\) −3.22706 + 2.75520i −0.247504 + 0.211315i
\(171\) 10.7702 10.7702i 0.823618 0.823618i
\(172\) 8.60134 6.24468i 0.655846 0.476152i
\(173\) 0.742883 + 0.742883i 0.0564804 + 0.0564804i 0.734783 0.678302i \(-0.237284\pi\)
−0.678302 + 0.734783i \(0.737284\pi\)
\(174\) 2.70173 34.2528i 0.204818 2.59670i
\(175\) 14.3689 1.08619
\(176\) 16.9193 8.60605i 1.27534 0.648705i
\(177\) −32.2971 −2.42760
\(178\) 0.553855 7.02182i 0.0415132 0.526308i
\(179\) −5.87835 5.87835i −0.439369 0.439369i 0.452431 0.891799i \(-0.350557\pi\)
−0.891799 + 0.452431i \(0.850557\pi\)
\(180\) −12.2394 16.8583i −0.912268 1.25655i
\(181\) −12.5257 + 12.5257i −0.931028 + 0.931028i −0.997770 0.0667421i \(-0.978740\pi\)
0.0667421 + 0.997770i \(0.478740\pi\)
\(182\) 3.81189 3.25452i 0.282556 0.241241i
\(183\) 1.51009i 0.111629i
\(184\) −0.661714 + 2.74993i −0.0487822 + 0.202728i
\(185\) 19.8774i 1.46142i
\(186\) 23.7158 + 27.7774i 1.73893 + 2.03674i
\(187\) −2.72544 + 2.72544i −0.199304 + 0.199304i
\(188\) 4.32366 + 0.686338i 0.315335 + 0.0500563i
\(189\) −0.511163 0.511163i −0.0371817 0.0371817i
\(190\) −28.1338 2.21909i −2.04104 0.160989i
\(191\) 1.64397 0.118954 0.0594768 0.998230i \(-0.481057\pi\)
0.0594768 + 0.998230i \(0.481057\pi\)
\(192\) −5.94468 18.3608i −0.429020 1.32508i
\(193\) −19.0438 −1.37080 −0.685401 0.728166i \(-0.740373\pi\)
−0.685401 + 0.728166i \(0.740373\pi\)
\(194\) 10.5191 + 0.829704i 0.755225 + 0.0595693i
\(195\) 13.4404 + 13.4404i 0.962489 + 0.962489i
\(196\) 8.37258 + 1.32906i 0.598042 + 0.0949331i
\(197\) 12.5735 12.5735i 0.895824 0.895824i −0.0992395 0.995064i \(-0.531641\pi\)
0.995064 + 0.0992395i \(0.0316410\pi\)
\(198\) −12.2874 14.3917i −0.873224 1.02277i
\(199\) 15.8114i 1.12084i −0.828209 0.560419i \(-0.810640\pi\)
0.828209 0.560419i \(-0.189360\pi\)
\(200\) −5.72186 + 23.7788i −0.404597 + 1.68141i
\(201\) 27.1967i 1.91831i
\(202\) 7.27310 6.20964i 0.511734 0.436908i
\(203\) 11.8337 11.8337i 0.830562 0.830562i
\(204\) 2.30226 + 3.17110i 0.161190 + 0.222021i
\(205\) 2.00018 + 2.00018i 0.139699 + 0.139699i
\(206\) −0.292841 + 3.71266i −0.0204032 + 0.258673i
\(207\) 2.81967 0.195981
\(208\) 3.86790 + 7.60421i 0.268190 + 0.527257i
\(209\) −25.6348 −1.77320
\(210\) 1.64679 20.8782i 0.113639 1.44073i
\(211\) 8.18793 + 8.18793i 0.563680 + 0.563680i 0.930351 0.366671i \(-0.119502\pi\)
−0.366671 + 0.930351i \(0.619502\pi\)
\(212\) −3.40572 + 2.47260i −0.233906 + 0.169819i
\(213\) −4.92598 + 4.92598i −0.337523 + 0.337523i
\(214\) −4.29721 + 3.66888i −0.293751 + 0.250799i
\(215\) 19.6331i 1.33896i
\(216\) 1.04946 0.642362i 0.0714070 0.0437072i
\(217\) 17.7899i 1.20766i
\(218\) −4.76537 5.58149i −0.322751 0.378026i
\(219\) −12.4207 + 12.4207i −0.839314 + 0.839314i
\(220\) −5.49693 + 34.6285i −0.370603 + 2.33466i
\(221\) −1.22492 1.22492i −0.0823972 0.0823972i
\(222\) 18.3003 + 1.44346i 1.22824 + 0.0968786i
\(223\) −13.6729 −0.915607 −0.457804 0.889053i \(-0.651364\pi\)
−0.457804 + 0.889053i \(0.651364\pi\)
\(224\) 3.60478 8.68141i 0.240855 0.580051i
\(225\) 24.3818 1.62545
\(226\) −18.2321 1.43808i −1.21278 0.0956594i
\(227\) −10.5639 10.5639i −0.701148 0.701148i 0.263509 0.964657i \(-0.415120\pi\)
−0.964657 + 0.263509i \(0.915120\pi\)
\(228\) −4.08604 + 25.7404i −0.270604 + 1.70470i
\(229\) −18.5926 + 18.5926i −1.22863 + 1.22863i −0.264155 + 0.964480i \(0.585093\pi\)
−0.964480 + 0.264155i \(0.914907\pi\)
\(230\) −3.39227 3.97323i −0.223680 0.261987i
\(231\) 19.0237i 1.25167i
\(232\) 14.8710 + 24.2956i 0.976329 + 1.59509i
\(233\) 15.7207i 1.02990i −0.857220 0.514950i \(-0.827811\pi\)
0.857220 0.514950i \(-0.172189\pi\)
\(234\) 6.46819 5.52242i 0.422839 0.361012i
\(235\) −5.71781 + 5.71781i −0.372989 + 0.372989i
\(236\) 21.6676 15.7310i 1.41044 1.02400i
\(237\) −2.32343 2.32343i −0.150923 0.150923i
\(238\) −0.150084 + 1.90278i −0.00972849 + 0.123339i
\(239\) −3.11445 −0.201457 −0.100729 0.994914i \(-0.532117\pi\)
−0.100729 + 0.994914i \(0.532117\pi\)
\(240\) 33.8951 + 11.0392i 2.18792 + 0.712576i
\(241\) −11.6111 −0.747938 −0.373969 0.927441i \(-0.622003\pi\)
