Properties

Label 368.2.j.c.277.5
Level $368$
Weight $2$
Character 368.277
Analytic conductor $2.938$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(93,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 277.5
Root \(-1.18970 - 0.764606i\) of defining polynomial
Character \(\chi\) \(=\) 368.277
Dual form 368.2.j.c.93.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10116 - 0.887386i) q^{2} +(0.631541 - 0.631541i) q^{3} +(0.425090 - 1.95430i) q^{4} +(-2.74053 - 2.74053i) q^{5} +(0.135004 - 1.25585i) q^{6} +1.52921i q^{7} +(-1.26613 - 2.52921i) q^{8} +2.20231i q^{9} +O(q^{10})\) \(q+(1.10116 - 0.887386i) q^{2} +(0.631541 - 0.631541i) q^{3} +(0.425090 - 1.95430i) q^{4} +(-2.74053 - 2.74053i) q^{5} +(0.135004 - 1.25585i) q^{6} +1.52921i q^{7} +(-1.26613 - 2.52921i) q^{8} +2.20231i q^{9} +(-5.44967 - 0.585843i) q^{10} +(-2.02278 - 2.02278i) q^{11} +(-0.965760 - 1.50268i) q^{12} +(2.71814 - 2.71814i) q^{13} +(1.35700 + 1.68390i) q^{14} -3.46152 q^{15} +(-3.63860 - 1.66151i) q^{16} +3.66304 q^{17} +(1.95430 + 2.42509i) q^{18} +(1.20231 - 1.20231i) q^{19} +(-6.52080 + 4.19086i) q^{20} +(0.965760 + 0.965760i) q^{21} +(-4.02239 - 0.432410i) q^{22} +1.00000i q^{23} +(-2.39691 - 0.797687i) q^{24} +10.0210i q^{25} +(0.581057 - 5.40514i) q^{26} +(3.28547 + 3.28547i) q^{27} +(2.98854 + 0.650053i) q^{28} +(2.52960 - 2.52960i) q^{29} +(-3.81167 + 3.07170i) q^{30} +2.74954 q^{31} +(-5.48107 + 1.39926i) q^{32} -2.55494 q^{33} +(4.03358 - 3.25054i) q^{34} +(4.19086 - 4.19086i) q^{35} +(4.30398 + 0.936182i) q^{36} +(-4.37038 - 4.37038i) q^{37} +(0.257018 - 2.39085i) q^{38} -3.43323i q^{39} +(-3.46152 + 10.4013i) q^{40} -7.70478i q^{41} +(1.92045 + 0.206450i) q^{42} +(8.96110 + 8.96110i) q^{43} +(-4.81300 + 3.09326i) q^{44} +(6.03551 - 6.03551i) q^{45} +(0.887386 + 1.10116i) q^{46} +4.24239 q^{47} +(-3.34723 + 1.24861i) q^{48} +4.66151 q^{49} +(8.89253 + 11.0347i) q^{50} +(2.31336 - 2.31336i) q^{51} +(-4.15662 - 6.46753i) q^{52} +(-7.11480 - 7.11480i) q^{53} +(6.53330 + 0.702335i) q^{54} +11.0870i q^{55} +(3.86770 - 1.93618i) q^{56} -1.51862i q^{57} +(0.540753 - 5.03023i) q^{58} +(5.81873 + 5.81873i) q^{59} +(-1.47146 + 6.76485i) q^{60} +(-6.37705 + 6.37705i) q^{61} +(3.02767 - 2.43991i) q^{62} -3.36780 q^{63} +(-4.79383 + 6.40463i) q^{64} -14.8983 q^{65} +(-2.81339 + 2.26722i) q^{66} +(-0.0827674 + 0.0827674i) q^{67} +(1.55713 - 7.15870i) q^{68} +(0.631541 + 0.631541i) q^{69} +(0.895878 - 8.33370i) q^{70} -6.62784i q^{71} +(5.57012 - 2.78842i) q^{72} +7.91866i q^{73} +(-8.69070 - 0.934256i) q^{74} +(6.32869 + 6.32869i) q^{75} +(-1.83859 - 2.86077i) q^{76} +(3.09326 - 3.09326i) q^{77} +(-3.04661 - 3.78053i) q^{78} +6.42623 q^{79} +(5.41827 + 14.5251i) q^{80} -2.45712 q^{81} +(-6.83711 - 8.48416i) q^{82} +(-11.6430 + 11.6430i) q^{83} +(2.29792 - 1.47685i) q^{84} +(-10.0387 - 10.0387i) q^{85} +(17.8195 + 1.91561i) q^{86} -3.19510i q^{87} +(-2.55494 + 7.67715i) q^{88} +2.76733i q^{89} +(1.29021 - 12.0019i) q^{90} +(4.15662 + 4.15662i) q^{91} +(1.95430 + 0.425090i) q^{92} +(1.73645 - 1.73645i) q^{93} +(4.67153 - 3.76464i) q^{94} -6.58995 q^{95} +(-2.57783 + 4.34520i) q^{96} -6.61383 q^{97} +(5.13305 - 4.13656i) q^{98} +(4.45480 - 4.45480i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8} - 6 q^{10} - 4 q^{11} - 8 q^{12} + 18 q^{13} - 2 q^{14} + 8 q^{16} - 8 q^{17} - 4 q^{18} - 8 q^{19} - 32 q^{20} + 8 q^{21} - 34 q^{22} + 12 q^{24} - 14 q^{26} + 14 q^{27} + 12 q^{28} + 2 q^{29} - 30 q^{30} + 20 q^{31} - 8 q^{32} - 36 q^{33} + 10 q^{34} + 4 q^{35} + 4 q^{36} - 4 q^{37} + 24 q^{38} - 14 q^{42} + 20 q^{43} + 4 q^{44} - 20 q^{45} - 2 q^{46} - 16 q^{47} - 12 q^{48} + 52 q^{49} + 6 q^{50} - 4 q^{51} - 16 q^{53} + 16 q^{54} + 28 q^{56} + 14 q^{58} + 8 q^{59} + 48 q^{60} + 12 q^{61} - 44 q^{62} - 4 q^{63} + 24 q^{64} - 52 q^{65} + 34 q^{66} - 4 q^{67} - 16 q^{68} + 2 q^{69} + 28 q^{70} + 8 q^{72} - 26 q^{74} - 46 q^{75} - 8 q^{76} - 12 q^{77} - 44 q^{78} - 4 q^{79} + 4 q^{80} + 48 q^{81} - 6 q^{82} + 28 q^{83} + 12 q^{84} - 8 q^{85} + 44 q^{86} - 36 q^{88} + 4 q^{90} - 4 q^{92} - 14 q^{93} + 48 q^{95} + 32 q^{96} + 36 q^{97} - 2 q^{98} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10116 0.887386i 0.778635 0.627477i
\(3\) 0.631541 0.631541i 0.364620 0.364620i −0.500890 0.865511i \(-0.666994\pi\)
0.865511 + 0.500890i \(0.166994\pi\)
\(4\) 0.425090 1.95430i 0.212545 0.977151i
\(5\) −2.74053 2.74053i −1.22560 1.22560i −0.965611 0.259993i \(-0.916280\pi\)
−0.259993 0.965611i \(-0.583720\pi\)
\(6\) 0.135004 1.25585i 0.0551153 0.512697i
\(7\) 1.52921i 0.577988i 0.957331 + 0.288994i \(0.0933207\pi\)
−0.957331 + 0.288994i \(0.906679\pi\)
\(8\) −1.26613 2.52921i −0.447645 0.894211i
\(9\) 2.20231i 0.734104i
\(10\) −5.44967 0.585843i −1.72334 0.185260i
\(11\) −2.02278 2.02278i −0.609892 0.609892i 0.333026 0.942918i \(-0.391930\pi\)
−0.942918 + 0.333026i \(0.891930\pi\)
\(12\) −0.965760 1.50268i −0.278791 0.433787i
\(13\) 2.71814 2.71814i 0.753877 0.753877i −0.221324 0.975200i \(-0.571038\pi\)
0.975200 + 0.221324i \(0.0710377\pi\)
\(14\) 1.35700 + 1.68390i 0.362674 + 0.450042i
\(15\) −3.46152 −0.893760
\(16\) −3.63860 1.66151i −0.909649 0.415378i
\(17\) 3.66304 0.888419 0.444209 0.895923i \(-0.353485\pi\)
0.444209 + 0.895923i \(0.353485\pi\)
\(18\) 1.95430 + 2.42509i 0.460634 + 0.571599i
\(19\) 1.20231 1.20231i 0.275829 0.275829i −0.555612 0.831442i \(-0.687516\pi\)
0.831442 + 0.555612i \(0.187516\pi\)
\(20\) −6.52080 + 4.19086i −1.45810 + 0.937104i
\(21\) 0.965760 + 0.965760i 0.210746 + 0.210746i
\(22\) −4.02239 0.432410i −0.857577 0.0921901i
\(23\) 1.00000i 0.208514i
\(24\) −2.39691 0.797687i −0.489268 0.162827i
\(25\) 10.0210i 2.00421i
\(26\) 0.581057 5.40514i 0.113955 1.06004i
\(27\) 3.28547 + 3.28547i 0.632289 + 0.632289i
\(28\) 2.98854 + 0.650053i 0.564782 + 0.122849i
