Properties

Label 368.2.j.c.277.2
Level $368$
Weight $2$
Character 368.277
Analytic conductor $2.938$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(93,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 277.2
Root \(1.35092 + 0.418349i\) of defining polynomial
Character \(\chi\) \(=\) 368.277
Dual form 368.2.j.c.93.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.730558 - 1.21090i) q^{2} +(1.49351 - 1.49351i) q^{3} +(-0.932570 + 1.76927i) q^{4} +(-1.17219 - 1.17219i) q^{5} +(-2.89958 - 0.717397i) q^{6} -0.836699i q^{7} +(2.82371 - 0.163301i) q^{8} -1.46112i q^{9} +O(q^{10})\) \(q+(-0.730558 - 1.21090i) q^{2} +(1.49351 - 1.49351i) q^{3} +(-0.932570 + 1.76927i) q^{4} +(-1.17219 - 1.17219i) q^{5} +(-2.89958 - 0.717397i) q^{6} -0.836699i q^{7} +(2.82371 - 0.163301i) q^{8} -1.46112i q^{9} +(-0.563056 + 2.27576i) q^{10} +(-2.72996 - 2.72996i) q^{11} +(1.24961 + 4.03521i) q^{12} +(3.86087 - 3.86087i) q^{13} +(-1.01316 + 0.611257i) q^{14} -3.50135 q^{15} +(-2.26063 - 3.29994i) q^{16} -6.79704 q^{17} +(-1.76927 + 1.06743i) q^{18} +(-2.46112 + 2.46112i) q^{19} +(3.16707 - 0.980771i) q^{20} +(-1.24961 - 1.24961i) q^{21} +(-1.31132 + 5.30011i) q^{22} +1.00000i q^{23} +(3.97333 - 4.46112i) q^{24} -2.25193i q^{25} +(-7.49573 - 1.85455i) q^{26} +(2.29833 + 2.29833i) q^{27} +(1.48034 + 0.780280i) q^{28} +(3.58194 - 3.58194i) q^{29} +(2.55794 + 4.23979i) q^{30} +5.64220 q^{31} +(-2.34438 + 5.14819i) q^{32} -8.15441 q^{33} +(4.96563 + 8.23056i) q^{34} +(-0.980771 + 0.980771i) q^{35} +(2.58511 + 1.36259i) q^{36} +(5.17185 + 5.17185i) q^{37} +(4.77816 + 1.18218i) q^{38} -11.5325i q^{39} +(-3.50135 - 3.11851i) q^{40} +2.36368i q^{41} +(-0.600245 + 2.42608i) q^{42} +(-4.86479 - 4.86479i) q^{43} +(7.37591 - 2.28415i) q^{44} +(-1.71271 + 1.71271i) q^{45} +(1.21090 - 0.730558i) q^{46} -6.69829 q^{47} +(-8.30473 - 1.55222i) q^{48} +6.29994 q^{49} +(-2.72687 + 1.64517i) q^{50} +(-10.1514 + 10.1514i) q^{51} +(3.23038 + 10.4315i) q^{52} +(5.97511 + 5.97511i) q^{53} +(1.10399 - 4.46212i) q^{54} +6.40007i q^{55} +(-0.136634 - 2.36259i) q^{56} +7.35138i q^{57} +(-6.95419 - 1.72057i) q^{58} +(-2.79082 - 2.79082i) q^{59} +(3.26525 - 6.19483i) q^{60} +(8.82336 - 8.82336i) q^{61} +(-4.12195 - 6.83215i) q^{62} -1.22251 q^{63} +(7.94667 - 0.922232i) q^{64} -9.05136 q^{65} +(5.95727 + 9.87420i) q^{66} +(0.659190 - 0.659190i) q^{67} +(6.33872 - 12.0258i) q^{68} +(1.49351 + 1.49351i) q^{69} +(1.90413 + 0.471108i) q^{70} -12.0202i q^{71} +(-0.238602 - 4.12577i) q^{72} +9.63409i q^{73} +(2.48427 - 10.0409i) q^{74} +(-3.36327 - 3.36327i) q^{75} +(-2.05921 - 6.64954i) q^{76} +(-2.28415 + 2.28415i) q^{77} +(-13.9647 + 8.42513i) q^{78} -0.450884 q^{79} +(-1.21827 + 6.51804i) q^{80} +11.2485 q^{81} +(2.86219 - 1.72680i) q^{82} +(9.95642 - 9.95642i) q^{83} +(3.37626 - 1.04555i) q^{84} +(7.96744 + 7.96744i) q^{85} +(-2.33678 + 9.44481i) q^{86} -10.6993i q^{87} +(-8.15441 - 7.26280i) q^{88} -4.51731i q^{89} +(3.32515 + 0.822690i) q^{90} +(-3.23038 - 3.23038i) q^{91} +(-1.76927 - 0.932570i) q^{92} +(8.42665 - 8.42665i) q^{93} +(4.89349 + 8.11097i) q^{94} +5.76980 q^{95} +(4.18750 + 11.1902i) q^{96} -2.31130 q^{97} +(-4.60247 - 7.62861i) q^{98} +(-3.98879 + 3.98879i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8} - 6 q^{10} - 4 q^{11} - 8 q^{12} + 18 q^{13} - 2 q^{14} + 8 q^{16} - 8 q^{17} - 4 q^{18} - 8 q^{19} - 32 q^{20} + 8 q^{21} - 34 q^{22} + 12 q^{24} - 14 q^{26} + 14 q^{27} + 12 q^{28} + 2 q^{29} - 30 q^{30} + 20 q^{31} - 8 q^{32} - 36 q^{33} + 10 q^{34} + 4 q^{35} + 4 q^{36} - 4 q^{37} + 24 q^{38} - 14 q^{42} + 20 q^{43} + 4 q^{44} - 20 q^{45} - 2 q^{46} - 16 q^{47} - 12 q^{48} + 52 q^{49} + 6 q^{50} - 4 q^{51} - 16 q^{53} + 16 q^{54} + 28 q^{56} + 14 q^{58} + 8 q^{59} + 48 q^{60} + 12 q^{61} - 44 q^{62} - 4 q^{63} + 24 q^{64} - 52 q^{65} + 34 q^{66} - 4 q^{67} - 16 q^{68} + 2 q^{69} + 28 q^{70} + 8 q^{72} - 26 q^{74} - 46 q^{75} - 8 q^{76} - 12 q^{77} - 44 q^{78} - 4 q^{79} + 4 q^{80} + 48 q^{81} - 6 q^{82} + 28 q^{83} + 12 q^{84} - 8 q^{85} + 44 q^{86} - 36 q^{88} + 4 q^{90} - 4 q^{92} - 14 q^{93} + 48 q^{95} + 32 q^{96} + 36 q^{97} - 2 q^{98} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.730558 1.21090i −0.516582 0.856237i
\(3\) 1.49351 1.49351i 0.862276 0.862276i −0.129326 0.991602i \(-0.541282\pi\)
0.991602 + 0.129326i \(0.0412815\pi\)
\(4\) −0.932570 + 1.76927i −0.466285 + 0.884634i
\(5\) −1.17219 1.17219i −0.524220 0.524220i 0.394623 0.918843i \(-0.370875\pi\)
−0.918843 + 0.394623i \(0.870875\pi\)
\(6\) −2.89958 0.717397i −1.18375 0.292876i
\(7\) 0.836699i 0.316242i −0.987420 0.158121i \(-0.949456\pi\)
0.987420 0.158121i \(-0.0505437\pi\)
\(8\) 2.82371 0.163301i 0.998332 0.0577358i
\(9\) 1.46112i 0.487039i
\(10\) −0.563056 + 2.27576i −0.178054 + 0.719660i
\(11\) −2.72996 2.72996i −0.823113 0.823113i 0.163440 0.986553i \(-0.447741\pi\)
−0.986553 + 0.163440i \(0.947741\pi\)
\(12\) 1.24961 + 4.03521i 0.360732 + 1.16487i
\(13\) 3.86087 3.86087i 1.07081 1.07081i 0.0735190 0.997294i \(-0.476577\pi\)
0.997294 0.0735190i \(-0.0234229\pi\)
\(14\) −1.01316 + 0.611257i −0.270779 + 0.163365i
\(15\) −3.50135 −0.904044
\(16\) −2.26063 3.29994i −0.565156 0.824984i
\(17\) −6.79704 −1.64852 −0.824262 0.566208i \(-0.808410\pi\)
−0.824262 + 0.566208i \(0.808410\pi\)
\(18\) −1.76927 + 1.06743i −0.417021 + 0.251596i
\(19\) −2.46112 + 2.46112i −0.564619 + 0.564619i −0.930616 0.365997i \(-0.880728\pi\)
0.365997 + 0.930616i \(0.380728\pi\)
\(20\) 3.16707 0.980771i 0.708179 0.219307i
\(21\) −1.24961 1.24961i −0.272688 0.272688i
\(22\) −1.31132 + 5.30011i −0.279575 + 1.12999i
\(23\) 1.00000i 0.208514i
\(24\) 3.97333 4.46112i 0.811053 0.910621i
\(25\) 2.25193i 0.450387i
\(26\) −7.49573 1.85455i −1.47003 0.363707i
\(27\) 2.29833 + 2.29833i 0.442314 + 0.442314i
