Properties

Label 368.2.j.c.277.6
Level $368$
Weight $2$
Character 368.277
Analytic conductor $2.938$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(93,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 277.6
Root \(-0.518742 + 1.31564i\) of defining polynomial
Character \(\chi\) \(=\) 368.277
Dual form 368.2.j.c.93.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38463 + 0.287766i) q^{2} +(0.339667 - 0.339667i) q^{3} +(1.83438 + 0.796898i) q^{4} +(1.46929 + 1.46929i) q^{5} +(0.568056 - 0.372567i) q^{6} -2.63128i q^{7} +(2.31061 + 1.63128i) q^{8} +2.76925i q^{9} +(1.61161 + 2.45723i) q^{10} +(-2.99062 - 2.99062i) q^{11} +(0.893758 - 0.352399i) q^{12} +(-0.749580 + 0.749580i) q^{13} +(0.757193 - 3.64334i) q^{14} +0.998138 q^{15} +(2.72991 + 2.92363i) q^{16} -3.64954 q^{17} +(-0.796898 + 3.83438i) q^{18} +(1.76925 - 1.76925i) q^{19} +(1.52436 + 3.86611i) q^{20} +(-0.893758 - 0.893758i) q^{21} +(-3.28029 - 5.00149i) q^{22} +1.00000i q^{23} +(1.33893 - 0.230747i) q^{24} -0.682370i q^{25} +(-1.25359 + 0.822185i) q^{26} +(1.95962 + 1.95962i) q^{27} +(2.09686 - 4.82677i) q^{28} +(0.0790494 - 0.0790494i) q^{29} +(1.38205 + 0.287231i) q^{30} -2.07656 q^{31} +(2.93858 + 4.83371i) q^{32} -2.03163 q^{33} +(-5.05325 - 1.05022i) q^{34} +(3.86611 - 3.86611i) q^{35} +(-2.20681 + 5.07987i) q^{36} +(-3.64475 - 3.64475i) q^{37} +(2.95889 - 1.94062i) q^{38} +0.509215i q^{39} +(0.998138 + 5.79178i) q^{40} -1.90098i q^{41} +(-0.980327 - 1.49471i) q^{42} +(6.84422 + 6.84422i) q^{43} +(-3.10272 - 7.86915i) q^{44} +(-4.06884 + 4.06884i) q^{45} +(-0.287766 + 1.38463i) q^{46} -8.55356 q^{47} +(1.92032 + 0.0658004i) q^{48} +0.0763717 q^{49} +(0.196363 - 0.944828i) q^{50} +(-1.23963 + 1.23963i) q^{51} +(-1.97236 + 0.777677i) q^{52} +(-6.62218 - 6.62218i) q^{53} +(2.14943 + 3.27726i) q^{54} -8.78817i q^{55} +(4.29235 - 6.07987i) q^{56} -1.20191i q^{57} +(0.132202 - 0.0867061i) q^{58} +(-5.45162 - 5.45162i) q^{59} +(1.83097 + 0.795414i) q^{60} +(2.13515 - 2.13515i) q^{61} +(-2.87525 - 0.597563i) q^{62} +7.28668 q^{63} +(2.67786 + 7.53851i) q^{64} -2.20270 q^{65} +(-2.81304 - 0.584634i) q^{66} +(3.51996 - 3.51996i) q^{67} +(-6.69465 - 2.90831i) q^{68} +(0.339667 + 0.339667i) q^{69} +(6.46566 - 4.24059i) q^{70} +1.61740i q^{71} +(-4.51742 + 6.39867i) q^{72} +14.4563i q^{73} +(-3.99778 - 6.09545i) q^{74} +(-0.231779 - 0.231779i) q^{75} +(4.65540 - 1.83557i) q^{76} +(-7.86915 + 7.86915i) q^{77} +(-0.146535 + 0.705073i) q^{78} -12.5492 q^{79} +(-0.284631 + 8.30669i) q^{80} -6.97652 q^{81} +(0.547039 - 2.63215i) q^{82} +(1.26143 - 1.26143i) q^{83} +(-0.927259 - 2.35173i) q^{84} +(-5.36224 - 5.36224i) q^{85} +(7.50715 + 11.4462i) q^{86} -0.0537009i q^{87} +(-2.03163 - 11.7887i) q^{88} +12.3891i q^{89} +(-6.80469 + 4.46295i) q^{90} +(1.97236 + 1.97236i) q^{91} +(-0.796898 + 1.83438i) q^{92} +(-0.705337 + 0.705337i) q^{93} +(-11.8435 - 2.46143i) q^{94} +5.19909 q^{95} +(2.63999 + 0.643712i) q^{96} +7.54694 q^{97} +(0.105746 + 0.0219772i) q^{98} +(8.28178 - 8.28178i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8} - 6 q^{10} - 4 q^{11} - 8 q^{12} + 18 q^{13} - 2 q^{14} + 8 q^{16} - 8 q^{17} - 4 q^{18} - 8 q^{19} - 32 q^{20} + 8 q^{21} - 34 q^{22} + 12 q^{24} - 14 q^{26}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38463 + 0.287766i 0.979079 + 0.203482i
\(3\) 0.339667 0.339667i 0.196107 0.196107i −0.602222 0.798329i \(-0.705718\pi\)
0.798329 + 0.602222i \(0.205718\pi\)
\(4\) 1.83438 + 0.796898i 0.917191 + 0.398449i
\(5\) 1.46929 + 1.46929i 0.657087 + 0.657087i 0.954690 0.297603i \(-0.0961872\pi\)
−0.297603 + 0.954690i \(0.596187\pi\)
\(6\) 0.568056 0.372567i 0.231908 0.152100i
\(7\) 2.63128i 0.994530i −0.867599 0.497265i \(-0.834338\pi\)
0.867599 0.497265i \(-0.165662\pi\)
\(8\) 2.31061 + 1.63128i 0.816925 + 0.576744i
\(9\) 2.76925i 0.923084i
\(10\) 1.61161 + 2.45723i 0.509635 + 0.777045i
\(11\) −2.99062 2.99062i −0.901705 0.901705i 0.0938784 0.995584i \(-0.470074\pi\)
−0.995584 + 0.0938784i \(0.970074\pi\)
\(12\) 0.893758 0.352399i 0.258006 0.101729i
\(13\) −0.749580 + 0.749580i −0.207896 + 0.207896i −0.803373 0.595477i \(-0.796963\pi\)
0.595477 + 0.803373i \(0.296963\pi\)
\(14\) 0.757193 3.64334i 0.202368 0.973723i
\(15\) 0.998138 0.257718
\(16\) 2.72991 + 2.92363i 0.682477 + 0.730907i
\(17\) −3.64954 −0.885144 −0.442572 0.896733i \(-0.645934\pi\)
−0.442572 + 0.896733i \(0.645934\pi\)
\(18\) −0.796898 + 3.83438i −0.187831 + 0.903772i
\(19\) 1.76925 1.76925i 0.405894 0.405894i −0.474410 0.880304i \(-0.657338\pi\)
0.880304 + 0.474410i \(0.157338\pi\)
\(20\) 1.52436 + 3.86611i 0.340858 + 0.864489i
\(21\) −0.893758 0.893758i −0.195034 0.195034i
\(22\) −3.28029 5.00149i −0.699360 1.06632i
\(23\) 1.00000i 0.208514i
\(24\) 1.33893 0.230747i 0.273308 0.0471010i
\(25\) 0.682370i 0.136474i
\(26\) −1.25359 + 0.822185i −0.245850 + 0.161244i
\(27\) 1.95962 + 1.95962i 0.377130 + 0.377130i
\(28\) 2.09686 4.82677i 0.396269 0.912173i
\(29\) 0.0790494 0.0790494i 0.0146791 0.0146791i −0.699729 0.714408i \(-0.746696\pi\)
0.714408 + 0.699729i \(0.246696\pi\)
\(30\) 1.38205 + 0.287231i 0.252326 + 0.0524409i
\(31\) −2.07656 −0.372960 −0.186480 0.982459i \(-0.559708\pi\)
−0.186480 + 0.982459i \(0.559708\pi\)
\(32\) 2.93858 + 4.83371i 0.519473 + 0.854487i
\(33\) −2.03163 −0.353661
\(34\) −5.05325 1.05022i −0.866626 0.180110i
\(35\) 3.86611 3.86611i 0.653492 0.653492i
\(36\) −2.20681 + 5.07987i −0.367802 + 0.846644i
\(37\) −3.64475 3.64475i −0.599193 0.599193i 0.340905 0.940098i \(-0.389267\pi\)
−0.940098 + 0.340905i \(0.889267\pi\)
\(38\) 2.95889 1.94062i 0.479995 0.314811i
\(39\) 0.509215i 0.0815397i
\(40\) 0.998138 + 5.79178i 0.157820 + 0.915761i
\(41\) 1.90098i 0.296884i −0.988921 0.148442i \(-0.952574\pi\)
0.988921 0.148442i \(-0.0474258\pi\)