\(29\) 2.52960 2.52960i 0.469736 0.469736i −0.432093 0.901829i \(-0.642225\pi\)
0.901829 + 0.432093i \(0.142225\pi\)
\(30\) −3.81167 + 3.07170i −0.695913 + 0.560814i
\(31\) 2.74954 0.493832 0.246916 0.969037i \(-0.420583\pi\)
0.246916 + 0.969037i \(0.420583\pi\)
\(32\) −5.48107 + 1.39926i −0.968925 + 0.247356i
\(33\) −2.55494 −0.444758
\(34\) 4.03358 3.25054i 0.691754 0.557462i
\(35\) 4.19086 4.19086i 0.708384 0.708384i
\(36\) 4.30398 + 0.936182i 0.717331 + 0.156030i
\(37\) −4.37038 4.37038i −0.718487 0.718487i 0.249808 0.968295i \(-0.419632\pi\)
−0.968295 + 0.249808i \(0.919632\pi\)
\(38\) 0.257018 2.39085i 0.0416939 0.387847i
\(39\) 3.43323i 0.549757i
\(40\) −3.46152 + 10.4013i −0.547314 + 1.64458i
\(41\) 7.70478i 1.20328i −0.798766 0.601642i \(-0.794513\pi\)
0.798766 0.601642i \(-0.205487\pi\)
\(42\) 1.92045 + 0.206450i 0.296333 + 0.0318560i
\(43\) 8.96110 + 8.96110i 1.36655 + 1.36655i 0.865299 + 0.501255i \(0.167128\pi\)
0.501255 + 0.865299i \(0.332872\pi\)
\(44\) −4.81300 + 3.09326i −0.725586 + 0.466327i
\(45\) 6.03551 6.03551i 0.899721 0.899721i
\(46\) 0.887386 + 1.10116i 0.130838 + 0.162357i
\(47\) 4.24239 0.618816 0.309408 0.950929i \(-0.399869\pi\)
0.309408 + 0.950929i \(0.399869\pi\)
\(48\) −3.34723 + 1.24861i −0.483132 + 0.180221i
\(49\) 4.66151 0.665930
\(50\) 8.89253 + 11.0347i 1.25759 + 1.56055i
\(51\) 2.31336 2.31336i 0.323935 0.323935i
\(52\) −4.15662 6.46753i −0.576419 0.896885i
\(53\) −7.11480 7.11480i −0.977292 0.977292i 0.0224555 0.999748i \(-0.492852\pi\)
−0.999748 + 0.0224555i \(0.992852\pi\)
\(54\) 6.53330 + 0.702335i 0.889070 + 0.0955757i
\(55\) 11.0870i 1.49497i
\(56\) 3.86770 1.93618i 0.516843 0.258733i
\(57\) 1.51862i 0.201146i
\(58\) 0.540753 5.03023i 0.0710044 0.660501i
\(59\) 5.81873 + 5.81873i 0.757534 + 0.757534i 0.975873 0.218339i \(-0.0700640\pi\)
−0.218339 + 0.975873i \(0.570064\pi\)
\(60\) −1.47146 + 6.76485i −0.189964 + 0.873338i
\(61\) −6.37705 + 6.37705i −0.816497 + 0.816497i −0.985599 0.169101i \(-0.945913\pi\)
0.169101 + 0.985599i \(0.445913\pi\)
\(62\) 3.02767 2.43991i 0.384515 0.309868i
\(63\) −3.36780 −0.424303
\(64\) −4.79383 + 6.40463i −0.599228 + 0.800578i
\(65\) −14.8983 −1.84791
\(66\) −2.81339 + 2.26722i −0.346304 + 0.279075i
\(67\) −0.0827674 + 0.0827674i −0.0101116 + 0.0101116i −0.712145 0.702033i \(-0.752276\pi\)
0.702033 + 0.712145i \(0.252276\pi\)
\(68\) 1.55713 7.15870i 0.188829 0.868119i
\(69\) 0.631541 + 0.631541i 0.0760286 + 0.0760286i
\(70\) 0.895878 8.33370i 0.107078 0.996067i
\(71\) 6.62784i 0.786579i −0.919415 0.393290i \(-0.871337\pi\)
0.919415 0.393290i \(-0.128663\pi\)
\(72\) 5.57012 2.78842i 0.656444 0.328618i
\(73\) 7.91866i 0.926809i 0.886147 + 0.463405i \(0.153372\pi\)
−0.886147 + 0.463405i \(0.846628\pi\)
\(74\) −8.69070 0.934256i −1.01027 0.108605i
\(75\) 6.32869 + 6.32869i 0.730775 + 0.730775i
\(76\) −1.83859 2.86077i −0.210901 0.328153i
\(77\) 3.09326 3.09326i 0.352510 0.352510i
\(78\) −3.04661 3.78053i −0.344960 0.428060i
\(79\) 6.42623 0.723007 0.361504 0.932371i \(-0.382264\pi\)
0.361504 + 0.932371i \(0.382264\pi\)
\(80\) 5.41827 + 14.5251i 0.605781 + 1.62396i
\(81\) −2.45712 −0.273013
\(82\) −6.83711 8.48416i −0.755033 0.936919i
\(83\) −11.6430 + 11.6430i −1.27799 + 1.27799i −0.336200 + 0.941791i \(0.609142\pi\)
−0.941791 + 0.336200i \(0.890858\pi\)
\(84\) 2.29792 1.47685i 0.250724 0.161138i
\(85\) −10.0387 10.0387i −1.08885 1.08885i
\(86\) 17.8195 + 1.91561i 1.92153 + 0.206566i
\(87\) 3.19510i 0.342550i
\(88\) −2.55494 + 7.67715i −0.272358 + 0.818387i
\(89\) 2.76733i 0.293336i 0.989186 + 0.146668i \(0.0468549\pi\)
−0.989186 + 0.146668i \(0.953145\pi\)
\(90\) 1.29021 12.0019i 0.136000 1.26511i
\(91\) 4.15662 + 4.15662i 0.435732 + 0.435732i
\(92\) 1.95430 + 0.425090i 0.203750 + 0.0443187i
\(93\) 1.73645 1.73645i 0.180061 0.180061i
\(94\) 4.67153 3.76464i 0.481832 0.388293i
\(95\) −6.58995 −0.676115
\(96\) −2.57783 + 4.34520i −0.263098 + 0.443481i
\(97\) −6.61383 −0.671533 −0.335766 0.941945i \(-0.608995\pi\)
−0.335766 + 0.941945i \(0.608995\pi\)
\(98\) 5.13305 4.13656i 0.518517 0.417856i
\(99\) 4.45480 4.45480i 0.447724 0.447724i
\(100\) 19.5841 + 4.25985i 1.95841 + 0.425985i
\(101\) 11.5250 + 11.5250i 1.14678 + 1.14678i 0.987182 + 0.159596i \(0.0510193\pi\)
0.159596 + 0.987182i \(0.448981\pi\)
\(102\) 0.494527 4.60022i 0.0489655 0.455489i
\(103\) 0.605918i 0.0597028i −0.999554 0.0298514i \(-0.990497\pi\)
0.999554 0.0298514i \(-0.00950341\pi\)
\(104\) −10.3163 3.43323i −1.01159 0.336656i
\(105\) 5.29339i 0.516582i
\(106\) −14.1481 1.52093i −1.37418 0.147726i
\(107\) 6.39585 + 6.39585i 0.618310 + 0.618310i 0.945098 0.326788i \(-0.105966\pi\)
−0.326788 + 0.945098i \(0.605966\pi\)
\(108\) 7.81743 5.02418i 0.752233 0.483452i
\(109\) −4.79918 + 4.79918i −0.459678 + 0.459678i −0.898550 0.438872i \(-0.855378\pi\)
0.438872 + 0.898550i \(0.355378\pi\)
\(110\) 9.83846 + 12.2085i 0.938060 + 1.16404i
\(111\) −5.52015 −0.523950
\(112\) 2.54080 5.56419i 0.240083 0.525766i
\(113\) 4.58640 0.431452 0.215726 0.976454i \(-0.430788\pi\)
0.215726 + 0.976454i \(0.430788\pi\)
\(114\) −1.34760 1.67224i −0.126214 0.156619i
\(115\) 2.74053 2.74053i 0.255556 0.255556i
\(116\) −3.86830 6.01892i −0.359163 0.558843i
\(117\) 5.98620 + 5.98620i 0.553424 + 0.553424i
\(118\) 11.5708 + 1.24387i 1.06518 + 0.114507i
\(119\) 5.60157i 0.513495i
\(120\) 4.38273 + 8.75491i 0.400087 + 0.799210i
\(121\) 2.81670i 0.256063i
\(122\) −1.36322 + 12.6810i −0.123420 + 1.14809i
\(123\) −4.86588 4.86588i −0.438742 0.438742i
\(124\) 1.16880 5.37343i 0.104962 0.482549i
\(125\) 13.7603 13.7603i 1.23076 1.23076i
\(126\) −3.70848 + 2.98854i −0.330377 + 0.266241i
\(127\) 8.38407 0.743966 0.371983 0.928240i \(-0.378678\pi\)
0.371983 + 0.928240i \(0.378678\pi\)
\(128\) 0.404625 + 11.3065i 0.0357642 + 0.999360i
\(129\) 11.3186 0.996547
