Properties

Label 3675.1.bf.c.668.3
Level $3675$
Weight $1$
Character 3675.668
Analytic conductor $1.834$
Analytic rank $0$
Dimension $16$
Projective image $D_{8}$
CM discriminant -15
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3675,1,Mod(68,3675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3675, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3675.68"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.bf (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,8,8,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,-16,0,-8,0,0,0,0,0,0,0,0,8,16,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(61)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83406392143\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{48})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.13897288125.2

Embedding invariants

Embedding label 668.3
Root \(-0.793353 + 0.608761i\) of defining polynomial
Character \(\chi\) \(=\) 3675.668
Dual form 3675.1.bf.c.1832.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.198092 - 0.739288i) q^{2} +(-0.965926 + 0.258819i) q^{3} +(0.358719 + 0.207107i) q^{4} +0.765367i q^{6} +(0.765367 - 0.765367i) q^{8} +(0.866025 - 0.500000i) q^{9} +(-0.400100 - 0.107206i) q^{12} +(-0.207107 - 0.358719i) q^{16} +(-0.366025 - 1.36603i) q^{17} +(-0.198092 - 0.739288i) q^{18} +(-0.923880 - 1.60021i) q^{19} +(-1.78480 - 0.478235i) q^{23} +(-0.541196 + 0.937379i) q^{24} +(-0.707107 + 0.707107i) q^{27} +(0.662827 + 0.382683i) q^{31} +(0.739288 - 0.198092i) q^{32} -1.08239 q^{34} +0.414214 q^{36} +(-1.36603 + 0.366025i) q^{38} +(-0.707107 + 1.22474i) q^{46} +(1.36603 + 0.366025i) q^{47} +(0.292893 + 0.292893i) q^{48} +(0.707107 + 1.22474i) q^{51} +(-0.478235 - 1.78480i) q^{53} +(0.382683 + 0.662827i) q^{54} +(1.30656 + 1.30656i) q^{57} +(0.662827 - 0.382683i) q^{61} +(0.414214 - 0.414214i) q^{62} -1.00000i q^{64} +(0.151613 - 0.565826i) q^{68} +1.84776 q^{69} +(0.280144 - 1.04551i) q^{72} -0.765367i q^{76} +(-1.22474 + 0.707107i) q^{79} +(0.500000 - 0.866025i) q^{81} +(1.00000 + 1.00000i) q^{83} +(-0.541196 - 0.541196i) q^{92} +(-0.739288 - 0.198092i) q^{93} +(0.541196 - 0.937379i) q^{94} +(-0.662827 + 0.382683i) q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{12} + 8 q^{16} + 8 q^{17} - 16 q^{36} - 8 q^{38} + 8 q^{47} + 16 q^{48} - 16 q^{62} + 8 q^{68} + 8 q^{81} + 16 q^{83}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3675\mathbb{Z}\right)^\times\).

\(n\) \(1177\) \(1226\) \(2551\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.198092 0.739288i 0.198092 0.739288i −0.793353 0.608761i \(-0.791667\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(3\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(4\) 0.358719 + 0.207107i 0.358719 + 0.207107i
\(5\) 0 0
\(6\) 0.765367i 0.765367i
\(7\) 0 0
\(8\) 0.765367 0.765367i 0.765367 0.765367i
\(9\) 0.866025 0.500000i 0.866025 0.500000i
\(10\) 0 0
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −0.400100 0.107206i −0.400100 0.107206i
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.207107 0.358719i −0.207107 0.358719i
\(17\) −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i \(-0.833333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(18\) −0.198092 0.739288i −0.198092 0.739288i
\(19\) −0.923880 1.60021i −0.923880 1.60021i −0.793353 0.608761i \(-0.791667\pi\)
−0.130526 0.991445i \(-0.541667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.78480 0.478235i −1.78480 0.478235i −0.793353 0.608761i \(-0.791667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(24\) −0.541196 + 0.937379i −0.541196 + 0.937379i
\(25\) 0 0
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0.662827 + 0.382683i 0.662827 + 0.382683i 0.793353 0.608761i \(-0.208333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(32\) 0.739288 0.198092i 0.739288 0.198092i
\(33\) 0 0
\(34\) −1.08239 −1.08239
\(35\) 0 0
\(36\) 0.414214 0.414214
\(37\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(38\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(47\) 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i \(-0.166667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0.292893 + 0.292893i 0.292893 + 0.292893i
\(49\) 0 0
\(50\) 0 0
\(51\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(52\) 0 0