\(28\) 1.48034 + 0.780280i 0.279759 + 0.147459i
\(29\) 3.58194 3.58194i 0.665149 0.665149i −0.291440 0.956589i \(-0.594134\pi\)
0.956589 + 0.291440i \(0.0941343\pi\)
\(30\) 2.55794 + 4.23979i 0.467013 + 0.774077i
\(31\) 5.64220 1.01337 0.506684 0.862132i \(-0.330871\pi\)
0.506684 + 0.862132i \(0.330871\pi\)
\(32\) −2.34438 + 5.14819i −0.414432 + 0.910080i
\(33\) −8.15441 −1.41950
\(34\) 4.96563 + 8.23056i 0.851599 + 1.41153i
\(35\) −0.980771 + 0.980771i −0.165781 + 0.165781i
\(36\) 2.58511 + 1.36259i 0.430851 + 0.227099i
\(37\) 5.17185 + 5.17185i 0.850246 + 0.850246i 0.990163 0.139917i \(-0.0446836\pi\)
−0.139917 + 0.990163i \(0.544684\pi\)
\(38\) 4.77816 + 1.18218i 0.775120 + 0.191776i
\(39\) 11.5325i 1.84667i
\(40\) −3.50135 3.11851i −0.553612 0.493079i
\(41\) 2.36368i 0.369145i 0.982819 + 0.184572i \(0.0590900\pi\)
−0.982819 + 0.184572i \(0.940910\pi\)
\(42\) −0.600245 + 2.42608i −0.0926199 + 0.374352i
\(43\) −4.86479 4.86479i −0.741874 0.741874i 0.231064 0.972938i \(-0.425779\pi\)
−0.972938 + 0.231064i \(0.925779\pi\)
\(44\) 7.37591 2.28415i 1.11196 0.344349i
\(45\) −1.71271 + 1.71271i −0.255315 + 0.255315i
\(46\) 1.21090 0.730558i 0.178538 0.107715i
\(47\) −6.69829 −0.977045 −0.488523 0.872551i \(-0.662464\pi\)
−0.488523 + 0.872551i \(0.662464\pi\)
\(48\) −8.30473 1.55222i −1.19868 0.224043i
\(49\) 6.29994 0.899991
\(50\) −2.72687 + 1.64517i −0.385638 + 0.232662i
\(51\) −10.1514 + 10.1514i −1.42148 + 1.42148i
\(52\) 3.23038 + 10.4315i 0.447974 + 1.44658i
\(53\) 5.97511 + 5.97511i 0.820744 + 0.820744i 0.986215 0.165471i \(-0.0529143\pi\)
−0.165471 + 0.986215i \(0.552914\pi\)
\(54\) 1.10399 4.46212i 0.150234 0.607218i
\(55\) 6.40007i 0.862985i
\(56\) −0.136634 2.36259i −0.0182585 0.315715i
\(57\) 7.35138i 0.973714i
\(58\) −6.95419 1.72057i −0.913130 0.225921i
\(59\) −2.79082 2.79082i −0.363334 0.363334i 0.501705 0.865039i \(-0.332706\pi\)
−0.865039 + 0.501705i \(0.832706\pi\)
\(60\) 3.26525 6.19483i 0.421542 0.799749i
\(61\) 8.82336 8.82336i 1.12972 1.12972i 0.139493 0.990223i \(-0.455453\pi\)
0.990223 0.139493i \(-0.0445472\pi\)
\(62\) −4.12195 6.83215i −0.523488 0.867684i
\(63\) −1.22251 −0.154022
\(64\) 7.94667 0.922232i 0.993333 0.115279i
\(65\) −9.05136 −1.12268
\(66\) 5.95727 + 9.87420i 0.733289 + 1.21543i
\(67\) 0.659190 0.659190i 0.0805329 0.0805329i −0.665693 0.746226i \(-0.731864\pi\)
0.746226 + 0.665693i \(0.231864\pi\)
\(68\) 6.33872 12.0258i 0.768683 1.45834i
\(69\) 1.49351 + 1.49351i 0.179797 + 0.179797i
\(70\) 1.90413 + 0.471108i 0.227587 + 0.0563082i
\(71\) 12.0202i 1.42654i −0.700889 0.713270i \(-0.747213\pi\)
0.700889 0.713270i \(-0.252787\pi\)
\(72\) −0.238602 4.12577i −0.0281196 0.486226i
\(73\) 9.63409i 1.12758i 0.825917 + 0.563792i \(0.190658\pi\)
−0.825917 + 0.563792i \(0.809342\pi\)
\(74\) 2.48427 10.0409i 0.288790 1.16723i
\(75\) −3.36327 3.36327i −0.388358 0.388358i
\(76\) −2.05921 6.64954i −0.236208 0.762754i
\(77\) −2.28415 + 2.28415i −0.260303 + 0.260303i
\(78\) −13.9647 + 8.42513i −1.58119 + 0.953958i
\(79\) −0.450884 −0.0507284 −0.0253642 0.999678i \(-0.508075\pi\)
−0.0253642 + 0.999678i \(0.508075\pi\)
\(80\) −1.21827 + 6.51804i −0.136207 + 0.728739i
\(81\) 11.2485 1.24983
\(82\) 2.86219 1.72680i 0.316076 0.190694i
\(83\) 9.95642 9.95642i 1.09286 1.09286i 0.0976374 0.995222i \(-0.468871\pi\)
0.995222 0.0976374i \(-0.0311286\pi\)
\(84\) 3.37626 1.04555i 0.368380 0.114079i
\(85\) 7.96744 + 7.96744i 0.864190 + 0.864190i
\(86\) −2.33678 + 9.44481i −0.251981 + 1.01846i
\(87\) 10.6993i 1.14708i
\(88\) −8.15441 7.26280i −0.869263 0.774217i
\(89\) 4.51731i 0.478834i −0.970917 0.239417i \(-0.923044\pi\)
0.970917 0.239417i \(-0.0769563\pi\)
\(90\) 3.32515 + 0.822690i 0.350502 + 0.0867192i
\(91\) −3.23038 3.23038i −0.338636 0.338636i
\(92\) −1.76927 0.932570i −0.184459 0.0972272i
\(93\) 8.42665 8.42665i 0.873803 0.873803i
\(94\) 4.89349 + 8.11097i 0.504724 + 0.836583i
\(95\) 5.76980 0.591969
\(96\) 4.18750 + 11.1902i 0.427385 + 1.14209i
\(97\) −2.31130 −0.234677 −0.117338 0.993092i \(-0.537436\pi\)
−0.117338 + 0.993092i \(0.537436\pi\)
\(98\) −4.60247 7.62861i −0.464919 0.770606i
\(99\) −3.98879 + 3.98879i −0.400888 + 0.400888i
\(100\) 3.98428 + 2.10009i 0.398428 + 0.210009i
\(101\) 7.96205 + 7.96205i 0.792254 + 0.792254i 0.981860 0.189607i \(-0.0607212\pi\)
−0.189607 + 0.981860i \(0.560721\pi\)
\(102\) 19.7086 + 4.87618i 1.95144 + 0.482814i
\(103\) 6.45810i 0.636335i 0.948034 + 0.318168i \(0.103068\pi\)
−0.948034 + 0.318168i \(0.896932\pi\)
\(104\) 10.2715 11.5325i 1.00720 1.13085i
\(105\) 2.92957i 0.285897i
\(106\) 2.87011 11.6004i 0.278770 1.12673i
\(107\) 6.95392 + 6.95392i 0.672261 + 0.672261i 0.958237 0.285976i \(-0.0923177\pi\)
−0.285976 + 0.958237i \(0.592318\pi\)
\(108\) −6.20972 + 1.92301i −0.597531 + 0.185042i
\(109\) 0.633853 0.633853i 0.0607121 0.0607121i −0.676099 0.736811i \(-0.736331\pi\)
0.736811 + 0.676099i \(0.236331\pi\)
\(110\) 7.74986 4.67562i 0.738920 0.445803i
\(111\) 15.4484 1.46629
\(112\) −2.76105 + 1.89146i −0.260895 + 0.178726i
\(113\) 16.0801 1.51269 0.756344 0.654174i \(-0.226984\pi\)
0.756344 + 0.654174i \(0.226984\pi\)
\(114\) 8.90180 5.37061i 0.833730 0.503003i
\(115\) 1.17219 1.17219i 0.109307 0.109307i
\(116\) 2.99700 + 9.67782i 0.278265 + 0.898563i
\(117\) −5.64118 5.64118i −0.521527 0.521527i
\(118\) −1.34055 + 5.41826i −0.123408 + 0.498792i
\(119\) 5.68707i 0.521333i
\(120\) −9.88679 + 0.571775i −0.902536 + 0.0521957i
\(121\) 3.90535i 0.355031i
\(122\) −17.1302 4.23826i −1.55090 0.383714i
\(123\) 3.53017 + 3.53017i 0.318305 + 0.318305i
\(124\) −5.26175 + 9.98256i −0.472519 + 0.896461i
\(125\) −8.50066 + 8.50066i −0.760322 + 0.760322i
\(126\) 0.893117 + 1.48034i 0.0795652 + 0.131880i
\(127\) −10.2233 −0.907167 −0.453584 0.891214i \(-0.649855\pi\)
−0.453584 + 0.891214i \(0.649855\pi\)