\(42\) −0.980327 1.49471i −0.151268 0.230639i
\(43\) 6.84422 + 6.84422i 1.04373 + 1.04373i 0.998999 + 0.0447348i \(0.0142443\pi\)
0.0447348 + 0.998999i \(0.485756\pi\)
\(44\) −3.10272 7.86915i −0.467752 1.18632i
\(45\) −4.06884 + 4.06884i −0.606546 + 0.606546i
\(46\) −0.287766 + 1.38463i −0.0424288 + 0.204152i
\(47\) −8.55356 −1.24767 −0.623833 0.781558i \(-0.714425\pi\)
−0.623833 + 0.781558i \(0.714425\pi\)
\(48\) 1.92032 + 0.0658004i 0.277174 + 0.00949746i
\(49\) 0.0763717 0.0109102
\(50\) 0.196363 0.944828i 0.0277700 0.133619i
\(51\) −1.23963 + 1.23963i −0.173583 + 0.173583i
\(52\) −1.97236 + 0.777677i −0.273516 + 0.107844i
\(53\) −6.62218 6.62218i −0.909627 0.909627i 0.0866152 0.996242i \(-0.472395\pi\)
−0.996242 + 0.0866152i \(0.972395\pi\)
\(54\) 2.14943 + 3.27726i 0.292501 + 0.445979i
\(55\) 8.78817i 1.18500i
\(56\) 4.29235 6.07987i 0.573589 0.812456i
\(57\) 1.20191i 0.159197i
\(58\) 0.132202 0.0867061i 0.0173589 0.0113851i
\(59\) −5.45162 5.45162i −0.709741 0.709741i 0.256740 0.966481i \(-0.417352\pi\)
−0.966481 + 0.256740i \(0.917352\pi\)
\(60\) 1.83097 + 0.795414i 0.236377 + 0.102688i
\(61\) 2.13515 2.13515i 0.273379 0.273379i −0.557080 0.830459i \(-0.688078\pi\)
0.830459 + 0.557080i \(0.188078\pi\)
\(62\) −2.87525 0.597563i −0.365158 0.0758905i
\(63\) 7.28668 0.918035
\(64\) 2.67786 + 7.53851i 0.334732 + 0.942313i
\(65\) −2.20270 −0.273212
\(66\) −2.81304 0.584634i −0.346262 0.0719635i
\(67\) 3.51996 3.51996i 0.430031 0.430031i −0.458608 0.888639i \(-0.651652\pi\)
0.888639 + 0.458608i \(0.151652\pi\)
\(68\) −6.69465 2.90831i −0.811846 0.352685i
\(69\) 0.339667 + 0.339667i 0.0408911 + 0.0408911i
\(70\) 6.46566 4.24059i 0.772794 0.506847i
\(71\) 1.61740i 0.191950i 0.995384 + 0.0959749i \(0.0305968\pi\)
−0.995384 + 0.0959749i \(0.969403\pi\)
\(72\) −4.51742 + 6.39867i −0.532384 + 0.754091i
\(73\) 14.4563i 1.69198i 0.533199 + 0.845990i \(0.320990\pi\)
−0.533199 + 0.845990i \(0.679010\pi\)
\(74\) −3.99778 6.09545i −0.464732 0.708582i
\(75\) −0.231779 0.231779i −0.0267635 0.0267635i
\(76\) 4.65540 1.83557i 0.534011 0.210554i
\(77\) −7.86915 + 7.86915i −0.896773 + 0.896773i
\(78\) −0.146535 + 0.705073i −0.0165918 + 0.0798338i
\(79\) −12.5492 −1.41190 −0.705950 0.708262i \(-0.749480\pi\)
−0.705950 + 0.708262i \(0.749480\pi\)
\(80\) −0.284631 + 8.30669i −0.0318228 + 0.928716i
\(81\) −6.97652 −0.775169
\(82\) 0.547039 2.63215i 0.0604104 0.290673i
\(83\) 1.26143 1.26143i 0.138460 0.138460i −0.634480 0.772940i \(-0.718786\pi\)
0.772940 + 0.634480i \(0.218786\pi\)
\(84\) −0.927259 2.35173i −0.101172 0.256594i
\(85\) −5.36224 5.36224i −0.581616 0.581616i
\(86\) 7.50715 + 11.4462i 0.809517 + 1.23428i
\(87\) 0.0537009i 0.00575734i
\(88\) −2.03163 11.7887i −0.216572 1.25668i
\(89\) 12.3891i 1.31324i 0.754222 + 0.656620i \(0.228014\pi\)
−0.754222 + 0.656620i \(0.771986\pi\)
\(90\) −6.80469 + 4.46295i −0.717278 + 0.470436i
\(91\) 1.97236 + 1.97236i 0.206759 + 0.206759i
\(92\) −0.796898 + 1.83438i −0.0830823 + 0.191247i
\(93\) −0.705337 + 0.705337i −0.0731400 + 0.0731400i
\(94\) −11.8435 2.46143i −1.22156 0.253877i
\(95\) 5.19909 0.533416
\(96\) 2.63999 + 0.643712i 0.269443 + 0.0656986i
\(97\) 7.54694 0.766276 0.383138 0.923691i \(-0.374843\pi\)
0.383138 + 0.923691i \(0.374843\pi\)
\(98\) 0.105746 + 0.0219772i 0.0106820 + 0.00222003i
\(99\) 8.28178 8.28178i 0.832350 0.832350i
\(100\) 0.543779 1.25173i 0.0543779 0.125173i
\(101\) −3.11433 3.11433i −0.309888 0.309888i 0.534978 0.844866i \(-0.320320\pi\)
−0.844866 + 0.534978i \(0.820320\pi\)
\(102\) −2.07314 + 1.35970i −0.205272 + 0.134630i
\(103\) 3.73367i 0.367890i −0.982937 0.183945i \(-0.941113\pi\)
0.982937 0.183945i \(-0.0588868\pi\)
\(104\) −2.95476 + 0.509215i −0.289739 + 0.0499327i
\(105\) 2.62638i 0.256308i
\(106\) −7.26361 11.0749i −0.705504 1.07569i
\(107\) 0.0709721 + 0.0709721i 0.00686113 + 0.00686113i 0.710529 0.703668i \(-0.248456\pi\)
−0.703668 + 0.710529i \(0.748456\pi\)
\(108\) 2.03308 + 5.15632i 0.195633 + 0.496167i
\(109\) 2.51118 2.51118i 0.240527 0.240527i −0.576541 0.817068i \(-0.695598\pi\)
0.817068 + 0.576541i \(0.195598\pi\)
\(110\) 2.52894 12.1683i 0.241125 1.16021i
\(111\) −2.47600 −0.235011
\(112\) 7.69288 7.18315i 0.726909 0.678744i
\(113\) 18.1520 1.70760 0.853799 0.520603i \(-0.174293\pi\)
0.853799 + 0.520603i \(0.174293\pi\)
\(114\) 0.345870 1.66420i 0.0323937 0.155867i
\(115\) −1.46929 + 1.46929i −0.137012 + 0.137012i
\(116\) 0.208001 0.0820124i 0.0193124 0.00761466i
\(117\) −2.07578 2.07578i −0.191906 0.191906i
\(118\) −5.97967 9.11726i −0.550473 0.839311i
\(119\) 9.60296i 0.880302i
\(120\) 2.30631 + 1.62824i 0.210536 + 0.148637i
\(121\) 6.88759i 0.626145i
\(122\) 3.57082 2.34197i 0.323287 0.212032i
\(123\) −0.645701 0.645701i −0.0582209 0.0582209i
\(124\) −3.80919 1.65480i −0.342076 0.148606i
\(125\) 8.34905 8.34905i 0.746762 0.746762i
\(126\) 10.0893 + 2.09686i 0.898829 + 0.186803i
\(127\) 12.4430 1.10414 0.552068 0.833799i \(-0.313839\pi\)
0.552068 + 0.833799i \(0.313839\pi\)
\(128\) 1.53851 + 11.2086i 0.135986 + 0.990711i
\(129\) 4.64951 0.409366
\(130\) −3.04992 0.633864i −0.267496 0.0555935i
\(131\) 8.15929 8.15929i 0.712880 0.712880i −0.254257 0.967137i \(-0.581831\pi\)
0.967137 + 0.254257i \(0.0818308\pi\)
\(132\) −3.72678 1.61900i −0.324374 0.140916i
\(133\) −4.65540 4.65540i −0.403674 0.403674i
\(134\) 5.88675 3.86090i 0.508538 0.333531i
\(135\) 5.75851i 0.495614i
\(136\) −8.43268 5.95342i −0.723096 0.510502i
\(137\) 19.1721i 1.63798i 0.573806 + 0.818991i \(0.305466\pi\)
−0.573806 + 0.818991i \(0.694534\pi\)
\(138\) 0.372567 + 0.568056i 0.0317150 + 0.0483562i
\(139\) −3.90522 3.90522i −0.331237 0.331237i 0.521819 0.853056i \(-0.325253\pi\)
−0.853056 + 0.521819i \(0.825253\pi\)
\(140\) 10.1728 4.01103i 0.859760 0.338994i
