Defining parameters
Level: | \( N \) | \(=\) | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 368.i (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 368 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 100 | 100 | 0 |
Cusp forms | 92 | 92 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(368, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
368.2.i.a | $12$ | $2.938$ | 12.0.\(\cdots\).1 | \(\Q(\sqrt{-23}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-\beta _{7}+\beta _{9}+\beta _{10})q^{3}+\beta _{2}q^{4}+\cdots\) |
368.2.i.b | $80$ | $2.938$ | None | \(-4\) | \(-4\) | \(0\) | \(0\) |