\(130\) −16.4054 + 13.2206i −1.43885 + 1.15952i
\(131\) −15.3109 + 15.3109i −1.33772 + 1.33772i −0.439459 + 0.898263i \(0.644830\pi\)
−0.898263 + 0.439459i \(0.855170\pi\)
\(132\) −1.08608 + 4.99313i −0.0945312 + 0.434596i
\(133\) 1.83859 + 1.83859i 0.159426 + 0.159426i
\(134\) −0.0176932 + 0.164586i −0.00152846 + 0.0142181i
\(135\) 18.0079i 1.54987i
\(136\) −4.63789 9.26461i −0.397696 0.794434i
\(137\) 20.1453i 1.72113i −0.509339 0.860566i \(-0.670110\pi\)
0.509339 0.860566i \(-0.329890\pi\)
\(138\) 1.25585 + 0.135004i 0.106905 + 0.0114923i
\(139\) −11.0916 11.0916i −0.940775 0.940775i 0.0575665 0.998342i \(-0.481666\pi\)
−0.998342 + 0.0575665i \(0.981666\pi\)
\(140\) −6.40871 9.97169i −0.541635 0.842762i
\(141\) 2.67924 2.67924i 0.225633 0.225633i
\(142\) −5.88145 7.29828i −0.493560 0.612458i
\(143\) −10.9964 −0.919567
\(144\) 3.65917 8.01333i 0.304930 0.667777i
\(145\) −13.8649 −1.15142
\(146\) 7.02691 + 8.71968i 0.581551 + 0.721646i
\(147\) 2.94393 2.94393i 0.242812 0.242812i
\(148\) −10.3989 + 6.68325i −0.854781 + 0.549359i
\(149\) −15.6772 15.6772i −1.28432 1.28432i −0.938183 0.346140i \(-0.887492\pi\)
−0.346140 0.938183i \(-0.612508\pi\)
\(150\) 12.5849 + 1.35288i 1.02755 + 0.110462i
\(151\) 15.1976i 1.23677i 0.785876 + 0.618384i \(0.212212\pi\)
−0.785876 + 0.618384i \(0.787788\pi\)
\(152\) −4.56319 1.51862i −0.370123 0.123176i
\(153\) 8.06717i 0.652192i
\(154\) 0.661247 6.15109i 0.0532848 0.495669i
\(155\) −7.53521 7.53521i −0.605242 0.605242i
\(156\) −6.70958 1.45944i −0.537196 0.116848i
\(157\) 3.41307 3.41307i 0.272393 0.272393i −0.557670 0.830063i \(-0.688305\pi\)
0.830063 + 0.557670i \(0.188305\pi\)
\(158\) 7.07628 5.70255i 0.562959 0.453670i
\(159\) −8.98657 −0.712681
\(160\) 18.8558 + 11.1863i 1.49068 + 0.884357i
\(161\) −1.52921 −0.120519
\(162\) −2.70567 + 2.18041i −0.212578 + 0.171310i
\(163\) 2.00990 2.00990i 0.157428 0.157428i −0.623998 0.781426i \(-0.714493\pi\)
0.781426 + 0.623998i \(0.214493\pi\)
\(164\) −15.0575 3.27523i −1.17579 0.255752i
\(165\) 7.00190 + 7.00190i 0.545097 + 0.545097i
\(166\) −2.48893 + 23.1527i −0.193179 + 1.79700i
\(167\) 13.4952i 1.04429i 0.852857 + 0.522144i \(0.174868\pi\)
−0.852857 + 0.522144i \(0.825132\pi\)
\(168\) 1.21983 3.66539i 0.0941122 0.282791i
\(169\) 1.77659i 0.136661i
\(170\) −19.9624 2.14597i −1.53104 0.164588i
\(171\) 2.64787 + 2.64787i 0.202488 + 0.202488i
\(172\) 21.3220 13.7034i 1.62579 1.04488i
\(173\) −0.604284 + 0.604284i −0.0459429 + 0.0459429i −0.729705 0.683762i \(-0.760343\pi\)
0.683762 + 0.729705i \(0.260343\pi\)
\(174\) −2.83529 3.51830i −0.214942 0.266722i
\(175\) −15.3243 −1.15841
\(176\) 3.99922 + 10.7210i 0.301452 + 0.808123i
\(177\) 7.34952 0.552424
\(178\) 2.45569 + 3.04726i 0.184062 + 0.228402i
\(179\) 12.6718 12.6718i 0.947132 0.947132i −0.0515388 0.998671i \(-0.516413\pi\)
0.998671 + 0.0515388i \(0.0164126\pi\)
\(180\) −9.22957 14.3608i −0.687932 1.07039i
\(181\) 6.30067 + 6.30067i 0.468325 + 0.468325i 0.901372 0.433046i \(-0.142561\pi\)
−0.433046 + 0.901372i \(0.642561\pi\)
\(182\) 8.26561 + 0.888559i 0.612688 + 0.0658644i
\(183\) 8.05473i 0.595423i
\(184\) 2.52921 1.26613i 0.186456 0.0933404i
\(185\) 23.9544i 1.76116i
\(186\) 0.371200 3.45300i 0.0272177 0.253186i
\(187\) −7.40954 7.40954i −0.541839 0.541839i
\(188\) 1.80340 8.29091i 0.131526 0.604677i
\(189\) −5.02418 + 5.02418i −0.365456 + 0.365456i
\(190\) −7.25657 + 5.84784i −0.526447 + 0.424247i
\(191\) −15.8762 −1.14876 −0.574382 0.818588i \(-0.694757\pi\)
−0.574382 + 0.818588i \(0.694757\pi\)
\(192\) 1.01728 + 7.07228i 0.0734162 + 0.510398i
\(193\) −15.8800 −1.14307 −0.571535 0.820578i \(-0.693652\pi\)
−0.571535 + 0.820578i \(0.693652\pi\)
\(194\) −7.28286 + 5.86903i −0.522879 + 0.421371i
\(195\) −9.40889 + 9.40889i −0.673785 + 0.673785i
\(196\) 1.98156 9.11000i 0.141540 0.650714i
\(197\) −4.36304 4.36304i −0.310854 0.310854i 0.534387 0.845240i \(-0.320543\pi\)
−0.845240 + 0.534387i \(0.820543\pi\)
\(198\) 0.952302 8.85856i 0.0676772 0.629551i
\(199\) 1.83276i 0.129921i −0.997888 0.0649604i \(-0.979308\pi\)
0.997888 0.0649604i \(-0.0206921\pi\)
\(200\) 25.3453 12.6879i 1.79219 0.897173i
\(201\) 0.104542i 0.00737382i
\(202\) 22.9179 + 2.46369i 1.61250 + 0.173345i
\(203\) 3.86830 + 3.86830i 0.271502 + 0.271502i
\(204\) −3.53762 5.50440i −0.247683 0.385385i
\(205\) −21.1152 + 21.1152i −1.47475 + 1.47475i
\(206\) −0.537683 0.667210i −0.0374622 0.0464867i
\(207\) −2.20231 −0.153071
\(208\) −14.4064 + 5.37400i −0.998907 + 0.372620i
\(209\) −4.86404 −0.336452
\(210\) −4.69728 5.82885i −0.324143 0.402229i
\(211\) −0.176084 + 0.176084i −0.0121221 + 0.0121221i −0.713142 0.701020i \(-0.752728\pi\)
0.701020 + 0.713142i \(0.252728\pi\)
\(212\) −16.9289 + 10.8800i −1.16268 + 0.747244i
\(213\) −4.18575 4.18575i −0.286803 0.286803i
\(214\) 12.7184 + 1.36724i 0.869413 + 0.0934626i
\(215\) 49.1164i 3.34971i
\(216\) 4.14982 12.4695i 0.282359 0.848442i
\(217\) 4.20463i 0.285429i
\(218\) −1.02592 + 9.54337i −0.0694840 + 0.646358i
\(219\) 5.00096 + 5.00096i 0.337933 + 0.337933i
\(220\) 21.6674 + 4.71298i 1.46081 + 0.317749i
\(221\) 9.95667 9.95667i 0.669758 0.669758i
\(222\) −6.07855 + 4.89851i −0.407966 + 0.328766i
\(223\) 7.23146 0.484254 0.242127 0.970245i \(-0.422155\pi\)
0.242127 + 0.970245i \(0.422155\pi\)
\(224\) −2.13976 8.38171i −0.142969 0.560027i
\(225\) −22.0695 −1.47130
\(226\) 5.05034 4.06991i 0.335943 0.270726i
\(227\) 15.8466 15.8466i 1.05177 1.05177i 0.0531903 0.998584i \(-0.483061\pi\)
0.998584 0.0531903i \(-0.0169390\pi\)
\(228\) −2.96784 0.645550i −0.196550 0.0427526i
\(229\) 7.41129 + 7.41129i 0.489752 + 0.489752i 0.908228 0.418476i \(-0.137436\pi\)
−0.418476 + 0.908228i \(0.637436\pi\)
\(230\) 0.585843 5.44967i 0.0386294 0.359340i
\(231\) 3.90704i 0.257065i
\(232\) −9.60071 3.19510i −0.630318 0.209768i