−0.373969 + 0.927441i \(0.622003\pi\)
\(242\) −1.28111 + 16.2420i −0.0823526 + 1.04407i
\(243\) −15.2969 15.2969i −0.981299 0.981299i
\(244\) 0.735521 + 1.01310i 0.0470869 + 0.0648568i
\(245\) −11.0723 + 11.0723i −0.707383 + 0.707383i
\(246\) 1.98673 1.69623i 0.126669 0.108148i
\(247\) 11.5213i 0.733081i
\(248\) −29.4401 7.08415i −1.86945 0.449844i
\(249\) 20.7783i 1.31677i
\(250\) −12.3717 14.4905i −0.782457 0.916461i
\(251\) 14.1075 14.1075i 0.890454 0.890454i −0.104111 0.994566i \(-0.533200\pi\)
0.994566 + 0.104111i \(0.0331998\pi\)
\(252\) −9.25509 1.46915i −0.583016 0.0925479i
\(253\) −3.35563 3.35563i −0.210967 0.210967i
\(254\) 22.8582 + 1.80296i 1.43425 + 0.113128i
\(255\) −7.23822 −0.453275
\(256\) 12.9312 + 9.42251i 0.808201 + 0.588907i
\(257\) 8.50878 0.530763 0.265382 0.964143i \(-0.414502\pi\)
0.265382 + 0.964143i \(0.414502\pi\)
\(258\) 18.0753 + 1.42571i 1.12532 + 0.0887610i
\(259\) 6.32240 + 6.32240i 0.392855 + 0.392855i
\(260\) −15.5634 2.47054i −0.965202 0.153216i
\(261\) 20.0799 20.0799i 1.24292 1.24292i
\(262\) −5.61965 6.58208i −0.347183 0.406642i
\(263\) 5.49050i 0.338559i 0.985568 + 0.169279i \(0.0541440\pi\)
−0.985568 + 0.169279i \(0.945856\pi\)
\(264\) 31.4818 + 7.57545i 1.93757 + 0.466237i
\(265\) 7.77377i 0.477539i
\(266\) −9.65432 + 8.24268i −0.591945 + 0.505391i
\(267\) 8.49602 8.49602i 0.519948 0.519948i
\(268\) −13.2467 18.2459i −0.809172 1.11454i
\(269\) −1.16630 1.16630i −0.0711108 0.0711108i 0.670657 0.741768i \(-0.266012\pi\)
−0.741768 + 0.670657i \(0.766012\pi\)
\(270\) −0.178711 + 2.26572i −0.0108760 + 0.137887i
\(271\) −0.427919 −0.0259942 −0.0129971 0.999916i \(-0.504137\pi\)
−0.0129971 + 0.999916i \(0.504137\pi\)
\(272\) −3.08910 1.00608i −0.187304 0.0610025i
\(273\) 8.54998 0.517468
\(274\) 1.30756 16.5774i 0.0789926 1.00148i
\(275\) −29.0162 29.0162i −1.74974 1.74974i
\(276\) −3.90433 + 2.83459i −0.235013 + 0.170622i
\(277\) 14.2225 14.2225i 0.854549 0.854549i −0.136141 0.990690i \(-0.543470\pi\)
0.990690 + 0.136141i \(0.0434699\pi\)
\(278\) 11.9629 10.2137i 0.717489 0.612578i
\(279\) 30.1867i 1.80723i
\(280\) 9.06435 + 14.8090i 0.541698 + 0.885005i
\(281\) 25.6942i 1.53279i 0.642370 + 0.766395i \(0.277951\pi\)
−0.642370 + 0.766395i \(0.722049\pi\)
\(282\) 4.84893 + 5.67936i 0.288750 + 0.338201i
\(283\) 4.50559 4.50559i 0.267830 0.267830i −0.560396 0.828225i \(-0.689351\pi\)
0.828225 + 0.560396i \(0.189351\pi\)
\(284\) 0.905464 5.70407i 0.0537294 0.338474i
\(285\) −34.0404 34.0404i −2.01638 2.01638i
\(286\) −14.2698 1.12555i −0.843789 0.0665549i
\(287\) 1.27239 0.0751070
\(288\) 6.11675 14.7310i 0.360433 0.868033i
\(289\) −16.3403 −0.961196
\(290\) −52.4525 4.13726i −3.08012 0.242948i
\(291\) 12.7275 + 12.7275i 0.746099 + 0.746099i
\(292\) 2.28310 14.3826i 0.133608 0.841679i
\(293\) 14.1998 14.1998i 0.829559 0.829559i −0.157897 0.987456i \(-0.550471\pi\)
0.987456 + 0.157897i \(0.0504713\pi\)
\(294\) 9.38974 + 10.9978i 0.547621 + 0.641407i
\(295\) 49.4576i 2.87953i
\(296\) −12.9805 + 7.94515i −0.754474 + 0.461802i
\(297\) 2.06446i 0.119792i
\(298\) 1.50995 1.28917i 0.0874691 0.0746794i
\(299\) 1.50815 1.50815i 0.0872186 0.0872186i
\(300\) −33.7609 + 24.5108i −1.94918 + 1.41513i
\(301\) 6.24468 + 6.24468i 0.359937 + 0.359937i
\(302\) −2.27066 + 28.7876i −0.130662 + 1.65654i
\(303\) 16.3134 0.937179
\(304\) −9.79616 19.2591i −0.561848 1.10458i
\(305\) −2.31245 −0.132411
\(306\) −0.254669 + 3.22872i −0.0145585 + 0.184573i
\(307\) 8.90060 + 8.90060i 0.507984 + 0.507984i 0.913907 0.405923i \(-0.133050\pi\)
−0.405923 + 0.913907i \(0.633050\pi\)
\(308\) 9.26587 + 12.7627i 0.527972 + 0.727222i
\(309\) −4.49212 + 4.49212i −0.255548 + 0.255548i
\(310\) 42.5365 36.3168i 2.41591 2.06266i
\(311\) 4.52341i 0.256499i −0.991742 0.128249i \(-0.959064\pi\)
0.991742 0.128249i \(-0.0409358\pi\)
\(312\) −3.40470 + 14.1492i −0.192753 + 0.801039i
\(313\) 10.0966i 0.570694i 0.958424 + 0.285347i \(0.0921089\pi\)
−0.958424 + 0.285347i \(0.907891\pi\)
\(314\) −16.1229 18.8841i −0.909866 1.06569i
\(315\) 12.2394 12.2394i 0.689610 0.689610i
