Properties

Label 368.2.j.c.277.3
Level $368$
Weight $2$
Character 368.277
Analytic conductor $2.938$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(93,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 277.3
Root \(1.09121 - 0.899589i\) of defining polynomial
Character \(\chi\) \(=\) 368.277
Dual form 368.2.j.c.93.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0678262 + 1.41259i) q^{2} +(1.19673 - 1.19673i) q^{3} +(-1.99080 + 0.191621i) q^{4} +(0.672033 + 0.672033i) q^{5} +(1.77166 + 1.60932i) q^{6} +1.79918i q^{7} +(-0.405709 - 2.79918i) q^{8} +0.135652i q^{9} +O(q^{10})\) \(q+(0.0678262 + 1.41259i) q^{2} +(1.19673 - 1.19673i) q^{3} +(-1.99080 + 0.191621i) q^{4} +(0.672033 + 0.672033i) q^{5} +(1.77166 + 1.60932i) q^{6} +1.79918i q^{7} +(-0.405709 - 2.79918i) q^{8} +0.135652i q^{9} +(-0.903723 + 0.994886i) q^{10} +(2.49790 + 2.49790i) q^{11} +(-2.15314 + 2.61178i) q^{12} +(-0.0311077 + 0.0311077i) q^{13} +(-2.54149 + 0.122031i) q^{14} +1.60849 q^{15} +(3.92656 - 0.762957i) q^{16} +4.24111 q^{17} +(-0.191621 + 0.00920079i) q^{18} +(-0.864348 + 0.864348i) q^{19} +(-1.46666 - 1.20911i) q^{20} +(2.15314 + 2.15314i) q^{21} +(-3.35907 + 3.69792i) q^{22} +1.00000i q^{23} +(-3.83540 - 2.86435i) q^{24} -4.09674i q^{25} +(-0.0460522 - 0.0418324i) q^{26} +(3.75254 + 3.75254i) q^{27} +(-0.344760 - 3.58180i) q^{28} +(-1.05780 + 1.05780i) q^{29} +(0.109098 + 2.27213i) q^{30} -2.27890 q^{31} +(1.34407 + 5.49486i) q^{32} +5.97864 q^{33} +(0.287658 + 5.99093i) q^{34} +(-1.20911 + 1.20911i) q^{35} +(-0.0259938 - 0.270057i) q^{36} +(-1.42444 - 1.42444i) q^{37} +(-1.27959 - 1.16234i) q^{38} +0.0744553i q^{39} +(1.60849 - 2.15379i) q^{40} -8.94702i q^{41} +(-2.89546 + 3.18753i) q^{42} +(-2.22919 - 2.22919i) q^{43} +(-5.45146 - 4.49417i) q^{44} +(-0.0911629 + 0.0911629i) q^{45} +(-1.41259 + 0.0678262i) q^{46} -9.40918 q^{47} +(3.78600 - 5.61211i) q^{48} +3.76296 q^{49} +(5.78700 - 0.277867i) q^{50} +(5.07548 - 5.07548i) q^{51} +(0.0559683 - 0.0678901i) q^{52} +(-4.89002 - 4.89002i) q^{53} +(-5.04627 + 5.55531i) q^{54} +3.35734i q^{55} +(5.03622 - 0.729943i) q^{56} +2.06879i q^{57} +(-1.56597 - 1.42248i) q^{58} +(-6.23240 - 6.23240i) q^{59} +(-3.20218 + 0.308220i) q^{60} +(0.841880 - 0.841880i) q^{61} +(-0.154569 - 3.21914i) q^{62} -0.244063 q^{63} +(-7.67080 + 2.27130i) q^{64} -0.0418108 q^{65} +(0.405509 + 8.44535i) q^{66} +(-6.47387 + 6.47387i) q^{67} +(-8.44320 + 0.812685i) q^{68} +(1.19673 + 1.19673i) q^{69} +(-1.78998 - 1.62596i) q^{70} -6.62529i q^{71} +(0.379715 - 0.0550354i) q^{72} +0.712123i q^{73} +(1.91554 - 2.10876i) q^{74} +(-4.90271 - 4.90271i) q^{75} +(1.55512 - 1.88637i) q^{76} +(-4.49417 + 4.49417i) q^{77} +(-0.105175 + 0.00505002i) q^{78} +3.84242 q^{79} +(3.15151 + 2.12605i) q^{80} +8.57464 q^{81} +(12.6384 - 0.606842i) q^{82} +(7.62359 - 7.62359i) q^{83} +(-4.69905 - 3.87388i) q^{84} +(2.85017 + 2.85017i) q^{85} +(2.99772 - 3.30012i) q^{86} +2.53180i q^{87} +(5.97864 - 8.00549i) q^{88} -5.80356i q^{89} +(-0.134959 - 0.122592i) q^{90} +(-0.0559683 - 0.0559683i) q^{91} +(-0.191621 - 1.99080i) q^{92} +(-2.72724 + 2.72724i) q^{93} +(-0.638189 - 13.2913i) q^{94} -1.16174 q^{95} +(8.18438 + 4.96740i) q^{96} +19.5071 q^{97} +(0.255227 + 5.31550i) q^{98} +(-0.338846 + 0.338846i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8} - 6 q^{10} - 4 q^{11} - 8 q^{12} + 18 q^{13} - 2 q^{14} + 8 q^{16} - 8 q^{17} - 4 q^{18} - 8 q^{19} - 32 q^{20} + 8 q^{21} - 34 q^{22} + 12 q^{24} - 14 q^{26} + 14 q^{27} + 12 q^{28} + 2 q^{29} - 30 q^{30} + 20 q^{31} - 8 q^{32} - 36 q^{33} + 10 q^{34} + 4 q^{35} + 4 q^{36} - 4 q^{37} + 24 q^{38} - 14 q^{42} + 20 q^{43} + 4 q^{44} - 20 q^{45} - 2 q^{46} - 16 q^{47} - 12 q^{48} + 52 q^{49} + 6 q^{50} - 4 q^{51} - 16 q^{53} + 16 q^{54} + 28 q^{56} + 14 q^{58} + 8 q^{59} + 48 q^{60} + 12 q^{61} - 44 q^{62} - 4 q^{63} + 24 q^{64} - 52 q^{65} + 34 q^{66} - 4 q^{67} - 16 q^{68} + 2 q^{69} + 28 q^{70} + 8 q^{72} - 26 q^{74} - 46 q^{75} - 8 q^{76} - 12 q^{77} - 44 q^{78} - 4 q^{79} + 4 q^{80} + 48 q^{81} - 6 q^{82} + 28 q^{83} + 12 q^{84} - 8 q^{85} + 44 q^{86} - 36 q^{88} + 4 q^{90} - 4 q^{92} - 14 q^{93} + 48 q^{95} + 32 q^{96} + 36 q^{97} - 2 q^{98} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0678262 + 1.41259i 0.0479604 + 0.998849i
\(3\) 1.19673 1.19673i 0.690935 0.690935i −0.271503 0.962438i \(-0.587521\pi\)
0.962438 + 0.271503i \(0.0875206\pi\)
\(4\) −1.99080 + 0.191621i −0.995400 + 0.0958104i
\(5\) 0.672033 + 0.672033i 0.300542 + 0.300542i 0.841226 0.540684i \(-0.181834\pi\)
−0.540684 + 0.841226i \(0.681834\pi\)
\(6\) 1.77166 + 1.60932i 0.723277 + 0.657002i
\(7\) 1.79918i 0.680026i 0.940421 + 0.340013i \(0.110431\pi\)
−0.940421 + 0.340013i \(0.889569\pi\)
\(8\) −0.405709 2.79918i −0.143440 0.989659i
\(9\) 0.135652i 0.0452175i
\(10\) −0.903723 + 0.994886i −0.285782 + 0.314611i
\(11\) 2.49790 + 2.49790i 0.753145 + 0.753145i 0.975065 0.221920i \(-0.0712324\pi\)
−0.221920 + 0.975065i \(0.571232\pi\)
\(12\) −2.15314 + 2.61178i −0.621558 + 0.753955i
\(13\) −0.0311077 + 0.0311077i −0.00862773 + 0.00862773i −0.711407 0.702780i \(-0.751942\pi\)
0.702780 + 0.711407i \(0.251942\pi\)
\(14\) −2.54149 + 0.122031i −0.679243 + 0.0326143i
\(15\) 1.60849 0.415310
\(16\) 3.92656 0.762957i 0.981641 0.190739i
\(17\) 4.24111 1.02862 0.514310 0.857604i \(-0.328048\pi\)
0.514310 + 0.857604i \(0.328048\pi\)
\(18\) −0.191621 + 0.00920079i −0.0451654 + 0.00216865i
\(19\) −0.864348 + 0.864348i −0.198295 + 0.198295i −0.799269 0.600974i \(-0.794780\pi\)
0.600974 + 0.799269i \(0.294780\pi\)
\(20\) −1.46666 1.20911i −0.327955 0.270365i
\(21\) 2.15314 + 2.15314i 0.469853 + 0.469853i
\(22\) −3.35907 + 3.69792i −0.716157 + 0.788399i
\(23\) 1.00000i 0.208514i
\(24\) −3.83540 2.86435i −0.782898 0.584682i
\(25\) 4.09674i 0.819349i
\(26\) −0.0460522 0.0418324i −0.00903159 0.00820401i
\(27\) 3.75254 + 3.75254i 0.722177 + 0.722177i
\(28\) −0.344760 3.58180i −0.0651535 0.676897i