\(128\) −6.92223 8.94889i −0.611845 0.790978i
\(129\) −14.5312 −1.27940
\(130\) 6.61254 + 10.9603i 0.579958 + 0.961283i
\(131\) 2.58700 2.58700i 0.226027 0.226027i −0.585003 0.811031i \(-0.698907\pi\)
0.811031 + 0.585003i \(0.198907\pi\)
\(132\) 7.60457 14.4274i 0.661892 1.25574i
\(133\) 2.05921 + 2.05921i 0.178556 + 0.178556i
\(134\) −1.27979 0.316638i −0.110557 0.0273534i
\(135\) 5.38817i 0.463740i
\(136\) −19.1929 + 1.10997i −1.64577 + 0.0951789i
\(137\) 6.34039i 0.541696i −0.962622 0.270848i \(-0.912696\pi\)
0.962622 0.270848i \(-0.0873041\pi\)
\(138\) 0.717397 2.89958i 0.0610689 0.246829i
\(139\) 3.12169 + 3.12169i 0.264779 + 0.264779i 0.826992 0.562213i \(-0.190050\pi\)
−0.562213 + 0.826992i \(0.690050\pi\)
\(140\) −0.820610 2.64989i −0.0693542 0.223956i
\(141\) −10.0039 + 10.0039i −0.842482 + 0.842482i
\(142\) −14.5553 + 8.78148i −1.22146 + 0.736926i
\(143\) −21.0800 −1.76280
\(144\) −4.82159 + 3.30303i −0.401799 + 0.275253i
\(145\) −8.39744 −0.697369
\(146\) 11.6659 7.03826i 0.965480 0.582490i
\(147\) 9.40899 9.40899i 0.776040 0.776040i
\(148\) −13.9735 + 4.32728i −1.14861 + 0.355700i
\(149\) −0.737198 0.737198i −0.0603936 0.0603936i 0.676265 0.736659i \(-0.263597\pi\)
−0.736659 + 0.676265i \(0.763597\pi\)
\(150\) −1.61553 + 6.52967i −0.131908 + 0.533145i
\(151\) 6.67706i 0.543372i 0.962386 + 0.271686i \(0.0875812\pi\)
−0.962386 + 0.271686i \(0.912419\pi\)
\(152\) −6.54757 + 7.35138i −0.531078 + 0.596276i
\(153\) 9.93126i 0.802895i
\(154\) 4.43459 + 1.09718i 0.357350 + 0.0884133i
\(155\) −6.61374 6.61374i −0.531228 0.531228i
\(156\) 20.4040 + 10.7548i 1.63363 + 0.861076i
\(157\) −5.42215 + 5.42215i −0.432734 + 0.432734i −0.889558 0.456823i \(-0.848987\pi\)
0.456823 + 0.889558i \(0.348987\pi\)
\(158\) 0.329397 + 0.545976i 0.0262054 + 0.0434355i
\(159\) 17.8477 1.41542
\(160\) 8.78273 3.28660i 0.694336 0.259829i
\(161\) 0.836699 0.0659411
\(162\) −8.21767 13.6208i −0.645641 1.07015i
\(163\) −9.76189 + 9.76189i −0.764611 + 0.764611i −0.977152 0.212541i \(-0.931826\pi\)
0.212541 + 0.977152i \(0.431826\pi\)
\(164\) −4.18199 2.20430i −0.326558 0.172127i
\(165\) 9.55854 + 9.55854i 0.744131 + 0.744131i
\(166\) −19.3300 4.78252i −1.50030 0.371195i
\(167\) 14.1160i 1.09233i −0.837679 0.546164i \(-0.816088\pi\)
0.837679 0.546164i \(-0.183912\pi\)
\(168\) −3.73261 3.32448i −0.287977 0.256489i
\(169\) 16.8126i 1.29328i
\(170\) 3.82712 15.4685i 0.293526 1.18638i
\(171\) 3.59598 + 3.59598i 0.274991 + 0.274991i
\(172\) 13.1439 4.07037i 1.00221 0.310363i
\(173\) 4.39793 4.39793i 0.334369 0.334369i −0.519874 0.854243i \(-0.674021\pi\)
0.854243 + 0.519874i \(0.174021\pi\)
\(174\) −12.9558 + 7.81645i −0.982176 + 0.592563i
\(175\) −1.88419 −0.142431
\(176\) −2.83727 + 15.1801i −0.213868 + 1.14424i
\(177\) −8.33620 −0.626587
\(178\) −5.47002 + 3.30016i −0.409996 + 0.247357i
\(179\) −16.5709 + 16.5709i −1.23857 + 1.23857i −0.277981 + 0.960587i \(0.589665\pi\)
−0.960587 + 0.277981i \(0.910335\pi\)
\(180\) −1.43302 4.62746i −0.106811 0.344911i
\(181\) 12.5305 + 12.5305i 0.931383 + 0.931383i 0.997792 0.0664091i \(-0.0211542\pi\)
−0.0664091 + 0.997792i \(0.521154\pi\)
\(182\) −1.55170 + 6.27166i −0.115020 + 0.464887i
\(183\) 26.3555i 1.94825i
\(184\) 0.163301 + 2.82371i 0.0120387 + 0.208167i
\(185\) 12.1248i 0.891432i
\(186\) −16.3600 4.04770i −1.19957 0.296792i
\(187\) 18.5556 + 18.5556i 1.35692 + 1.35692i
\(188\) 6.24662 11.8511i 0.455582 0.864328i
\(189\) 1.92301 1.92301i 0.139878 0.139878i
\(190\) −4.21517 6.98666i −0.305801 0.506866i
\(191\) −10.8473 −0.784884 −0.392442 0.919777i \(-0.628370\pi\)
−0.392442 + 0.919777i \(0.628370\pi\)
\(192\) 10.4910 13.2457i 0.757125 0.955929i
\(193\) −21.4782 −1.54603 −0.773016 0.634386i \(-0.781253\pi\)
−0.773016 + 0.634386i \(0.781253\pi\)
\(194\) 1.68854 + 2.79875i 0.121230 + 0.200939i
\(195\) −13.5183 + 13.5183i −0.968062 + 0.968062i
\(196\) −5.87513 + 11.1463i −0.419652 + 0.796163i
\(197\) 9.43218 + 9.43218i 0.672015 + 0.672015i 0.958180 0.286166i \(-0.0923807\pi\)
−0.286166 + 0.958180i \(0.592381\pi\)
\(198\) 7.74407 + 1.91599i 0.550347 + 0.136164i
\(199\) 4.79264i 0.339741i −0.985466 0.169870i \(-0.945665\pi\)
0.985466 0.169870i \(-0.0543349\pi\)
\(200\) −0.367744 6.35881i −0.0260034 0.449635i
\(201\) 1.96901i 0.138883i
\(202\) 3.82453 15.4580i 0.269093 1.08762i
\(203\) −2.99700 2.99700i −0.210348 0.210348i
\(204\) −8.49368 27.4275i −0.594676 1.92031i
\(205\) 2.77069 2.77069i 0.193513 0.193513i
\(206\) 7.82013 4.71802i 0.544854 0.328720i
\(207\) 1.46112 0.101555
\(208\) −21.4686 4.01264i −1.48858 0.278227i
\(209\) 13.4375 0.929490
\(210\) 3.54743 2.14022i 0.244796 0.147689i
\(211\) −8.19831 + 8.19831i −0.564395 + 0.564395i −0.930553 0.366158i \(-0.880673\pi\)
0.366158 + 0.930553i \(0.380673\pi\)
\(212\) −16.1438 + 4.99936i −1.10876 + 0.343358i
\(213\) −17.9523 17.9523i −1.23007 1.23007i
\(214\) 3.34028 13.5008i 0.228337 0.922894i
\(215\) 11.4049i 0.777811i
\(216\) 6.86514 + 6.11450i 0.467114 + 0.416039i
\(217\) 4.72082i 0.320470i
\(218\) −1.23060 0.304468i −0.0833467 0.0206212i
\(219\) 14.3886 + 14.3886i 0.972289 + 0.972289i
\(220\) −11.3234 5.96851i −0.763426 0.402397i
\(221\) −26.2425 + 26.2425i −1.76526 + 1.76526i
\(222\) −11.2859 18.7065i −0.757461 1.25550i
\(223\) 16.3356 1.09391 0.546957 0.837160i \(-0.315786\pi\)
0.546957 + 0.837160i \(0.315786\pi\)
\(224\) 4.30748 + 1.96154i 0.287806 + 0.131061i
\(225\) −3.29034 −0.219356
\(226\) −11.7474 19.4714i −0.781428 1.29522i
\(227\) −9.62449 + 9.62449i −0.638800 + 0.638800i −0.950259 0.311459i \(-0.899182\pi\)
0.311459 + 0.950259i \(0.399182\pi\)
\(228\) −13.0066 6.85568i −0.861381 0.454028i
\(229\) −12.3271 12.3271i −0.814598 0.814598i 0.170721 0.985319i \(-0.445390\pi\)
−0.985319 + 0.170721i \(0.945390\pi\)
\(230\) −2.27576 0.563056i −0.150059 0.0371268i
\(231\) 6.82279i 0.448906i
