Defining parameters
Level: | \( N \) | \(=\) | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 368.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 92 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 54 | 12 | 42 |
Cusp forms | 42 | 12 | 30 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(368, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
368.2.c.a | $4$ | $2.938$ | \(\Q(\sqrt{2}, \sqrt{-5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{3}+\beta _{2}q^{5}+\beta _{1}q^{7}-2q^{9}+3\beta _{1}q^{11}+\cdots\) |
368.2.c.b | $8$ | $2.938$ | 8.0.303595776.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{3}-\beta _{4}q^{5}+\beta _{6}q^{7}+\beta _{7}q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(368, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)