\(29\) −1.05780 + 1.05780i −0.196428 + 0.196428i −0.798467 0.602039i \(-0.794355\pi\)
0.602039 + 0.798467i \(0.294355\pi\)
\(30\) 0.109098 + 2.27213i 0.0199184 + 0.414833i
\(31\) −2.27890 −0.409302 −0.204651 0.978835i \(-0.565606\pi\)
−0.204651 + 0.978835i \(0.565606\pi\)
\(32\) 1.34407 + 5.49486i 0.237600 + 0.971363i
\(33\) 5.97864 1.04075
\(34\) 0.287658 + 5.99093i 0.0493330 + 1.02744i
\(35\) −1.20911 + 1.20911i −0.204376 + 0.204376i
\(36\) −0.0259938 0.270057i −0.00433230 0.0450095i
\(37\) −1.42444 1.42444i −0.234177 0.234177i 0.580257 0.814434i \(-0.302952\pi\)
−0.814434 + 0.580257i \(0.802952\pi\)
\(38\) −1.27959 1.16234i −0.207577 0.188556i
\(39\) 0.0744553i 0.0119224i
\(40\) 1.60849 2.15379i 0.254325 0.340544i
\(41\) 8.94702i 1.39729i −0.715469 0.698645i \(-0.753787\pi\)
0.715469 0.698645i \(-0.246213\pi\)
\(42\) −2.89546 + 3.18753i −0.446778 + 0.491847i
\(43\) −2.22919 2.22919i −0.339948 0.339948i 0.516400 0.856348i \(-0.327272\pi\)
−0.856348 + 0.516400i \(0.827272\pi\)
\(44\) −5.45146 4.49417i −0.821839 0.677521i
\(45\) −0.0911629 + 0.0911629i −0.0135898 + 0.0135898i
\(46\) −1.41259 + 0.0678262i −0.208274 + 0.0100004i
\(47\) −9.40918 −1.37247 −0.686235 0.727380i \(-0.740738\pi\)
−0.686235 + 0.727380i \(0.740738\pi\)
\(48\) 3.78600 5.61211i 0.546462 0.810038i
\(49\) 3.76296 0.537565
\(50\) 5.78700 0.277867i 0.818406 0.0392963i
\(51\) 5.07548 5.07548i 0.710710 0.710710i
\(52\) 0.0559683 0.0678901i 0.00776141 0.00941466i
\(53\) −4.89002 4.89002i −0.671696 0.671696i 0.286411 0.958107i \(-0.407538\pi\)
−0.958107 + 0.286411i \(0.907538\pi\)
\(54\) −5.04627 + 5.55531i −0.686710 + 0.755982i
\(55\) 3.35734i 0.452704i
\(56\) 5.03622 0.729943i 0.672993 0.0975428i
\(57\) 2.06879i 0.274018i
\(58\) −1.56597 1.42248i −0.205622 0.186781i
\(59\) −6.23240 6.23240i −0.811389 0.811389i 0.173453 0.984842i \(-0.444507\pi\)
−0.984842 + 0.173453i \(0.944507\pi\)
\(60\) −3.20218 + 0.308220i −0.413400 + 0.0397911i
\(61\) 0.841880 0.841880i 0.107792 0.107792i −0.651154 0.758946i \(-0.725715\pi\)
0.758946 + 0.651154i \(0.225715\pi\)
\(62\) −0.154569 3.21914i −0.0196303 0.408831i
\(63\) −0.244063 −0.0307490
\(64\) −7.67080 + 2.27130i −0.958850 + 0.283913i
\(65\) −0.0418108 −0.00518599
\(66\) 0.405509 + 8.44535i 0.0499147 + 1.03955i
\(67\) −6.47387 + 6.47387i −0.790909 + 0.790909i −0.981642 0.190733i \(-0.938913\pi\)
0.190733 + 0.981642i \(0.438913\pi\)
\(68\) −8.44320 + 0.812685i −1.02389 + 0.0985525i
\(69\) 1.19673 + 1.19673i 0.144070 + 0.144070i
\(70\) −1.78998 1.62596i −0.213943 0.194339i
\(71\) 6.62529i 0.786278i −0.919479 0.393139i \(-0.871389\pi\)
0.919479 0.393139i \(-0.128611\pi\)
\(72\) 0.379715 0.0550354i 0.0447499 0.00648599i
\(73\) 0.712123i 0.0833477i 0.999131 + 0.0416739i \(0.0132690\pi\)
−0.999131 + 0.0416739i \(0.986731\pi\)
\(74\) 1.91554 2.10876i 0.222676 0.245139i
\(75\) −4.90271 4.90271i −0.566117 0.566117i
\(76\) 1.55512 1.88637i 0.178384 0.216381i
\(77\) −4.49417 + 4.49417i −0.512158 + 0.512158i
\(78\) −0.105175 + 0.00505002i −0.0119087 + 0.000571803i
\(79\) 3.84242 0.432306 0.216153 0.976360i \(-0.430649\pi\)
0.216153 + 0.976360i \(0.430649\pi\)
\(80\) 3.15151 + 2.12605i 0.352350 + 0.237699i
\(81\) 8.57464 0.952738
\(82\) 12.6384 0.606842i 1.39568 0.0670145i
\(83\) 7.62359 7.62359i 0.836798 0.836798i −0.151638 0.988436i \(-0.548455\pi\)
0.988436 + 0.151638i \(0.0484549\pi\)
\(84\) −4.69905 3.87388i −0.512709 0.422675i
\(85\) 2.85017 + 2.85017i 0.309144 + 0.309144i
\(86\) 2.99772 3.30012i 0.323253 0.355861i
\(87\) 2.53180i 0.271437i
\(88\) 5.97864 8.00549i 0.637326 0.853388i
\(89\) 5.80356i 0.615176i −0.951520 0.307588i \(-0.900478\pi\)
0.951520 0.307588i \(-0.0995219\pi\)
\(90\) −0.134959 0.122592i −0.0142259 0.0129224i
\(91\) −0.0559683 0.0559683i −0.00586707 0.00586707i
\(92\) −0.191621 1.99080i −0.0199778 0.207555i
\(93\) −2.72724 + 2.72724i −0.282801 + 0.282801i
\(94\) −0.638189 13.2913i −0.0658242 1.37089i
\(95\) −1.16174 −0.119192
\(96\) 8.18438 + 4.96740i 0.835315 + 0.506983i
\(97\) 19.5071 1.98064 0.990322 0.138785i \(-0.0443198\pi\)
0.990322 + 0.138785i \(0.0443198\pi\)
\(98\) 0.255227 + 5.31550i 0.0257818 + 0.536947i
\(99\) −0.338846 + 0.338846i −0.0340553 + 0.0340553i
\(100\) 0.785021 + 8.15579i 0.0785021 + 0.815579i
\(101\) 3.89729 + 3.89729i 0.387795 + 0.387795i 0.873900 0.486105i \(-0.161583\pi\)
−0.486105 + 0.873900i \(0.661583\pi\)
\(102\) 7.51381 + 6.82531i 0.743978 + 0.675806i
\(103\) 11.3587i 1.11920i 0.828762 + 0.559602i \(0.189046\pi\)
−0.828762 + 0.559602i \(0.810954\pi\)
\(104\) 0.0996967 + 0.0744553i 0.00977607 + 0.00730095i
\(105\) 2.89396i 0.282422i
\(106\) 6.57591 7.23925i 0.638709 0.703138i
\(107\) −11.7696 11.7696i −1.13781 1.13781i −0.988843 0.148963i \(-0.952406\pi\)
−0.148963 0.988843i \(-0.547594\pi\)
\(108\) −8.18963 6.75150i −0.788047 0.649663i
\(109\) 5.49682 5.49682i 0.526500 0.526500i −0.393027 0.919527i \(-0.628572\pi\)
0.919527 + 0.393027i \(0.128572\pi\)
\(110\) −4.74253 + 0.227716i −0.452183 + 0.0217118i
\(111\) −3.40936 −0.323602
\(112\) 1.37270 + 7.06459i 0.129708 + 0.667541i
\(113\) 3.27215 0.307818 0.153909 0.988085i \(-0.450814\pi\)
0.153909 + 0.988085i \(0.450814\pi\)
\(114\) −2.92234 + 0.140318i −0.273703 + 0.0131420i
\(115\) −0.672033 + 0.672033i −0.0626674 + 0.0626674i
\(116\) 1.90316 2.30855i 0.176704 0.214344i
\(117\) −0.00421984 0.00421984i −0.000390124 0.000390124i
\(118\) 8.38108 9.22652i 0.771541 0.849370i
\(119\) 7.63051i 0.699488i
\(120\) −0.652579 4.50245i −0.0595721 0.411016i
\(121\) 1.47900i 0.134455i
\(122\) 1.24633 + 1.13213i 0.112837 + 0.102498i
\(123\) −10.7072 10.7072i −0.965436 0.965436i
\(124\) 4.53683 0.436684i 0.407419 0.0392154i
\(125\) 6.11331 6.11331i 0.546791 0.546791i
\(126\) −0.0165539 0.344760i −0.00147474 0.0307137i
\(127\) 5.18531 0.460122 0.230061 0.973176i \(-0.426107\pi\)
0.230061 + 0.973176i \(0.426107\pi\)
\(128\) −3.72870 10.6816i −0.329573 0.944130i