\(232\) 9.52942 10.6993i 0.625637 0.702443i
\(233\) 19.1034i 1.25151i 0.780021 + 0.625753i \(0.215208\pi\)
−0.780021 + 0.625753i \(0.784792\pi\)
\(234\) −2.70971 + 10.9521i −0.177139 + 0.715963i
\(235\) 7.85167 + 7.85167i 0.512187 + 0.512187i
\(236\) 7.54034 2.33507i 0.490834 0.152000i
\(237\) −0.673397 + 0.673397i −0.0437418 + 0.0437418i
\(238\) 6.88649 4.15474i 0.446385 0.269312i
\(239\) −12.2178 −0.790301 −0.395150 0.918616i \(-0.629308\pi\)
−0.395150 + 0.918616i \(0.629308\pi\)
\(240\) 7.91524 + 11.5542i 0.510926 + 0.745822i
\(241\) 19.9907 1.28771 0.643857 0.765145i \(-0.277333\pi\)
0.643857 + 0.765145i \(0.277333\pi\)
\(242\) 4.72899 2.85308i 0.303991 0.183403i
\(243\) 9.90468 9.90468i 0.635386 0.635386i
\(244\) 7.38249 + 23.8393i 0.472616 + 1.52616i
\(245\) −7.38473 7.38473i −0.471793 0.471793i
\(246\) 1.69570 6.85368i 0.108114 0.436975i
\(247\) 19.0041i 1.20920i
\(248\) 15.9319 0.921379i 1.01168 0.0585076i
\(249\) 29.7399i 1.88469i
\(250\) 16.5037 + 4.08325i 1.04378 + 0.258247i
\(251\) 19.3743 + 19.3743i 1.22289 + 1.22289i 0.966599 + 0.256295i \(0.0825018\pi\)
0.256295 + 0.966599i \(0.417498\pi\)
\(252\) 1.14008 2.16296i 0.0718183 0.136253i
\(253\) 2.72996 2.72996i 0.171631 0.171631i
\(254\) 7.46868 + 12.3794i 0.468627 + 0.776750i
\(255\) 23.7988 1.49034
\(256\) −5.77915 + 14.9198i −0.361197 + 0.932490i
\(257\) −7.75151 −0.483526 −0.241763 0.970335i \(-0.577726\pi\)
−0.241763 + 0.970335i \(0.577726\pi\)
\(258\) 10.6159 + 17.5959i 0.660916 + 1.09547i
\(259\) 4.32728 4.32728i 0.268884 0.268884i
\(260\) 8.44103 16.0143i 0.523490 0.993164i
\(261\) −5.23363 5.23363i −0.323953 0.323953i
\(262\) −5.02256 1.24265i −0.310295 0.0767713i
\(263\) 1.13315i 0.0698730i −0.999390 0.0349365i \(-0.988877\pi\)
0.999390 0.0349365i \(-0.0111229\pi\)
\(264\) −23.0257 + 1.33163i −1.41713 + 0.0819560i
\(265\) 14.0079i 0.860501i
\(266\) 0.989132 3.99788i 0.0606476 0.245126i
\(267\) −6.74663 6.74663i −0.412887 0.412887i
\(268\) 0.551543 + 1.78102i 0.0336909 + 0.108793i
\(269\) 15.6240 15.6240i 0.952610 0.952610i −0.0463164 0.998927i \(-0.514748\pi\)
0.998927 + 0.0463164i \(0.0147482\pi\)
\(270\) −6.52455 + 3.93637i −0.397071 + 0.239560i
\(271\) −22.6570 −1.37631 −0.688157 0.725562i \(-0.741580\pi\)
−0.688157 + 0.725562i \(0.741580\pi\)
\(272\) 15.3656 + 22.4298i 0.931674 + 1.36001i
\(273\) −9.64919 −0.583996
\(274\) −7.67759 + 4.63202i −0.463820 + 0.279831i
\(275\) −6.14769 + 6.14769i −0.370719 + 0.370719i
\(276\) −4.03521 + 1.24961i −0.242891 + 0.0752179i
\(277\) −5.88800 5.88800i −0.353776 0.353776i 0.507737 0.861512i \(-0.330482\pi\)
−0.861512 + 0.507737i \(0.830482\pi\)
\(278\) 1.49949 6.06065i 0.0899334 0.363493i
\(279\) 8.24390i 0.493550i
\(280\) −2.60925 + 2.92957i −0.155933 + 0.175075i
\(281\) 23.4422i 1.39844i 0.714905 + 0.699221i \(0.246470\pi\)
−0.714905 + 0.699221i \(0.753530\pi\)
\(282\) 19.4222 + 4.80533i 1.15658 + 0.286153i
\(283\) 7.69603 + 7.69603i 0.457482 + 0.457482i 0.897828 0.440346i \(-0.145144\pi\)
−0.440346 + 0.897828i \(0.645144\pi\)
\(284\) 21.2670 + 11.2097i 1.26197 + 0.665175i
\(285\) 8.61722 8.61722i 0.510440 0.510440i
\(286\) 15.4002 + 25.5259i 0.910632 + 1.50938i
\(287\) 1.97769 0.116739
\(288\) 7.52210 + 3.42542i 0.443244 + 0.201845i
\(289\) 29.1998 1.71763
\(290\) 6.13481 + 10.1685i 0.360249 + 0.597114i
\(291\) −3.45193 + 3.45193i −0.202356 + 0.202356i
\(292\) −17.0453 8.98446i −0.997500 0.525776i
\(293\) −12.6311 12.6311i −0.737917 0.737917i 0.234257 0.972175i \(-0.424734\pi\)
−0.972175 + 0.234257i \(0.924734\pi\)
\(294\) −18.2672 4.51956i −1.06536 0.263586i
\(295\) 6.54275i 0.380933i
\(296\) 15.4484 + 13.7592i 0.897917 + 0.799738i
\(297\) 12.5487i 0.728149i
\(298\) −0.354109 + 1.43124i −0.0205130 + 0.0829095i
\(299\) 3.86087 + 3.86087i 0.223280 + 0.223280i
\(300\) 9.08703 2.81405i 0.524640 0.162469i
\(301\) −4.07037 + 4.07037i −0.234612 + 0.234612i
\(302\) 8.08527 4.87798i 0.465255 0.280696i
\(303\) 23.7827 1.36628
\(304\) 13.6852 + 2.55786i 0.784899 + 0.146704i
\(305\) −20.6853 −1.18444
\(306\) 12.0258 7.25536i 0.687469 0.414762i
\(307\) 2.53791 2.53791i 0.144846 0.144846i −0.630965 0.775811i \(-0.717341\pi\)
0.775811 + 0.630965i \(0.217341\pi\)
\(308\) −1.91115 6.17141i −0.108898 0.351649i
\(309\) 9.64521 + 9.64521i 0.548697 + 0.548697i
\(310\) −3.17687 + 12.8403i −0.180434 + 0.729280i
\(311\) 3.69293i 0.209407i −0.994503 0.104703i \(-0.966611\pi\)
0.994503 0.104703i \(-0.0333893\pi\)
\(312\) −1.88327 32.5643i −0.106619 1.84359i
\(313\) 8.94100i 0.505375i 0.967548 + 0.252688i \(0.0813145\pi\)
−0.967548 + 0.252688i \(0.918686\pi\)
\(314\) 10.5269 + 2.60450i 0.594066 + 0.146980i
\(315\) 1.43302 + 1.43302i 0.0807415 + 0.0807415i
\(316\) 0.420481 0.797734i 0.0236539 0.0448761i
\(317\) 7.21914 7.21914i 0.405467 0.405467i −0.474687 0.880155i \(-0.657439\pi\)
0.880155 + 0.474687i \(0.157439\pi\)
\(318\) −13.0388 21.6118i −0.731179 1.21193i
\(319\) −19.5571 −1.09499
\(320\) −10.3960 8.23398i −0.581157 0.460294i
\(321\) 20.7714 1.15935
\(322\) −0.611257 1.01316i −0.0340640 0.0564612i
\(323\) 16.7283 16.7283i 0.930788 0.930788i
\(324\) −10.4900 + 19.9016i −0.582778 + 1.10564i
\(325\) −8.69442 8.69442i −0.482280 0.482280i
\(326\) 18.9523 + 4.68907i 1.04967 + 0.259704i
\(327\) 1.89332i 0.104701i
\(328\) 0.385992 + 6.67434i 0.0213129 + 0.368529i
\(329\) 5.60445i 0.308983i
\(330\) 4.59139 18.5575i 0.252748 1.02156i
\(331\) −3.11018 3.11018i −0.170951 0.170951i 0.616446 0.787397i \(-0.288572\pi\)
−0.787397 + 0.616446i \(0.788572\pi\)
\(332\) 8.33053 + 26.9007i 0.457197 + 1.47637i
\(333\) 7.55666 7.55666i 0.414103 0.414103i
\(334\) −17.0931 + 10.3125i −0.935292 + 0.564277i
\(335\) −1.54539 −0.0844339
\(336\) −1.29874 + 6.94855i −0.0708519 + 0.379075i
\(337\) −21.0292 −1.14553 −0.572767 0.819719i \(-0.694130\pi\)
−0.572767 + 0.819719i \(0.694130\pi\)