\(53\) −0.478235 1.78480i −0.478235 1.78480i −0.608761 0.793353i \(-0.708333\pi\)
0.130526 0.991445i \(-0.458333\pi\)
\(54\) 0.382683 + 0.662827i 0.382683 + 0.662827i
\(55\) 0 0
\(56\) 0 0
\(57\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 0.662827 0.382683i 0.662827 0.382683i −0.130526 0.991445i \(-0.541667\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(62\) 0.414214 0.414214i 0.414214 0.414214i
\(63\) 0 0
\(64\) 1.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(68\) 0.151613 0.565826i 0.151613 0.565826i
\(69\) 1.84776 1.84776
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.280144 1.04551i 0.280144 1.04551i
\(73\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.765367i 0.765367i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.500000 0.866025i
\(82\) 0 0
\(83\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.541196 0.541196i −0.541196 0.541196i
\(93\) −0.739288 0.198092i −0.739288 0.198092i
\(94\) 0.541196 0.937379i 0.541196 0.937379i
\(95\) 0 0
\(96\) −0.662827 + 0.382683i −0.662827 + 0.382683i
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 1.04551 0.280144i 1.04551 0.280144i
\(103\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.41421 −1.41421
\(107\) −0.198092 + 0.739288i −0.198092 + 0.739288i 0.793353 + 0.608761i \(0.208333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(108\) −0.400100 + 0.107206i −0.400100 + 0.107206i
\(109\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(114\) 1.22474 0.707107i 1.22474 0.707107i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) −0.151613 0.565826i −0.151613 0.565826i
\(123\) 0 0
\(124\) 0.158513 + 0.274552i 0.158513 + 0.274552i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −1.32565 0.765367i −1.32565 0.765367i
\(137\) 0.739288 0.198092i 0.739288 0.198092i 0.130526 0.991445i \(-0.458333\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(138\) 0.366025 1.36603i 0.366025 1.36603i
\(139\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(140\) 0 0
\(141\) −1.41421 −1.41421
\(142\) 0 0
\(143\) 0 0
\(144\) −0.358719 0.207107i −0.358719 0.207107i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(152\) −1.93185 0.517638i −1.93185 0.517638i
\(153\) −1.00000 1.00000i −1.00000 1.00000i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(158\) 0.280144 + 1.04551i 0.280144 + 1.04551i
\(159\) 0.923880 + 1.60021i 0.923880 + 1.60021i
\(160\) 0 0
\(161\) 0 0
\(162\) −0.541196 0.541196i −0.541196 0.541196i
\(163\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.937379 0.541196i 0.937379 0.541196i
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 1.00000i 1.00000i
\(170\) 0 0
\(171\) −1.60021 0.923880i −1.60021 0.923880i
\(172\) 0 0
\(173\) −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i \(0.333333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(182\) 0 0
\(183\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(184\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(185\) 0 0
\(186\) −0.292893 + 0.507306i −0.292893 + 0.507306i
\(187\) 0 0
\(188\) 0.414214 + 0.414214i 0.414214 + 0.414214i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(193\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(198\) 0 0
\(199\) 0.923880 1.60021i 0.923880 1.60021i 0.130526 0.991445i \(-0.458333\pi\)
0.793353 0.608761i \(-0.208333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.585786i 0.585786i
\(205\) 0 0
\(206\) 0 0
\(207\) −1.78480 + 0.478235i −1.78480 + 0.478235i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0.198092 0.739288i 0.198092 0.739288i
\(213\) 0 0
\(214\) 0.507306 + 0.292893i 0.507306 + 0.292893i
\(215\) 0 0
\(216\) 1.08239i 1.08239i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.292893 0.507306i −0.292893 0.507306i
\(227\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(228\) 0.198092 + 0.739288i 0.198092 + 0.739288i
\(229\) 0.382683 + 0.662827i 0.382683 + 0.662827i 0.991445 0.130526i \(-0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.78480 + 0.478235i 1.78480 + 0.478235i 0.991445 0.130526i \(-0.0416667\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.00000 1.00000i 1.00000 1.00000i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 1.60021 + 0.923880i 1.60021 + 0.923880i 0.991445 + 0.130526i \(0.0416667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(242\) −0.739288 + 0.198092i −0.739288 + 0.198092i