\(316\) 2.69043 + 0.427078i 0.151348 + 0.0240250i
\(317\) 13.8631 + 13.8631i 0.778627 + 0.778627i 0.979597 0.200970i \(-0.0644094\pi\)
−0.200970 + 0.979597i \(0.564409\pi\)
\(318\) −7.15698 0.564515i −0.401343 0.0316564i
\(319\) −47.7934 −2.67592
\(320\) −28.1166 + 9.10329i −1.57176 + 0.508889i
\(321\) −9.63853 −0.537970
\(322\) −2.34274 0.184787i −0.130556 0.0102978i
\(323\) 3.10234 + 3.10234i 0.172619 + 0.172619i
\(324\) 18.7818 + 2.98142i 1.04343 + 0.165634i
\(325\) 13.0410 13.0410i 0.723386 0.723386i
\(326\) 6.63312 + 7.76911i 0.367374 + 0.430291i
\(327\) 12.5191i 0.692310i
\(328\) −0.506682 + 2.10565i −0.0279768 + 0.116265i
\(329\) 3.63732i 0.200532i
\(330\) −45.4864 + 38.8355i −2.50395 + 2.13782i
\(331\) 7.42842 7.42842i 0.408303 0.408303i −0.472843 0.881146i \(-0.656772\pi\)
0.881146 + 0.472843i \(0.156772\pi\)
\(332\) 10.1205 + 13.9398i 0.555434 + 0.765048i
\(333\) 10.7281 + 10.7281i 0.587898 + 0.587898i
\(334\) −2.34339 + 29.7098i −0.128225 + 1.62565i
\(335\) 41.6472 2.27543
\(336\) 14.2922 7.26977i 0.779705 0.396598i
\(337\) 27.7241 1.51023 0.755113 0.655595i \(-0.227582\pi\)
0.755113 + 0.655595i \(0.227582\pi\)
\(338\) −0.939767 + 11.9145i −0.0511166 + 0.648061i
\(339\) −22.0598 22.0598i −1.19812 1.19812i
\(340\) 4.85601 3.52553i 0.263354 0.191199i
\(341\) 35.9245 35.9245i 1.94542 1.94542i
\(342\) −16.3819 + 13.9865i −0.885831 + 0.756305i
\(343\) 18.6755i 1.00838i
\(344\) −12.8209 + 7.84748i −0.691256 + 0.423108i
\(345\) 8.91186i 0.479798i
\(346\) −0.964733 1.12995i −0.0518643 0.0607467i
\(347\) −7.58296 + 7.58296i −0.407075 + 0.407075i −0.880717 0.473643i \(-0.842939\pi\)
0.473643 + 0.880717i \(0.342939\pi\)
\(348\) −7.61799 + 47.9904i −0.408367 + 2.57255i
\(349\) 23.1963 + 23.1963i 1.24167 + 1.24167i 0.959307 + 0.282364i \(0.0911184\pi\)
0.282364 + 0.959307i \(0.408882\pi\)
\(350\) −20.2578 1.59786i −1.08282 0.0854090i
\(351\) −0.927851 −0.0495250
\(352\) −24.8105 + 10.2516i −1.32240 + 0.546414i
\(353\) −14.5140 −0.772500 −0.386250 0.922394i \(-0.626230\pi\)
−0.386250 + 0.922394i \(0.626230\pi\)
\(354\) 45.5335 + 3.59151i 2.42008 + 0.190887i
\(355\) 7.54333 + 7.54333i 0.400358 + 0.400358i
\(356\) −1.56169 + 9.83802i −0.0827692 + 0.521414i
\(357\) −2.30226 + 2.30226i −0.121848 + 0.121848i
\(358\) 7.63382 + 8.94119i 0.403460 + 0.472557i
\(359\) 5.94898i 0.313975i 0.987601 + 0.156988i \(0.0501783\pi\)
−0.987601 + 0.156988i \(0.949822\pi\)
\(360\) 15.3808 + 25.1285i 0.810639 + 1.32439i
\(361\) 10.1798i 0.535776i
\(362\) 19.0521 16.2663i 1.00135 0.854937i
\(363\) −19.6519 + 19.6519i −1.03146 + 1.03146i
\(364\) −5.73605 + 4.16445i −0.300651 + 0.218276i
\(365\) 19.0203 + 19.0203i 0.995566 + 0.995566i
\(366\) −0.167926 + 2.12898i −0.00877762 + 0.111283i
\(367\) 22.5189 1.17548 0.587738 0.809052i \(-0.300019\pi\)
0.587738 + 0.809052i \(0.300019\pi\)
\(368\) 1.23871 3.80337i 0.0645720 0.198264i
\(369\) 2.15905 0.112396
\(370\) 2.21042 28.0239i 0.114914 1.45689i
\(371\) −2.47260 2.47260i −0.128371 0.128371i
\(372\) −30.3464 41.7988i −1.57339 2.16717i
\(373\) −3.70962 + 3.70962i −0.192077 + 0.192077i −0.796593 0.604516i \(-0.793366\pi\)
0.604516 + 0.796593i \(0.293366\pi\)
\(374\) 4.14550 3.53935i 0.214359 0.183015i
\(375\) 32.5019i 1.67839i
\(376\) −6.01932 1.44842i −0.310423 0.0746968i
\(377\) 21.4802i 1.10629i
\(378\) 0.663813 + 0.777498i 0.0341429 + 0.0399902i
\(379\) −5.06716 + 5.06716i −0.260282 + 0.260282i −0.825169 0.564886i \(-0.808920\pi\)
0.564886 + 0.825169i \(0.308920\pi\)
\(380\) 39.4172 + 6.25709i 2.02206 + 0.320982i
\(381\) 27.6571 + 27.6571i 1.41692 + 1.41692i
\(382\) −2.31773 0.182814i −0.118585 0.00935355i
\(383\) −15.1644 −0.774864 −0.387432 0.921898i \(-0.626638\pi\)
−0.387432 + 0.921898i \(0.626638\pi\)
\(384\) 6.33924 + 26.5468i 0.323498 + 1.35471i
\(385\) −29.1316 −1.48468
\(386\) 26.8486 + 2.11771i 1.36656 + 0.107789i
\(387\) 10.5962 + 10.5962i 0.538637 + 0.538637i
\(388\) −14.7379 2.33949i −0.748202 0.118770i
\(389\) −24.4010 + 24.4010i −1.23718 + 1.23718i −0.276029 + 0.961149i \(0.589018\pi\)
−0.961149 + 0.276029i \(0.910982\pi\)