\(338\) −20.3585 + 12.2826i −1.10735 + 0.668086i
\(339\) 24.0157 24.0157i 1.30435 1.30435i
\(340\) −21.5267 + 6.66634i −1.16745 + 0.361533i
\(341\) −15.4030 15.4030i −0.834117 0.834117i
\(342\) 1.72731 6.98144i 0.0934021 0.377513i
\(343\) 11.1280i 0.600858i
\(344\) −14.5312 12.9423i −0.783469 0.697804i
\(345\) 3.50135i 0.188506i
\(346\) −8.53841 2.11252i −0.459028 0.113570i
\(347\) −12.0073 12.0073i −0.644587 0.644587i 0.307093 0.951680i \(-0.400644\pi\)
−0.951680 + 0.307093i \(0.900644\pi\)
\(348\) 18.9299 + 9.97784i 1.01475 + 0.534868i
\(349\) 21.5509 21.5509i 1.15359 1.15359i 0.167764 0.985827i \(-0.446345\pi\)
0.985827 0.167764i \(-0.0536547\pi\)
\(350\) 1.37651 + 2.28157i 0.0735775 + 0.121955i
\(351\) 17.7471 0.947271
\(352\) 20.4544 7.65428i 1.09022 0.407974i
\(353\) −29.4769 −1.56890 −0.784449 0.620194i \(-0.787054\pi\)
−0.784449 + 0.620194i \(0.787054\pi\)
\(354\) 6.09008 + 10.0943i 0.323684 + 0.536508i
\(355\) −14.0900 + 14.0900i −0.747821 + 0.747821i
\(356\) 7.99234 + 4.21271i 0.423593 + 0.223273i
\(357\) 8.49368 + 8.49368i 0.449533 + 0.449533i
\(358\) 32.1718 + 7.95975i 1.70033 + 0.420686i
\(359\) 4.71258i 0.248721i −0.992237 0.124360i \(-0.960312\pi\)
0.992237 0.124360i \(-0.0396879\pi\)
\(360\) −4.55650 + 5.11588i −0.240149 + 0.269630i
\(361\) 6.88582i 0.362411i
\(362\) 6.01895 24.3274i 0.316349 1.27862i
\(363\) 5.83265 + 5.83265i 0.306135 + 0.306135i
\(364\) 8.72798 2.70286i 0.457470 0.141668i
\(365\) 11.2930 11.2930i 0.591102 0.591102i
\(366\) −31.9139 + 19.2542i −1.66817 + 1.00643i
\(367\) −18.9186 −0.987543 −0.493771 0.869592i \(-0.664382\pi\)
−0.493771 + 0.869592i \(0.664382\pi\)
\(368\) 3.29994 2.26063i 0.172021 0.117843i
\(369\) 3.45361 0.179788
\(370\) −14.6819 + 8.85786i −0.763278 + 0.460498i
\(371\) 4.99936 4.99936i 0.259554 0.259554i
\(372\) 7.05057 + 22.7675i 0.365555 + 1.18044i
\(373\) −8.86810 8.86810i −0.459173 0.459173i 0.439211 0.898384i \(-0.355258\pi\)
−0.898384 + 0.439211i \(0.855258\pi\)
\(374\) 8.91310 36.0250i 0.460886 1.86281i
\(375\) 25.3915i 1.31121i
\(376\) −18.9140 + 1.09384i −0.975415 + 0.0564105i
\(377\) 27.6588i 1.42450i
\(378\) −3.73345 0.923708i −0.192028 0.0475104i
\(379\) −15.0162 15.0162i −0.771329 0.771329i 0.207010 0.978339i \(-0.433627\pi\)
−0.978339 + 0.207010i \(0.933627\pi\)
\(380\) −5.38074 + 10.2083i −0.276026 + 0.523676i
\(381\) −15.2685 + 15.2685i −0.782228 + 0.782228i
\(382\) 7.92459 + 13.1350i 0.405457 + 0.672047i
\(383\) 4.91525 0.251158 0.125579 0.992084i \(-0.459921\pi\)
0.125579 + 0.992084i \(0.459921\pi\)
\(384\) −23.7036 3.02683i −1.20962 0.154462i
\(385\) 5.35493 0.272912
\(386\) 15.6910 + 26.0080i 0.798653 + 1.32377i
\(387\) −7.10803 + 7.10803i −0.361321 + 0.361321i
\(388\) 2.15545 4.08930i 0.109426 0.207603i
\(389\) 18.3420 + 18.3420i 0.929976 + 0.929976i 0.997704 0.0677278i \(-0.0215749\pi\)
−0.0677278 + 0.997704i \(0.521575\pi\)
\(390\) 26.2452 + 6.49342i 1.32898 + 0.328807i
\(391\) 6.79704i 0.343741i
\(392\) 17.7892 1.02879i 0.898490 0.0519617i
\(393\) 7.72740i 0.389796i
\(394\) 4.53070 18.3122i 0.228253 0.922555i
\(395\) 0.528522 + 0.528522i 0.0265928 + 0.0265928i
\(396\) −3.33741 10.7771i −0.167711 0.541567i
\(397\) 6.88943 6.88943i 0.345771 0.345771i −0.512761 0.858532i \(-0.671377\pi\)
0.858532 + 0.512761i \(0.171377\pi\)
\(398\) −5.80341 + 3.50130i −0.290899 + 0.175504i
\(399\) 6.15089 0.307930
\(400\) −7.43124 + 5.09078i −0.371562 + 0.254539i
\(401\) −26.2566 −1.31119 −0.655595 0.755113i \(-0.727582\pi\)
−0.655595 + 0.755113i \(0.727582\pi\)
\(402\) −2.38428 + 1.43847i −0.118917 + 0.0717445i
\(403\) 21.7838 21.7838i 1.08513 1.08513i
\(404\) −21.5122 + 6.66184i −1.07027 + 0.331439i
\(405\) −13.1854 13.1854i −0.655187 0.655187i
\(406\) −1.43959 + 5.81856i −0.0714459 + 0.288770i
\(407\) 28.2378i 1.39970i
\(408\) −27.0069 + 30.3224i −1.33704 + 1.50118i
\(409\) 18.0934i 0.894661i −0.894369 0.447331i \(-0.852375\pi\)
0.894369 0.447331i \(-0.147625\pi\)
\(410\) −5.37918 1.33088i −0.265659 0.0657277i
\(411\) −9.46940 9.46940i −0.467091 0.467091i
\(412\) −11.4261 6.02263i −0.562924 0.296714i
\(413\) −2.33507 + 2.33507i −0.114901 + 0.114901i
\(414\) −1.06743 1.76927i −0.0524613 0.0869548i
\(415\) −23.3417 −1.14580
\(416\) 10.8251 + 28.9279i 0.530746 + 1.41830i
\(417\) 9.32453 0.456624
\(418\) −9.81686 16.2715i −0.480158 0.795865i
\(419\) 24.3611 24.3611i 1.19012 1.19012i 0.213082 0.977034i \(-0.431650\pi\)
0.977034 0.213082i \(-0.0683500\pi\)
\(420\) −5.18320 2.73203i −0.252914 0.133310i
\(421\) 4.33767 + 4.33767i 0.211405 + 0.211405i 0.804864 0.593459i \(-0.202238\pi\)
−0.593459 + 0.804864i \(0.702238\pi\)
\(422\) 15.9167 + 3.93801i 0.774813 + 0.191700i
\(423\) 9.78697i 0.475859i
\(424\) 17.8477 + 15.8962i 0.866761 + 0.771989i
\(425\) 15.3065i 0.742474i
\(426\) −8.62329 + 34.8537i −0.417800 + 1.68867i
\(427\) −7.38249 7.38249i −0.357264 0.357264i
\(428\) −18.7884 + 5.81834i −0.908171 + 0.281240i
\(429\) −31.4831 + 31.4831i −1.52002 + 1.52002i
\(430\) 13.8103 8.33197i 0.665991 0.401803i
\(431\) 20.7331 0.998680 0.499340 0.866406i \(-0.333576\pi\)
0.499340 + 0.866406i \(0.333576\pi\)
\(432\) 2.38868 12.7800i 0.114925 0.614879i
\(433\) 30.4936 1.46543 0.732715 0.680536i \(-0.238253\pi\)
0.732715 + 0.680536i \(0.238253\pi\)
\(434\) −5.71645 + 3.44883i −0.274398 + 0.165549i
\(435\) −12.5416 + 12.5416i −0.601324 + 0.601324i
\(436\) 0.530344 + 1.71257i 0.0253989 + 0.0820171i
\(437\) −2.46112 2.46112i −0.117731 0.117731i
\(438\) 6.91147 27.9348i 0.330243 1.33478i
\(439\) 31.4837i 1.50264i 0.659941 + 0.751318i \(0.270581\pi\)
−0.659941 + 0.751318i \(0.729419\pi\)
\(440\) 1.04514 + 18.0719i 0.0498251 + 0.861546i
\(441\) 9.20494i 0.438330i
\(442\) 50.9488 + 12.6054i 2.42339 + 0.599580i
\(443\) 28.3756 + 28.3756i 1.34817 + 1.34817i 0.887653 + 0.460514i \(0.152335\pi\)