\(141\) −2.90536 + 2.90536i −0.244676 + 0.244676i
\(142\) −0.465433 + 2.23949i −0.0390582 + 0.187934i
\(143\) 4.48342 0.374922
\(144\) −8.09627 + 7.55981i −0.674689 + 0.629984i
\(145\) 0.232293 0.0192909
\(146\) −4.16003 + 20.0165i −0.344287 + 1.65658i
\(147\) 0.0259409 0.0259409i 0.00213957 0.00213957i
\(148\) −3.78137 9.59035i −0.310826 0.788322i
\(149\) 3.78869 + 3.78869i 0.310382 + 0.310382i 0.845057 0.534676i \(-0.179566\pi\)
−0.534676 + 0.845057i \(0.679566\pi\)
\(150\) −0.254229 0.387625i −0.0207577 0.0316494i
\(151\) 7.90187i 0.643045i 0.946902 + 0.321523i \(0.104195\pi\)
−0.946902 + 0.321523i \(0.895805\pi\)
\(152\) 6.97420 1.20191i 0.565683 0.0974880i
\(153\) 10.1065i 0.817062i
\(154\) −13.1603 + 8.63136i −1.06049 + 0.695535i
\(155\) −3.05106 3.05106i −0.245067 0.245067i
\(156\) −0.405792 + 0.934095i −0.0324894 + 0.0747874i
\(157\) 5.73125 5.73125i 0.457404 0.457404i −0.440399 0.897802i \(-0.645163\pi\)
0.897802 + 0.440399i \(0.145163\pi\)
\(158\) −17.3760 3.61125i −1.38236 0.287295i
\(159\) −4.49867 −0.356768
\(160\) −2.78449 + 11.4198i −0.220134 + 0.902811i
\(161\) 2.63128 0.207374
\(162\) −9.65988 2.00761i −0.758952 0.157733i
\(163\) 15.0985 15.0985i 1.18261 1.18261i 0.203542 0.979066i \(-0.434755\pi\)
0.979066 0.203542i \(-0.0652454\pi\)
\(164\) 1.51489 3.48713i 0.118293 0.272299i
\(165\) −2.98505 2.98505i −0.232386 0.232386i
\(166\) 2.10960 1.38361i 0.163737 0.107389i
\(167\) 24.8170i 1.92040i 0.279316 + 0.960199i \(0.409892\pi\)
−0.279316 + 0.960199i \(0.590108\pi\)
\(168\) −0.607160 3.52310i −0.0468434 0.271813i
\(169\) 11.8763i 0.913558i
\(170\) −5.88162 8.96777i −0.451100 0.687796i
\(171\) 4.89951 + 4.89951i 0.374675 + 0.374675i
\(172\) 7.10076 + 18.0091i 0.541428 + 1.37318i
\(173\) −15.3500 + 15.3500i −1.16704 + 1.16704i −0.184143 + 0.982899i \(0.558951\pi\)
−0.982899 + 0.184143i \(0.941049\pi\)
\(174\) 0.0154533 0.0743557i 0.00117151 0.00563689i
\(175\) −1.79551 −0.135728
\(176\) 0.579344 16.9076i 0.0436697 1.27446i
\(177\) −3.70347 −0.278370
\(178\) −3.56516 + 17.1542i −0.267220 + 1.28576i
\(179\) 4.97599 4.97599i 0.371923 0.371923i −0.496254 0.868177i \(-0.665292\pi\)
0.868177 + 0.496254i \(0.165292\pi\)
\(180\) −10.7062 + 4.22135i −0.797996 + 0.314641i
\(181\) −6.45355 6.45355i −0.479688 0.479688i 0.425344 0.905032i \(-0.360153\pi\)
−0.905032 + 0.425344i \(0.860153\pi\)
\(182\) 2.16340 + 3.29855i 0.160362 + 0.244505i
\(183\) 1.45048i 0.107223i
\(184\) −1.63128 + 2.31061i −0.120259 + 0.170341i
\(185\) 10.7104i 0.787443i
\(186\) −1.17960 + 0.773656i −0.0864925 + 0.0567272i
\(187\) 10.9144 + 10.9144i 0.798139 + 0.798139i
\(188\) −15.6905 6.81631i −1.14435 0.497131i
\(189\) 5.15632 5.15632i 0.375067 0.375067i
\(190\) 7.19880 + 1.49612i 0.522256 + 0.108540i
\(191\) −8.83309 −0.639140 −0.319570 0.947563i \(-0.603538\pi\)
−0.319570 + 0.947563i \(0.603538\pi\)
\(192\) 3.47016 + 1.65100i 0.250437 + 0.119151i
\(193\) 25.7203 1.85139 0.925693 0.378276i \(-0.123483\pi\)
0.925693 + 0.378276i \(0.123483\pi\)
\(194\) 10.4497 + 2.17176i 0.750244 + 0.155923i
\(195\) −0.748185 + 0.748185i −0.0535786 + 0.0535786i
\(196\) 0.140095 + 0.0608604i 0.0100068 + 0.00434717i
\(197\) 13.6056 + 13.6056i 0.969360 + 0.969360i 0.999544 0.0301846i \(-0.00960950\pi\)
−0.0301846 + 0.999544i \(0.509610\pi\)
\(198\) 13.8504 9.08395i 0.984304 0.645568i
\(199\) 18.1665i 1.28779i −0.765113 0.643896i \(-0.777317\pi\)
0.765113 0.643896i \(-0.222683\pi\)
\(200\) 1.11314 1.57669i 0.0787106 0.111489i
\(201\) 2.39123i 0.168664i
\(202\) −3.41599 5.20839i −0.240348 0.366461i
\(203\) −0.208001 0.208001i −0.0145988 0.0145988i
\(204\) −3.26181 + 1.28609i −0.228372 + 0.0900445i
\(205\) 2.79310 2.79310i 0.195078 0.195078i
\(206\) 1.07443 5.16974i 0.0748588 0.360193i
\(207\) −2.76925 −0.192476
\(208\) −4.23778 0.145209i −0.293837 0.0100684i
\(209\) −10.5823 −0.731994
\(210\) 0.755784 3.63656i 0.0521540 0.250946i
\(211\) 14.8891 14.8891i 1.02501 1.02501i 0.0253303 0.999679i \(-0.491936\pi\)
0.999679 0.0253303i \(-0.00806373\pi\)
\(212\) −6.87040 17.4248i −0.471861 1.19674i
\(213\) 0.549376 + 0.549376i 0.0376426 + 0.0376426i
\(214\) 0.0778465 + 0.118693i 0.00532147 + 0.00811370i
\(215\) 20.1123i 1.37165i
\(216\) 1.33124 + 7.72462i 0.0905793 + 0.525594i
\(217\) 5.46400i 0.370920i
\(218\) 4.19968 2.75441i 0.284438 0.186552i
\(219\) 4.91032 + 4.91032i 0.331808 + 0.331808i
\(220\) 7.00328 16.1209i 0.472161 1.08687i
\(221\) 2.73563 2.73563i 0.184018 0.184018i
\(222\) −3.42833 0.712509i −0.230095 0.0478205i
\(223\) −13.1617 −0.881375 −0.440687 0.897661i \(-0.645265\pi\)
−0.440687 + 0.897661i \(0.645265\pi\)
\(224\) 12.7188 7.73223i 0.849813 0.516631i
\(225\) 1.88966 0.125977
\(226\) 25.1338 + 5.22354i 1.67187 + 0.347465i
\(227\) −20.0761 + 20.0761i −1.33250 + 1.33250i −0.429373 + 0.903127i \(0.641266\pi\)
−0.903127 + 0.429373i \(0.858734\pi\)
\(228\) 0.957802 2.20477i 0.0634320 0.146014i
\(229\) 8.36396 + 8.36396i 0.552706 + 0.552706i 0.927221 0.374515i \(-0.122191\pi\)
−0.374515 + 0.927221i \(0.622191\pi\)
\(230\) −2.45723 + 1.61161i −0.162025 + 0.106266i
\(231\) 5.34578i 0.351726i
\(232\) 0.311604 0.0537009i 0.0204578 0.00352564i
\(233\) 3.94663i 0.258552i −0.991609 0.129276i \(-0.958735\pi\)
0.991609 0.129276i \(-0.0412653\pi\)
\(234\) −2.27684 3.47152i −0.148842 0.226940i
\(235\) −12.5677 12.5677i −0.819824 0.819824i
\(236\) −5.65597 14.3447i −0.368172 0.933763i
\(237\) −4.26256 + 4.26256i −0.276883 + 0.276883i
\(238\) −2.76341 + 13.2965i −0.179125 + 0.861885i
\(239\) 11.4254 0.739050 0.369525 0.929221i \(-0.379520\pi\)
0.369525 + 0.929221i \(0.379520\pi\)
\(240\) 2.72483 + 2.91819i 0.175887 + 0.188368i
\(241\) 7.33232 0.472316 0.236158 0.971715i \(-0.424112\pi\)
0.236158 + 0.971715i \(0.424112\pi\)