\(243\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(244\) 0.317025 0.317025
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0.800199 0.214413i 0.800199 0.214413i
\(249\) −1.22474 0.707107i −1.22474 0.707107i
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.500000 0.866025i 0.500000 0.866025i
\(257\) 1.93185 + 0.517638i 1.93185 + 0.517638i 0.965926 + 0.258819i \(0.0833333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.198092 + 0.739288i 0.198092 + 0.739288i 0.991445 + 0.130526i \(0.0416667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) −1.60021 + 0.923880i −1.60021 + 0.923880i −0.608761 + 0.793353i \(0.708333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(272\) −0.414214 + 0.414214i −0.414214 + 0.414214i
\(273\) 0 0
\(274\) 0.585786i 0.585786i
\(275\) 0 0
\(276\) 0.662827 + 0.382683i 0.662827 + 0.382683i
\(277\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(278\) −0.151613 + 0.565826i −0.151613 + 0.565826i
\(279\) 0.765367 0.765367
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −0.280144 + 1.04551i −0.280144 + 1.04551i
\(283\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.541196 0.541196i 0.541196 0.541196i
\(289\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −0.765367 0.765367i −0.765367 0.765367i
\(303\) 0 0
\(304\) −0.382683 + 0.662827i −0.382683 + 0.662827i
\(305\) 0 0
\(306\) −0.937379 + 0.541196i −0.937379 + 0.541196i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.585786 −0.585786
\(317\) −0.478235 + 1.78480i −0.478235 + 1.78480i 0.130526 + 0.991445i \(0.458333\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(318\) 1.36603 0.366025i 1.36603 0.366025i
\(319\) 0 0
\(320\) 0 0
\(321\) 0.765367i 0.765367i
\(322\) 0 0
\(323\) −1.84776 + 1.84776i −1.84776 + 1.84776i
\(324\) 0.358719 0.207107i 0.358719 0.207107i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0.151613 + 0.565826i 0.151613 + 0.565826i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 0.739288 + 0.198092i 0.739288 + 0.198092i
\(339\) −0.382683 + 0.662827i −0.382683 + 0.662827i
\(340\) 0 0
\(341\) 0 0
\(342\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0.937379 + 0.541196i 0.937379 + 0.541196i
\(347\) −1.78480 + 0.478235i −1.78480 + 0.478235i −0.991445 0.130526i \(-0.958333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(348\) 0 0
\(349\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.93185 0.517638i 1.93185 0.517638i 0.965926 0.258819i \(-0.0833333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) −1.20711 + 2.09077i −1.20711 + 2.09077i
\(362\) −1.36603 0.366025i −1.36603 0.366025i
\(363\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.292893 + 0.507306i 0.292893 + 0.507306i
\(367\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(368\) 0.198092 + 0.739288i 0.198092 + 0.739288i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.224171 0.224171i −0.224171 0.224171i
\(373\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.32565 0.765367i 1.32565 0.765367i
\(377\) 0 0
\(378\) 0 0
\(379\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i \(-0.666667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) 2.61313i 2.61313i
\(392\) 0 0
\(393\) 0 0
\(394\) 0.507306 0.292893i 0.507306 0.292893i
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(398\) −1.00000 1.00000i −1.00000 1.00000i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.47858 + 0.396183i 1.47858 + 0.396183i
\(409\) −0.923880 + 1.60021i −0.923880 + 1.60021i −0.130526 + 0.991445i \(0.541667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(410\) 0 0
\(411\) −0.662827 + 0.382683i −0.662827 + 0.382683i
\(412\) 0 0
\(413\) 0 0
\(414\) 1.41421i 1.41421i
\(415\) 0 0
\(416\) 0 0
\(417\) 0.739288 0.198092i 0.739288 0.198092i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) 0 0
\(423\) 1.36603 0.366025i 1.36603 0.366025i
\(424\) −1.73205 1.00000i −1.73205 1.00000i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.224171 + 0.224171i −0.224171 + 0.224171i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 0.400100 + 0.107206i 0.400100 + 0.107206i
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.883663 + 3.29788i 0.883663 + 3.29788i
\(438\) 0 0