0.460514 + 0.887653i \(0.347665\pi\)
\(444\) −14.4067 + 27.3323i −0.683711 + 1.29713i
\(445\) −5.29515 + 5.29515i −0.251014 + 0.251014i
\(446\) −11.9341 19.7809i −0.565097 0.936651i
\(447\) −2.20202 −0.104152
\(448\) −0.771630 6.64896i −0.0364561 0.314134i
\(449\) −29.4415 −1.38943 −0.694715 0.719285i \(-0.744470\pi\)
−0.694715 + 0.719285i \(0.744470\pi\)
\(450\) 2.40378 + 3.98428i 0.113315 + 0.187821i
\(451\) 6.45275 6.45275i 0.303848 0.303848i
\(452\) −14.9958 + 28.4500i −0.705344 + 1.33818i
\(453\) 9.97223 + 9.97223i 0.468536 + 0.468536i
\(454\) 18.6856 + 4.62307i 0.876957 + 0.216972i
\(455\) 7.57326i 0.355040i
\(456\) 1.20049 + 20.7582i 0.0562181 + 0.972090i
\(457\) 15.9355i 0.745429i −0.927946 0.372714i \(-0.878427\pi\)
0.927946 0.372714i \(-0.121573\pi\)
\(458\) −5.92126 + 23.9326i −0.276682 + 1.11830i
\(459\) −15.6219 15.6219i −0.729166 0.729166i
\(460\) 0.980771 + 3.16707i 0.0457287 + 0.147666i
\(461\) 5.77259 5.77259i 0.268856 0.268856i −0.559783 0.828639i \(-0.689115\pi\)
0.828639 + 0.559783i \(0.189115\pi\)
\(462\) 8.26173 4.98444i 0.384370 0.231897i
\(463\) 36.6695 1.70418 0.852088 0.523398i \(-0.175336\pi\)
0.852088 + 0.523398i \(0.175336\pi\)
\(464\) −19.9176 3.72275i −0.924651 0.172824i
\(465\) −19.7553 −0.916130
\(466\) 23.1324 13.9562i 1.07159 0.646506i
\(467\) −5.89270 + 5.89270i −0.272682 + 0.272682i −0.830179 0.557497i \(-0.811762\pi\)
0.557497 + 0.830179i \(0.311762\pi\)
\(468\) 15.2416 4.71997i 0.704541 0.218181i
\(469\) −0.551543 0.551543i −0.0254679 0.0254679i
\(470\) 3.77151 15.2437i 0.173967 0.703140i
\(471\) 16.1960i 0.746273i
\(472\) −8.33620 7.42471i −0.383705 0.341750i
\(473\) 26.5614i 1.22129i
\(474\) 1.30737 + 0.323463i 0.0600497 + 0.0148571i
\(475\) 5.54227 + 5.54227i 0.254297 + 0.254297i
\(476\) −10.0620 5.30360i −0.461189 0.243090i
\(477\) 8.73032 8.73032i 0.399734 0.399734i
\(478\) 8.92578 + 14.7945i 0.408256 + 0.676685i
\(479\) −5.57265 −0.254621 −0.127311 0.991863i \(-0.540634\pi\)
−0.127311 + 0.991863i \(0.540634\pi\)
\(480\) 8.20850 18.0256i 0.374665 0.822753i
\(481\) 39.9356 1.82091
\(482\) −14.6044 24.2068i −0.665211 1.10259i
\(483\) 1.24961 1.24961i 0.0568594 0.0568594i
\(484\) −6.90961 3.64201i −0.314073 0.165546i
\(485\) 2.70928 + 2.70928i 0.123022 + 0.123022i
\(486\) −19.2295 4.75766i −0.872270 0.215812i
\(487\) 36.5900i 1.65805i 0.559211 + 0.829026i \(0.311104\pi\)
−0.559211 + 0.829026i \(0.688896\pi\)
\(488\) 23.4737 26.3555i 1.06261 1.19306i
\(489\) 29.1589i 1.31861i
\(490\) −3.54722 + 14.3372i −0.160247 + 0.647687i
\(491\) −16.4267 16.4267i −0.741325 0.741325i 0.231508 0.972833i \(-0.425634\pi\)
−0.972833 + 0.231508i \(0.925634\pi\)
\(492\) −9.53795 + 2.95369i −0.430004 + 0.133162i
\(493\) −24.3466 + 24.3466i −1.09652 + 1.09652i
\(494\) 23.0121 13.8836i 1.03536 0.624652i
\(495\) 9.35124 0.420307
\(496\) −12.7549 18.6189i −0.572712 0.836013i
\(497\) −10.0573 −0.451132
\(498\) −36.0122 + 21.7267i −1.61374 + 0.973599i
\(499\) 18.9659 18.9659i 0.849032 0.849032i −0.140980 0.990012i \(-0.545025\pi\)
0.990012 + 0.140980i \(0.0450255\pi\)
\(500\) −7.11249 22.9674i −0.318080 1.02713i
\(501\) −21.0823 21.0823i −0.941887 0.941887i
\(502\) 9.30633 37.6144i 0.415362 1.67881i
\(503\) 5.19328i 0.231557i 0.993275 + 0.115778i \(0.0369362\pi\)
−0.993275 + 0.115778i \(0.963064\pi\)
\(504\) −3.45202 + 0.199638i −0.153765 + 0.00889259i
\(505\) 18.6661i 0.830630i
\(506\) −5.30011 1.31132i −0.235618 0.0582953i
\(507\) −25.1098 25.1098i −1.11516 1.11516i
\(508\) 9.53390 18.0877i 0.422999 0.802511i
\(509\) −20.7004 + 20.7004i −0.917527 + 0.917527i −0.996849 0.0793216i \(-0.974725\pi\)
0.0793216 + 0.996849i \(0.474725\pi\)
\(510\) −17.3864 28.8180i −0.769883 1.27608i
\(511\) 8.06083 0.356590
\(512\) 22.2885 3.90182i 0.985020 0.172438i
\(513\) −11.3129 −0.499478
\(514\) 5.66292 + 9.38632i 0.249781 + 0.414013i
\(515\) 7.57013 7.57013i 0.333580 0.333580i
\(516\) 13.5514 25.7096i 0.596565 1.13180i
\(517\) 18.2860 + 18.2860i 0.804219 + 0.804219i
\(518\) −8.40123 2.07858i −0.369129 0.0913277i
\(519\) 13.1367i 0.576636i
\(520\) −25.5584 + 1.47810i −1.12081 + 0.0648190i
\(521\) 33.5302i 1.46898i 0.678617 + 0.734492i \(0.262580\pi\)
−0.678617 + 0.734492i \(0.737420\pi\)
\(522\) −2.51395 + 10.1609i −0.110032 + 0.444730i
\(523\) −21.0872 21.0872i −0.922081 0.922081i 0.0750956 0.997176i \(-0.476074\pi\)
−0.997176 + 0.0750956i \(0.976074\pi\)
\(524\) 2.16454 + 6.98966i 0.0945583 + 0.305345i
\(525\) −2.81405 + 2.81405i −0.122815 + 0.122815i
\(526\) −1.37213 + 0.827832i −0.0598279 + 0.0360952i
\(527\) −38.3503 −1.67056
\(528\) 18.4341 + 26.9090i 0.802240 + 1.17107i
\(529\) −1.00000 −0.0434783
\(530\) −16.9623 + 10.2336i −0.736793 + 0.444520i
\(531\) −4.07771 + 4.07771i −0.176957 + 0.176957i
\(532\) −5.56366 + 1.72294i −0.241215 + 0.0746989i
\(533\) 9.12586 + 9.12586i 0.395285 + 0.395285i
\(534\) −3.24071 + 13.0983i −0.140239 + 0.566819i
\(535\) 16.3027i 0.704826i
\(536\) 1.75371 1.96901i 0.0757489 0.0850481i
\(537\) 49.4975i 2.13597i
\(538\) −30.3333 7.50489i −1.30776 0.323559i
\(539\) −17.1986 17.1986i −0.740795 0.740795i
\(540\) 9.53312 + 5.02485i 0.410240 + 0.216235i
\(541\) 22.3269 22.3269i 0.959908 0.959908i −0.0393184 0.999227i \(-0.512519\pi\)
0.999227 + 0.0393184i \(0.0125187\pi\)
\(542\) 16.5522 + 27.4354i 0.710979 + 1.17845i
\(543\) 37.4287 1.60622
\(544\) 15.9349 34.9925i 0.683202 1.50029i
\(545\) −1.48599 −0.0636530
\(546\) 7.04929 + 11.6842i 0.301682 + 0.500039i
\(547\) −19.5447 + 19.5447i −0.835671 + 0.835671i −0.988286 0.152615i \(-0.951231\pi\)
0.152615 + 0.988286i \(0.451231\pi\)
\(548\) 11.2179 + 5.91286i 0.479203 + 0.252585i
\(549\) −12.8920 12.8920i −0.550215 0.550215i
\(550\) 11.9355 + 2.95301i 0.508931 + 0.125917i
\(551\) 17.6311i 0.751111i
\(552\) 4.46112 + 3.97333i 0.189878 + 0.169116i
\(553\) 0.377254i 0.0160425i