\(129\) −5.33549 −0.469764
\(130\) −0.00283587 0.0590614i −0.000248722 0.00518003i
\(131\) −12.5660 + 12.5660i −1.09790 + 1.09790i −0.103242 + 0.994656i \(0.532921\pi\)
−0.994656 + 0.103242i \(0.967079\pi\)
\(132\) −11.9023 + 1.14563i −1.03596 + 0.0997145i
\(133\) −1.55512 1.55512i −0.134846 0.134846i
\(134\) −9.58399 8.70579i −0.827931 0.752066i
\(135\) 5.04367i 0.434090i
\(136\) −1.72066 11.8716i −0.147545 1.01798i
\(137\) 11.0784i 0.946488i −0.880931 0.473244i \(-0.843083\pi\)
0.880931 0.473244i \(-0.156917\pi\)
\(138\) −1.60932 + 1.77166i −0.136994 + 0.150814i
\(139\) −3.40558 3.40558i −0.288857 0.288857i 0.547771 0.836628i \(-0.315476\pi\)
−0.836628 + 0.547771i \(0.815476\pi\)
\(140\) 2.17540 2.63878i 0.183855 0.223018i
\(141\) −11.2603 + 11.2603i −0.948288 + 0.948288i
\(142\) 9.35880 0.449369i 0.785373 0.0377102i
\(143\) −0.155408 −0.0129959
\(144\) 0.103497 + 0.532648i 0.00862475 + 0.0443873i
\(145\) −1.42175 −0.118070
\(146\) −1.00594 + 0.0483006i −0.0832518 + 0.00399739i
\(147\) 4.50326 4.50326i 0.371423 0.371423i
\(148\) 3.10874 + 2.56283i 0.255536 + 0.210663i
\(149\) 0.00548598 + 0.00548598i 0.000449429 + 0.000449429i 0.707331 0.706882i \(-0.249899\pi\)
−0.706882 + 0.707331i \(0.749899\pi\)
\(150\) 6.59297 7.25804i 0.538314 0.592616i
\(151\) 16.7120i 1.36000i 0.733211 + 0.680001i \(0.238021\pi\)
−0.733211 + 0.680001i \(0.761979\pi\)
\(152\) 2.77014 + 2.06879i 0.224688 + 0.167801i
\(153\) 0.575317i 0.0465116i
\(154\) −6.65322 6.04357i −0.536132 0.487005i
\(155\) −1.53149 1.53149i −0.123013 0.123013i
\(156\) −0.0142672 0.148226i −0.00114229 0.0118675i
\(157\) −2.04476 + 2.04476i −0.163189 + 0.163189i −0.783978 0.620789i \(-0.786812\pi\)
0.620789 + 0.783978i \(0.286812\pi\)
\(158\) 0.260617 + 5.42775i 0.0207336 + 0.431809i
\(159\) −11.7041 −0.928197
\(160\) −2.78947 + 4.59598i −0.220527 + 0.363345i
\(161\) −1.79918 −0.141795
\(162\) 0.581585 + 12.1124i 0.0456937 + 0.951642i
\(163\) 0.473260 0.473260i 0.0370686 0.0370686i −0.688330 0.725398i \(-0.741656\pi\)
0.725398 + 0.688330i \(0.241656\pi\)
\(164\) 1.71443 + 17.8117i 0.133875 + 1.39086i
\(165\) 4.01785 + 4.01785i 0.312789 + 0.312789i
\(166\) 11.2861 + 10.2519i 0.875968 + 0.795702i
\(167\) 1.41315i 0.109353i 0.998504 + 0.0546765i \(0.0174128\pi\)
−0.998504 + 0.0546765i \(0.982587\pi\)
\(168\) 5.15347 6.90057i 0.397599 0.532390i
\(169\) 12.9981i 0.999851i
\(170\) −3.83279 + 4.21942i −0.293961 + 0.323615i
\(171\) −0.117251 0.117251i −0.00896640 0.00896640i
\(172\) 4.86502 + 4.01071i 0.370955 + 0.305813i
\(173\) −13.9983 + 13.9983i −1.06427 + 1.06427i −0.0664845 + 0.997787i \(0.521178\pi\)
−0.997787 + 0.0664845i \(0.978822\pi\)
\(174\) −3.57639 + 0.171722i −0.271125 + 0.0130182i
\(175\) 7.37077 0.557178
\(176\) 11.7139 + 7.90237i 0.882972 + 0.595663i
\(177\) −14.9170 −1.12123
\(178\) 8.19803 0.393634i 0.614468 0.0295041i
\(179\) 1.82472 1.82472i 0.136386 0.136386i −0.635618 0.772004i \(-0.719255\pi\)
0.772004 + 0.635618i \(0.219255\pi\)
\(180\) 0.164018 0.198956i 0.0122252 0.0148293i
\(181\) −2.45441 2.45441i −0.182435 0.182435i 0.609981 0.792416i \(-0.291177\pi\)
−0.792416 + 0.609981i \(0.791177\pi\)
\(182\) 0.0752639 0.0828562i 0.00557893 0.00614171i
\(183\) 2.01501i 0.148954i
\(184\) 2.79918 0.405709i 0.206358 0.0299093i
\(185\) 1.91455i 0.140760i
\(186\) −4.03743 3.66748i −0.296039 0.268912i
\(187\) 10.5939 + 10.5939i 0.774700 + 0.774700i
\(188\) 18.7318 1.80299i 1.36616 0.131497i
\(189\) −6.75150 + 6.75150i −0.491099 + 0.491099i
\(190\) −0.0787965 1.64106i −0.00571650 0.119055i
\(191\) −0.477663 −0.0345625 −0.0172813 0.999851i \(-0.505501\pi\)
−0.0172813 + 0.999851i \(0.505501\pi\)
\(192\) −6.46176 + 11.8981i −0.466338 + 0.858669i
\(193\) −5.57344 −0.401185 −0.200593 0.979675i \(-0.564287\pi\)
−0.200593 + 0.979675i \(0.564287\pi\)
\(194\) 1.32309 + 27.5554i 0.0949925 + 1.97837i
\(195\) −0.0500365 + 0.0500365i −0.00358318 + 0.00358318i
\(196\) −7.49129 + 0.721061i −0.535092 + 0.0515043i
\(197\) −10.1950 10.1950i −0.726362 0.726362i 0.243531 0.969893i \(-0.421694\pi\)
−0.969893 + 0.243531i \(0.921694\pi\)
\(198\) −0.501632 0.455667i −0.0356494 0.0323828i
\(199\) 7.12208i 0.504871i 0.967614 + 0.252435i \(0.0812315\pi\)
−0.967614 + 0.252435i \(0.918768\pi\)
\(200\) −11.4675 + 1.66209i −0.810876 + 0.117527i
\(201\) 15.4950i 1.09293i
\(202\) −5.24092 + 5.76960i −0.368750 + 0.405947i
\(203\) −1.90316 1.90316i −0.133576 0.133576i
\(204\) −9.13170 + 11.0768i −0.639347 + 0.775533i
\(205\) 6.01269 6.01269i 0.419945 0.419945i
\(206\) −16.0451 + 0.770416i −1.11792 + 0.0536774i
\(207\) −0.135652 −0.00942850
\(208\) −0.0984125 + 0.145880i −0.00682368 + 0.0101150i
\(209\) −4.31811 −0.298690
\(210\) −4.08797 + 0.196286i −0.282097 + 0.0135451i
\(211\) −2.97638 + 2.97638i −0.204902 + 0.204902i −0.802097 0.597194i \(-0.796282\pi\)
0.597194 + 0.802097i \(0.296282\pi\)
\(212\) 10.6721 + 8.79802i 0.732962 + 0.604251i
\(213\) −7.92872 7.92872i −0.543267 0.543267i
\(214\) 15.8272 17.4238i 1.08193 1.19107i
\(215\) 2.99618i 0.204337i
\(216\) 8.98160 12.0265i 0.611120 0.818298i
\(217\) 4.10014i 0.278336i
\(218\) 8.13756 + 7.39190i 0.551145 + 0.500643i
\(219\) 0.852223 + 0.852223i 0.0575879 + 0.0575879i
\(220\) −0.643336 6.68379i −0.0433737 0.450621i
\(221\) −0.131931 + 0.131931i −0.00887465 + 0.00887465i
\(222\) −0.231244 4.81602i −0.0155201 0.323230i
\(223\) 12.5625 0.841247 0.420623 0.907235i \(-0.361811\pi\)
0.420623 + 0.907235i \(0.361811\pi\)
\(224\) −9.88623 + 2.41821i −0.660552 + 0.161574i
\(225\) 0.555733 0.0370489
\(226\) 0.221938 + 4.62220i 0.0147631 + 0.307464i
\(227\) −8.30662 + 8.30662i −0.551330 + 0.551330i −0.926824 0.375495i \(-0.877473\pi\)
0.375495 + 0.926824i \(0.377473\pi\)
\(228\) −0.396423 4.11854i −0.0262538 0.272757i
\(229\) −16.9537 16.9537i −1.12033 1.12033i −0.991691 0.128639i \(-0.958939\pi\)
−0.128639 0.991691i \(-0.541061\pi\)
\(230\) −0.994886 0.903723i −0.0656008 0.0595897i
\(231\) 10.7566i 0.707736i