\(242\) −1.98202 + 9.53674i −0.127409 + 0.613045i
\(243\) −8.24856 + 8.24856i −0.529146 + 0.529146i
\(244\) 5.61819 2.21519i 0.359668 0.141813i
\(245\) 0.112212 + 0.112212i 0.00716897 + 0.00716897i
\(246\) −0.708244 1.07987i −0.0451560 0.0688497i
\(247\) 2.65240i 0.168768i
\(248\) −4.79811 3.38744i −0.304681 0.215103i
\(249\) 0.856931i 0.0543058i
\(250\) 13.9629 9.15774i 0.883091 0.579187i
\(251\) 8.12841 + 8.12841i 0.513061 + 0.513061i 0.915463 0.402402i \(-0.131825\pi\)
−0.402402 + 0.915463i \(0.631825\pi\)
\(252\) 13.3665 + 5.80674i 0.842013 + 0.365790i
\(253\) 2.99062 2.99062i 0.188019 0.188019i
\(254\) 17.2289 + 3.58067i 1.08104 + 0.224671i
\(255\) −3.64275 −0.228118
\(256\) −1.09521 + 15.9625i −0.0684503 + 0.997655i
\(257\) −11.6453 −0.726417 −0.363208 0.931708i \(-0.618319\pi\)
−0.363208 + 0.931708i \(0.618319\pi\)
\(258\) 6.43783 + 1.33797i 0.400802 + 0.0832985i
\(259\) −9.59035 + 9.59035i −0.595915 + 0.595915i
\(260\) −4.04060 1.75533i −0.250587 0.108861i
\(261\) 0.218908 + 0.218908i 0.0135500 + 0.0135500i
\(262\) 13.6455 8.94960i 0.843024 0.552908i
\(263\) 15.1470i 0.934002i 0.884257 + 0.467001i \(0.154666\pi\)
−0.884257 + 0.467001i \(0.845334\pi\)
\(264\) −4.69430 3.31415i −0.288914 0.203972i
\(265\) 19.4598i 1.19541i
\(266\) −5.10632 7.78565i −0.313089 0.477369i
\(267\) 4.20816 + 4.20816i 0.257535 + 0.257535i
\(268\) 9.26199 3.65190i 0.565766 0.223075i
\(269\) 14.2175 14.2175i 0.866859 0.866859i −0.125264 0.992123i \(-0.539978\pi\)
0.992123 + 0.125264i \(0.0399779\pi\)
\(270\) −1.65711 + 7.97339i −0.100848 + 0.485245i
\(271\) −29.2477 −1.77667 −0.888335 0.459196i \(-0.848137\pi\)
−0.888335 + 0.459196i \(0.848137\pi\)
\(272\) −9.96291 10.6699i −0.604090 0.646958i
\(273\) 1.33989 0.0810936
\(274\) −5.51708 + 26.5462i −0.333299 + 1.60371i
\(275\) −2.04071 + 2.04071i −0.123059 + 0.123059i
\(276\) 0.352399 + 0.893758i 0.0212119 + 0.0537979i
\(277\) 18.1466 + 18.1466i 1.09033 + 1.09033i 0.995493 + 0.0948326i \(0.0302316\pi\)
0.0948326 + 0.995493i \(0.469768\pi\)
\(278\) −4.28348 6.53106i −0.256906 0.391707i
\(279\) 5.75051i 0.344274i
\(280\) 15.2398 2.62638i 0.910752 0.156956i
\(281\) 7.80937i 0.465868i −0.972493 0.232934i \(-0.925167\pi\)
0.972493 0.232934i \(-0.0748326\pi\)
\(282\) −4.85890 + 3.18677i −0.289344 + 0.189770i
\(283\) 6.93643 + 6.93643i 0.412328 + 0.412328i 0.882549 0.470221i \(-0.155826\pi\)
−0.470221 + 0.882549i \(0.655826\pi\)
\(284\) −1.28890 + 2.96692i −0.0764822 + 0.176055i
\(285\) 1.76596 1.76596i 0.104606 0.104606i
\(286\) 6.20786 + 1.29018i 0.367078 + 0.0762897i
\(287\) −5.00202 −0.295260
\(288\) −13.3858 + 8.13767i −0.788764 + 0.479517i
\(289\) −3.68085 −0.216520
\(290\) 0.321639 + 0.0668461i 0.0188873 + 0.00392534i
\(291\) 2.56345 2.56345i 0.150272 0.150272i
\(292\) −11.5202 + 26.5183i −0.674167 + 1.55187i
\(293\) −17.8367 17.8367i −1.04203 1.04203i −0.999077 0.0429542i \(-0.986323\pi\)
−0.0429542 0.999077i \(-0.513677\pi\)
\(294\) 0.0433834 0.0284536i 0.00253017 0.00165945i
\(295\) 16.0200i 0.932723i
\(296\) −2.47600 14.3672i −0.143915 0.835077i
\(297\) 11.7210i 0.680120i
\(298\) 4.15566 + 6.33618i 0.240731 + 0.367045i
\(299\) −0.749580 0.749580i −0.0433494 0.0433494i
\(300\) −0.240466 0.609874i −0.0138833 0.0352111i
\(301\) 18.0091 18.0091i 1.03802 1.03802i
\(302\) −2.27389 + 10.9411i −0.130848 + 0.629592i
\(303\) −2.11567 −0.121542
\(304\) 10.0025 + 0.342740i 0.573685 + 0.0196575i
\(305\) 6.27433 0.359267
\(306\) 2.90831 13.9937i 0.166257 0.799969i
\(307\) −7.49984 + 7.49984i −0.428038 + 0.428038i −0.887960 0.459921i \(-0.847878\pi\)
0.459921 + 0.887960i \(0.347878\pi\)
\(308\) −20.7059 + 8.16411i −1.17983 + 0.465193i
\(309\) −1.26821 1.26821i −0.0721457 0.0721457i
\(310\) −3.34659 5.10258i −0.190074 0.289807i
\(311\) 11.2453i 0.637660i −0.947812 0.318830i \(-0.896710\pi\)
0.947812 0.318830i \(-0.103290\pi\)
\(312\) −0.830672 + 1.17660i −0.0470275 + 0.0666118i
\(313\) 32.0265i 1.81025i −0.425149 0.905123i \(-0.639778\pi\)
0.425149 0.905123i \(-0.360222\pi\)
\(314\) 9.58491 6.28638i 0.540908 0.354761i
\(315\) 10.7062 + 10.7062i 0.603229 + 0.603229i
\(316\) −23.0201 10.0005i −1.29498 0.562570i
\(317\) 3.70621 3.70621i 0.208162 0.208162i −0.595324 0.803486i \(-0.702976\pi\)
0.803486 + 0.595324i \(0.202976\pi\)
\(318\) −6.22898 1.29457i −0.349304 0.0725956i
\(319\) −0.472813 −0.0264724
\(320\) −7.14170 + 15.0108i −0.399233 + 0.839130i
\(321\) 0.0482137 0.00269103
\(322\) 3.64334 + 0.757193i 0.203035 + 0.0421967i
\(323\) −6.45696 + 6.45696i −0.359275 + 0.359275i
\(324\) −12.7976 5.55957i −0.710978 0.308865i
\(325\) 0.511492 + 0.511492i 0.0283724 + 0.0283724i
\(326\) 25.2507 16.5610i 1.39851 0.917228i
\(327\) 1.70593i 0.0943381i
\(328\) 3.10103 4.39244i 0.171226 0.242532i
\(329\) 22.5068i 1.24084i
\(330\) −3.27418 4.99218i −0.180238 0.274810i
\(331\) −12.6447 12.6447i −0.695018 0.695018i 0.268314 0.963332i \(-0.413534\pi\)
−0.963332 + 0.268314i \(0.913534\pi\)
\(332\) 3.31917 1.30871i 0.182163 0.0718249i
\(333\) 10.0932 10.0932i 0.553106 0.553106i
\(334\) −7.14150 + 34.3623i −0.390766 + 1.88022i
\(335\) 10.3437 0.565136
\(336\) 0.173139 5.05289i 0.00944551 0.275658i
\(337\) −7.17715 −0.390964 −0.195482 0.980707i \(-0.562627\pi\)
−0.195482 + 0.980707i \(0.562627\pi\)
\(338\) −3.41759 + 16.4442i −0.185892 + 0.894446i
\(339\) 6.16564 6.16564i 0.334871 0.334871i
\(340\) −5.56323 14.1095i −0.301709 0.765197i
\(341\) 6.21018 + 6.21018i 0.336300 + 0.336300i
\(342\) 5.37408 + 8.19390i 0.290597 + 0.443076i
\(343\) 18.6199i 1.00538i
\(344\) 4.64951 + 26.9792i 0.250685 + 1.45462i
\(345\) 0.998138i 0.0537380i
\(346\) −25.6713 + 16.8369i −1.38010 + 0.905155i
\(347\) −6.56460 6.56460i −0.352406 0.352406i 0.508598 0.861004i \(-0.330164\pi\)
−0.861004 + 0.508598i \(0.830164\pi\)