\(554\) −2.82827 + 11.4313i −0.120162 + 0.485671i
\(555\) −18.1084 18.1084i −0.768660 0.768660i
\(556\) −8.43432 + 2.61192i −0.357695 + 0.110770i
\(557\) 1.06994 1.06994i 0.0453347 0.0453347i −0.684076 0.729411i \(-0.739794\pi\)
0.729411 + 0.684076i \(0.239794\pi\)
\(558\) −9.98256 + 6.02265i −0.422596 + 0.254959i
\(559\) −37.5647 −1.58882
\(560\) 5.45364 + 1.01933i 0.230458 + 0.0430744i
\(561\) 55.4259 2.34008
\(562\) 28.3862 17.1259i 1.19740 0.722411i
\(563\) 26.6686 26.6686i 1.12395 1.12395i 0.132806 0.991142i \(-0.457601\pi\)
0.991142 0.132806i \(-0.0423986\pi\)
\(564\) −8.37027 27.0290i −0.352452 1.13813i
\(565\) −18.8489 18.8489i −0.792981 0.792981i
\(566\) 3.69675 14.9415i 0.155386 0.628040i
\(567\) 9.41159i 0.395250i
\(568\) −1.96292 33.9417i −0.0823624 1.42416i
\(569\) 24.6342i 1.03272i −0.856372 0.516359i \(-0.827287\pi\)
0.856372 0.516359i \(-0.172713\pi\)
\(570\) −16.7300 4.13924i −0.700743 0.173374i
\(571\) −21.7399 21.7399i −0.909788 0.909788i 0.0864666 0.996255i \(-0.472442\pi\)
−0.996255 + 0.0864666i \(0.972442\pi\)
\(572\) 19.6586 37.2962i 0.821968 1.55943i
\(573\) −16.2005 + 16.2005i −0.676786 + 0.676786i
\(574\) −1.44482 2.39479i −0.0603054 0.0999565i
\(575\) 2.25193 0.0939121
\(576\) −1.34749 11.6110i −0.0561453 0.483792i
\(577\) 8.82926 0.367567 0.183784 0.982967i \(-0.441165\pi\)
0.183784 + 0.982967i \(0.441165\pi\)
\(578\) −21.3321 35.3581i −0.887299 1.47070i
\(579\) −32.0778 + 32.0778i −1.33311 + 1.33311i
\(580\) 7.83120 14.8573i 0.325173 0.616917i
\(581\) −8.33053 8.33053i −0.345608 0.345608i
\(582\) 6.70179 + 1.65812i 0.277798 + 0.0687312i
\(583\) 32.6236i 1.35113i
\(584\) 1.57326 + 27.2039i 0.0651020 + 1.12570i
\(585\) 13.2251i 0.546790i
\(586\) −6.06729 + 24.5228i −0.250637 + 1.01303i
\(587\) 5.40195 + 5.40195i 0.222962 + 0.222962i 0.809745 0.586782i \(-0.199606\pi\)
−0.586782 + 0.809745i \(0.699606\pi\)
\(588\) 7.87249 + 25.4216i 0.324656 + 1.04837i
\(589\) −13.8861 + 13.8861i −0.572167 + 0.572167i
\(590\) 7.92263 4.77986i 0.326169 0.196784i
\(591\) 28.1740 1.15892
\(592\) 5.37515 28.7584i 0.220917 1.18196i
\(593\) 21.9879 0.902933 0.451467 0.892288i \(-0.350901\pi\)
0.451467 + 0.892288i \(0.350901\pi\)
\(594\) −15.1953 + 9.16755i −0.623469 + 0.376149i
\(595\) 6.66634 6.66634i 0.273293 0.273293i
\(596\) 1.99179 0.616812i 0.0815869 0.0252656i
\(597\) −7.15783 7.15783i −0.292950 0.292950i
\(598\) 1.85455 7.49573i 0.0758381 0.306523i
\(599\) 40.5578i 1.65715i 0.559881 + 0.828573i \(0.310847\pi\)
−0.559881 + 0.828573i \(0.689153\pi\)
\(600\) −10.0461 8.94768i −0.410132 0.365288i
\(601\) 44.8779i 1.83061i −0.402763 0.915304i \(-0.631950\pi\)
0.402763 0.915304i \(-0.368050\pi\)
\(602\) 7.90246 + 1.95518i 0.322080 + 0.0796872i
\(603\) −0.963153 0.963153i −0.0392226 0.0392226i
\(604\) −11.8135 6.22683i −0.480685 0.253366i
\(605\) 4.57781 4.57781i 0.186115 0.186115i
\(606\) −17.3747 28.7986i −0.705797 1.16986i
\(607\) 40.6926 1.65166 0.825832 0.563917i \(-0.190706\pi\)
0.825832 + 0.563917i \(0.190706\pi\)
\(608\) −6.90049 18.4401i −0.279852 0.747844i
\(609\) −8.95208 −0.362757
\(610\) 15.1118 + 25.0479i 0.611861 + 1.01416i
\(611\) −25.8612 + 25.8612i −1.04623 + 1.04623i
\(612\) −17.5711 9.26160i −0.710269 0.374378i
\(613\) −8.45521 8.45521i −0.341503 0.341503i 0.515429 0.856932i \(-0.327632\pi\)
−0.856932 + 0.515429i \(0.827632\pi\)
\(614\) −4.92724 1.21907i −0.198847 0.0491977i
\(615\) 8.27607i 0.333723i
\(616\) −6.07678 + 6.82279i −0.244840 + 0.274898i
\(617\) 11.7202i 0.471836i 0.971773 + 0.235918i \(0.0758096\pi\)
−0.971773 + 0.235918i \(0.924190\pi\)
\(618\) 4.63302 18.7258i 0.186368 0.753262i
\(619\) −27.5714 27.5714i −1.10819 1.10819i −0.993389 0.114798i \(-0.963378\pi\)
−0.114798 0.993389i \(-0.536622\pi\)
\(620\) 17.8693 5.53370i 0.717646 0.222239i
\(621\) −2.29833 + 2.29833i −0.0922289 + 0.0922289i
\(622\) −4.47178 + 2.69790i −0.179302 + 0.108176i
\(623\) −3.77963 −0.151428
\(624\) −38.0564 + 26.0706i −1.52347 + 1.04366i
\(625\) 8.66913 0.346765
\(626\) 10.8267 6.53192i 0.432721 0.261068i
\(627\) 20.0690 20.0690i 0.801477 0.801477i
\(628\) −4.53670 14.6498i −0.181034 0.584589i
\(629\) −35.1532 35.1532i −1.40165 1.40165i
\(630\) 0.688344 2.78215i 0.0274243 0.110844i
\(631\) 4.88975i 0.194658i 0.995252 + 0.0973289i \(0.0310299\pi\)
−0.995252 + 0.0973289i \(0.968970\pi\)
\(632\) −1.27316 + 0.0736300i −0.0506438 + 0.00292884i
\(633\) 24.4884i 0.973328i
\(634\) −14.0157 3.46768i −0.556634 0.137719i
\(635\) 11.9836 + 11.9836i 0.475555 + 0.475555i
\(636\) −16.6442 + 31.5774i −0.659987 + 1.25213i
\(637\) 24.3232 24.3232i 0.963722 0.963722i
\(638\) 14.2876 + 23.6817i 0.565651 + 0.937569i
\(639\) −17.5630 −0.694780
\(640\) −2.37564 + 18.6040i −0.0939053 + 0.735388i
\(641\) 2.67986 0.105848 0.0529240 0.998599i \(-0.483146\pi\)
0.0529240 + 0.998599i \(0.483146\pi\)
\(642\) −15.1747 25.1522i −0.598899 0.992678i
\(643\) −9.23577 + 9.23577i −0.364223 + 0.364223i −0.865365 0.501142i \(-0.832913\pi\)
0.501142 + 0.865365i \(0.332913\pi\)
\(644\) −0.780280 + 1.48034i −0.0307474 + 0.0583338i
\(645\) 17.0333 + 17.0333i 0.670687 + 0.670687i
\(646\) −32.4773 8.03535i −1.27780 0.316147i
\(647\) 47.5093i 1.86778i 0.357558 + 0.933891i \(0.383610\pi\)
−0.357558 + 0.933891i \(0.616390\pi\)
\(648\) 31.7625 1.83689i 1.24775 0.0721600i
\(649\) 15.2376i 0.598129i
\(650\) −4.17632 + 16.8799i −0.163809 + 0.662083i
\(651\) −7.05057 7.05057i −0.276334 0.276334i
\(652\) −8.16776 26.3751i −0.319874 1.03293i
\(653\) 2.88361 2.88361i 0.112844 0.112844i −0.648430 0.761274i \(-0.724574\pi\)
0.761274 + 0.648430i \(0.224574\pi\)
\(654\) −2.29263 + 1.38318i −0.0896490 + 0.0540867i
\(655\) −6.06492 −0.236976
\(656\) 7.79999 5.34339i 0.304538 0.208624i
\(657\) 14.0765 0.549177
\(658\) 6.78644 4.09437i 0.264563 0.159615i