\(390\) −17.4542 20.4434i −0.883827 1.03519i
\(391\) 0.812201i 0.0410748i
\(392\) −11.6562 2.80481i −0.588725 0.141664i
\(393\) 14.7634i 0.744716i
\(394\) −19.1247 + 16.3283i −0.963491 + 0.822610i
\(395\) −3.55794 + 3.55794i −0.179020 + 0.179020i
\(396\) 15.7227 + 21.6563i 0.790098 + 1.08827i
\(397\) −15.6879 15.6879i −0.787352 0.787352i 0.193707 0.981059i \(-0.437949\pi\)
−0.981059 + 0.193707i \(0.937949\pi\)
\(398\) −1.75826 + 22.2914i −0.0881337 + 1.11737i
\(399\) −21.6544 −1.08408
\(400\) 10.7111 32.8879i 0.535557 1.64439i
\(401\) 22.7601 1.13659 0.568293 0.822826i \(-0.307604\pi\)
0.568293 + 0.822826i \(0.307604\pi\)
\(402\) 3.02434 38.3429i 0.150840 1.91237i
\(403\) 16.1459 + 16.1459i 0.804284 + 0.804284i
\(404\) −10.9444 + 7.94577i −0.544504 + 0.395317i
\(405\) −24.8379 + 24.8379i −1.23421 + 1.23421i
\(406\) −17.9995 + 15.3676i −0.893300 + 0.762682i
\(407\) 25.5346i 1.26571i
\(408\) −2.89317 4.72674i −0.143233 0.234009i
\(409\) 19.7572i 0.976929i −0.872584 0.488465i \(-0.837557\pi\)
0.872584 0.488465i \(-0.162443\pi\)
\(410\) −2.59750 3.04235i −0.128281 0.150251i
\(411\) 20.0577 20.0577i 0.989374 0.989374i
\(412\) 0.825714 5.20167i 0.0406800 0.256268i
\(413\) 15.7310 + 15.7310i 0.774070 + 0.774070i
\(414\) −3.97527 0.313554i −0.195374 0.0154103i
\(415\) −31.8185 −1.56191
\(416\) −4.60749 11.1508i −0.225901 0.546713i
\(417\) 26.8326 1.31400
\(418\) 36.1408 + 2.85065i 1.76770 + 0.139430i
\(419\) 13.2965 + 13.2965i 0.649578 + 0.649578i 0.952891 0.303313i \(-0.0980928\pi\)
−0.303313 + 0.952891i \(0.598093\pi\)
\(420\) −4.64341 + 29.2517i −0.226575 + 1.42734i
\(421\) 10.7611 10.7611i 0.524465 0.524465i −0.394451 0.918917i \(-0.629065\pi\)
0.918917 + 0.394451i \(0.129065\pi\)
\(422\) −10.6331 12.4541i −0.517611 0.606258i
\(423\) 6.17197i 0.300091i
\(424\) 5.07647 3.10723i 0.246535 0.150900i
\(425\) 7.02313i 0.340672i
\(426\) 7.49260 6.39704i 0.363018 0.309938i
\(427\) −0.735521 + 0.735521i −0.0355943 + 0.0355943i
\(428\) 6.46634 4.69465i 0.312563 0.226924i
\(429\) −17.2656 17.2656i −0.833593 0.833593i
\(430\) 2.18324 27.6794i 0.105285 1.33482i
\(431\) −30.6031 −1.47410 −0.737050 0.675838i \(-0.763782\pi\)
−0.737050 + 0.675838i \(0.763782\pi\)
\(432\) −1.55100 + 0.788921i −0.0746227 + 0.0379570i
\(433\) −18.9640 −0.911352 −0.455676 0.890146i \(-0.650602\pi\)
−0.455676 + 0.890146i \(0.650602\pi\)
\(434\) 1.97828 25.0808i 0.0949605 1.20392i
\(435\) −63.4647 63.4647i −3.04290 3.04290i
\(436\) 6.09770 + 8.39889i 0.292027 + 0.402234i
\(437\) −3.81967 + 3.81967i −0.182720 + 0.182720i
\(438\) 18.8924 16.1299i 0.902712 0.770718i
\(439\) 9.69923i 0.462919i 0.972845 + 0.231460i \(0.0743501\pi\)
−0.972845 + 0.231460i \(0.925650\pi\)
\(440\) 11.6005 48.2092i 0.553034 2.29828i
\(441\) 11.9518i 0.569131i
\(442\) 1.59072 + 1.86315i 0.0756630 + 0.0886211i
\(443\) −7.91936 + 7.91936i −0.376260 + 0.376260i −0.869751 0.493491i \(-0.835721\pi\)
0.493491 + 0.869751i \(0.335721\pi\)
\(444\) −25.6399 4.07008i −1.21682 0.193157i
\(445\) −13.0103 13.0103i −0.616745 0.616745i
\(446\) 19.2766 + 1.52046i 0.912772 + 0.0719960i
\(447\) 3.38678 0.160189
\(448\) −6.04754 + 11.8385i −0.285719 + 0.559316i
\(449\) 34.5114 1.62869 0.814346 0.580380i \(-0.197096\pi\)
0.814346 + 0.580380i \(0.197096\pi\)
\(450\) −34.3743 2.71131i −1.62042 0.127813i
\(451\) −2.56944 2.56944i −0.120990 0.120990i
\(452\) 25.5443 + 4.05490i 1.20150 + 0.190726i
\(453\) −34.8314 + 34.8314i −1.63652 + 1.63652i
\(454\) 13.7186 + 16.0680i 0.643845 + 0.754110i
\(455\) 13.0929i 0.613804i
\(456\) 8.62304 35.8354i 0.403811 1.67815i
\(457\) 33.1088i 1.54877i −0.632717 0.774383i \(-0.718061\pi\)
0.632717 0.774383i \(-0.281939\pi\)
\(458\) 28.2801 24.1450i 1.32144 1.12822i
\(459\) 0.249843 0.249843i 0.0116617 0.0116617i
\(460\) 4.34071 + 5.97883i 0.202386 + 0.278764i
\(461\) 9.64848 + 9.64848i 0.449374 + 0.449374i 0.895147 0.445772i \(-0.147071\pi\)
−0.445772 + 0.895147i \(0.647071\pi\)
\(462\) −2.11548 + 26.8202i −0.0984209 + 1.24779i
\(463\) 26.3833 1.22613 0.613067 0.790031i \(-0.289935\pi\)
0.613067 + 0.790031i \(0.289935\pi\)