\(348\) 0.0427941 0.0985079i 0.00229400 0.00528058i
\(349\) 16.2157 16.2157i 0.868005 0.868005i −0.124246 0.992251i \(-0.539651\pi\)
0.992251 + 0.124246i \(0.0396513\pi\)
\(350\) −2.48611 0.516686i −0.132888 0.0276181i
\(351\) −2.93779 −0.156808
\(352\) 5.66760 23.2440i 0.302084 1.23891i
\(353\) −30.8325 −1.64105 −0.820523 0.571613i \(-0.806318\pi\)
−0.820523 + 0.571613i \(0.806318\pi\)
\(354\) −5.12792 1.06573i −0.272546 0.0566431i
\(355\) −2.37643 + 2.37643i −0.126128 + 0.126128i
\(356\) −9.87282 + 22.7263i −0.523259 + 1.20449i
\(357\) 3.26181 + 3.26181i 0.172633 + 0.172633i
\(358\) 8.32181 5.45797i 0.439821 0.288462i
\(359\) 6.97708i 0.368236i 0.982904 + 0.184118i \(0.0589429\pi\)
−0.982904 + 0.184118i \(0.941057\pi\)
\(360\) −16.0389 + 2.76410i −0.845325 + 0.145681i
\(361\) 12.7395i 0.670499i
\(362\) −7.07864 10.7929i −0.372045 0.567260i
\(363\) 2.33949 + 2.33949i 0.122791 + 0.122791i
\(364\) 2.04629 + 5.18982i 0.107255 + 0.272020i
\(365\) −21.2405 + 21.2405i −1.11178 + 1.11178i
\(366\) 0.417400 2.00838i 0.0218178 0.104979i
\(367\) −29.5172 −1.54079 −0.770394 0.637569i \(-0.779940\pi\)
−0.770394 + 0.637569i \(0.779940\pi\)
\(368\) −2.92363 + 2.72991i −0.152405 + 0.142306i
\(369\) 5.26431 0.274049
\(370\) 3.08209 14.8299i 0.160230 0.770969i
\(371\) −17.4248 + 17.4248i −0.904651 + 0.904651i
\(372\) −1.85594 + 0.731775i −0.0962259 + 0.0379408i
\(373\) −24.5447 24.5447i −1.27087 1.27087i −0.945630 0.325244i \(-0.894554\pi\)
−0.325244 0.945630i \(-0.605446\pi\)
\(374\) 11.9716 + 18.2531i 0.619034 + 0.943847i
\(375\) 5.67179i 0.292890i
\(376\) −19.7640 13.9532i −1.01925 0.719584i
\(377\) 0.118508i 0.00610346i
\(378\) 8.62339 5.65576i 0.443539 0.290901i
\(379\) −21.9729 21.9729i −1.12867 1.12867i −0.990393 0.138279i \(-0.955843\pi\)
−0.138279 0.990393i \(-0.544157\pi\)
\(380\) 9.53712 + 4.14315i 0.489244 + 0.212539i
\(381\) 4.22647 4.22647i 0.216529 0.216529i
\(382\) −12.2305 2.54187i −0.625769 0.130053i
\(383\) 10.3368 0.528184 0.264092 0.964497i \(-0.414928\pi\)
0.264092 + 0.964497i \(0.414928\pi\)
\(384\) 4.32977 + 3.28461i 0.220953 + 0.167617i
\(385\) −23.1241 −1.17852
\(386\) 35.6130 + 7.40143i 1.81265 + 0.376723i
\(387\) −18.9534 + 18.9534i −0.963454 + 0.963454i
\(388\) 13.8440 + 6.01414i 0.702821 + 0.305322i
\(389\) −22.5187 22.5187i −1.14174 1.14174i −0.988131 0.153612i \(-0.950909\pi\)
−0.153612 0.988131i \(-0.549091\pi\)
\(390\) −1.25126 + 0.820654i −0.0633600 + 0.0415554i
\(391\) 3.64954i 0.184565i
\(392\) 0.176465 + 0.124584i 0.00891285 + 0.00629242i
\(393\) 5.54288i 0.279601i
\(394\) 14.9235 + 22.7539i 0.751833 + 1.14633i
\(395\) −18.4385 18.4385i −0.927740 0.927740i
\(396\) 21.7917 8.59221i 1.09507 0.431775i
\(397\) −5.33488 + 5.33488i −0.267750 + 0.267750i −0.828193 0.560443i \(-0.810631\pi\)
0.560443 + 0.828193i \(0.310631\pi\)
\(398\) 5.22772 25.1539i 0.262042 1.26085i
\(399\) −3.16257 −0.158326
\(400\) 1.99500 1.86281i 0.0997499 0.0931404i
\(401\) 10.1801 0.508370 0.254185 0.967156i \(-0.418193\pi\)
0.254185 + 0.967156i \(0.418193\pi\)
\(402\) 0.688114 3.31095i 0.0343200 0.165135i
\(403\) 1.55655 1.55655i 0.0775370 0.0775370i
\(404\) −3.23107 8.19468i −0.160752 0.407700i
\(405\) −10.2505 10.2505i −0.509353 0.509353i
\(406\) −0.228148 0.347859i −0.0113228 0.0172640i
\(407\) 21.8001i 1.08059i
\(408\) −4.88648 + 0.842121i −0.241917 + 0.0416912i
\(409\) 15.1443i 0.748838i 0.927260 + 0.374419i \(0.122158\pi\)
−0.927260 + 0.374419i \(0.877842\pi\)
\(410\) 4.67116 3.06364i 0.230692 0.151302i
\(411\) 6.51212 + 6.51212i 0.321219 + 0.321219i
\(412\) 2.97536 6.84898i 0.146585 0.337425i
\(413\) −14.3447 + 14.3447i −0.705859 + 0.705859i
\(414\) −3.83438 0.796898i −0.188450 0.0391654i
\(415\) 3.70681 0.181960
\(416\) −5.82596 1.42055i −0.285641 0.0696482i
\(417\) −2.65295 −0.129915
\(418\) −14.6526 3.04524i −0.716680 0.148947i
\(419\) −14.4452 + 14.4452i −0.705696 + 0.705696i −0.965627 0.259931i \(-0.916300\pi\)
0.259931 + 0.965627i \(0.416300\pi\)
\(420\) 2.09296 4.81778i 0.102126 0.235084i
\(421\) 9.41803 + 9.41803i 0.459007 + 0.459007i 0.898329 0.439323i \(-0.144782\pi\)
−0.439323 + 0.898329i \(0.644782\pi\)
\(422\) 24.9005 16.3313i 1.21214 0.794994i
\(423\) 23.6870i 1.15170i
\(424\) −4.49867 26.1039i −0.218475 1.26772i
\(425\) 2.49034i 0.120799i
\(426\) 0.602589 + 0.918773i 0.0291955 + 0.0445147i
\(427\) −5.61819 5.61819i −0.271883 0.271883i
\(428\) 0.0736324 + 0.186747i 0.00355915 + 0.00902678i
\(429\) 1.52287 1.52287i 0.0735248 0.0735248i
\(430\) −5.78764 + 27.8480i −0.279105 + 1.34295i
\(431\) 21.0570 1.01428 0.507139 0.861864i \(-0.330703\pi\)
0.507139 + 0.861864i \(0.330703\pi\)
\(432\) −0.379619 + 11.0788i −0.0182644 + 0.533029i
\(433\) 11.2435 0.540329 0.270165 0.962814i \(-0.412922\pi\)
0.270165 + 0.962814i \(0.412922\pi\)
\(434\) −1.57235 + 7.56559i −0.0754754 + 0.363160i
\(435\) 0.0789022 0.0789022i 0.00378307 0.00378307i
\(436\) 6.60762 2.60531i 0.316447 0.124772i
\(437\) 1.76925 + 1.76925i 0.0846348 + 0.0846348i
\(438\) 5.38593 + 8.21198i 0.257350 + 0.392384i
\(439\) 1.55838i 0.0743776i −0.999308 0.0371888i \(-0.988160\pi\)
0.999308 0.0371888i \(-0.0118403\pi\)
\(440\) 14.3360 20.3061i 0.683440 0.968054i
\(441\) 0.211493i 0.0100711i
\(442\) 4.57504 3.00060i 0.217612 0.142724i
\(443\) −9.91757 9.91757i −0.471198 0.471198i 0.431104 0.902302i \(-0.358124\pi\)
−0.902302 + 0.431104i \(0.858124\pi\)
\(444\) −4.54193 1.97312i −0.215550 0.0936401i
\(445\) −18.2031 + 18.2031i −0.862912 + 0.862912i
\(446\) −18.2241 3.78750i −0.862935 0.179343i
\(447\) 2.57378 0.121736
\(448\) 19.8359 7.04619i 0.937159 0.332901i
\(449\) 8.61435 0.406536 0.203268 0.979123i \(-0.434844\pi\)
0.203268 + 0.979123i \(0.434844\pi\)
\(450\) 2.61647 + 0.543779i 0.123342 + 0.0256340i
\(451\) −5.68512 + 5.68512i −0.267702 + 0.267702i