\(659\) −6.54919 + 6.54919i −0.255120 + 0.255120i −0.823066 0.567946i \(-0.807738\pi\)
0.567946 + 0.823066i \(0.307738\pi\)
\(660\) −25.8256 + 7.99761i −1.00526 + 0.311307i
\(661\) 32.3582 + 32.3582i 1.25859 + 1.25859i 0.951766 + 0.306823i \(0.0992661\pi\)
0.306823 + 0.951766i \(0.400734\pi\)
\(662\) −1.49396 + 6.03829i −0.0580643 + 0.234685i
\(663\) 78.3866i 3.04428i
\(664\) 26.4881 29.7399i 1.02794 1.15413i
\(665\) 4.82758i 0.187206i
\(666\) −14.6710 3.62980i −0.568488 0.140652i
\(667\) 3.58194 + 3.58194i 0.138693 + 0.138693i
\(668\) 24.9750 + 13.1641i 0.966310 + 0.509336i
\(669\) 24.3974 24.3974i 0.943256 0.943256i
\(670\) 1.12900 + 1.87132i 0.0436171 + 0.0722954i
\(671\) −48.1748 −1.85977
\(672\) 9.36282 3.50368i 0.361179 0.135157i
\(673\) −33.4942 −1.29111 −0.645554 0.763715i \(-0.723373\pi\)
−0.645554 + 0.763715i \(0.723373\pi\)
\(674\) 15.3630 + 25.4643i 0.591762 + 0.980848i
\(675\) 5.17569 5.17569i 0.199212 0.199212i
\(676\) 29.7461 + 15.6790i 1.14408 + 0.603037i
\(677\) 0.249260 + 0.249260i 0.00957985 + 0.00957985i 0.711880 0.702301i \(-0.247844\pi\)
−0.702301 + 0.711880i \(0.747844\pi\)
\(678\) −46.6255 11.5358i −1.79064 0.443030i
\(679\) 1.93386i 0.0742147i
\(680\) 23.7988 + 21.1966i 0.912643 + 0.812853i
\(681\) 28.7485i 1.10164i
\(682\) −7.39873 + 29.9042i −0.283312 + 1.14509i
\(683\) 16.5195 + 16.5195i 0.632101 + 0.632101i 0.948595 0.316494i \(-0.102506\pi\)
−0.316494 + 0.948595i \(0.602506\pi\)
\(684\) −9.71575 + 3.00875i −0.371491 + 0.115042i
\(685\) −7.43215 + 7.43215i −0.283968 + 0.283968i
\(686\) −13.4750 + 8.12968i −0.514477 + 0.310392i
\(687\) −36.8212 −1.40482
\(688\) −5.05603 + 27.0510i −0.192759 + 1.03131i
\(689\) 46.1382 1.75773
\(690\) −4.23979 + 2.55794i −0.161406 + 0.0973790i
\(691\) −21.0833 + 21.0833i −0.802046 + 0.802046i −0.983415 0.181369i \(-0.941947\pi\)
0.181369 + 0.983415i \(0.441947\pi\)
\(692\) 3.67974 + 11.8825i 0.139883 + 0.451705i
\(693\) 3.33741 + 3.33741i 0.126778 + 0.126778i
\(694\) −5.76766 + 23.3117i −0.218937 + 0.884902i
\(695\) 7.31845i 0.277605i
\(696\) −1.74721 30.2117i −0.0662278 1.14517i
\(697\) 16.0660i 0.608544i
\(698\) −41.8401 10.3518i −1.58367 0.391823i
\(699\) 28.5311 + 28.5311i 1.07914 + 1.07914i
\(700\) 1.75714 3.33364i 0.0664136 0.126000i
\(701\) 31.5426 31.5426i 1.19135 1.19135i 0.214660 0.976689i \(-0.431136\pi\)
0.976689 0.214660i \(-0.0688643\pi\)
\(702\) −12.9653 21.4900i −0.489344 0.811089i
\(703\) −25.4570 −0.960130
\(704\) −24.2117 19.1764i −0.912514 0.722738i
\(705\) 23.4530 0.883292
\(706\) 21.5346 + 35.6937i 0.810465 + 1.34335i
\(707\) 6.66184 6.66184i 0.250544 0.250544i
\(708\) 7.77410 14.7490i 0.292168 0.554301i
\(709\) 24.2002 + 24.2002i 0.908856 + 0.908856i 0.996180 0.0873239i \(-0.0278315\pi\)
−0.0873239 + 0.996180i \(0.527831\pi\)
\(710\) 27.3552 + 6.76807i 1.02662 + 0.254001i
\(711\) 0.658793i 0.0247067i
\(712\) −0.737684 12.7556i −0.0276459 0.478035i
\(713\) 5.64220i 0.211302i
\(714\) 4.07989 16.4901i 0.152686 0.617128i
\(715\) 24.7098 + 24.7098i 0.924095 + 0.924095i
\(716\) −13.8649 44.7719i −0.518154 1.67321i
\(717\) −18.2473 + 18.2473i −0.681457 + 0.681457i
\(718\) −5.70648 + 3.44281i −0.212964 + 0.128485i
\(719\) −6.68837 −0.249434 −0.124717 0.992192i \(-0.539802\pi\)
−0.124717 + 0.992192i \(0.539802\pi\)
\(720\) 9.52361 + 1.78004i 0.354924 + 0.0663380i
\(721\) 5.40348 0.201236
\(722\) 8.33806 5.03049i 0.310310 0.187215i
\(723\) 29.8562 29.8562i 1.11037 1.11037i
\(724\) −33.8553 + 10.4842i −1.25822 + 0.389644i
\(725\) −8.06629 8.06629i −0.299574 0.299574i
\(726\) 2.80169 11.3239i 0.103980 0.420268i
\(727\) 7.04386i 0.261242i 0.991432 + 0.130621i \(0.0416972\pi\)
−0.991432 + 0.130621i \(0.958303\pi\)
\(728\) −9.64919 8.59414i −0.357623 0.318520i
\(729\) 4.16008i 0.154077i
\(730\) −21.9249 5.42453i −0.811477 0.200771i
\(731\) 33.0662 + 33.0662i 1.22300 + 1.22300i
\(732\) 46.6299 + 24.5783i 1.72349 + 0.908441i
\(733\) −23.9055 + 23.9055i −0.882968 + 0.882968i −0.993835 0.110867i \(-0.964637\pi\)
0.110867 + 0.993835i \(0.464637\pi\)
\(734\) 13.8211 + 22.9086i 0.510147 + 0.845571i
\(735\) −22.0583 −0.813632
\(736\) −5.14819 2.34438i −0.189765 0.0864151i
\(737\) −3.59912 −0.132575
\(738\) −2.52306 4.18199i −0.0928752 0.153941i
\(739\) 33.0329 33.0329i 1.21513 1.21513i 0.245818 0.969316i \(-0.420944\pi\)
0.969316 0.245818i \(-0.0790564\pi\)
\(740\) 21.4520 + 11.3072i 0.788592 + 0.415662i
\(741\) 28.3827 + 28.3827i 1.04267 + 1.04267i
\(742\) −9.70607 2.40142i −0.356321 0.0881588i
\(743\) 20.9205i 0.767499i −0.923437 0.383750i \(-0.874633\pi\)
0.923437 0.383750i \(-0.125367\pi\)
\(744\) 22.4183 25.1705i 0.821896 0.922795i
\(745\) 1.72827i 0.0633191i
\(746\) −4.25974 + 17.2171i −0.155960 + 0.630361i
\(747\) −14.5475 14.5475i −0.532265 0.532265i
\(748\) −50.1344 + 15.5255i −1.83309 + 0.567668i
\(749\) 5.81834 5.81834i 0.212597 0.212597i
\(750\) 30.7467 18.5500i 1.12271 0.677350i
\(751\) 18.4702 0.673988 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(752\) 15.1423 + 22.1039i 0.552183 + 0.806047i
\(753\) 57.8712 2.10894
\(754\) −33.4921 + 20.2064i −1.21971 + 0.735872i
\(755\) 7.82680 7.82680i 0.284846 0.284846i
\(756\) 1.60898 + 5.19567i 0.0585180 + 0.188965i
\(757\) −8.20058 8.20058i −0.298055 0.298055i 0.542197 0.840252i \(-0.317593\pi\)
−0.840252 + 0.542197i \(0.817593\pi\)
\(758\) −7.21294 + 29.1533i −0.261986 + 1.05890i
\(759\) 8.15441i 0.295986i
\(760\) 16.2922 0.942216i 0.590981 0.0341778i
\(761\) 26.1787i 0.948977i 0.880262 + 0.474488i \(0.157367\pi\)
−0.880262 + 0.474488i \(0.842633\pi\)
\(762\) 29.6432 + 7.33414i 1.07386 + 0.265688i
\(763\) −0.530344 0.530344i −0.0191997 0.0191997i
\(764\) 10.1159 19.1918i 0.365980 0.694336i
\(765\) 11.6413 11.6413i 0.420894 0.420894i
\(766\) −3.59088 5.95189i −0.129744 0.215051i
\(767\) −21.5500 −0.778124
\(768\) 13.6517 + 30.9140i 0.492612 + 1.11551i
\(769\)