\(439\) −0.382683 0.662827i −0.382683 0.662827i 0.608761 0.793353i \(-0.291667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.739288 + 0.198092i 0.739288 + 0.198092i 0.608761 0.793353i \(-0.291667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.306223 0.0820522i 0.306223 0.0820522i
\(453\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(454\) 0 0
\(455\) 0 0
\(456\) 2.00000 2.00000
\(457\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(458\) 0.565826 0.151613i 0.565826 0.151613i
\(459\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.707107 1.22474i 0.707107 1.22474i
\(467\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) −0.541196 0.937379i −0.541196 0.937379i
\(475\) 0 0
\(476\) 0 0
\(477\) −1.30656 1.30656i −1.30656 1.30656i
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.00000 1.00000i 1.00000 1.00000i
\(483\) 0 0
\(484\) 0.414214i 0.414214i
\(485\) 0 0
\(486\) 0.662827 + 0.382683i 0.662827 + 0.382683i
\(487\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(488\) 0.214413 0.800199i 0.214413 0.800199i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.317025i 0.317025i
\(497\) 0 0
\(498\) −0.765367 + 0.765367i −0.765367 + 0.765367i
\(499\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.258819 0.965926i −0.258819 0.965926i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.541196 0.541196i −0.541196 0.541196i
\(513\) 1.78480 + 0.478235i 1.78480 + 0.478235i
\(514\) 0.765367 1.32565i 0.765367 1.32565i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.41421i 1.41421i
\(520\) 0 0
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0 0
\(523\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.585786 0.585786
\(527\) 0.280144 1.04551i 0.280144 1.04551i
\(528\) 0 0
\(529\) 2.09077 + 1.20711i 2.09077 + 1.20711i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(542\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(543\) 0.478235 + 1.78480i 0.478235 + 1.78480i
\(544\) −0.541196 0.937379i −0.541196 0.937379i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0.306223 + 0.0820522i 0.306223 + 0.0820522i
\(549\) 0.382683 0.662827i 0.382683 0.662827i
\(550\) 0 0
\(551\) 0 0
\(552\) 1.41421 1.41421i 1.41421 1.41421i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.274552 0.158513i −0.274552 0.158513i
\(557\) −0.739288 + 0.198092i −0.739288 + 0.198092i −0.608761 0.793353i \(-0.708333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(558\) 0.151613 0.565826i 0.151613 0.565826i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i \(-0.333333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) −0.507306 0.292893i −0.507306 0.292893i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.500000 0.866025i −0.500000 0.866025i
\(577\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(578\) 0.198092 + 0.739288i 0.198092 + 0.739288i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.32565 + 0.765367i −1.32565 + 0.765367i
\(587\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 1.41421i 1.41421i
\(590\) 0 0
\(591\) −0.662827 0.382683i −0.662827 0.382683i
\(592\) 0 0
\(593\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.478235 + 1.78480i −0.478235 + 1.78480i
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.507306 0.292893i 0.507306 0.292893i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(608\) −1.00000 1.00000i −1.00000 1.00000i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.151613 0.565826i −0.151613 0.565826i
\(613\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(618\) 0 0
\(619\) −0.923880 + 1.60021i −0.923880 + 1.60021i −0.130526 + 0.991445i \(0.541667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(620\) 0 0
\(621\) 1.60021 0.923880i 1.60021 0.923880i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(632\) −0.396183 + 1.47858i −0.396183 + 1.47858i
\(633\) 0 0
\(634\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(635\) 0 0
\(636\) 0.765367i 0.765367i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) −0.565826 0.151613i −0.565826 0.151613i
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(647\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(648\) −0.280144 1.04551i −0.280144 1.04551i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.739288 0.198092i −0.739288 0.198092i −0.130526 0.991445i \(-0.541667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −0.662827 0.382683i −0.662827 0.382683i 0.130526 0.991445i \(-0.458333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 1.53073 1.53073