\(232\) 3.39011 + 2.53180i 0.222572 + 0.166221i
\(233\) 25.2401i 1.65353i 0.562546 + 0.826766i \(0.309822\pi\)
−0.562546 + 0.826766i \(0.690178\pi\)
\(234\) 0.00567467 0.00624710i 0.000370965 0.000408386i
\(235\) −6.32328 6.32328i −0.412485 0.412485i
\(236\) 13.6017 + 11.2132i 0.885396 + 0.729917i
\(237\) 4.59836 4.59836i 0.298695 0.298695i
\(238\) −10.7788 + 0.517549i −0.698683 + 0.0335477i
\(239\) 20.6753 1.33737 0.668687 0.743544i \(-0.266857\pi\)
0.668687 + 0.743544i \(0.266857\pi\)
\(240\) 6.31584 1.22721i 0.407686 0.0792160i
\(241\) 16.6390 1.07181 0.535906 0.844278i \(-0.319970\pi\)
0.535906 + 0.844278i \(0.319970\pi\)
\(242\) −2.08921 + 0.100315i −0.134300 + 0.00644849i
\(243\) −0.996062 + 0.996062i −0.0638974 + 0.0638974i
\(244\) −1.51469 + 1.83734i −0.0969682 + 0.117623i
\(245\) 2.52883 + 2.52883i 0.161561 + 0.161561i
\(246\) 14.3986 15.8511i 0.918023 1.01063i
\(247\) 0.0537757i 0.00342167i
\(248\) 0.924570 + 6.37904i 0.0587102 + 0.405069i
\(249\) 18.2468i 1.15635i
\(250\) 9.05022 + 8.22094i 0.572386 + 0.519938i
\(251\) 7.92099 + 7.92099i 0.499969 + 0.499969i 0.911428 0.411459i \(-0.134981\pi\)
−0.411459 + 0.911428i \(0.634981\pi\)
\(252\) 0.485880 0.0467675i 0.0306076 0.00294608i
\(253\) −2.49790 + 2.49790i −0.157042 + 0.157042i
\(254\) 0.351700 + 7.32470i 0.0220676 + 0.459592i
\(255\) 6.82178 0.427197
\(256\) 14.8358 5.99160i 0.927237 0.374475i
\(257\) −7.54288 −0.470512 −0.235256 0.971933i \(-0.575593\pi\)
−0.235256 + 0.971933i \(0.575593\pi\)
\(258\) −0.361886 7.53684i −0.0225301 0.469223i
\(259\) 2.56283 2.56283i 0.159246 0.159246i
\(260\) 0.0832369 0.00801182i 0.00516214 0.000496872i
\(261\) −0.143492 0.143492i −0.00888196 0.00888196i
\(262\) −18.6029 16.8983i −1.14929 1.04398i
\(263\) 30.0275i 1.85158i −0.378044 0.925788i \(-0.623403\pi\)
0.378044 0.925788i \(-0.376597\pi\)
\(264\) −2.42559 16.7353i −0.149285 1.02999i
\(265\) 6.57251i 0.403746i
\(266\) 2.09126 2.30221i 0.128223 0.141158i
\(267\) −6.94532 6.94532i −0.425047 0.425047i
\(268\) 11.6476 14.1287i 0.711493 0.863047i
\(269\) −21.5430 + 21.5430i −1.31350 + 1.31350i −0.394680 + 0.918819i \(0.629144\pi\)
−0.918819 + 0.394680i \(0.870856\pi\)
\(270\) −7.12461 + 0.342093i −0.433590 + 0.0208191i
\(271\) 12.2999 0.747167 0.373584 0.927596i \(-0.378129\pi\)
0.373584 + 0.927596i \(0.378129\pi\)
\(272\) 16.6530 3.23578i 1.00974 0.196198i
\(273\) −0.133958 −0.00810753
\(274\) 15.6491 0.751403i 0.945399 0.0453939i
\(275\) 10.2333 10.2333i 0.617088 0.617088i
\(276\) −2.61178 2.15314i −0.157211 0.129604i
\(277\) −17.5832 17.5832i −1.05647 1.05647i −0.998307 0.0581665i \(-0.981475\pi\)
−0.0581665 0.998307i \(-0.518525\pi\)
\(278\) 4.57968 5.04166i 0.274671 0.302379i
\(279\) 0.309138i 0.0185076i
\(280\) 3.87505 + 2.89396i 0.231579 + 0.172947i
\(281\) 22.4042i 1.33652i −0.743928 0.668260i \(-0.767039\pi\)
0.743928 0.668260i \(-0.232961\pi\)
\(282\) −16.6699 15.1424i −0.992677 0.901716i
\(283\) −2.23454 2.23454i −0.132830 0.132830i 0.637566 0.770396i \(-0.279941\pi\)
−0.770396 + 0.637566i \(0.779941\pi\)
\(284\) 1.26954 + 13.1896i 0.0753335 + 0.782660i
\(285\) −1.39029 + 1.39029i −0.0823540 + 0.0823540i
\(286\) −0.0105407 0.219527i −0.000623286 0.0129809i
\(287\) 16.0973 0.950193
\(288\) −0.745391 + 0.182326i −0.0439226 + 0.0107437i
\(289\) 0.987008 0.0580593
\(290\) −0.0964317 2.00834i −0.00566266 0.117934i
\(291\) 23.3448 23.3448i 1.36850 1.36850i
\(292\) −0.136458 1.41769i −0.00798558 0.0829643i
\(293\) 4.97588 + 4.97588i 0.290694 + 0.290694i 0.837354 0.546660i \(-0.184101\pi\)
−0.546660 + 0.837354i \(0.684101\pi\)
\(294\) 6.66668 + 6.05580i 0.388809 + 0.353182i
\(295\) 8.37675i 0.487713i
\(296\) −3.40936 + 4.56518i −0.198165 + 0.265346i
\(297\) 18.7470i 1.08781i
\(298\) −0.00737732 + 0.00812151i −0.000427357 + 0.000470466i
\(299\) −0.0311077 0.0311077i −0.00179901 0.00179901i
\(300\) 10.6998 + 8.82086i 0.617752 + 0.509272i
\(301\) 4.01071 4.01071i 0.231173 0.231173i
\(302\) −23.6071 + 1.13351i −1.35844 + 0.0652262i
\(303\) 9.32805 0.535882
\(304\) −2.73446 + 4.05338i −0.156832 + 0.232477i
\(305\) 1.13154 0.0647919
\(306\) −0.812685 + 0.0390216i −0.0464581 + 0.00223071i
\(307\) 6.06375 6.06375i 0.346076 0.346076i −0.512569 0.858646i \(-0.671306\pi\)
0.858646 + 0.512569i \(0.171306\pi\)
\(308\) 8.08581 9.80816i 0.460732 0.558872i
\(309\) 13.5933 + 13.5933i 0.773297 + 0.773297i
\(310\) 2.05949 2.26724i 0.116971 0.128771i
\(311\) 22.9860i 1.30342i 0.758470 + 0.651708i \(0.225947\pi\)
−0.758470 + 0.651708i \(0.774053\pi\)
\(312\) 0.208414 0.0302072i 0.0117991 0.00171015i
\(313\) 17.5784i 0.993589i 0.867868 + 0.496795i \(0.165490\pi\)
−0.867868 + 0.496795i \(0.834510\pi\)
\(314\) −3.02708 2.74971i −0.170828 0.155175i
\(315\) −0.164018 0.164018i −0.00924139 0.00924139i
\(316\) −7.64949 + 0.736287i −0.430317 + 0.0414194i
\(317\) 20.6141 20.6141i 1.15780 1.15780i 0.172855 0.984947i \(-0.444701\pi\)
0.984947 0.172855i \(-0.0552993\pi\)
\(318\) −0.793846 16.5331i −0.0445167 0.927129i
\(319\) −5.28453 −0.295877
\(320\) −6.68142 3.62864i −0.373503 0.202847i
\(321\) −28.1701 −1.57230
\(322\) −0.122031 2.54149i −0.00680055 0.141632i
\(323\) −3.66579 + 3.66579i −0.203970 + 0.203970i
\(324\) −17.0704 + 1.64308i −0.948355 + 0.0912822i
\(325\) 0.127440 + 0.127440i 0.00706911 + 0.00706911i
\(326\) 0.700619 + 0.636421i 0.0388037 + 0.0352481i
\(327\) 13.1565i 0.727554i
\(328\) −25.0443 + 3.62989i −1.38284 + 0.200427i
\(329\) 16.9288i 0.933315i
\(330\) −5.40304 + 5.94807i −0.297428 + 0.327431i
\(331\) 21.2365 + 21.2365i 1.16726 + 1.16726i 0.982848 + 0.184416i \(0.0590393\pi\)
0.184416 + 0.982848i \(0.440961\pi\)
\(332\) −13.7162 + 16.6379i −0.752774 + 0.913122i
\(333\) 0.193229 0.193229i 0.0105889 0.0105889i
\(334\) −1.99620 + 0.0958488i −0.109227 + 0.00524461i
\(335\) −8.70130 −0.475403
\(336\) 10.0972 + 6.81168i 0.550847 + 0.371608i
\(337\) 16.1040 0.877242 0.438621 0.898672i \(-0.355467\pi\)
0.438621 + 0.898672i \(0.355467\pi\)