\(464\) −18.2639 35.9065i −0.847881 1.66692i
\(465\) 95.4082 4.42445
\(466\) −1.74818 + 22.1636i −0.0809830 + 1.02671i
\(467\) −9.91627 9.91627i −0.458870 0.458870i 0.439414 0.898285i \(-0.355186\pi\)
−0.898285 + 0.439414i \(0.855186\pi\)
\(468\) −9.73319 + 7.06642i −0.449917 + 0.326645i
\(469\) 13.2467 13.2467i 0.611677 0.611677i
\(470\) 8.69700 7.42533i 0.401163 0.342505i
\(471\) 42.3565i 1.95169i
\(472\) −32.2971 + 19.7686i −1.48659 + 0.909922i
\(473\) 25.2207i 1.15965i
\(474\) 3.01728 + 3.53402i 0.138588 + 0.162323i
\(475\) −33.0288 + 33.0288i −1.51547 + 1.51547i
\(476\) 0.423187 2.66591i 0.0193967 0.122192i
\(477\) −4.19561 4.19561i −0.192104 0.192104i
\(478\) 4.39087 + 0.346335i 0.200834 + 0.0158410i
\(479\) −6.32910 −0.289184 −0.144592 0.989491i \(-0.546187\pi\)
−0.144592 + 0.989491i \(0.546187\pi\)
\(480\) −46.5589 19.3326i −2.12511 0.882410i
\(481\) 11.4763 0.523273
\(482\) 16.3698 + 1.29118i 0.745622 + 0.0588118i
\(483\) −2.83459 2.83459i −0.128978 0.128978i
\(484\) 3.61229 22.7560i 0.164195 1.03437i
\(485\) 19.4901 19.4901i 0.884998 0.884998i
\(486\) 19.8651 + 23.2672i 0.901099 + 1.05542i
\(487\) 43.0783i 1.95207i −0.217623 0.976033i \(-0.569830\pi\)
0.217623 0.976033i \(-0.430170\pi\)
\(488\) −0.924304 1.51009i −0.0418413 0.0683586i
\(489\) 17.4259i 0.788027i
\(490\) 16.8414 14.3788i 0.760815 0.649570i
\(491\) 4.44148 4.44148i 0.200441 0.200441i −0.599748 0.800189i \(-0.704732\pi\)
0.800189 + 0.599748i \(0.204732\pi\)
\(492\) −2.98959 + 2.17048i −0.134781 + 0.0978527i
\(493\) 5.78399 + 5.78399i 0.260498 + 0.260498i
\(494\) −1.28119 + 16.2431i −0.0576436 + 0.730811i
\(495\) −49.4318 −2.22179
\(496\) 40.7179 + 13.2613i 1.82829 + 0.595450i
\(497\) 4.79861 0.215247
\(498\) −2.31060 + 29.2940i −0.103540 + 1.31269i
\(499\) −7.83750 7.83750i −0.350855 0.350855i 0.509573 0.860428i \(-0.329803\pi\)
−0.860428 + 0.509573i \(0.829803\pi\)
\(500\) 15.8307 + 21.8050i 0.707971 + 0.975149i
\(501\) −35.9472 + 35.9472i −1.60600 + 1.60600i
\(502\) −21.4580 + 18.3204i −0.957716 + 0.817679i
\(503\) 2.51611i 0.112188i 0.998425 + 0.0560939i \(0.0178646\pi\)
−0.998425 + 0.0560939i \(0.982135\pi\)
\(504\) 12.8848 + 3.10045i 0.573933 + 0.138105i
\(505\) 24.9812i 1.11165i
\(506\) 4.35773 + 5.10404i 0.193725 + 0.226902i
\(507\) −14.4159 + 14.4159i −0.640230 + 0.640230i
\(508\) −32.0257 5.08376i −1.42091 0.225556i
\(509\) −18.5730 18.5730i −0.823235 0.823235i 0.163336 0.986571i \(-0.447775\pi\)
−0.986571 + 0.163336i \(0.947775\pi\)
\(510\) 10.2047 + 0.804908i 0.451872 + 0.0356419i
\(511\) 12.0995 0.535252
\(512\) −17.1831 14.7222i −0.759391 0.650634i
\(513\) 2.34995 0.103753
\(514\) −11.9960 0.946197i −0.529120 0.0417350i
\(515\) 6.87893 + 6.87893i 0.303122 + 0.303122i
\(516\) −25.3247 4.02004i −1.11486 0.176972i
\(517\) 7.34513 7.34513i 0.323038 0.323038i
\(518\) −8.21048 9.61661i −0.360748 0.422530i
\(519\) 2.53446i 0.111250i
\(520\) 21.6671 + 5.21374i 0.950166 + 0.228638i
\(521\) 26.4008i 1.15664i −0.815810 0.578320i \(-0.803708\pi\)
0.815810 0.578320i \(-0.196292\pi\)
\(522\) −30.5423 + 26.0764i −1.33680 + 1.14134i
\(523\) 29.1181 29.1181i 1.27324 1.27324i 0.328869 0.944376i \(-0.393333\pi\)
0.944376 0.328869i \(-0.106667\pi\)
\(524\) 7.19083 + 9.90456i 0.314133 + 0.432683i
\(525\) −24.5108 24.5108i −1.06974 1.06974i
\(526\) 0.610557 7.74070i 0.0266215 0.337510i
\(527\) −8.69523 −0.378770
\(528\) −43.5418 14.1810i −1.89491 0.617148i
\(529\) −1.00000 −0.0434783
\(530\) −0.864462 + 10.9597i −0.0375498 + 0.476060i
\(531\) 26.6930 + 26.6930i 1.15838 + 1.15838i
\(532\) 14.5276 10.5472i 0.629852 0.457280i
\(533\) 1.15481 1.15481i 0.0500203 0.0500203i
\(534\) −12.9228 + 11.0332i −0.559223 + 0.477454i
\(535\) 14.7598i 0.638122i
\(536\) 16.6467 + 27.1967i 0.719028 + 1.17472i
\(537\) 20.0549i 0.865431i
\(538\) 1.51460 + 1.77399i 0.0652990 + 0.0764822i
\(539\) 14.2235 14.2235i 0.612651 0.612651i
\(540\) 0.503906 3.17441i 0.0216847 0.136605i
\(541\) −16.9801 16.9801i −0.730031 0.730031i 0.240595 0.970626i \(-0.422658\pi\)
−0.970626 + 0.240595i \(0.922658\pi\)
\(542\) 0.603295 + 0.0475856i 0.0259137 + 0.00204398i