\(233\) 0.641549i 0.0420293i 0.999779 + 0.0210146i \(0.00668966\pi\)
−0.999779 + 0.0210146i \(0.993310\pi\)
\(234\) 11.9038 + 1.27967i 0.778176 + 0.0836545i
\(235\) −11.6264 11.6264i −0.758423 0.758423i
\(236\) 13.8450 8.89807i 0.901235 0.579215i
\(237\) 4.05842 4.05842i 0.263623 0.263623i
\(238\) 4.97076 + 6.16821i 0.322206 + 0.399825i
\(239\) −7.78652 −0.503668 −0.251834 0.967770i \(-0.581034\pi\)
−0.251834 + 0.967770i \(0.581034\pi\)
\(240\) 12.5951 + 5.75135i 0.813008 + 0.371248i
\(241\) 5.29100 0.340824 0.170412 0.985373i \(-0.445490\pi\)
0.170412 + 0.985373i \(0.445490\pi\)
\(242\) −2.49950 3.10162i −0.160674 0.199380i
\(243\) −11.4082 + 11.4082i −0.731836 + 0.731836i
\(244\) 9.75186 + 15.1735i 0.624299 + 0.971384i
\(245\) −12.7750 12.7750i −0.816166 0.816166i
\(246\) −9.67601 1.04018i −0.616920 0.0663193i
\(247\) 6.53611i 0.415883i
\(248\) −3.48128 6.95417i −0.221061 0.441590i
\(249\) 14.7061i 0.931962i
\(250\) 2.94154 27.3630i 0.186039 1.73059i
\(251\) 20.1654 + 20.1654i 1.27283 + 1.27283i 0.944599 + 0.328227i \(0.106451\pi\)
0.328227 + 0.944599i \(0.393549\pi\)
\(252\) −1.43162 + 6.58171i −0.0901836 + 0.414608i
\(253\) 2.02278 2.02278i 0.127171 0.127171i
\(254\) 9.23218 7.43991i 0.579278 0.466822i
\(255\) −12.6797 −0.794033
\(256\) 10.4788 + 12.0911i 0.654923 + 0.755696i
\(257\) −2.15836 −0.134635 −0.0673174 0.997732i \(-0.521444\pi\)
−0.0673174 + 0.997732i \(0.521444\pi\)
\(258\) 12.4635 10.0440i 0.775946 0.625310i
\(259\) 6.68325 6.68325i 0.415277 0.415277i
\(260\) −6.33313 + 29.1158i −0.392764 + 1.80569i
\(261\) 5.57098 + 5.57098i 0.344835 + 0.344835i
\(262\) −3.27301 + 30.4464i −0.202207 + 1.88099i
\(263\) 13.7070i 0.845209i 0.906314 + 0.422604i \(0.138884\pi\)
−0.906314 + 0.422604i \(0.861116\pi\)
\(264\) 3.23489 + 6.46198i 0.199094 + 0.397708i
\(265\) 38.9967i 2.39555i
\(266\) 3.65612 + 0.393035i 0.224171 + 0.0240985i
\(267\) 1.74768 + 1.74768i 0.106956 + 0.106956i
\(268\) 0.126569 + 0.196936i 0.00773142 + 0.0120298i
\(269\) 18.5467 18.5467i 1.13081 1.13081i 0.140767 0.990043i \(-0.455043\pi\)
0.990043 0.140767i \(-0.0449569\pi\)
\(270\) −15.9800 19.8295i −0.972509 1.20678i
\(271\) −6.66642 −0.404956 −0.202478 0.979287i \(-0.564900\pi\)
−0.202478 + 0.979287i \(0.564900\pi\)
\(272\) −13.3283 6.08619i −0.808149 0.369029i
\(273\) 5.25014 0.317753
\(274\) −17.8767 22.1832i −1.07997 1.34013i
\(275\) 20.2704 20.2704i 1.22235 1.22235i
\(276\) 1.50268 0.965760i 0.0904509 0.0581319i
\(277\) −12.6524 12.6524i −0.760208 0.760208i 0.216152 0.976360i \(-0.430649\pi\)
−0.976360 + 0.216152i \(0.930649\pi\)
\(278\) −22.0561 2.37104i −1.32284 0.142206i
\(279\) 6.05535i 0.362524i
\(280\) −15.9057 5.29339i −0.950549 0.316341i
\(281\) 5.57139i 0.332361i −0.986095 0.166181i \(-0.946856\pi\)
0.986095 0.166181i \(-0.0531435\pi\)
\(282\) 0.572741 5.32778i 0.0341062 0.317265i
\(283\) −11.5638 11.5638i −0.687397 0.687397i 0.274259 0.961656i \(-0.411567\pi\)
−0.961656 + 0.274259i \(0.911567\pi\)
\(284\) −12.9528 2.81743i −0.768607 0.167184i
\(285\) −4.16182 + 4.16182i −0.246525 + 0.246525i
\(286\) −12.1088 + 9.75808i −0.716007 + 0.577007i
\(287\) 11.7822 0.695483
\(288\) −3.08160 12.0710i −0.181585 0.711292i
\(289\) −3.58211 −0.210712
\(290\) −15.2675 + 12.3035i −0.896536 + 0.722489i
\(291\) −4.17690 + 4.17690i −0.244854 + 0.244854i
\(292\) 15.4755 + 3.36615i 0.905633 + 0.196989i
\(293\) −0.585664 0.585664i −0.0342149 0.0342149i 0.689792 0.724007i \(-0.257702\pi\)
−0.724007 + 0.689792i \(0.757702\pi\)
\(294\) 0.629324 5.85414i 0.0367029 0.341420i
\(295\) 31.8928i 1.85687i
\(296\) −5.52015 + 16.5871i −0.320852 + 0.964106i
\(297\) 13.2916i 0.771257i
\(298\) −31.1747 3.35130i −1.80590 0.194136i
\(299\) 2.71814 + 2.71814i 0.157194 + 0.157194i
\(300\) 15.0584 9.67791i 0.869400 0.558755i
\(301\) −13.7034 + 13.7034i −0.789852 + 0.789852i
\(302\) 13.4862 + 16.7350i 0.776043 + 0.962990i
\(303\) 14.5570 0.836277
\(304\) −6.37239 + 2.37707i −0.365481 + 0.136335i
\(305\) 34.9530 2.00140
\(306\) 7.15870 + 8.88321i 0.409235 + 0.507819i
\(307\) 20.2702 20.2702i 1.15688 1.15688i 0.171738 0.985143i \(-0.445062\pi\)
0.985143 0.171738i \(-0.0549382\pi\)
\(308\) −4.73026 7.36009i −0.269531 0.419380i
\(309\) −0.382662 0.382662i −0.0217689 0.0217689i
\(310\) −14.9841 1.61080i −0.851039 0.0914873i
\(311\) 10.5264i 0.596899i 0.954425 + 0.298449i \(0.0964694\pi\)
−0.954425 + 0.298449i \(0.903531\pi\)
\(312\) −8.68338 + 4.34692i −0.491599 + 0.246096i
\(313\) 17.6161i 0.995722i −0.867257 0.497861i \(-0.834119\pi\)
0.867257 0.497861i \(-0.165881\pi\)
\(314\) 0.729611 6.78703i 0.0411743 0.383014i
\(315\) 9.22957 + 9.22957i 0.520028 + 0.520028i
\(316\) 2.73173 12.5588i 0.153672 0.706487i
\(317\) −7.47881 + 7.47881i −0.420052 + 0.420052i −0.885222 0.465170i \(-0.845993\pi\)
0.465170 + 0.885222i \(0.345993\pi\)
\(318\) −9.89561 + 7.97456i −0.554918 + 0.447191i
\(319\) −10.2337 −0.572976
\(320\) 30.6897 4.41445i 1.71561 0.246775i
\(321\) 8.07848 0.450897
\(322\) −1.68390 + 1.35700i −0.0938402 + 0.0756228i
\(323\) 4.40412 4.40412i 0.245052 0.245052i
\(324\) −1.04450 + 4.80195i −0.0580277 + 0.266775i
\(325\) 27.2386 + 27.2386i 1.51093 + 1.51093i
\(326\) 0.429656 3.99678i 0.0237965 0.221361i
\(327\) 6.06175i 0.335216i
\(328\) −19.4870 + 9.75525i −1.07599 + 0.538644i
\(329\) 6.48751i 0.357668i
\(330\) 13.9236 + 1.49679i 0.766467 + 0.0823958i
\(331\) −1.01083 1.01083i −0.0555603 0.0555603i 0.678781 0.734341i \(-0.262509\pi\)
−0.734341 + 0.678781i \(0.762509\pi\)
\(332\) 17.8047 + 27.7034i 0.977159 + 1.52042i
\(333\) 9.62495 9.62495i 0.527444 0.527444i
\(334\) 11.9754 + 14.8603i 0.655267 + 0.813120i
\(335\) 0.453653 0.0247857
\(336\) −1.90939 5.11863i −0.104166 0.279244i
\(337\) 27.4738 1.49659 0.748296 0.663366i \(-0.230873\pi\)
0.748296 + 0.663366i \(0.230873\pi\)
\(338\) −1.57652 1.95630i −0.0857515 0.106409i