\(338\) −18.3609 + 0.881610i −0.998701 + 0.0479532i
\(339\) 3.91590 3.91590i 0.212682 0.212682i
\(340\) −6.22026 5.12796i −0.337341 0.278103i
\(341\) −5.69246 5.69246i −0.308264 0.308264i
\(342\) 0.157674 0.173580i 0.00852605 0.00938611i
\(343\) 19.3645i 1.04558i
\(344\) −5.33549 + 7.14430i −0.287670 + 0.385195i
\(345\) 1.60849i 0.0865982i
\(346\) −20.7233 18.8244i −1.11409 1.01200i
\(347\) −1.50740 1.50740i −0.0809215 0.0809215i 0.665488 0.746409i \(-0.268224\pi\)
−0.746409 + 0.665488i \(0.768224\pi\)
\(348\) −0.485145 5.04031i −0.0260065 0.270189i
\(349\) 12.1021 12.1021i 0.647810 0.647810i −0.304654 0.952463i \(-0.598541\pi\)
0.952463 + 0.304654i \(0.0985407\pi\)
\(350\) 0.499932 + 10.4119i 0.0267225 + 0.556537i
\(351\) −0.233466 −0.0124615
\(352\) −10.3683 + 17.0829i −0.552630 + 0.910524i
\(353\) −25.8399 −1.37532 −0.687661 0.726032i \(-0.741362\pi\)
−0.687661 + 0.726032i \(0.741362\pi\)
\(354\) −1.01177 21.0716i −0.0537748 1.11994i
\(355\) 4.45242 4.45242i 0.236310 0.236310i
\(356\) 1.11208 + 11.5537i 0.0589403 + 0.612346i
\(357\) 9.13170 + 9.13170i 0.483301 + 0.483301i
\(358\) 2.70134 + 2.45381i 0.142770 + 0.129688i
\(359\) 32.5305i 1.71689i −0.512903 0.858447i \(-0.671430\pi\)
0.512903 0.858447i \(-0.328570\pi\)
\(360\) 0.292167 + 0.218196i 0.0153985 + 0.0114999i
\(361\) 17.5058i 0.921358i
\(362\) 3.30059 3.63354i 0.173475 0.190975i
\(363\) 1.76997 + 1.76997i 0.0928993 + 0.0928993i
\(364\) 0.122146 + 0.100697i 0.00640221 + 0.00527796i
\(365\) −0.478570 + 0.478570i −0.0250495 + 0.0250495i
\(366\) 2.84638 0.136671i 0.148783 0.00714389i
\(367\) −27.7341 −1.44771 −0.723854 0.689954i \(-0.757631\pi\)
−0.723854 + 0.689954i \(0.757631\pi\)
\(368\) 0.762957 + 3.92656i 0.0397719 + 0.204686i
\(369\) 1.21368 0.0631819
\(370\) 2.70446 0.129856i 0.140598 0.00675092i
\(371\) 8.79802 8.79802i 0.456771 0.456771i
\(372\) 4.90678 5.95197i 0.254405 0.308595i
\(373\) −12.4335 12.4335i −0.643780 0.643780i 0.307703 0.951483i \(-0.400440\pi\)
−0.951483 + 0.307703i \(0.900440\pi\)
\(374\) −14.2462 + 15.6833i −0.736654 + 0.810963i
\(375\) 14.6320i 0.755595i
\(376\) 3.81739 + 26.3380i 0.196867 + 1.35828i
\(377\) 0.0658112i 0.00338945i
\(378\) −9.99500 9.07914i −0.514087 0.466981i
\(379\) 20.8578 + 20.8578i 1.07139 + 1.07139i 0.997247 + 0.0741473i \(0.0236235\pi\)
0.0741473 + 0.997247i \(0.476377\pi\)
\(380\) 2.31279 0.222614i 0.118644 0.0114198i
\(381\) 6.20544 6.20544i 0.317914 0.317914i
\(382\) −0.0323981 0.674741i −0.00165763 0.0345227i
\(383\) 35.8926 1.83403 0.917013 0.398857i \(-0.130593\pi\)
0.917013 + 0.398857i \(0.130593\pi\)
\(384\) −17.2453 8.32080i −0.880046 0.424619i
\(385\) −6.04046 −0.307850
\(386\) −0.378026 7.87297i −0.0192410 0.400724i
\(387\) 0.302395 0.302395i 0.0153716 0.0153716i
\(388\) −38.8347 + 3.73796i −1.97153 + 0.189766i
\(389\) 19.6559 + 19.6559i 0.996592 + 0.996592i 0.999994 0.00340262i \(-0.00108309\pi\)
−0.00340262 + 0.999994i \(0.501083\pi\)
\(390\) −0.0740746 0.0672870i −0.00375091 0.00340721i
\(391\) 4.24111i 0.214482i
\(392\) −1.52667 10.5332i −0.0771083 0.532006i
\(393\) 30.0764i 1.51715i
\(394\) 13.7098 15.0928i 0.690689 0.760362i
\(395\) 2.58223 + 2.58223i 0.129926 + 0.129926i
\(396\) 0.609645 0.739504i 0.0306358 0.0371615i
\(397\) −24.5721 + 24.5721i −1.23324 + 1.23324i −0.270528 + 0.962712i \(0.587198\pi\)
−0.962712 + 0.270528i \(0.912802\pi\)
\(398\) −10.0606 + 0.483064i −0.504290 + 0.0242138i
\(399\) −3.72212 −0.186339
\(400\) −3.12564 16.0861i −0.156282 0.804306i
\(401\) 8.10606 0.404797 0.202399 0.979303i \(-0.435126\pi\)
0.202399 + 0.979303i \(0.435126\pi\)
\(402\) −21.8880 + 1.05097i −1.09168 + 0.0524175i
\(403\) 0.0708913 0.0708913i 0.00353135 0.00353135i
\(404\) −8.50553 7.01192i −0.423166 0.348856i
\(405\) 5.76244 + 5.76244i 0.286338 + 0.286338i
\(406\) 2.55930 2.81747i 0.127016 0.139828i
\(407\) 7.11623i 0.352739i
\(408\) −16.2664 12.1480i −0.805304 0.601416i
\(409\) 21.0782i 1.04225i −0.853480 0.521126i \(-0.825512\pi\)
0.853480 0.521126i \(-0.174488\pi\)
\(410\) 8.90126 + 8.08563i 0.439602 + 0.399321i
\(411\) −13.2579 13.2579i −0.653962 0.653962i
\(412\) −2.17656 22.6128i −0.107231 1.11406i
\(413\) 11.2132 11.2132i 0.551765 0.551765i
\(414\) −0.00920079 0.191621i −0.000452194 0.00941765i
\(415\) 10.2466 0.502986
\(416\) −0.212743 0.129122i −0.0104306 0.00633071i
\(417\) −8.15114 −0.399163
\(418\) −0.292881 6.09970i −0.0143253 0.298346i
\(419\) −7.77798 + 7.77798i −0.379979 + 0.379979i −0.871095 0.491115i \(-0.836589\pi\)
0.491115 + 0.871095i \(0.336589\pi\)
\(420\) −0.554543 5.76130i −0.0270589 0.281122i
\(421\) 12.0592 + 12.0592i 0.587729 + 0.587729i 0.937016 0.349287i \(-0.113576\pi\)
−0.349287 + 0.937016i \(0.613576\pi\)
\(422\) −4.40627 4.00251i −0.214494 0.194839i
\(423\) 1.27638i 0.0620597i
\(424\) −11.7041 + 15.6720i −0.568402 + 0.761098i
\(425\) 17.3747i 0.842798i
\(426\) 10.6622 11.7378i 0.516586 0.568697i
\(427\) 1.51469 + 1.51469i 0.0733011 + 0.0733011i
\(428\) 25.6861 + 21.1755i 1.24159 + 1.02356i
\(429\) −0.185982 + 0.185982i −0.00897929 + 0.00897929i
\(430\) 4.23236 0.203219i 0.204102 0.00980010i
\(431\) −29.8754 −1.43905 −0.719525 0.694467i \(-0.755640\pi\)
−0.719525 + 0.694467i \(0.755640\pi\)
\(432\) 17.5976 + 11.8716i 0.846666 + 0.571171i
\(433\) −15.2159 −0.731227 −0.365614 0.930767i \(-0.619141\pi\)
−0.365614 + 0.930767i \(0.619141\pi\)
\(434\) 5.79180 0.278097i 0.278016 0.0133491i
\(435\) −1.70145 + 1.70145i −0.0815785 + 0.0815785i
\(436\) −9.88976 + 11.9964i −0.473634 + 0.574522i
\(437\) −0.864348 0.864348i −0.0413474 0.0413474i
\(438\) −1.14603 + 1.26164i −0.0547597 + 0.0602835i
\(439\) 9.52025i 0.454377i 0.973851 + 0.227188i \(0.0729533\pi\)
−0.973851 + 0.227188i \(0.927047\pi\)
\(440\) 9.39780 1.36210i 0.448022 0.0649358i
\(441\) 0.510454i 0.0243073i
\(442\) −0.195313 0.177416i −0.00929007 0.00843881i
\(443\) −9.68850 9.68850i −0.460315 0.460315i 0.438444 0.898759i \(-0.355530\pi\)