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.207107 + 0.358719i −0.207107 + 0.358719i
\(677\) −1.93185 0.517638i −1.93185 0.517638i −0.965926 0.258819i \(-0.916667\pi\)
−0.965926 0.258819i \(-0.916667\pi\)
\(678\) 0.414214 + 0.414214i 0.414214 + 0.414214i
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.478235 + 1.78480i 0.478235 + 1.78480i 0.608761 + 0.793353i \(0.291667\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(684\) −0.382683 0.662827i −0.382683 0.662827i
\(685\) 0 0
\(686\) 0 0
\(687\) −0.541196 0.541196i −0.541196 0.541196i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.60021 0.923880i 1.60021 0.923880i 0.608761 0.793353i \(-0.291667\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(692\) −0.414214 + 0.414214i −0.414214 + 0.414214i
\(693\) 0 0
\(694\) 1.41421i 1.41421i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(699\) −1.84776 −1.84776
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.53073i 1.53073i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(710\) 0 0
\(711\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(712\) 0 0
\(713\) −1.00000 1.00000i −1.00000 1.00000i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(723\) −1.78480 0.478235i −1.78480 0.478235i
\(724\) 0.382683 0.662827i 0.382683 0.662827i
\(725\) 0 0
\(726\) 0.662827 0.382683i 0.662827 0.382683i
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.306223 + 0.0820522i −0.306223 + 0.0820522i
\(733\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −1.41421 −1.41421
\(737\) 0 0
\(738\) 0 0
\(739\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.30656 + 1.30656i −1.30656 + 1.30656i −0.382683 + 0.923880i \(0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(744\) −0.717439 + 0.414214i −0.717439 + 0.414214i
\(745\) 0 0
\(746\) 0 0
\(747\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) −0.151613 0.565826i −0.151613 0.565826i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 1.04551 + 0.280144i 1.04551 + 0.280144i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −0.937379 0.541196i −0.937379 0.541196i
\(767\) 0 0
\(768\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(769\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(770\) 0 0
\(771\) −2.00000 −2.00000
\(772\) 0 0
\(773\) −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i \(-0.833333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 1.93185 + 0.517638i 1.93185 + 0.517638i
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(788\) 0.0820522 + 0.306223i 0.0820522 + 0.306223i
\(789\) −0.382683 0.662827i −0.382683 0.662827i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.662827 0.382683i 0.662827 0.382683i
\(797\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(798\) 0 0
\(799\) 2.00000i 2.00000i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(810\) 0 0
\(811\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(812\) 0 0
\(813\) 1.30656 1.30656i 1.30656 1.30656i
\(814\) 0 0
\(815\) 0 0
\(816\) 0.292893 0.507306i 0.292893 0.507306i
\(817\) 0 0
\(818\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0.151613 + 0.565826i 0.151613 + 0.565826i
\(823\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.541196 0.541196i −0.541196 0.541196i 0.382683 0.923880i \(-0.375000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(828\) −0.739288 0.198092i −0.739288 0.198092i
\(829\) −0.382683 + 0.662827i −0.382683 + 0.662827i −0.991445 0.130526i \(-0.958333\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0.585786i 0.585786i
\(835\) 0 0
\(836\) 0 0
\(837\) −0.739288 + 0.198092i −0.739288 + 0.198092i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −1.00000 −1.00000
\(842\) 0.280144 1.04551i 0.280144 1.04551i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 1.08239i 1.08239i
\(847\) 0 0
\(848\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.414214 + 0.717439i 0.414214 + 0.717439i
\(857\) −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i \(-0.833333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(858\) 0 0