\(339\) 2.89650 2.89650i 0.157316 0.157316i
\(340\) −23.8860 + 15.3513i −1.29540 + 0.832540i
\(341\) −5.56172 5.56172i −0.301184 0.301184i
\(342\) 5.26540 + 0.566034i 0.284720 + 0.0306076i
\(343\) 17.8329i 0.962887i
\(344\) 11.3186 34.0104i 0.610258 1.83372i
\(345\) 3.46152i 0.186362i
\(346\) −0.129178 + 1.20164i −0.00694464 + 0.0646008i
\(347\) −5.81298 5.81298i −0.312057 0.312057i 0.533649 0.845706i \(-0.320820\pi\)
−0.845706 + 0.533649i \(0.820820\pi\)
\(348\) −6.24418 1.35820i −0.334723 0.0728074i
\(349\) −16.7479 + 16.7479i −0.896495 + 0.896495i −0.995124 0.0986290i \(-0.968554\pi\)
0.0986290 + 0.995124i \(0.468554\pi\)
\(350\) −16.8744 + 13.5986i −0.901977 + 0.726874i
\(351\) 17.8608 0.953337
\(352\) 13.9174 + 8.25661i 0.741800 + 0.440079i
\(353\) 33.2587 1.77018 0.885091 0.465418i \(-0.154096\pi\)
0.885091 + 0.465418i \(0.154096\pi\)
\(354\) 8.09298 6.52187i 0.430137 0.346633i
\(355\) −18.1638 + 18.1638i −0.964034 + 0.964034i
\(356\) 5.40819 + 1.17636i 0.286634 + 0.0623472i
\(357\) 3.53762 + 3.53762i 0.187231 + 0.187231i
\(358\) 2.70884 25.1983i 0.143167 1.33177i
\(359\) 18.6590i 0.984786i 0.870373 + 0.492393i \(0.163878\pi\)
−0.870373 + 0.492393i \(0.836122\pi\)
\(360\) −22.9068 7.62334i −1.20730 0.401785i
\(361\) 16.1089i 0.847836i
\(362\) 12.5292 + 1.34689i 0.658518 + 0.0707912i
\(363\) −1.77886 1.77886i −0.0933659 0.0933659i
\(364\) 9.89022 6.35635i 0.518388 0.333163i
\(365\) 21.7014 21.7014i 1.13590 1.13590i
\(366\) 7.14766 + 8.86952i 0.373614 + 0.463617i
\(367\) −8.93581 −0.466446 −0.233223 0.972423i \(-0.574927\pi\)
−0.233223 + 0.972423i \(0.574927\pi\)
\(368\) 1.66151 3.63860i 0.0866122 0.189675i
\(369\) 16.9683 0.883336
\(370\) 21.2568 + 26.3775i 1.10509 + 1.37130i
\(371\) 10.8800 10.8800i 0.564863 0.564863i
\(372\) −2.65540 4.13169i −0.137676 0.214218i
\(373\) 9.78549 + 9.78549i 0.506673 + 0.506673i 0.913504 0.406830i \(-0.133366\pi\)
−0.406830 + 0.913504i \(0.633366\pi\)
\(374\) −14.7342 1.58394i −0.761887 0.0819034i
\(375\) 17.3804i 0.897520i
\(376\) −5.37142 10.7299i −0.277010 0.553352i
\(377\) 13.7516i 0.708246i
\(378\) −1.07402 + 9.99080i −0.0552416 + 0.513872i
\(379\) 23.5423 + 23.5423i 1.20928 + 1.20928i 0.971259 + 0.238026i \(0.0765004\pi\)
0.238026 + 0.971259i \(0.423500\pi\)
\(380\) −2.80133 + 12.8788i −0.143705 + 0.660667i
\(381\) 5.29488 5.29488i 0.271265 0.271265i
\(382\) −17.4822 + 14.0883i −0.894468 + 0.720823i
\(383\) −33.3581 −1.70452 −0.852260 0.523119i \(-0.824768\pi\)
−0.852260 + 0.523119i \(0.824768\pi\)
\(384\) 7.39603 + 6.88496i 0.377427 + 0.351347i
\(385\) −16.9544 −0.864075
\(386\) −17.4864 + 14.0917i −0.890035 + 0.717250i
\(387\) −19.7351 + 19.7351i −1.00319 + 1.00319i
\(388\) −2.81148 + 12.9254i −0.142731 + 0.656189i
\(389\) 22.4106 + 22.4106i 1.13626 + 1.13626i 0.989115 + 0.147146i \(0.0470087\pi\)
0.147146 + 0.989115i \(0.452991\pi\)
\(390\) −2.01134 + 18.7100i −0.101848 + 0.947417i
\(391\) 3.66304i 0.185248i
\(392\) −5.90208 11.7899i −0.298100 0.595482i
\(393\) 19.3389i 0.975521i
\(394\) −8.67609 0.932686i −0.437095 0.0469880i
\(395\) −17.6113 17.6113i −0.886120 0.886120i
\(396\) −6.81233 10.5997i −0.342333 0.532656i
\(397\) 1.72193 1.72193i 0.0864212 0.0864212i −0.662575 0.748996i \(-0.730536\pi\)
0.748996 + 0.662575i \(0.230536\pi\)
\(398\) −1.62636 2.01815i −0.0815223 0.101161i
\(399\) 2.32229 0.116260
\(400\) 16.6501 36.4625i 0.832503 1.82313i
\(401\) −4.68163 −0.233790 −0.116895 0.993144i \(-0.537294\pi\)
−0.116895 + 0.993144i \(0.537294\pi\)
\(402\) 0.0927691 + 0.115117i 0.00462690 + 0.00574151i
\(403\) 7.47364 7.47364i 0.372289 0.372289i
\(404\) 27.4225 17.6241i 1.36432 0.876834i
\(405\) 6.73381 + 6.73381i 0.334606 + 0.334606i
\(406\) 7.69228 + 0.826926i 0.381762 + 0.0410397i
\(407\) 17.6807i 0.876399i
\(408\) −8.78000 2.92196i −0.434675 0.144659i
\(409\) 4.60355i 0.227631i 0.993502 + 0.113815i \(0.0363073\pi\)
−0.993502 + 0.113815i \(0.963693\pi\)
\(410\) −4.51379 + 41.9885i −0.222920 + 2.07366i
\(411\) −12.7226 12.7226i −0.627559 0.627559i
\(412\) −1.18415 0.257570i −0.0583387 0.0126896i
\(413\) −8.89807 + 8.89807i −0.437845 + 0.437845i
\(414\) −2.42509 + 1.95430i −0.119187 + 0.0960487i
\(415\) 63.8163 3.13262
\(416\) −11.0949 + 18.7017i −0.543974 + 0.916926i
\(417\) −14.0096 −0.686051
\(418\) −5.35606 + 4.31628i −0.261974 + 0.211116i
\(419\) 13.2797 13.2797i 0.648758 0.648758i −0.303935 0.952693i \(-0.598301\pi\)
0.952693 + 0.303935i \(0.0983006\pi\)
\(420\) −10.3449 2.25017i −0.504779 0.109797i
\(421\) −8.04601 8.04601i −0.392138 0.392138i 0.483311 0.875449i \(-0.339434\pi\)
−0.875449 + 0.483311i \(0.839434\pi\)
\(422\) −0.0376413 + 0.350150i −0.00183235 + 0.0170450i
\(423\) 9.34306i 0.454275i
\(424\) −8.98657 + 27.0031i −0.436426 + 1.31139i
\(425\) 36.7075i 1.78058i
\(426\) −8.32354 0.894787i −0.403277 0.0433526i
\(427\) −9.75186 9.75186i −0.471926 0.471926i
\(428\) 15.2182 9.78061i 0.735601 0.472764i
\(429\) −6.94469 + 6.94469i −0.335293 + 0.335293i
\(430\) −43.5852 54.0848i −2.10186 2.60820i
\(431\) 23.9168 1.15203 0.576016 0.817439i \(-0.304607\pi\)
0.576016 + 0.817439i \(0.304607\pi\)
\(432\) −6.49566 17.4134i −0.312523 0.837800i
\(433\) 13.5472 0.651039 0.325519 0.945535i \(-0.394461\pi\)
0.325519 + 0.945535i \(0.394461\pi\)
\(434\) 3.73113 + 4.62996i 0.179100 + 0.222245i
\(435\) −8.75627 + 8.75627i −0.419831 + 0.419831i
\(436\) 7.33896 + 11.4191i 0.351472 + 0.546877i
\(437\) 1.20231 + 1.20231i 0.0575144 + 0.0575144i
\(438\) 9.94462 + 1.06905i 0.475172 + 0.0510814i
\(439\) 11.2376i 0.536343i 0.963371 + 0.268172i \(0.0864194\pi\)
−0.963371 + 0.268172i \(0.913581\pi\)
\(440\) 28.0414 14.0376i 1.33682 0.669216i
\(441\) 10.2661i 0.488862i
\(442\) 2.12844 19.7993i 0.101239 0.941755i
\(443\) −25.7097 25.7097i −1.22150 1.22150i −0.967098 0.254406i \(-0.918120\pi\)
−0.254406 0.967098i \(-0.581880\pi\)