−0.898759 + 0.438444i \(0.855530\pi\)
\(444\) 6.78736 0.653305i 0.322114 0.0310045i
\(445\) 3.90019 3.90019i 0.184887 0.184887i
\(446\) 0.852067 + 17.7456i 0.0403465 + 0.840279i
\(447\) 0.0131305 0.000621052
\(448\) −4.08648 13.8011i −0.193068 0.652042i
\(449\) 21.9967 1.03809 0.519045 0.854747i \(-0.326288\pi\)
0.519045 + 0.854747i \(0.326288\pi\)
\(450\) 0.0376933 + 0.785021i 0.00177688 + 0.0370062i
\(451\) 22.3487 22.3487i 1.05236 1.05236i
\(452\) −6.51420 + 0.627012i −0.306402 + 0.0294922i
\(453\) 19.9998 + 19.9998i 0.939673 + 0.939673i
\(454\) −12.2972 11.1704i −0.577137 0.524253i
\(455\) 0.0752251i 0.00352661i
\(456\) 5.79091 0.839327i 0.271184 0.0393051i
\(457\) 28.1401i 1.31634i −0.752870 0.658170i \(-0.771331\pi\)
0.752870 0.658170i \(-0.228669\pi\)
\(458\) 22.7986 25.0984i 1.06531 1.17277i
\(459\) 15.9149 + 15.9149i 0.742846 + 0.742846i
\(460\) 1.20911 1.46666i 0.0563749 0.0683833i
\(461\) 22.0754 22.0754i 1.02815 1.02815i 0.0285604 0.999592i \(-0.490908\pi\)
0.999592 0.0285604i \(-0.00909230\pi\)
\(462\) −15.1947 + 0.729583i −0.706921 + 0.0339433i
\(463\) −15.5046 −0.720558 −0.360279 0.932845i \(-0.617318\pi\)
−0.360279 + 0.932845i \(0.617318\pi\)
\(464\) −3.34645 + 4.96055i −0.155355 + 0.230288i
\(465\) −3.66558 −0.169987
\(466\) −35.6538 + 1.71194i −1.65163 + 0.0793040i
\(467\) −7.62488 + 7.62488i −0.352837 + 0.352837i −0.861164 0.508327i \(-0.830264\pi\)
0.508327 + 0.861164i \(0.330264\pi\)
\(468\) 0.00920945 + 0.00759224i 0.000425707 + 0.000350951i
\(469\) −11.6476 11.6476i −0.537838 0.537838i
\(470\) 8.50330 9.36107i 0.392228 0.431794i
\(471\) 4.89406i 0.225506i
\(472\) −14.9170 + 19.9741i −0.686613 + 0.919384i
\(473\) 11.1366i 0.512060i
\(474\) 6.80746 + 6.18369i 0.312677 + 0.284026i
\(475\) 3.54101 + 3.54101i 0.162473 + 0.162473i
\(476\) −1.46216 15.1908i −0.0670182 0.696270i
\(477\) 0.663344 0.663344i 0.0303724 0.0303724i
\(478\) 1.40233 + 29.2056i 0.0641409 + 1.33583i
\(479\) 2.43354 0.111191 0.0555957 0.998453i \(-0.482294\pi\)
0.0555957 + 0.998453i \(0.482294\pi\)
\(480\) 2.16192 + 8.83843i 0.0986776 + 0.403417i
\(481\) 0.0886224 0.00404083
\(482\) 1.12856 + 23.5040i 0.0514045 + 1.07058i
\(483\) −2.15314 + 2.15314i −0.0979712 + 0.0979712i
\(484\) −0.283407 2.94439i −0.0128821 0.133836i
\(485\) 13.1094 + 13.1094i 0.595268 + 0.595268i
\(486\) −1.47458 1.33946i −0.0668884 0.0607593i
\(487\) 20.5609i 0.931701i −0.884863 0.465851i \(-0.845748\pi\)
0.884863 0.465851i \(-0.154252\pi\)
\(488\) −2.69813 2.01501i −0.122139 0.0912154i
\(489\) 1.13273i 0.0512239i
\(490\) −3.40067 + 3.74371i −0.153627 + 0.169124i
\(491\) −9.62643 9.62643i −0.434435 0.434435i 0.455699 0.890134i \(-0.349389\pi\)
−0.890134 + 0.455699i \(0.849389\pi\)
\(492\) 23.3676 + 19.2642i 1.05349 + 0.868496i
\(493\) −4.48623 + 4.48623i −0.202049 + 0.202049i
\(494\) 0.0759629 0.00364740i 0.00341773 0.000164105i
\(495\) −0.455432 −0.0204701
\(496\) −8.94823 + 1.73870i −0.401788 + 0.0780699i
\(497\) 11.9201 0.534689
\(498\) 25.7752 1.23761i 1.15502 0.0554588i
\(499\) −4.73643 + 4.73643i −0.212032 + 0.212032i −0.805130 0.593098i \(-0.797905\pi\)
0.593098 + 0.805130i \(0.297905\pi\)
\(500\) −10.9989 + 13.3418i −0.491888 + 0.596664i
\(501\) 1.69117 + 1.69117i 0.0755558 + 0.0755558i
\(502\) −10.6518 + 11.7263i −0.475415 + 0.523372i
\(503\) 36.7222i 1.63736i −0.574250 0.818680i \(-0.694706\pi\)
0.574250 0.818680i \(-0.305294\pi\)
\(504\) 0.0990186 + 0.683176i 0.00441064 + 0.0304311i
\(505\) 5.23822i 0.233098i
\(506\) −3.69792 3.35907i −0.164393 0.149329i
\(507\) 15.5552 + 15.5552i 0.690832 + 0.690832i
\(508\) −10.3229 + 0.993613i −0.458005 + 0.0440844i
\(509\) −8.83197 + 8.83197i −0.391470 + 0.391470i −0.875211 0.483741i \(-0.839278\pi\)
0.483741 + 0.875211i \(0.339278\pi\)
\(510\) 0.462696 + 9.63636i 0.0204885 + 0.426705i
\(511\) −1.28124 −0.0566786
\(512\) 9.46990 + 20.5504i 0.418514 + 0.908210i
\(513\) −6.48700 −0.286408
\(514\) −0.511605 10.6550i −0.0225659 0.469970i
\(515\) −7.63341 + 7.63341i −0.336368 + 0.336368i
\(516\) 10.6219 1.02239i 0.467603 0.0450083i
\(517\) −23.5032 23.5032i −1.03367 1.03367i
\(518\) 3.79404 + 3.44639i 0.166701 + 0.151426i
\(519\) 33.5045i 1.47069i
\(520\) 0.0169630 + 0.117036i 0.000743878 + 0.00513237i
\(521\) 2.90487i 0.127265i −0.997973 0.0636323i \(-0.979732\pi\)
0.997973 0.0636323i \(-0.0202685\pi\)
\(522\) 0.192963 0.212428i 0.00844576 0.00929772i
\(523\) 7.62526 + 7.62526i 0.333430 + 0.333430i 0.853887 0.520458i \(-0.174239\pi\)
−0.520458 + 0.853887i \(0.674239\pi\)
\(524\) 22.6085 27.4243i 0.987657 1.19804i
\(525\) 8.82086 8.82086i 0.384974 0.384974i
\(526\) 42.4164 2.03665i 1.84944 0.0888022i
\(527\) −9.66505 −0.421016
\(528\) 23.4755 4.56145i 1.02164 0.198512i
\(529\) −1.00000 −0.0434783
\(530\) 9.28424 0.445789i 0.403282 0.0193638i
\(531\) 0.845440 0.845440i 0.0366890 0.0366890i
\(532\) 3.39392 + 2.79793i 0.147145 + 0.121306i
\(533\) 0.278321 + 0.278321i 0.0120554 + 0.0120554i
\(534\) 9.33979 10.2819i 0.404172 0.444943i
\(535\) 15.8191i 0.683918i
\(536\) 20.7480 + 15.4950i 0.896178 + 0.669282i
\(537\) 4.36741i 0.188468i
\(538\) −31.8925 28.9701i −1.37498 1.24899i
\(539\) 9.39949 + 9.39949i 0.404865 + 0.404865i
\(540\) −0.966471 10.0409i −0.0415903 0.432093i
\(541\) −1.63403 + 1.63403i −0.0702524 + 0.0702524i −0.741360 0.671108i \(-0.765819\pi\)
0.671108 + 0.741360i \(0.265819\pi\)
\(542\) 0.834258 + 17.3747i 0.0358344 + 0.746308i
\(543\) −5.87455 −0.252101
\(544\) 5.70033 + 23.3043i 0.244400 + 0.999164i
\(545\) 7.38809 0.316471
\(546\) −0.00908589 0.189228i −0.000388840 0.00809820i
\(547\) −13.7469 + 13.7469i −0.587776 + 0.587776i −0.937028 0.349253i \(-0.886435\pi\)
0.349253 + 0.937028i \(0.386435\pi\)
\(548\) 2.12284 + 22.0548i 0.0906834 + 0.942134i
\(549\) 0.114203 + 0.114203i 0.00487407 + 0.00487407i
\(550\) 15.1494 + 13.7613i 0.645974 + 0.586782i
\(551\) 1.82861i 0.0779012i
\(552\) 2.86435 3.83540i 0.121915 0.163245i
\(553\) 6.91320i 0.293979i