\(543\) 42.7333 1.83386
\(544\) 4.24324 + 1.76192i 0.181927 + 0.0755417i
\(545\) −19.1710 −0.821194
\(546\) −12.0541 0.950779i −0.515866 0.0406896i
\(547\) −1.44323 1.44323i −0.0617081 0.0617081i 0.675579 0.737287i \(-0.263894\pi\)
−0.737287 + 0.675579i \(0.763894\pi\)
\(548\) −3.68689 + 23.2259i −0.157496 + 0.992163i
\(549\) −1.24806 + 1.24806i −0.0532661 + 0.0532661i
\(550\) 37.6814 + 44.1348i 1.60674 + 1.88191i
\(551\) 54.4026i 2.31763i
\(552\) 5.81967 3.56213i 0.247702 0.151615i
\(553\) 2.26335i 0.0962473i
\(554\) −21.6330 + 18.4698i −0.919098 + 0.784708i
\(555\) 33.9074 33.9074i 1.43929 1.43929i
\(556\) −18.0015 + 13.0694i −0.763436 + 0.554264i
\(557\) 5.09710 + 5.09710i 0.215971 + 0.215971i 0.806798 0.590827i \(-0.201198\pi\)
−0.590827 + 0.806798i \(0.701198\pi\)
\(558\) 3.35683 42.5583i 0.142106 1.80163i
\(559\) 11.3352 0.479427
\(560\) −11.1324 21.8862i −0.470432 0.924859i
\(561\) 9.29826 0.392573
\(562\) 2.85726 36.2246i 0.120526 1.52804i
\(563\) 6.95433 + 6.95433i 0.293090 + 0.293090i 0.838300 0.545210i \(-0.183550\pi\)
−0.545210 + 0.838300i \(0.683550\pi\)
\(564\) −6.20463 8.54617i −0.261262 0.359859i
\(565\) −33.7809 + 33.7809i −1.42117 + 1.42117i
\(566\) −6.85317 + 5.85111i −0.288060 + 0.245940i
\(567\) 15.8004i 0.663553i
\(568\) −1.91086 + 7.94111i −0.0801779 + 0.333201i
\(569\) 0.100497i 0.00421306i −0.999998 0.00210653i \(-0.999329\pi\)
0.999998 0.00210653i \(-0.000670529\pi\)
\(570\) 44.2059 + 51.7766i 1.85158 + 2.16869i
\(571\) −29.6374 + 29.6374i −1.24029 + 1.24029i −0.280406 + 0.959881i \(0.590469\pi\)
−0.959881 + 0.280406i \(0.909531\pi\)
\(572\) 19.9928 + 3.17366i 0.835943 + 0.132698i
\(573\) −2.80432 2.80432i −0.117152 0.117152i
\(574\) −1.79386 0.141493i −0.0748744 0.00590581i
\(575\) −8.64704 −0.360606
\(576\) −10.2617 + 20.0881i −0.427572 + 0.837004i
\(577\) 11.2586 0.468702 0.234351 0.972152i \(-0.424703\pi\)
0.234351 + 0.972152i \(0.424703\pi\)
\(578\) 23.0372 + 1.81708i 0.958220 + 0.0755807i
\(579\) 32.4853 + 32.4853i 1.35004 + 1.35004i
\(580\) 73.4893 + 11.6657i 3.05148 + 0.484392i
\(581\) −10.1205 + 10.1205i −0.419869 + 0.419869i
\(582\) −16.5283 19.3590i −0.685122 0.802456i
\(583\) 9.98622i 0.413587i
\(584\) −4.81817 + 20.0232i −0.199377 + 0.828568i
\(585\) 22.2166i 0.918542i
\(586\) −21.5984 + 18.4403i −0.892220 + 0.761761i
\(587\) 2.71169 2.71169i 0.111923 0.111923i −0.648927 0.760850i \(-0.724782\pi\)
0.760850 + 0.648927i \(0.224782\pi\)
\(588\) −12.0150 16.5493i −0.495490 0.682482i
\(589\) −40.8925 40.8925i −1.68494 1.68494i
\(590\) 5.49980 69.7270i 0.226423 2.87062i
\(591\) −42.8963 −1.76452
\(592\) 19.1838 9.75789i 0.788450 0.401047i
\(593\) −11.6754 −0.479451 −0.239726 0.970841i \(-0.577058\pi\)
−0.239726 + 0.970841i \(0.577058\pi\)
\(594\) 0.229573 2.91055i 0.00941951 0.119421i
\(595\) 3.52553 + 3.52553i 0.144532 + 0.144532i
\(596\) −2.27214 + 1.64960i −0.0930704 + 0.0675703i
\(597\) −26.9714 + 26.9714i −1.10387 + 1.10387i
\(598\) −2.29395 + 1.95853i −0.0938067 + 0.0800904i
\(599\) 29.4312i 1.20253i 0.799051 + 0.601263i \(0.205336\pi\)
−0.799051 + 0.601263i \(0.794664\pi\)
\(600\) 50.3229 30.8019i 2.05442 1.25748i
\(601\) 7.06623i 0.288237i 0.989560 + 0.144119i \(0.0460347\pi\)
−0.989560 + 0.144119i \(0.953965\pi\)
\(602\) −8.10954 9.49839i −0.330520 0.387125i
\(603\) 22.4776 22.4776i 0.915359 0.915359i
\(604\) 6.40250 40.3332i 0.260514 1.64114i
\(605\) 30.0937 + 30.0937i 1.22348 + 1.22348i
\(606\) −22.9992 1.81409i −0.934278 0.0736923i
\(607\) 0.575135 0.0233440 0.0116720 0.999932i \(-0.496285\pi\)
0.0116720 + 0.999932i \(0.496285\pi\)
\(608\) 11.6693 + 28.2414i 0.473253 + 1.14534i
\(609\) −40.3724 −1.63597
\(610\) 3.26018 + 0.257150i 0.132001 + 0.0104117i
\(611\) 3.30119 + 3.30119i 0.133552 + 0.133552i
\(612\) 0.718082 4.52364i 0.0290268 0.182857i
\(613\) −26.7943 + 26.7943i −1.08221 + 1.08221i −0.0859064 + 0.996303i \(0.527379\pi\)
−0.996303 + 0.0859064i \(0.972621\pi\)
\(614\) −11.5586 13.5381i −0.466467 0.546355i
\(615\) 6.82391i 0.275167i
\(616\) −11.6441 19.0237i −0.469155 0.766485i