\(444\) −2.34656 + 10.7880i −0.111363 + 0.511978i
\(445\) 7.58395 7.58395i 0.359514 0.359514i
\(446\) 7.96297 6.41710i 0.377057 0.303858i
\(447\) −19.8015 −0.936580
\(448\) −9.79403 7.33078i −0.462724 0.346347i
\(449\) −5.13588 −0.242377 −0.121188 0.992630i \(-0.538671\pi\)
−0.121188 + 0.992630i \(0.538671\pi\)
\(450\) −24.3019 + 19.5841i −1.14560 + 0.923205i
\(451\) −15.5851 + 15.5851i −0.733873 + 0.733873i
\(452\) 1.94963 8.96320i 0.0917030 0.421594i
\(453\) 9.59793 + 9.59793i 0.450950 + 0.450950i
\(454\) 3.38752 31.5116i 0.158984 1.47891i
\(455\) 22.7827i 1.06807i
\(456\) −3.84091 + 1.92277i −0.179867 + 0.0900419i
\(457\) 27.2294i 1.27374i −0.770972 0.636870i \(-0.780229\pi\)
0.770972 0.636870i \(-0.219771\pi\)
\(458\) 14.7377 + 1.58431i 0.688646 + 0.0740300i
\(459\) 12.0348 + 12.0348i 0.561738 + 0.561738i
\(460\) −4.19086 6.52080i −0.195400 0.304034i
\(461\) −21.9976 + 21.9976i −1.02453 + 1.02453i −0.0248390 + 0.999691i \(0.507907\pi\)
−0.999691 + 0.0248390i \(0.992093\pi\)
\(462\) −3.46706 4.30227i −0.161302 0.200160i
\(463\) −21.8570 −1.01578 −0.507890 0.861422i \(-0.669575\pi\)
−0.507890 + 0.861422i \(0.669575\pi\)
\(464\) −13.4072 + 5.00124i −0.622412 + 0.232177i
\(465\) −9.51758 −0.441367
\(466\) 0.569302 + 0.706446i 0.0263724 + 0.0327255i
\(467\) −8.55730 + 8.55730i −0.395985 + 0.395985i −0.876814 0.480829i \(-0.840336\pi\)
0.480829 + 0.876814i \(0.340336\pi\)
\(468\) 14.2435 9.15417i 0.658407 0.423151i
\(469\) −0.126569 0.126569i −0.00584441 0.00584441i
\(470\) −23.1196 2.48537i −1.06643 0.114642i
\(471\) 4.31098i 0.198640i
\(472\) 7.34952 22.0841i 0.338289 1.01650i
\(473\) 36.2527i 1.66690i
\(474\) 0.867569 8.07035i 0.0398487 0.370683i
\(475\) 12.0484 + 12.0484i 0.552819 + 0.552819i
\(476\) 10.9472 + 2.38117i 0.501762 + 0.109141i
\(477\) 15.6690 15.6690i 0.717434 0.717434i
\(478\) −8.57418 + 6.90965i −0.392174 + 0.316040i
\(479\) 40.7842 1.86348 0.931739 0.363129i \(-0.118292\pi\)
0.931739 + 0.363129i \(0.118292\pi\)
\(480\) 18.9728 4.84355i 0.865986 0.221077i
\(481\) −23.7587 −1.08330
\(482\) 5.82622 4.69517i 0.265377 0.213859i
\(483\) −0.965760 + 0.965760i −0.0439436 + 0.0439436i
\(484\) −5.50468 1.19735i −0.250213 0.0544250i
\(485\) 18.1254 + 18.1254i 0.823033 + 0.823033i
\(486\) −2.43873 + 22.6857i −0.110623 + 1.02904i
\(487\) 31.6590i 1.43460i −0.696762 0.717302i \(-0.745377\pi\)
0.696762 0.717302i \(-0.254623\pi\)
\(488\) 24.2031 + 8.05473i 1.09562 + 0.364621i
\(489\) 2.53867i 0.114803i
\(490\) −25.4037 2.73091i −1.14762 0.123370i
\(491\) −16.7060 16.7060i −0.753931 0.753931i 0.221279 0.975210i \(-0.428977\pi\)
−0.975210 + 0.221279i \(0.928977\pi\)
\(492\) −11.5778 + 7.44096i −0.521969 + 0.335464i
\(493\) 9.26605 9.26605i 0.417322 0.417322i
\(494\) −5.80006 7.19728i −0.260957 0.323821i
\(495\) −24.4171 −1.09746
\(496\) −10.0045 4.56839i −0.449214 0.205127i
\(497\) 10.1354 0.454633
\(498\) 13.0500 + 16.1937i 0.584785 + 0.725659i
\(499\) −21.7208 + 21.7208i −0.972357 + 0.972357i −0.999628 0.0272707i \(-0.991318\pi\)
0.0272707 + 0.999628i \(0.491318\pi\)
\(500\) −21.0424 32.7412i −0.941047 1.46423i
\(501\) 8.52276 + 8.52276i 0.380769 + 0.380769i
\(502\) 40.0997 + 4.31075i 1.78974 + 0.192398i
\(503\) 12.3248i 0.549534i 0.961511 + 0.274767i \(0.0886008\pi\)
−0.961511 + 0.274767i \(0.911399\pi\)
\(504\) 4.26408 + 8.51789i 0.189937 + 0.379417i
\(505\) 63.1692i 2.81099i
\(506\) 0.432410 4.02239i 0.0192230 0.178817i
\(507\) −1.12199 1.12199i −0.0498293 0.0498293i
\(508\) 3.56399 16.3850i 0.158126 0.726967i
\(509\) −19.2068 + 19.2068i −0.851326 + 0.851326i −0.990296 0.138971i \(-0.955621\pi\)
0.138971 + 0.990296i \(0.455621\pi\)
\(510\) −13.9623 + 11.2518i −0.618262 + 0.498237i
\(511\) −12.1093 −0.535684
\(512\) 22.2683 + 4.01551i 0.984128 + 0.177462i
\(513\) 7.90033 0.348808
\(514\) −2.37669 + 1.91530i −0.104831 + 0.0844802i
\(515\) −1.66054 + 1.66054i −0.0731720 + 0.0731720i
\(516\) 4.81143 22.1200i 0.211811 0.973777i
\(517\) −8.58143 8.58143i −0.377411 0.377411i
\(518\) 1.42868 13.2899i 0.0627724 0.583926i
\(519\) 0.763260i 0.0335034i
\(520\) 18.8632 + 37.6810i 0.827206 + 1.65242i
\(521\) 0.515650i 0.0225910i −0.999936 0.0112955i \(-0.996404\pi\)
0.999936 0.0112955i \(-0.00359555\pi\)
\(522\) 11.0781 + 1.19091i 0.484877 + 0.0521246i
\(523\) −6.17927 6.17927i −0.270201 0.270201i 0.558980 0.829181i \(-0.311193\pi\)
−0.829181 + 0.558980i \(0.811193\pi\)
\(524\) 23.4137 + 36.4307i 1.02283 + 1.59148i
\(525\) −9.67791 + 9.67791i −0.422379 + 0.422379i
\(526\) 12.1634 + 15.0935i 0.530349 + 0.658109i
\(527\) 10.0717 0.438730
\(528\) 9.29639 + 4.24506i 0.404574 + 0.184743i
\(529\) −1.00000 −0.0434783
\(530\) 34.6051 + 42.9414i 1.50315 + 1.86526i
\(531\) −12.8147 + 12.8147i −0.556109 + 0.556109i
\(532\) 4.37473 2.81160i 0.189669 0.121898i
\(533\) −20.9427 20.9427i −0.907128 0.907128i
\(534\) 3.47534 + 0.373601i 0.150392 + 0.0161673i
\(535\) 35.0561i 1.51561i
\(536\) 0.314130 + 0.104542i 0.0135684 + 0.00451552i
\(537\) 16.0055i 0.690687i
\(538\) 3.96472 36.8808i 0.170931 1.59005i
\(539\) −9.42923 9.42923i −0.406145 0.406145i
\(540\) −35.1929 7.65498i −1.51446 0.329418i
\(541\) −5.80628 + 5.80628i −0.249632 + 0.249632i −0.820819 0.571188i \(-0.806483\pi\)
0.571188 + 0.820819i \(0.306483\pi\)
\(542\) −7.34077 + 5.91569i −0.315313 + 0.254101i
\(543\) 7.95826 0.341522
\(544\) −20.0774 + 5.12554i −0.860811 + 0.219756i
\(545\) 26.3046 1.12677
\(546\) 5.78123 4.65891i 0.247414 0.199383i
\(547\) 16.8634 16.8634i 0.721029 0.721029i −0.247786 0.968815i \(-0.579703\pi\)
0.968815 + 0.247786i \(0.0797030\pi\)
\(548\) −39.3701 8.56359i −1.68181 0.365818i
\(549\) −14.0443 14.0443i −0.599394 0.599394i
\(550\) 4.33320 40.3085i 0.184768 1.71876i
\(551\) 6.08275i 0.259134i
\(552\) 0.797687 2.39691i 0.0339518 0.102019i
\(553\) 9.82706i 0.417889i
\(554\) −25.1598 2.70470i −1.06894 0.114912i