\(554\) 23.6452 26.0304i 1.00459 1.10593i
\(555\) −2.29120 2.29120i −0.0972562 0.0972562i
\(556\) 7.43240 + 6.12724i 0.315204 + 0.259853i
\(557\) −18.0271 + 18.0271i −0.763834 + 0.763834i −0.977013 0.213179i \(-0.931618\pi\)
0.213179 + 0.977013i \(0.431618\pi\)
\(558\) 0.436684 0.0209677i 0.0184863 0.000887632i
\(559\) 0.138690 0.00586595
\(560\) −3.82514 + 5.67013i −0.161642 + 0.239607i
\(561\) 25.3561 1.07053
\(562\) 31.6478 1.51959i 1.33498 0.0641000i
\(563\) −17.3124 + 17.3124i −0.729632 + 0.729632i −0.970546 0.240914i \(-0.922553\pi\)
0.240914 + 0.970546i \(0.422553\pi\)
\(564\) 20.2593 24.5747i 0.853070 1.03478i
\(565\) 2.19899 + 2.19899i 0.0925124 + 0.0925124i
\(566\) 3.00493 3.30805i 0.126306 0.139048i
\(567\) 15.4273i 0.647886i
\(568\) −18.5454 + 2.68794i −0.778147 + 0.112784i
\(569\) 23.4044i 0.981164i 0.871395 + 0.490582i \(0.163216\pi\)
−0.871395 + 0.490582i \(0.836784\pi\)
\(570\) −2.05821 1.86961i −0.0862089 0.0783095i
\(571\) 18.8951 + 18.8951i 0.790736 + 0.790736i 0.981614 0.190878i \(-0.0611335\pi\)
−0.190878 + 0.981614i \(0.561134\pi\)
\(572\) 0.309386 0.0297794i 0.0129361 0.00124514i
\(573\) −0.571636 + 0.571636i −0.0238804 + 0.0238804i
\(574\) 1.09182 + 22.7388i 0.0455716 + 0.949099i
\(575\) 4.09674 0.170846
\(576\) −0.308108 1.04056i −0.0128378 0.0433568i
\(577\) −8.99343 −0.374402 −0.187201 0.982322i \(-0.559941\pi\)
−0.187201 + 0.982322i \(0.559941\pi\)
\(578\) 0.0669450 + 1.39423i 0.00278454 + 0.0579925i
\(579\) −6.66993 + 6.66993i −0.277193 + 0.277193i
\(580\) 2.83041 0.272436i 0.117526 0.0113123i
\(581\) 13.7162 + 13.7162i 0.569044 + 0.569044i
\(582\) 34.5599 + 31.3932i 1.43256 + 1.30129i
\(583\) 24.4296i 1.01177i
\(584\) 1.99336 0.288915i 0.0824858 0.0119554i
\(585\) 0.00567174i 0.000234498i
\(586\) −6.69137 + 7.36636i −0.276418 + 0.304301i
\(587\) −23.8405 23.8405i −0.984005 0.984005i 0.0158694 0.999874i \(-0.494948\pi\)
−0.999874 + 0.0158694i \(0.994948\pi\)
\(588\) −8.10217 + 9.82801i −0.334128 + 0.405300i
\(589\) 1.96976 1.96976i 0.0811625 0.0811625i
\(590\) 11.8329 0.568163i 0.487152 0.0233909i
\(591\) −24.4014 −1.00374
\(592\) −6.67996 4.50638i −0.274545 0.185211i
\(593\) −16.6058 −0.681921 −0.340960 0.940078i \(-0.610752\pi\)
−0.340960 + 0.940078i \(0.610752\pi\)
\(594\) −26.4817 + 1.27153i −1.08656 + 0.0521717i
\(595\) −5.12796 + 5.12796i −0.210226 + 0.210226i
\(596\) −0.0119727 0.00987025i −0.000490421 0.000404301i
\(597\) 8.52324 + 8.52324i 0.348833 + 0.348833i
\(598\) 0.0418324 0.0460522i 0.00171065 0.00188322i
\(599\) 11.7422i 0.479775i 0.970801 + 0.239887i \(0.0771105\pi\)
−0.970801 + 0.239887i \(0.922889\pi\)
\(600\) −11.7345 + 15.7126i −0.479059 + 0.641466i
\(601\) 0.512081i 0.0208882i 0.999945 + 0.0104441i \(0.00332452\pi\)
−0.999945 + 0.0104441i \(0.996675\pi\)
\(602\) 5.93750 + 5.39344i 0.241994 + 0.219820i
\(603\) −0.878196 0.878196i −0.0357629 0.0357629i
\(604\) −3.20236 33.2702i −0.130302 1.35375i
\(605\) −0.993937 + 0.993937i −0.0404093 + 0.0404093i
\(606\) 0.632686 + 13.1767i 0.0257011 + 0.535266i
\(607\) −33.8421 −1.37361 −0.686805 0.726842i \(-0.740987\pi\)
−0.686805 + 0.726842i \(0.740987\pi\)
\(608\) −5.91121 3.58773i −0.239731 0.145502i
\(609\) −4.55516 −0.184584
\(610\) 0.0767482 + 1.59840i 0.00310745 + 0.0647174i
\(611\) 0.292698 0.292698i 0.0118413 0.0118413i
\(612\) −0.110243 1.14534i −0.00445629 0.0462976i
\(613\) 25.3570 + 25.3570i 1.02416 + 1.02416i 0.999701 + 0.0244582i \(0.00778608\pi\)
0.0244582 + 0.999701i \(0.492214\pi\)
\(614\) 8.97685 + 8.15429i 0.362276 + 0.329080i
\(615\) 14.3912i 0.580309i
\(616\) 14.4033 + 10.7566i 0.580325 + 0.433398i
\(617\) 40.1544i 1.61655i 0.588802 + 0.808277i \(0.299600\pi\)
−0.588802 + 0.808277i \(0.700400\pi\)
\(618\) −18.2798 + 20.1237i −0.735320 + 0.809495i
\(619\) 32.8697 + 32.8697i 1.32114 + 1.32114i 0.912851 + 0.408293i \(0.133876\pi\)
0.408293 + 0.912851i \(0.366124\pi\)
\(620\) 3.34236 + 2.75543i 0.134233 + 0.110661i
\(621\) −3.75254 + 3.75254i −0.150584 + 0.150584i
\(622\) −32.4697 + 1.55905i −1.30192 + 0.0625124i
\(623\) 10.4416 0.418336
\(624\) 0.0568062 + 0.292354i 0.00227407 + 0.0117035i
\(625\) −12.2670 −0.490681
\(626\) −24.8310 + 1.19228i −0.992446 + 0.0476529i
\(627\) −5.16763 + 5.16763i −0.206375 + 0.206375i
\(628\) 3.67888 4.46251i 0.146803 0.178074i
\(629\) −6.04122 6.04122i −0.240879 0.240879i
\(630\) 0.220565 0.242815i 0.00878753 0.00967397i
\(631\) 16.0760i 0.639976i −0.947422 0.319988i \(-0.896321\pi\)
0.947422 0.319988i \(-0.103679\pi\)
\(632\) −1.55891 10.7556i −0.0620099 0.427836i
\(633\) 7.12387i 0.283148i
\(634\) 30.5174 + 27.7210i 1.21200 + 1.10094i
\(635\) 3.48470 + 3.48470i 0.138286 + 0.138286i
\(636\) 23.3006 2.24275i 0.923927 0.0889309i
\(637\) −0.117057 + 0.117057i −0.00463797 + 0.00463797i
\(638\) −0.358430 7.46486i −0.0141904 0.295536i
\(639\) 0.898737 0.0355535
\(640\) 4.67259 9.68420i 0.184700 0.382802i
\(641\) 11.2505 0.444368 0.222184 0.975005i \(-0.428681\pi\)
0.222184 + 0.975005i \(0.428681\pi\)
\(642\) −1.91067 39.7926i −0.0754081 1.57049i
\(643\) −31.2948 + 31.2948i −1.23415 + 1.23415i −0.271791 + 0.962356i \(0.587616\pi\)
−0.962356 + 0.271791i \(0.912384\pi\)
\(644\) 3.58180 0.344760i 0.141143 0.0135854i
\(645\) −3.58563 3.58563i −0.141184 0.141184i
\(646\) −5.42688 4.92961i −0.213518 0.193953i
\(647\) 49.0505i 1.92837i −0.265222 0.964187i \(-0.585445\pi\)
0.265222 0.964187i \(-0.414555\pi\)
\(648\) −3.47881 24.0020i −0.136661 0.942886i
\(649\) 31.1358i 1.22219i
\(650\) −0.171377 + 0.188664i −0.00672194 + 0.00740002i
\(651\) −4.90678 4.90678i −0.192312 0.192312i
\(652\) −0.851479 + 1.03285i −0.0333465 + 0.0404496i
\(653\) −33.9819 + 33.9819i −1.32982 + 1.32982i −0.424288 + 0.905527i \(0.639476\pi\)
−0.905527 + 0.424288i \(0.860524\pi\)
\(654\) 18.5846 0.892354i 0.726717 0.0348938i
\(655\) −16.8896 −0.659930
\(656\) −6.82619 35.1310i −0.266518 1.37164i
\(657\) −0.0966013 −0.00376877
\(658\) 23.9134 1.14822i 0.932241 0.0447621i