\(452\) 33.2977 + 14.4653i 1.56619 + 0.680390i
\(453\) 2.68400 + 2.68400i 0.126105 + 0.126105i
\(454\) −33.5752 + 22.0207i −1.57576 + 1.03348i
\(455\) 5.79593i 0.271717i
\(456\) 1.96065 2.77715i 0.0918161 0.130052i
\(457\) 13.8329i 0.647078i 0.946215 + 0.323539i \(0.104873\pi\)
−0.946215 + 0.323539i \(0.895127\pi\)
\(458\) 9.17410 + 13.9878i 0.428677 + 0.653608i
\(459\) −7.15173 7.15173i −0.333814 0.333814i
\(460\) −3.86611 + 1.52436i −0.180258 + 0.0710739i
\(461\) −14.5907 + 14.5907i −0.679558 + 0.679558i −0.959900 0.280343i \(-0.909552\pi\)
0.280343 + 0.959900i \(0.409552\pi\)
\(462\) −1.53833 + 7.40190i −0.0715698 + 0.344368i
\(463\) 14.9968 0.696958 0.348479 0.937317i \(-0.386698\pi\)
0.348479 + 0.937317i \(0.386698\pi\)
\(464\) 0.446908 + 0.0153135i 0.0207472 + 0.000710910i
\(465\) −2.07269 −0.0961187
\(466\) 1.13571 5.46460i 0.0526106 0.253143i
\(467\) −12.7424 + 12.7424i −0.589647 + 0.589647i −0.937536 0.347889i \(-0.886899\pi\)
0.347889 + 0.937536i \(0.386899\pi\)
\(468\) −2.15359 5.46195i −0.0995495 0.252479i
\(469\) −9.26199 9.26199i −0.427679 0.427679i
\(470\) −13.7850 21.0181i −0.635854 0.969492i
\(471\) 3.89343i 0.179400i
\(472\) −3.70347 21.4897i −0.170466 0.989144i
\(473\) 40.9369i 1.88228i
\(474\) −7.12867 + 4.67543i −0.327431 + 0.214750i
\(475\) −1.20729 1.20729i −0.0553941 0.0553941i
\(476\) −7.65258 + 17.6155i −0.350755 + 0.807405i
\(477\) 18.3385 18.3385i 0.839662 0.839662i
\(478\) 15.8200 + 3.28786i 0.723588 + 0.150383i
\(479\) −10.2952 −0.470400 −0.235200 0.971947i \(-0.575574\pi\)
−0.235200 + 0.971947i \(0.575574\pi\)
\(480\) 2.93311 + 4.82471i 0.133878 + 0.220217i
\(481\) 5.46406 0.249140
\(482\) 10.1525 + 2.10999i 0.462435 + 0.0961076i
\(483\) 0.893758 0.893758i 0.0406674 0.0406674i
\(484\) −5.48871 + 12.6345i −0.249487 + 0.574294i
\(485\) 11.0887 + 11.0887i 0.503510 + 0.503510i
\(486\) −13.7948 + 9.04752i −0.625746 + 0.410404i
\(487\) 10.8868i 0.493327i −0.969101 0.246663i \(-0.920666\pi\)
0.969101 0.246663i \(-0.0793342\pi\)
\(488\) 8.41655 1.45048i 0.380999 0.0656602i
\(489\) 10.2569i 0.463835i
\(490\) 0.123081 + 0.187663i 0.00556024 + 0.00847774i
\(491\) 28.6304 + 28.6304i 1.29207 + 1.29207i 0.933505 + 0.358565i \(0.116734\pi\)
0.358565 + 0.933505i \(0.383266\pi\)
\(492\) −0.669904 1.69902i −0.0302016 0.0765977i
\(493\) −0.288494 + 0.288494i −0.0129931 + 0.0129931i
\(494\) −0.763270 + 3.67258i −0.0343411 + 0.165237i
\(495\) 24.3367 1.09385
\(496\) −5.66880 6.07108i −0.254537 0.272599i
\(497\) 4.25582 0.190900
\(498\) 0.246596 1.18653i 0.0110502 0.0531696i
\(499\) 14.0373 14.0373i 0.628398 0.628398i −0.319267 0.947665i \(-0.603437\pi\)
0.947665 + 0.319267i \(0.103437\pi\)
\(500\) 21.9687 8.66200i 0.982470 0.387377i
\(501\) 8.42952 + 8.42952i 0.376603 + 0.376603i
\(502\) 8.91573 + 13.5939i 0.397928 + 0.606725i
\(503\) 19.8160i 0.883550i −0.897126 0.441775i \(-0.854349\pi\)
0.897126 0.441775i \(-0.145651\pi\)
\(504\) 16.8367 + 11.8866i 0.749966 + 0.529471i
\(505\) 9.15172i 0.407246i
\(506\) 5.00149 3.28029i 0.222343 0.145827i
\(507\) 4.03397 + 4.03397i 0.179155 + 0.179155i
\(508\) 22.8252 + 9.91579i 1.01270 + 0.439942i
\(509\) −3.76825 + 3.76825i −0.167025 + 0.167025i −0.785670 0.618645i \(-0.787682\pi\)
0.618645 + 0.785670i \(0.287682\pi\)
\(510\) −5.04384 1.04826i −0.223345 0.0464177i
\(511\) 38.0385 1.68272
\(512\) −6.10991 + 21.7869i −0.270023 + 0.962854i
\(513\) 6.93414 0.306150
\(514\) −16.1245 3.35114i −0.711219 0.147812i
\(515\) 5.48585 5.48585i 0.241736 0.241736i
\(516\) 8.52897 + 3.70518i 0.375467 + 0.163112i
\(517\) 25.5804 + 25.5804i 1.12503 + 1.12503i
\(518\) −16.0388 + 10.5193i −0.704706 + 0.462190i
\(519\) 10.4278i 0.457730i
\(520\) −5.08959 3.59322i −0.223193 0.157573i
\(521\) 39.7301i 1.74061i −0.492517 0.870303i \(-0.663923\pi\)
0.492517 0.870303i \(-0.336077\pi\)
\(522\) 0.240111 + 0.366100i 0.0105094 + 0.0160237i
\(523\) 7.97407 + 7.97407i 0.348682 + 0.348682i 0.859618 0.510937i \(-0.170701\pi\)
−0.510937 + 0.859618i \(0.670701\pi\)
\(524\) 21.4694 8.46512i 0.937893 0.369801i
\(525\) −0.609874 + 0.609874i −0.0266171 + 0.0266171i
\(526\) −4.35879 + 20.9729i −0.190052 + 0.914461i
\(527\) 7.57848 0.330124
\(528\) −5.54615 5.93972i −0.241365 0.258493i
\(529\) −1.00000 −0.0434783
\(530\) 5.59988 26.9446i 0.243243 1.17040i
\(531\) 15.0969 15.0969i 0.655151 0.655151i
\(532\) −4.82990 12.2497i −0.209403 0.531090i
\(533\) 1.42494 + 1.42494i 0.0617210 + 0.0617210i
\(534\) 4.61576 + 7.03769i 0.199743 + 0.304551i
\(535\) 0.208557i 0.00901672i
\(536\) 13.8753 2.39123i 0.599321 0.103285i
\(537\) 3.38036i 0.145873i
\(538\) 23.7773 15.5947i 1.02511 0.672334i
\(539\) −0.228399 0.228399i −0.00983782 0.00983782i
\(540\) −4.58895 + 10.5633i −0.197477 + 0.454572i
\(541\) 20.3483 20.3483i 0.874843 0.874843i −0.118152 0.992995i \(-0.537697\pi\)
0.992995 + 0.118152i \(0.0376971\pi\)
\(542\) −40.4971 8.41650i −1.73950 0.361519i
\(543\) −4.38411 −0.188140
\(544\) −10.7245 17.6408i −0.459808 0.756344i
\(545\) 7.37931 0.316095
\(546\) 1.85524 + 0.385574i 0.0793971 + 0.0165011i
\(547\) 9.56242 9.56242i 0.408860 0.408860i −0.472481 0.881341i \(-0.656642\pi\)
0.881341 + 0.472481i \(0.156642\pi\)
\(548\) −15.2782 + 35.1689i −0.652652 + 1.50234i
\(549\) 5.91278 + 5.91278i 0.252351 + 0.252351i
\(550\) −3.41287 + 2.23837i −0.145525 + 0.0954445i
\(551\) 0.279717i 0.0119163i
\(552\) 0.230747 + 1.33893i 0.00982124 + 0.0569886i
\(553\) 33.0205i 1.40418i
\(554\) 19.9043 + 30.3483i 0.845654 + 1.28938i
\(555\) −3.63796 3.63796i −0.154423 0.154423i
\(556\) −4.05160 10.2757i −0.171826 0.435788i
\(557\) −31.7035 + 31.7035i −1.34332 + 1.34332i −0.450591 + 0.892731i \(0.648787\pi\)
−0.892731 + 0.450591i \(0.851213\pi\)
\(558\) 1.65480 7.96230i 0.0700534 0.337071i
\(559\) −10.2606 −0.433977