\(555\) 15.1282 + 15.1282i 0.642155 + 0.642155i
\(556\) −26.3912 + 16.9614i −1.11924 + 0.719322i
\(557\) 12.6709 12.6709i 0.536885 0.536885i −0.385728 0.922613i \(-0.626050\pi\)
0.922613 + 0.385728i \(0.126050\pi\)
\(558\) 5.37343 + 6.66788i 0.227476 + 0.282274i
\(559\) 48.7151 2.06043
\(560\) −22.2120 + 8.28568i −0.938628 + 0.350134i
\(561\) −9.35886 −0.395131
\(562\) −4.94398 6.13497i −0.208549 0.258788i
\(563\) −30.8676 + 30.8676i −1.30091 + 1.30091i −0.373136 + 0.927777i \(0.621718\pi\)
−0.927777 + 0.373136i \(0.878282\pi\)
\(564\) −4.09713 6.37497i −0.172520 0.268434i
\(565\) −12.5692 12.5692i −0.528789 0.528789i
\(566\) −22.9951 2.47199i −0.966557 0.103906i
\(567\) 3.75746i 0.157798i
\(568\) −16.7632 + 8.39170i −0.703368 + 0.352108i
\(569\) 26.9844i 1.13125i 0.824664 + 0.565623i \(0.191364\pi\)
−0.824664 + 0.565623i \(0.808636\pi\)
\(570\) −0.889672 + 8.27597i −0.0372643 + 0.346642i
\(571\) −1.83019 1.83019i −0.0765912 0.0765912i 0.667773 0.744365i \(-0.267248\pi\)
−0.744365 + 0.667773i \(0.767248\pi\)
\(572\) −4.67447 + 21.4903i −0.195450 + 0.898556i
\(573\) −10.0265 + 10.0265i −0.418862 + 0.418862i
\(574\) 12.9741 10.4554i 0.541528 0.436400i
\(575\) −10.0210 −0.417906
\(576\) −14.1050 10.5575i −0.587708 0.439896i
\(577\) −18.1595 −0.755991 −0.377995 0.925807i \(-0.623386\pi\)
−0.377995 + 0.925807i \(0.623386\pi\)
\(578\) −3.94446 + 3.17872i −0.164068 + 0.132217i
\(579\) −10.0289 + 10.0289i −0.416787 + 0.416787i
\(580\) −5.89385 + 27.0963i −0.244729 + 1.12511i
\(581\) −17.8047 17.8047i −0.738663 0.738663i
\(582\) −0.892896 + 8.30595i −0.0370117 + 0.344293i
\(583\) 28.7834i 1.19209i
\(584\) 20.0280 10.0261i 0.828763 0.414881i
\(585\) 32.8107i 1.35656i
\(586\) −1.16462 0.125197i −0.0481099 0.00517185i
\(587\) −14.8262 14.8262i −0.611941 0.611941i 0.331510 0.943452i \(-0.392442\pi\)
−0.943452 + 0.331510i \(0.892442\pi\)
\(588\) −4.50190 7.00478i −0.185655 0.288872i
\(589\) 3.30581 3.30581i 0.136213 0.136213i
\(590\) −28.3013 35.1190i −1.16514 1.44583i
\(591\) −5.51087 −0.226687
\(592\) 8.64063 + 23.1635i 0.355128 + 0.952014i
\(593\) 31.8803 1.30917 0.654583 0.755990i \(-0.272844\pi\)
0.654583 + 0.755990i \(0.272844\pi\)
\(594\) −11.7948 14.6361i −0.483946 0.600527i
\(595\) 15.3513 15.3513i 0.629341 0.629341i
\(596\) −37.3021 + 23.9737i −1.52795 + 0.982001i
\(597\) −1.15746 1.15746i −0.0473717 0.0473717i
\(598\) 5.40514 + 0.581057i 0.221033 + 0.0237612i
\(599\) 39.1635i 1.60018i −0.599882 0.800088i \(-0.704786\pi\)
0.599882 0.800088i \(-0.295214\pi\)
\(600\) 7.99366 24.0196i 0.326340 0.980594i
\(601\) 44.0527i 1.79695i −0.439026 0.898474i \(-0.644676\pi\)
0.439026 0.898474i \(-0.355324\pi\)
\(602\) −2.92938 + 27.2498i −0.119393 + 1.11062i
\(603\) −0.182280 0.182280i −0.00742300 0.00742300i
\(604\) 29.7008 + 6.46038i 1.20851 + 0.262869i
\(605\) −7.71925 + 7.71925i −0.313832 + 0.313832i
\(606\) 16.0295 12.9177i 0.651155 0.524745i
\(607\) 21.5920 0.876393 0.438196 0.898879i \(-0.355617\pi\)
0.438196 + 0.898879i \(0.355617\pi\)
\(608\) −4.90761 + 8.27230i −0.199030 + 0.335486i
\(609\) 4.88598 0.197990
\(610\) 38.4887 31.0168i 1.55836 1.25583i
\(611\) 11.5314 11.5314i 0.466511 0.466511i
\(612\) 15.7657 + 3.42928i 0.637290 + 0.138620i
\(613\) 20.9053 + 20.9053i 0.844357 + 0.844357i 0.989422 0.145065i \(-0.0463392\pi\)
−0.145065 + 0.989422i \(0.546339\pi\)
\(614\) 4.33315 40.3081i 0.174872 1.62670i
\(615\) 26.6702i 1.07545i
\(616\) −11.7400 3.90704i −0.473018 0.157419i
\(617\) 4.01122i 0.161486i 0.996735 + 0.0807429i \(0.0257293\pi\)
−0.996735 + 0.0807429i \(0.974271\pi\)
\(618\) −0.760939 0.0818015i −0.0306095 0.00329054i
\(619\) −8.52811 8.52811i −0.342774 0.342774i 0.514635 0.857409i \(-0.327927\pi\)
−0.857409 + 0.514635i \(0.827927\pi\)
\(620\) −17.9292 + 11.5229i −0.720055 + 0.462772i
\(621\) −3.28547 + 3.28547i −0.131841 + 0.131841i
\(622\) 9.34101 + 11.5912i 0.374540 + 0.464766i
\(623\) −4.23183 −0.169545
\(624\) −5.70436 + 12.4922i −0.228357 + 0.500086i
\(625\) −25.3160 −1.01264
\(626\) −15.6323 19.3981i −0.624792 0.775304i
\(627\) −3.07184 + 3.07184i −0.122677 + 0.122677i
\(628\) −5.21931 8.12103i −0.208273 0.324064i
\(629\) −16.0089 16.0089i −0.638317 0.638317i
\(630\) 18.3534 + 1.97300i 0.731217 + 0.0786064i
\(631\) 14.7297i 0.586379i 0.956054 + 0.293189i \(0.0947166\pi\)
−0.956054 + 0.293189i \(0.905283\pi\)
\(632\) −8.13644 16.2533i −0.323650 0.646521i
\(633\) 0.222408i 0.00883992i
\(634\) −1.59874 + 14.8719i −0.0634942 + 0.590640i
\(635\) −22.9768 22.9768i −0.911808 0.911808i
\(636\) −3.82010 + 17.5625i −0.151477 + 0.696397i
\(637\) 12.6706 12.6706i 0.502029 0.502029i
\(638\) −11.2689 + 9.08123i −0.446139 + 0.359529i
\(639\) 14.5966 0.577431
\(640\) 29.8769 32.0946i 1.18099 1.26865i
\(641\) −25.1609 −0.993796 −0.496898 0.867809i \(-0.665528\pi\)
−0.496898 + 0.867809i \(0.665528\pi\)
\(642\) 8.89567 7.16873i 0.351084 0.282927i
\(643\) 16.7541 16.7541i 0.660718 0.660718i −0.294831 0.955549i \(-0.595263\pi\)
0.955549 + 0.294831i \(0.0952634\pi\)
\(644\) −0.650053 + 2.98854i −0.0256157 + 0.117765i
\(645\) −31.0190 31.0190i −1.22137 1.22137i
\(646\) 0.941469 8.75779i 0.0370416 0.344571i
\(647\) 17.2641i 0.678721i 0.940656 + 0.339360i \(0.110211\pi\)
−0.940656 + 0.339360i \(0.889789\pi\)
\(648\) 3.11103 + 6.21457i 0.122213 + 0.244132i
\(649\) 23.5400i 0.924027i
\(650\) 54.1651 + 5.82279i 2.12453 + 0.228389i
\(651\) 2.65540 + 2.65540i 0.104073 + 0.104073i
\(652\) −3.07357 4.78235i −0.120370 0.187291i
\(653\) −29.8896 + 29.8896i −1.16967 + 1.16967i −0.187384 + 0.982287i \(0.560001\pi\)
−0.982287 + 0.187384i \(0.939999\pi\)
\(654\) 5.37912 + 6.67493i 0.210340 + 0.261011i
\(655\) 83.9202 3.27903
\(656\) −12.8016 + 28.0346i −0.499817 + 1.09457i
\(657\) −17.4394 −0.680375
\(658\) 5.75693 + 7.14376i 0.224428 + 0.278493i