\(659\) −13.6716 + 13.6716i −0.532570 + 0.532570i −0.921337 0.388766i \(-0.872901\pi\)
0.388766 + 0.921337i \(0.372901\pi\)
\(660\) −8.76863 7.22882i −0.341318 0.281382i
\(661\) −2.22873 2.22873i −0.0866877 0.0866877i 0.662433 0.749121i \(-0.269524\pi\)
−0.749121 + 0.662433i \(0.769524\pi\)
\(662\) −28.5580 + 31.4388i −1.10994 + 1.22190i
\(663\) 0.315773i 0.0122636i
\(664\) −24.4327 18.2468i −0.948175 0.708114i
\(665\) 2.09018i 0.0810536i
\(666\) 0.286059 + 0.259847i 0.0110846 + 0.0100689i
\(667\) −1.05780 1.05780i −0.0409580 0.0409580i
\(668\) −0.270789 2.81330i −0.0104772 0.108850i
\(669\) 15.0340 15.0340i 0.581247 0.581247i
\(670\) −0.590176 12.2913i −0.0228005 0.474856i
\(671\) 4.20586 0.162365
\(672\) −8.93724 + 14.7252i −0.344761 + 0.568035i
\(673\) −8.55906 −0.329928 −0.164964 0.986300i \(-0.552751\pi\)
−0.164964 + 0.986300i \(0.552751\pi\)
\(674\) 1.09227 + 22.7483i 0.0420728 + 0.876232i
\(675\) 15.3732 15.3732i 0.591715 0.591715i
\(676\) −2.49070 25.8765i −0.0957961 0.995251i
\(677\) −12.9425 12.9425i −0.497420 0.497420i 0.413214 0.910634i \(-0.364406\pi\)
−0.910634 + 0.413214i \(0.864406\pi\)
\(678\) 5.79714 + 5.26594i 0.222638 + 0.202237i
\(679\) 35.0967i 1.34689i
\(680\) 6.82178 9.13446i 0.261603 0.350291i
\(681\) 19.8816i 0.761866i
\(682\) 7.65499 8.42718i 0.293125 0.322693i
\(683\) −14.3129 14.3129i −0.547668 0.547668i 0.378098 0.925766i \(-0.376578\pi\)
−0.925766 + 0.378098i \(0.876578\pi\)
\(684\) 0.255891 + 0.210955i 0.00978422 + 0.00806607i
\(685\) 7.44503 7.44503i 0.284460 0.284460i
\(686\) −27.3540 + 1.31342i −1.04438 + 0.0501466i
\(687\) −40.5781 −1.54815
\(688\) −10.4538 7.05227i −0.398548 0.268865i
\(689\) 0.304235 0.0115904
\(690\) −2.27213 + 0.109098i −0.0864986 + 0.00415328i
\(691\) −5.47908 + 5.47908i −0.208434 + 0.208434i −0.803602 0.595168i \(-0.797086\pi\)
0.595168 + 0.803602i \(0.297086\pi\)
\(692\) 25.1855 30.5502i 0.957408 1.16134i
\(693\) −0.609645 0.609645i −0.0231585 0.0231585i
\(694\) 2.02709 2.23157i 0.0769473 0.0847094i
\(695\) 4.57732i 0.173628i
\(696\) 7.08696 1.02717i 0.268631 0.0389350i
\(697\) 37.9453i 1.43728i
\(698\) 17.9161 + 16.2744i 0.678133 + 0.615995i
\(699\) 30.2057 + 30.2057i 1.14248 + 1.14248i
\(700\) −14.6737 + 1.41239i −0.554615 + 0.0533834i
\(701\) 27.6960 27.6960i 1.04606 1.04606i 0.0471776 0.998887i \(-0.484977\pi\)
0.998887 0.0471776i \(-0.0150227\pi\)
\(702\) −0.0158351 0.329791i −0.000597658 0.0124472i
\(703\) 2.46243 0.0928723
\(704\) −24.8344 13.4874i −0.935981 0.508325i
\(705\) −15.1346 −0.570001
\(706\) −1.75263 36.5011i −0.0659609 1.37374i
\(707\) −7.01192 + 7.01192i −0.263710 + 0.263710i
\(708\) 29.6968 2.85842i 1.11608 0.107426i
\(709\) −21.7835 21.7835i −0.818096 0.818096i 0.167736 0.985832i \(-0.446354\pi\)
−0.985832 + 0.167736i \(0.946354\pi\)
\(710\) 6.59141 + 5.98743i 0.247371 + 0.224704i
\(711\) 0.521234i 0.0195478i
\(712\) −16.2452 + 2.35456i −0.608815 + 0.0882408i
\(713\) 2.27890i 0.0853454i
\(714\) −12.2799 + 13.5187i −0.459565 + 0.505924i
\(715\) −0.104439 0.104439i −0.00390580 0.00390580i
\(716\) −3.28300 + 3.98231i −0.122691 + 0.148826i
\(717\) 24.7428 24.7428i 0.924038 0.924038i
\(718\) 45.9521 2.20642i 1.71492 0.0823429i
\(719\) 7.79232 0.290605 0.145302 0.989387i \(-0.453585\pi\)
0.145302 + 0.989387i \(0.453585\pi\)
\(720\) −0.288404 + 0.427510i −0.0107482 + 0.0159324i
\(721\) −20.4363 −0.761087
\(722\) −24.7285 + 1.18735i −0.920298 + 0.0441887i
\(723\) 19.9125 19.9125i 0.740552 0.740552i
\(724\) 5.35655 + 4.41592i 0.199075 + 0.164116i
\(725\) 4.33352 + 4.33352i 0.160943 + 0.160943i
\(726\) −2.38019 + 2.62029i −0.0883370 + 0.0972479i
\(727\) 30.0643i 1.11502i −0.830169 0.557511i \(-0.811756\pi\)
0.830169 0.557511i \(-0.188244\pi\)
\(728\) −0.133958 + 0.179372i −0.00496483 + 0.00664797i
\(729\) 28.1080i 1.04104i
\(730\) −0.708482 0.643562i −0.0262221 0.0238193i
\(731\) −9.45423 9.45423i −0.349677 0.349677i
\(732\) 0.386118 + 4.01149i 0.0142713 + 0.148269i
\(733\) −4.64126 + 4.64126i −0.171429 + 0.171429i −0.787607 0.616178i \(-0.788680\pi\)
0.616178 + 0.787607i \(0.288680\pi\)
\(734\) −1.88110 39.1768i −0.0694326 1.44604i
\(735\) 6.05268 0.223256
\(736\) −5.49486 + 1.34407i −0.202543 + 0.0495429i
\(737\) −32.3421 −1.19134
\(738\) 0.0823197 + 1.71443i 0.00303023 + 0.0631092i
\(739\) 7.50615 7.50615i 0.276118 0.276118i −0.555439 0.831557i \(-0.687450\pi\)
0.831557 + 0.555439i \(0.187450\pi\)
\(740\) 0.366867 + 3.81148i 0.0134863 + 0.140113i
\(741\) −0.0643553 0.0643553i −0.00236415 0.00236415i
\(742\) 13.0247 + 11.8312i 0.478152 + 0.434338i
\(743\) 22.4518i 0.823678i −0.911257 0.411839i \(-0.864887\pi\)
0.911257 0.411839i \(-0.135113\pi\)
\(744\) 8.74048 + 6.52755i 0.320442 + 0.239312i
\(745\) 0.00737352i 0.000270145i
\(746\) 16.7200 18.4066i 0.612163 0.673915i
\(747\) 1.03416 + 1.03416i 0.0378379 + 0.0378379i
\(748\) −23.1203 19.0603i −0.845360 0.696912i
\(749\) 21.1755 21.1755i 0.773737 0.773737i
\(750\) 20.6690 0.992435i 0.754725 0.0362386i
\(751\) 22.4533 0.819334 0.409667 0.912235i \(-0.365645\pi\)
0.409667 + 0.912235i \(0.365645\pi\)
\(752\) −36.9457 + 7.17880i −1.34727 + 0.261784i
\(753\) 18.9586 0.690892
\(754\) 0.0929639 0.00446372i 0.00338555 0.000162559i
\(755\) −11.2310 + 11.2310i −0.408738 + 0.408738i
\(756\) 12.1471 14.7346i 0.441787 0.535892i
\(757\) 2.19410 + 2.19410i 0.0797460 + 0.0797460i 0.745855 0.666109i \(-0.232041\pi\)
−0.666109 + 0.745855i \(0.732041\pi\)
\(758\) −28.0488 + 30.8782i −1.01878 + 1.12155i
\(759\) 5.97864i 0.217011i
\(760\) 0.471329 + 3.25192i 0.0170969 + 0.117959i
\(761\) 12.3804i 0.448788i −0.974499 0.224394i \(-0.927960\pi\)
0.974499 0.224394i \(-0.0720402\pi\)
\(762\) 9.18661 + 8.34483i 0.332796 + 0.302301i
\(763\) 9.88976 + 9.88976i 0.358033 + 0.358033i
\(764\) 0.950932 0.0915302i 0.0344035 0.00331145i
\(765\) −0.386632 + 0.386632i −0.0139787 + 0.0139787i
\(766\) 2.43446 + 50.7014i 0.0879606 + 1.83192i
\(767\) 0.387751 0.0140009
\(768\) 10.5842