\(617\) 39.6599i 1.59665i −0.602229 0.798323i \(-0.705721\pi\)
0.602229 0.798323i \(-0.294279\pi\)
\(618\) 6.83268 5.83361i 0.274851 0.234662i
\(619\) −14.8037 + 14.8037i −0.595011 + 0.595011i −0.938981 0.343970i \(-0.888228\pi\)
0.343970 + 0.938981i \(0.388228\pi\)
\(620\) −64.0079 + 46.4705i −2.57062 + 1.86630i
\(621\) 0.307612 + 0.307612i 0.0123440 + 0.0123440i
\(622\) −0.503014 + 6.37726i −0.0201690 + 0.255705i
\(623\) −8.27633 −0.331584
\(624\) 6.37349 19.5694i 0.255144 0.783403i
\(625\) −6.53605 −0.261442
\(626\) 1.12277 14.2346i 0.0448748 0.568927i
\(627\) 43.7284 + 43.7284i 1.74634 + 1.74634i
\(628\) 20.6306 + 28.4164i 0.823252 + 1.13394i
\(629\) −3.09022 + 3.09022i −0.123215 + 0.123215i
\(630\) −18.6165 + 15.8944i −0.741700 + 0.633249i
\(631\) 14.6400i 0.582807i −0.956600 0.291404i \(-0.905878\pi\)
0.956600 0.291404i \(-0.0941223\pi\)
\(632\) −3.74556 0.901292i −0.148991 0.0358515i
\(633\) 27.9343i 1.11029i
\(634\) −18.0030 21.0862i −0.714991 0.837441i
\(635\) 42.3523 42.3523i 1.68070 1.68070i
\(636\) 10.0274 + 1.59175i 0.397612 + 0.0631169i
\(637\) 6.39261 + 6.39261i 0.253284 + 0.253284i
\(638\) 67.3808 + 5.31474i 2.66763 + 0.210413i
\(639\) 8.14248 0.322112
\(640\) 40.6520 9.70750i 1.60691 0.383723i
\(641\) 43.2014 1.70635 0.853176 0.521622i \(-0.174673\pi\)
0.853176 + 0.521622i \(0.174673\pi\)
\(642\) 13.5887 + 1.07183i 0.536305 + 0.0423017i
\(643\) −10.5494 10.5494i −0.416029 0.416029i 0.467803 0.883833i \(-0.345046\pi\)
−0.883833 + 0.467803i \(0.845046\pi\)
\(644\) 3.28233 + 0.521037i 0.129342 + 0.0205317i
\(645\) 33.4905 33.4905i 1.31869 1.31869i
\(646\) −4.02880 4.71877i −0.158511 0.185658i
\(647\) 28.3175i 1.11328i 0.830755 + 0.556638i \(0.187909\pi\)
−0.830755 + 0.556638i \(0.812091\pi\)
\(648\) −26.1477 6.29189i −1.02718 0.247169i
\(649\) 63.5335i 2.49391i
\(650\) −19.8359 + 16.9355i −0.778028 + 0.664265i
\(651\) 30.3464 30.3464i 1.18937 1.18937i
\(652\) −8.48766 11.6908i −0.332402 0.457846i
\(653\) 10.8329 + 10.8329i 0.423926 + 0.423926i 0.886553 0.462627i \(-0.153093\pi\)
−0.462627 + 0.886553i \(0.653093\pi\)
\(654\) −1.39216 + 17.6499i −0.0544377 + 0.690166i
\(655\) −22.6077 −0.883358
\(656\) 0.948491 2.91228i 0.0370324 0.113705i
\(657\) 20.5310 0.800991
\(658\) 0.404479 5.12802i 0.0157682 0.199911i
\(659\) 21.1434 + 21.1434i 0.823630 + 0.823630i 0.986627 0.162997i \(-0.0521160\pi\)
−0.162997 + 0.986627i \(0.552116\pi\)
\(660\) 68.4470 49.6934i 2.66429 1.93431i
\(661\) 3.71648 3.71648i 0.144554 0.144554i −0.631126 0.775680i \(-0.717407\pi\)
0.775680 + 0.631126i \(0.217407\pi\)
\(662\) −11.2989 + 9.64679i −0.439144 + 0.374933i
\(663\) 4.17900i 0.162299i
\(664\) −12.7181 20.7783i −0.493557 0.806354i
\(665\) 33.1601i 1.28589i
\(666\) −13.9319 16.3179i −0.539850 0.632305i
\(667\) −7.12138 + 7.12138i −0.275741 + 0.275741i
\(668\) 6.60759 41.6253i 0.255655 1.61053i
\(669\) 23.3236 + 23.3236i 0.901743 + 0.901743i
\(670\) −58.7157 4.63127i −2.26839 0.178922i
\(671\) 2.97059 0.114678
\(672\) −20.9581 + 8.65984i −0.808476 + 0.334061i
\(673\) −18.1480 −0.699552 −0.349776 0.936833i \(-0.613742\pi\)
−0.349776 + 0.936833i \(0.613742\pi\)
\(674\) −39.0863 3.08298i −1.50555 0.118752i
\(675\) 2.65993 + 2.65993i 0.102381 + 0.102381i
\(676\) 2.64983 16.6929i 0.101917 0.642035i
\(677\) −8.16589 + 8.16589i −0.313841 + 0.313841i −0.846396 0.532555i \(-0.821232\pi\)
0.532555 + 0.846396i \(0.321232\pi\)
\(678\) 28.6476 + 33.5538i 1.10020 + 1.28863i
\(679\) 12.3984i 0.475806i
\(680\) −7.23822 + 4.43041i −0.277573 + 0.169898i
\(681\) 36.0402i 1.38106i
\(682\) −54.6426 + 46.6528i −2.09237 + 1.78643i
\(683\) 4.85358 4.85358i 0.185717 0.185717i −0.608125 0.793842i \(-0.708078\pi\)
0.793842 + 0.608125i \(0.208078\pi\)
\(684\) 24.6511 17.8970i 0.942558 0.684309i
\(685\) −30.7151 30.7151i −1.17356 1.17356i
\(686\) 2.07676 26.3294i 0.0792912 1.00526i
\(687\) 63.4315 2.42006
\(688\) 18.9480 9.63793i 0.722385 0.367443i
\(689\) −4.48820 −0.170987
\(690\) −0.991020 + 12.5642i −0.0377275 + 0.478313i
\(691\) 10.8867 + 10.8867i 0.414149 + 0.414149i 0.883181 0.469032i \(-0.155397\pi\)