\(560\) 21.8572 + 0.748945i 0.923636 + 0.0316487i
\(561\) 7.41451 0.313041
\(562\) 2.24727 10.8131i 0.0947955 0.456121i
\(563\) −4.75332 + 4.75332i −0.200329 + 0.200329i −0.800141 0.599812i \(-0.795242\pi\)
0.599812 + 0.800141i \(0.295242\pi\)
\(564\) −7.64481 + 3.01426i −0.321905 + 0.126923i
\(565\) 26.6706 + 26.6706i 1.12204 + 1.12204i
\(566\) 7.60830 + 11.6004i 0.319801 + 0.487603i
\(567\) 18.3572i 0.770929i
\(568\) −2.63843 + 3.73718i −0.110706 + 0.156809i
\(569\) 9.29390i 0.389621i −0.980841 0.194810i \(-0.937591\pi\)
0.980841 0.194810i \(-0.0624091\pi\)
\(570\) 2.95338 1.93701i 0.123703 0.0811324i
\(571\) −7.99665 7.99665i −0.334649 0.334649i 0.519700 0.854349i \(-0.326044\pi\)
−0.854349 + 0.519700i \(0.826044\pi\)
\(572\) 8.22430 + 3.57283i 0.343875 + 0.149387i
\(573\) −3.00031 + 3.00031i −0.125340 + 0.125340i
\(574\) −6.92593 1.43941i −0.289083 0.0600799i
\(575\) 0.682370 0.0284568
\(576\) −20.8760 + 7.41567i −0.869835 + 0.308986i
\(577\) −25.4622 −1.06001 −0.530003 0.847996i \(-0.677809\pi\)
−0.530003 + 0.847996i \(0.677809\pi\)
\(578\) −5.09660 1.05922i −0.211990 0.0440579i
\(579\) 8.73632 8.73632i 0.363069 0.363069i
\(580\) 0.426114 + 0.185114i 0.0176934 + 0.00768643i
\(581\) −3.31917 3.31917i −0.137702 0.137702i
\(582\) 4.28709 2.81174i 0.177706 0.116550i
\(583\) 39.6088i 1.64043i
\(584\) −23.5822 + 33.4029i −0.975839 + 1.38222i
\(585\) 6.09984i 0.252197i
\(586\) −19.5644 29.8300i −0.808197 1.23226i
\(587\) −7.76960 7.76960i −0.320686 0.320686i 0.528344 0.849030i \(-0.322813\pi\)
−0.849030 + 0.528344i \(0.822813\pi\)
\(588\) 0.0682578 0.0269133i 0.00281490 0.00110988i
\(589\) −3.67395 + 3.67395i −0.151383 + 0.151383i
\(590\) 4.61003 22.1818i 0.189792 0.913209i
\(591\) 9.24275 0.380196
\(592\) 0.706062 20.6057i 0.0290190 0.846890i
\(593\) 38.0898 1.56416 0.782081 0.623177i \(-0.214158\pi\)
0.782081 + 0.623177i \(0.214158\pi\)
\(594\) 3.37290 16.2292i 0.138392 0.665891i
\(595\) −14.1095 + 14.1095i −0.578435 + 0.578435i
\(596\) 3.93070 + 9.96910i 0.161008 + 0.408350i
\(597\) −6.17057 6.17057i −0.252545 0.252545i
\(598\) −0.822185 1.25359i −0.0336216 0.0512632i
\(599\) 12.2577i 0.500836i 0.968138 + 0.250418i \(0.0805680\pi\)
−0.968138 + 0.250418i \(0.919432\pi\)
\(600\) −0.157455 0.913646i −0.00642807 0.0372994i
\(601\) 12.6119i 0.514452i −0.966351 0.257226i \(-0.917192\pi\)
0.966351 0.257226i \(-0.0828085\pi\)
\(602\) 30.1182 19.7534i 1.22753 0.805089i
\(603\) 9.74765 + 9.74765i 0.396955 + 0.396955i
\(604\) −6.29698 + 14.4950i −0.256221 + 0.589795i
\(605\) −10.1199 + 10.1199i −0.411431 + 0.411431i
\(606\) −2.92941 0.608819i −0.118999 0.0247316i
\(607\) −15.2647 −0.619576 −0.309788 0.950806i \(-0.600258\pi\)
−0.309788 + 0.950806i \(0.600258\pi\)
\(608\) 13.7511 + 3.35296i 0.557683 + 0.135980i
\(609\) −0.141302 −0.00572585
\(610\) 8.68760 + 1.80554i 0.351751 + 0.0731042i
\(611\) 6.41158 6.41158i 0.259385 0.259385i
\(612\) 8.05385 18.5392i 0.325558 0.749402i
\(613\) 19.9931 + 19.9931i 0.807512 + 0.807512i 0.984257 0.176745i \(-0.0565567\pi\)
−0.176745 + 0.984257i \(0.556557\pi\)
\(614\) −12.5427 + 8.22627i −0.506181 + 0.331985i
\(615\) 1.89744i 0.0765124i
\(616\) −31.0193 + 5.34578i −1.24980 + 0.215388i
\(617\) 13.3767i 0.538527i 0.963067 + 0.269264i \(0.0867803\pi\)
−0.963067 + 0.269264i \(0.913220\pi\)
\(618\) −1.39104 2.12094i −0.0559560 0.0853166i
\(619\) 15.5329 + 15.5329i 0.624318 + 0.624318i 0.946633 0.322314i \(-0.104461\pi\)
−0.322314 + 0.946633i \(0.604461\pi\)
\(620\) −3.16543 8.02820i −0.127127 0.322420i
\(621\) −1.95962 + 1.95962i −0.0786370 + 0.0786370i
\(622\) 3.23600 15.5705i 0.129752 0.624319i
\(623\) 32.5991 1.30606
\(624\) −1.48876 + 1.39011i −0.0595979 + 0.0556490i
\(625\) 21.1225 0.844901
\(626\) 9.21616 44.3448i 0.368352 1.77237i
\(627\) −3.59446 + 3.59446i −0.143549 + 0.143549i
\(628\) 15.0805 5.94608i 0.601778 0.237274i
\(629\) 13.3017 + 13.3017i 0.530372 + 0.530372i
\(630\) 11.7433 + 17.9050i 0.467862 + 0.713354i
\(631\) 14.6461i 0.583054i −0.956563 0.291527i \(-0.905837\pi\)
0.956563 0.291527i \(-0.0941633\pi\)
\(632\) −28.9964 20.4713i −1.15342 0.814305i
\(633\) 10.1147i 0.402022i
\(634\) 6.19824 4.06520i 0.246164 0.161450i
\(635\) 18.2824 + 18.2824i 0.725513 + 0.725513i
\(636\) −8.25228 3.58498i −0.327224 0.142154i
\(637\) −0.0572467 + 0.0572467i −0.00226820 + 0.00226820i
\(638\) −0.654669 0.136060i −0.0259186 0.00538665i
\(639\) −4.47898 −0.177186
\(640\) −14.2082 + 18.7292i −0.561628 + 0.740337i
\(641\) −25.9309 −1.02421 −0.512104 0.858924i \(-0.671134\pi\)
−0.512104 + 0.858924i \(0.671134\pi\)
\(642\) 0.0667580 + 0.0138743i 0.00263473 + 0.000547574i
\(643\) −27.2600 + 27.2600i −1.07503 + 1.07503i −0.0780842 + 0.996947i \(0.524880\pi\)
−0.996947 + 0.0780842i \(0.975120\pi\)
\(644\) 4.82677 + 2.09686i 0.190201 + 0.0826279i
\(645\) 6.83148 + 6.83148i 0.268989 + 0.268989i
\(646\) −10.7986 + 7.08239i −0.424864 + 0.278653i
\(647\) 32.0376i 1.25953i −0.776787 0.629763i \(-0.783152\pi\)
0.776787 0.629763i \(-0.216848\pi\)
\(648\) −16.1200 11.3807i −0.633255 0.447074i
\(649\) 32.6074i 1.27995i
\(650\) 0.561035 + 0.855415i 0.0220056 + 0.0335521i
\(651\) 1.85594 + 1.85594i 0.0727399 + 0.0727399i
\(652\) 39.7284 15.6645i 1.55589 0.613468i
\(653\) 22.7295 22.7295i 0.889473 0.889473i −0.105000 0.994472i \(-0.533484\pi\)
0.994472 + 0.105000i \(0.0334841\pi\)
\(654\) 0.490909 2.36207i 0.0191961 0.0923644i
\(655\) 23.9767 0.936848
\(656\) 5.55777 5.18951i 0.216994 0.202616i
\(657\) −40.0331 −1.56184
\(658\) −6.47670 + 31.1635i −0.252488 + 1.21488i
\(659\) 26.7819 26.7819i 1.04327 1.04327i 0.0442537 0.999020i \(-0.485909\pi\)
0.999020 0.0442537i \(-0.0140910\pi\)
\(660\) −3.09694 7.85450i −0.120548 0.305736i
\(661\) 17.8416 + 17.8416i 0.693957 + 0.693957i 0.963100 0.269143i \(-0.0867405\pi\)