\(659\) −18.7646 + 18.7646i −0.730967 + 0.730967i −0.970811 0.239845i \(-0.922903\pi\)
0.239845 + 0.970811i \(0.422903\pi\)
\(660\) 16.6603 10.7074i 0.648500 0.416784i
\(661\) 30.7092 + 30.7092i 1.19445 + 1.19445i 0.975805 + 0.218644i \(0.0701635\pi\)
0.218644 + 0.975805i \(0.429837\pi\)
\(662\) −2.01008 0.216085i −0.0781240 0.00839839i
\(663\) 12.5761i 0.488415i
\(664\) 44.1894 + 14.7061i 1.71488 + 0.570708i
\(665\) 10.0774i 0.390786i
\(666\) 2.05752 19.1396i 0.0797275 0.741646i
\(667\) 2.52960 + 2.52960i 0.0979467 + 0.0979467i
\(668\) 26.3737 + 5.73667i 1.02043 + 0.221959i
\(669\) 4.56696 4.56696i 0.176569 0.176569i
\(670\) 0.499543 0.402566i 0.0192990 0.0155525i
\(671\) 25.7988 0.995950
\(672\) −6.64474 3.94204i −0.256326 0.152068i
\(673\) −18.7694 −0.723506 −0.361753 0.932274i \(-0.617822\pi\)
−0.361753 + 0.932274i \(0.617822\pi\)
\(674\) 30.2529 24.3798i 1.16530 0.939076i
\(675\) −32.9238 + 32.9238i −1.26724 + 1.26724i
\(676\) −3.47199 0.755211i −0.133538 0.0290466i
\(677\) −7.27989 7.27989i −0.279789 0.279789i 0.553236 0.833025i \(-0.313393\pi\)
−0.833025 + 0.553236i \(0.813393\pi\)
\(678\) 0.619183 5.75980i 0.0237796 0.221204i
\(679\) 10.1140i 0.388138i
\(680\) −12.6797 + 38.1003i −0.486244 + 1.46108i
\(681\) 20.0155i 0.766997i
\(682\) −11.0597 1.18893i −0.423499 0.0455264i
\(683\) −12.4210 12.4210i −0.475277 0.475277i 0.428340 0.903618i \(-0.359099\pi\)
−0.903618 + 0.428340i \(0.859099\pi\)
\(684\) 6.30032 4.04915i 0.240899 0.154823i
\(685\) −55.2089 + 55.2089i −2.10943 + 2.10943i
\(686\) 15.8247 + 19.6368i 0.604190 + 0.749738i
\(687\) 9.36106 0.357147
\(688\) −17.7169 47.4948i −0.675449 1.81072i
\(689\) −38.6780 −1.47352
\(690\) −3.07170 3.81167i −0.116938 0.145108i
\(691\) −33.8504 + 33.8504i −1.28773 + 1.28773i −0.351565 + 0.936163i \(0.614350\pi\)
−0.936163 + 0.351565i \(0.885650\pi\)
\(692\) 0.924078 + 1.43783i 0.0351282 + 0.0546581i
\(693\) 6.81233 + 6.81233i 0.258779 + 0.258779i
\(694\) −11.5594 1.24264i −0.438787 0.0471699i
\(695\) 60.7937i 2.30603i
\(696\) −8.08108 + 4.04541i −0.306312 + 0.153341i
\(697\) 28.2229i 1.06902i
\(698\) −3.58020 + 33.3039i −0.135513 + 1.26057i
\(699\) 0.405164 + 0.405164i 0.0153247 + 0.0153247i
\(700\) −6.51421 + 29.9483i −0.246214 + 1.13194i
\(701\) −11.9805 + 11.9805i −0.452498 + 0.452498i −0.896183 0.443685i \(-0.853671\pi\)
0.443685 + 0.896183i \(0.353671\pi\)
\(702\) 19.6675 15.8494i 0.742301 0.598197i
\(703\) −10.5091 −0.396360
\(704\) 22.6520 3.25830i 0.853731 0.122802i
\(705\) −14.6851 −0.553073
\(706\) 36.6230 29.5133i 1.37833 1.11075i
\(707\) −17.6241 + 17.6241i −0.662824 + 0.662824i
\(708\) 3.12421 14.3632i 0.117415 0.539802i
\(709\) −8.81693 8.81693i −0.331127 0.331127i 0.521887 0.853014i \(-0.325228\pi\)
−0.853014 + 0.521887i \(0.825228\pi\)
\(710\) −3.88287 + 36.1195i −0.145722 + 1.35554i
\(711\) 14.1526i 0.530762i
\(712\) 6.99916 3.50380i 0.262304 0.131310i
\(713\) 2.74954i 0.102971i
\(714\) 7.03471 + 0.756236i 0.263267 + 0.0283014i
\(715\) 30.1361 + 30.1361i 1.12702 + 1.12702i
\(716\) −19.3778 30.1511i −0.724183 1.12680i
\(717\) −4.91751 + 4.91751i −0.183648 + 0.183648i
\(718\) 16.5578 + 20.5465i 0.617930 + 0.766789i
\(719\) −41.8588 −1.56107 −0.780534 0.625113i \(-0.785053\pi\)
−0.780534 + 0.625113i \(0.785053\pi\)
\(720\) −31.9888 + 11.9327i −1.19215 + 0.444706i
\(721\) 0.926576 0.0345075
\(722\) 14.2948 + 17.7384i 0.531998 + 0.660155i
\(723\) 3.34148 3.34148i 0.124271 0.124271i
\(724\) 14.9918 9.63506i 0.557165 0.358084i
\(725\) 25.3493 + 25.3493i 0.941448 + 0.941448i
\(726\) −3.53734 0.380266i −0.131283 0.0141130i
\(727\) 2.66804i 0.0989520i 0.998775 + 0.0494760i \(0.0157551\pi\)
−0.998775 + 0.0494760i \(0.984245\pi\)
\(728\) 5.25014 15.7758i 0.194583 0.584689i
\(729\) 7.03811i 0.260671i
\(730\) 4.63909 43.1541i 0.171701 1.59720i
\(731\) 32.8249 + 32.8249i 1.21407 + 1.21407i
\(732\) 15.7414 + 3.42399i 0.581818 + 0.126554i
\(733\) 16.3265 16.3265i 0.603033 0.603033i −0.338083 0.941116i \(-0.609778\pi\)
0.941116 + 0.338083i \(0.109778\pi\)
\(734\) −9.83972 + 7.92952i −0.363191 + 0.292684i
\(735\) −16.1359 −0.595181
\(736\) −1.39926 5.48107i −0.0515773 0.202035i
\(737\) 0.334841 0.0123340
\(738\) 18.6848 15.0575i 0.687796 0.554273i
\(739\) −13.4540 + 13.4540i −0.494913 + 0.494913i −0.909850 0.414937i \(-0.863804\pi\)
0.414937 + 0.909850i \(0.363804\pi\)
\(740\) 46.8141 + 10.1828i 1.72092 + 0.374326i
\(741\) −4.12782 4.12782i −0.151639 0.151639i
\(742\) 2.32582 21.6354i 0.0853836 0.794261i
\(743\) 6.92795i 0.254162i 0.991892 + 0.127081i \(0.0405608\pi\)
−0.991892 + 0.127081i \(0.959439\pi\)
\(744\) −6.59041 2.19327i −0.241616 0.0804093i
\(745\) 85.9275i 3.14814i
\(746\) 19.4589 + 2.09184i 0.712440 + 0.0765878i
\(747\) −25.6416 25.6416i −0.938178 0.938178i
\(748\) −17.6302 + 11.3308i −0.644625 + 0.414294i
\(749\) −9.78061 + 9.78061i −0.357376 + 0.357376i
\(750\) −15.4231 19.1385i −0.563173 0.698841i
\(751\) −18.5653 −0.677457 −0.338729 0.940884i \(-0.609997\pi\)
−0.338729 + 0.940884i \(0.609997\pi\)
\(752\) −15.4363 7.04877i −0.562905 0.257042i
\(753\) 25.4705 0.928196
\(754\) −12.2030 15.1427i −0.444408 0.551465i
\(755\) 41.6497 41.6497i 1.51579 1.51579i
\(756\) 7.68304 + 11.9545i 0.279430 + 0.434781i
\(757\) 18.6823 + 18.6823i 0.679020 + 0.679020i 0.959778 0.280759i \(-0.0905860\pi\)
−0.280759 + 0.959778i \(0.590586\pi\)
\(758\) 46.8148 + 5.03263i 1.70039 + 0.182793i
\(759\) 2.55494i 0.0927384i
\(760\) 8.34374 + 16.6674i 0.302659 + 0.604590i
\(761\) 43.1942i 1.56579i −0.622154 0.782895i \(-0.713742\pi\)
0.622154 0.782895i \(-0.286258\pi\)
\(762\) 1.13189 10.5291i 0.0410039 0.381429i
\(763\) −7.33896 7.33896i −0.265688 0.265688i
\(764\) −6.74883 + 31.0269i −0.244164 + 1.12252i
\(765\) 22.1083 22.1083i 0.799329 0.799329i
\(766\) −36.7325 + 29.6015i −1.32720 + 1.06955i
\(767\) 31.6322 1.14217
\(768\) 14.2538 + 1.01828i 0.514340 + 0.0367439i