−0.469032 + 0.883181i \(0.655397\pi\)
\(692\) 1.23446 + 1.70033i 0.0469271 + 0.0646368i
\(693\) −15.7227 + 15.7227i −0.597258 + 0.597258i
\(694\) 11.5340 9.84748i 0.437823 0.373805i
\(695\) 41.0896i 1.55862i
\(696\) 16.0768 66.8114i 0.609388 2.53248i
\(697\) 0.621911i 0.0235566i
\(698\) −30.1235 35.2825i −1.14019 1.33546i
\(699\) −26.8168 + 26.8168i −1.01430 + 1.01430i
\(700\) 28.3824 + 4.50543i 1.07275 + 0.170289i
\(701\) −4.48997 4.48997i −0.169584 0.169584i 0.617212 0.786797i \(-0.288262\pi\)
−0.786797 + 0.617212i \(0.788262\pi\)
\(702\) 1.30812 + 0.103179i 0.0493717 + 0.00389425i
\(703\) −29.0658 −1.09624
\(704\) 36.1187 11.6941i 1.36127 0.440739i
\(705\) 19.5072 0.734682
\(706\) 20.4623 + 1.61399i 0.770108 + 0.0607432i
\(707\) −7.94577 7.94577i −0.298832 0.298832i
\(708\) −63.7954 10.1269i −2.39758 0.380591i
\(709\) 8.56006 8.56006i 0.321480 0.321480i −0.527855 0.849335i \(-0.677003\pi\)
0.849335 + 0.527855i \(0.177003\pi\)
\(710\) −9.79601 11.4737i −0.367638 0.430600i
\(711\) 3.84055i 0.144032i
\(712\) 3.29573 13.6963i 0.123513 0.513291i
\(713\) 10.7058i 0.400934i
\(714\) 3.50182 2.98979i 0.131052 0.111890i
\(715\) −26.4395 + 26.4395i −0.988780 + 0.988780i
\(716\) −9.76814 13.4545i −0.365053 0.502818i
\(717\) 5.31271 + 5.31271i 0.198407 + 0.198407i
\(718\) 0.661541 8.38708i 0.0246885 0.313003i
\(719\) −17.5883 −0.655932 −0.327966 0.944689i \(-0.606363\pi\)
−0.327966 + 0.944689i \(0.606363\pi\)
\(720\) −18.8900 37.1374i −0.703989 1.38403i
\(721\) 4.37596 0.162969
\(722\) 1.13201 14.3518i 0.0421292 0.534117i
\(723\) 19.8065 + 19.8065i 0.736612 + 0.736612i
\(724\) −28.6691 + 20.8141i −1.06548 + 0.773551i
\(725\) −61.5788 + 61.5788i −2.28698 + 2.28698i
\(726\) 29.8913 25.5206i 1.10937 0.947159i
\(727\) 41.4212i 1.53623i 0.640315 + 0.768113i \(0.278804\pi\)
−0.640315 + 0.768113i \(0.721196\pi\)
\(728\) 8.54998 5.23332i 0.316883 0.193960i
\(729\) 23.6624i 0.876384i
\(730\) −24.7003 28.9305i −0.914200 1.07077i
\(731\) −3.05223 + 3.05223i −0.112891 + 0.112891i
\(732\) 0.473495 2.98283i 0.0175009 0.110249i
\(733\) 24.4478 + 24.4478i 0.902998 + 0.902998i 0.995694 0.0926961i \(-0.0295485\pi\)
−0.0926961 + 0.995694i \(0.529549\pi\)
\(734\) −31.7479 2.50415i −1.17184 0.0924300i
\(735\) 37.7748 1.39334
\(736\) −2.16932 + 5.22437i −0.0799620 + 0.192573i
\(737\) −53.5003 −1.97071
\(738\) −3.04391 0.240092i −0.112048 0.00883790i
\(739\) −28.9582 28.9582i −1.06525 1.06525i −0.997717 0.0675288i \(-0.978489\pi\)
−0.0675288 0.997717i \(-0.521511\pi\)
\(740\) −6.23265 + 39.2632i −0.229117 + 1.44335i
\(741\) −19.6533 + 19.6533i −0.721981 + 0.721981i
\(742\) 3.21100 + 3.76091i 0.117879 + 0.138068i
\(743\) 27.0393i 0.991975i 0.868330 + 0.495987i \(0.165194\pi\)
−0.868330 + 0.495987i \(0.834806\pi\)
\(744\) 38.1353 + 62.3040i 1.39811 + 2.28417i
\(745\) 5.18629i 0.190011i
\(746\) 5.64247 4.81743i 0.206585 0.176379i
\(747\) −17.1729 + 17.1729i −0.628324 + 0.628324i
\(748\) −6.23806 + 4.52891i −0.228086 + 0.165593i
\(749\) 4.69465 + 4.69465i 0.171539 + 0.171539i
\(750\) −3.61429 + 45.8223i −0.131975 + 1.67319i
\(751\) 8.86802 0.323598 0.161799 0.986824i \(-0.448270\pi\)
0.161799 + 0.986824i \(0.448270\pi\)
\(752\) 8.32518 + 2.71140i 0.303588 + 0.0988747i
\(753\) −48.1297 −1.75394
\(754\) −2.38865 + 30.2836i −0.0869896 + 1.10286i
\(755\) 53.3385 + 53.3385i 1.94119 + 1.94119i
\(756\) −0.849407 1.16996i −0.0308926 0.0425511i
\(757\) −4.85766 + 4.85766i −0.176555 + 0.176555i −0.789852 0.613297i \(-0.789843\pi\)
0.613297 + 0.789852i \(0.289843\pi\)
\(758\) 7.70733 6.58037i 0.279943 0.239010i
\(759\) 11.4482i 0.415544i
\(760\) −54.8760 13.2048i −1.99056 0.478987i
\(761\) 16.9685i 0.615109i 0.951530 + 0.307554i \(0.0995106\pi\)
−0.951530 + 0.307554i \(0.900489\pi\)
\(762\) −35.9164 42.0675i −1.30112 1.52395i
\(763\) −6.09770 + 6.09770i −0.220752 + 0.220752i
\(764\) 3.24728 + 0.515474i 0.117483 + 0.0186492i
\(765\) 5.98227 + 5.98227i 0.216289 + 0.216289i
\(766\) 21.3793 + 1.68632i 0.772465 + 0.0609291i
\(767\) 28.5544 1.03104
\(768\) −5.98522 38.1315i −0.215973 1.37595i
\(769\) −31.9813