−0.269143 + 0.963100i \(0.586741\pi\)
\(662\) −13.8695 21.1470i −0.539054 0.821901i
\(663\) 1.85840i 0.0721743i
\(664\) 4.97241 0.856931i 0.192967 0.0332554i
\(665\) 13.6803i 0.530498i
\(666\) 16.8798 11.0709i 0.654081 0.428987i
\(667\) 0.0790494 + 0.0790494i 0.00306080 + 0.00306080i
\(668\) −19.7766 + 45.5239i −0.765181 + 1.76137i
\(669\) −4.47060 + 4.47060i −0.172844 + 0.172844i
\(670\) 14.3221 + 2.97656i 0.553312 + 0.114995i
\(671\) −12.7709 −0.493014
\(672\) 1.69379 6.94655i 0.0653392 0.267969i
\(673\) −14.7037 −0.566784 −0.283392 0.959004i \(-0.591460\pi\)
−0.283392 + 0.959004i \(0.591460\pi\)
\(674\) −9.93767 2.06534i −0.382785 0.0795540i
\(675\) 1.33719 1.33719i 0.0514684 0.0514684i
\(676\) −9.46416 + 21.7856i −0.364006 + 0.837907i
\(677\) −26.5869 26.5869i −1.02182 1.02182i −0.999757 0.0220606i \(-0.992977\pi\)
−0.0220606 0.999757i \(-0.507023\pi\)
\(678\) 10.3114 6.76284i 0.396006 0.259725i
\(679\) 19.8581i 0.762084i
\(680\) −3.64275 21.1374i −0.139693 0.810581i
\(681\) 13.6384i 0.522625i
\(682\) 6.81170 + 10.3859i 0.260834 + 0.397695i
\(683\) 3.64714 + 3.64714i 0.139554 + 0.139554i 0.773433 0.633879i \(-0.218538\pi\)
−0.633879 + 0.773433i \(0.718538\pi\)
\(684\) 5.08316 + 12.8920i 0.194359 + 0.492937i
\(685\) −28.1694 + 28.1694i −1.07630 + 1.07630i
\(686\) 5.35818 25.7816i 0.204576 0.984347i
\(687\) 5.68192 0.216779
\(688\) −1.32586 + 38.6940i −0.0505481 + 1.47520i
\(689\) 9.92772 0.378216
\(690\) −0.287231 + 1.38205i −0.0109347 + 0.0526137i
\(691\) 26.3238 26.3238i 1.00141 1.00141i 0.00140609 0.999999i \(-0.499552\pi\)
0.999999 0.00140609i \(-0.000447571\pi\)
\(692\) −40.3903 + 15.9254i −1.53541 + 0.605394i
\(693\) −21.7917 21.7917i −0.827797 0.827797i
\(694\) −7.20045 10.9786i −0.273325 0.416741i
\(695\) 11.4758i 0.435302i
\(696\) 0.0876011 0.124082i 0.00332051 0.00470331i
\(697\) 6.93772i 0.262785i
\(698\) 27.1190 17.7863i 1.02647 0.673222i
\(699\) −1.34054 1.34054i −0.0507038 0.0507038i
\(700\) −3.29364 1.43084i −0.124488 0.0540805i
\(701\) 4.09012 4.09012i 0.154482 0.154482i −0.625635 0.780116i \(-0.715160\pi\)
0.780116 + 0.625635i \(0.215160\pi\)
\(702\) −4.06774 0.845397i −0.153527 0.0319075i
\(703\) −12.8970 −0.486418
\(704\) 14.5363 30.5532i 0.547859 1.15152i
\(705\) −8.53764 −0.321546
\(706\) −42.6914 8.87255i −1.60671 0.333923i
\(707\) −8.19468 + 8.19468i −0.308193 + 0.308193i
\(708\) −6.79358 2.95129i −0.255318 0.110916i
\(709\) 35.5748 + 35.5748i 1.33604 + 1.33604i 0.899860 + 0.436178i \(0.143668\pi\)
0.436178 + 0.899860i \(0.356332\pi\)
\(710\) −3.97432 + 2.60661i −0.149154 + 0.0978243i
\(711\) 34.7520i 1.30330i
\(712\) −20.2100 + 28.6263i −0.757403 + 1.07282i
\(713\) 2.07656i 0.0777676i
\(714\) 3.57775 + 5.45502i 0.133894 + 0.204149i
\(715\) 6.58744 + 6.58744i 0.246356 + 0.246356i
\(716\) 13.0932 5.16251i 0.489317 0.192932i
\(717\) 3.88084 3.88084i 0.144933 0.144933i
\(718\) −2.00777 + 9.66065i −0.0749292 + 0.360532i
\(719\) 9.02570 0.336602 0.168301 0.985736i \(-0.446172\pi\)
0.168301 + 0.985736i \(0.446172\pi\)
\(720\) −23.0033 0.788217i −0.857283 0.0293751i
\(721\) −9.82434 −0.365878
\(722\) −3.66600 + 17.6394i −0.136434 + 0.656472i
\(723\) 2.49054 2.49054i 0.0926243 0.0926243i
\(724\) −6.69545 16.9811i −0.248834 0.631097i
\(725\) −0.0539409 0.0539409i −0.00200332 0.00200332i
\(726\) 2.56609 + 3.91254i 0.0952365 + 0.145208i
\(727\) 13.8698i 0.514401i 0.966358 + 0.257200i \(0.0828001\pi\)
−0.966358 + 0.257200i \(0.917200\pi\)
\(728\) 1.33989 + 7.77481i 0.0496595 + 0.288154i
\(729\) 15.3260i 0.567631i
\(730\) −35.5224 + 23.2978i −1.31474 + 0.862291i
\(731\) −24.9783 24.9783i −0.923855 0.923855i
\(732\) 1.15589 2.66074i 0.0427228 0.0983437i
\(733\) −3.11508 + 3.11508i −0.115058 + 0.115058i −0.762292 0.647234i \(-0.775926\pi\)
0.647234 + 0.762292i \(0.275926\pi\)
\(734\) −40.8703 8.49407i −1.50855 0.313522i
\(735\) 0.0762295 0.00281177
\(736\) −4.83371 + 2.93858i −0.178173 + 0.108318i
\(737\) −21.0537 −0.775523
\(738\) 7.28910 + 1.51489i 0.268315 + 0.0557639i
\(739\) −16.6142 + 16.6142i −0.611165 + 0.611165i −0.943250 0.332085i \(-0.892248\pi\)
0.332085 + 0.943250i \(0.392248\pi\)
\(740\) 8.53508 19.6469i 0.313756 0.722236i
\(741\) 0.900930 + 0.900930i 0.0330965 + 0.0330965i
\(742\) −29.1411 + 19.1126i −1.06980 + 0.701645i
\(743\) 34.8345i 1.27796i 0.769225 + 0.638978i \(0.220642\pi\)
−0.769225 + 0.638978i \(0.779358\pi\)
\(744\) −2.78036 + 0.479159i −0.101933 + 0.0175668i
\(745\) 11.1334i 0.407895i
\(746\) −26.9221 41.0483i −0.985687 1.50289i
\(747\) 3.49322 + 3.49322i 0.127810 + 0.127810i
\(748\) 11.3235 + 28.7188i 0.414028 + 1.05006i
\(749\) 0.186747 0.186747i 0.00682360 0.00682360i
\(750\) 1.63215 7.85331i 0.0595977 0.286762i
\(751\) −13.9840 −0.510284 −0.255142 0.966904i \(-0.582122\pi\)
−0.255142 + 0.966904i \(0.582122\pi\)
\(752\) −23.3504 25.0074i −0.851503 0.911927i
\(753\) 5.52190 0.201229
\(754\) −0.0341025 + 0.164089i −0.00124194 + 0.00597577i
\(755\) −11.6101 + 11.6101i −0.422536 + 0.422536i
\(756\) 13.5677 5.34959i 0.493453 0.194563i
\(757\) −8.30456 8.30456i −0.301834 0.301834i 0.539897 0.841731i \(-0.318463\pi\)
−0.841731 + 0.539897i \(0.818463\pi\)
\(758\) −24.1012 36.7473i −0.875395 1.33472i
\(759\) 2.03163i 0.0737434i
\(760\) 12.0131 + 8.48117i 0.435761 + 0.307644i
\(761\) 29.3207i 1.06288i −0.847097 0.531438i \(-0.821652\pi\)
0.847097 0.531438i \(-0.178348\pi\)
\(762\) 7.06831 4.63584i 0.256058 0.167939i
\(763\) −6.60762 6.60762i −0.239212 0.239212i
\(764\) −16.2033 7.03907i −0.586213 0.254665i
\(765\) 14.8494 14.8494i 0.536881 0.536881i
\(766\) 14.3126 + 2.97457i 0.517134 + 0.107476i
\(767\) 8.17286 0.295105
\(768\) 5.04992 + 5.79393i 0.182223 + 0.209070i
\(769\) −44.4923 −1.60443 −0.802216 0.597034i \(-0.796346\pi\)
−0.802216 + 0.597034i \(0.796346\pi\)