\(859\) 0.382683 + 0.662827i 0.382683 + 0.662827i 0.991445 0.130526i \(-0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.739288 + 0.198092i 0.739288 + 0.198092i 0.608761 0.793353i \(-0.291667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(864\) −0.382683 + 0.662827i −0.382683 + 0.662827i
\(865\) 0 0
\(866\) 0 0
\(867\) 0.707107 0.707107i 0.707107 0.707107i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 2.61313 2.61313
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(878\) −0.565826 + 0.151613i −0.565826 + 0.151613i
\(879\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.292893 0.507306i 0.292893 0.507306i
\(887\) −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i \(-0.666667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.676327 2.52409i −0.676327 2.52409i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −2.26303 + 1.30656i −2.26303 + 1.30656i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.828427i 0.828427i
\(905\) 0 0
\(906\) 0.937379 + 0.541196i 0.937379 + 0.541196i
\(907\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0.198092 0.739288i 0.198092 0.739288i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.317025i 0.317025i
\(917\) 0 0
\(918\) 0.765367 0.765367i 0.765367 0.765367i
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.198092 0.739288i 0.198092 0.739288i −0.793353 0.608761i \(-0.791667\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(948\) 0.565826 0.151613i 0.565826 0.151613i
\(949\) 0 0
\(950\) 0 0
\(951\) 1.84776i 1.84776i
\(952\) 0 0
\(953\) 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(954\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.207107 0.358719i −0.207107 0.358719i
\(962\) 0 0
\(963\) 0.198092 + 0.739288i 0.198092 + 0.739288i
\(964\) 0.382683 + 0.662827i 0.382683 + 0.662827i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) −1.04551 0.280144i −1.04551 0.280144i
\(969\) 1.30656 2.26303i 1.30656 2.26303i
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) −0.292893 + 0.292893i −0.292893 + 0.292893i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.274552 0.158513i −0.274552 0.158513i
\(977\) 1.78480 0.478235i 1.78480 0.478235i 0.793353 0.608761i \(-0.208333\pi\)
0.991445 + 0.130526i \(0.0416667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.93185 + 0.517638i −1.93185 + 0.517638i −0.965926 + 0.258819i \(0.916667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0.565826 + 0.151613i 0.565826 + 0.151613i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −0.292893 0.507306i −0.292893 0.507306i
\(997\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(998\) −0.280144 1.04551i −0.280144 1.04551i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3675.1.bf.c.668.3 16
3.2 odd 2 3675.1.bf.d.668.2 16
5.2 odd 4 inner 3675.1.bf.c.2432.3 16
5.3 odd 4 3675.1.bf.d.2432.2 16
5.4 even 2 3675.1.bf.d.668.2 16
7.2 even 3 inner 3675.1.bf.c.68.2 16
7.3 odd 6 3675.1.k.a.293.3 yes 8
7.4 even 3 3675.1.k.c.293.3 yes 8
7.5 odd 6 3675.1.bf.d.68.2 16
7.6 odd 2 3675.1.bf.d.668.3 16
15.2 even 4 3675.1.bf.d.2432.2 16
15.8 even 4 inner 3675.1.bf.c.2432.3 16
15.14 odd 2 CM 3675.1.bf.c.668.3 16
21.2 odd 6 3675.1.bf.d.68.3 16
21.5 even 6 inner 3675.1.bf.c.68.3 16
21.11 odd 6 3675.1.k.a.293.2 8
21.17 even 6 3675.1.k.c.293.2 yes 8
21.20 even 2 inner 3675.1.bf.c.668.2 16
35.2 odd 12 inner 3675.1.bf.c.1832.2 16
35.3 even 12 3675.1.k.c.2057.3 yes 8
35.4 even 6 3675.1.k.a.293.2 8
35.9 even 6 3675.1.bf.d.68.3 16
35.12 even 12 3675.1.bf.d.1832.2 16
35.13 even 4 inner 3675.1.bf.c.2432.2 16
35.17 even 12 3675.1.k.a.2057.2 yes 8
35.18 odd 12 3675.1.k.a.2057.3 yes 8
35.19 odd 6 inner 3675.1.bf.c.68.3 16
35.23 odd 12 3675.1.bf.d.1832.3 16
35.24 odd 6 3675.1.k.c.293.2 yes 8
35.27 even 4 3675.1.bf.d.2432.3 16
35.32 odd 12 3675.1.k.c.2057.2 yes 8
35.33 even 12 inner 3675.1.bf.c.1832.3 16
35.34 odd 2 inner 3675.1.bf.c.668.2 16
105.2 even 12 3675.1.bf.d.1832.3 16
105.17 odd 12 3675.1.k.c.2057.3 yes 8
105.23 even 12 inner 3675.1.bf.c.1832.2 16
105.32 even 12 3675.1.k.a.2057.3 yes 8
105.38 odd 12 3675.1.k.a.2057.2 yes 8
105.44 odd 6 inner 3675.1.bf.c.68.2 16
105.47 odd 12 inner 3675.1.bf.c.1832.3 16
105.53 even 12 3675.1.k.c.2057.2 yes 8
105.59 even 6 3675.1.k.a.293.3 yes 8
105.62 odd 4 inner 3675.1.bf.c.2432.2 16
105.68 odd 12 3675.1.bf.d.1832.2 16
105.74 odd 6 3675.1.k.c.293.3 yes 8
105.83 odd 4 3675.1.bf.d.2432.3 16
105.89 even 6 3675.1.bf.d.68.2 16
105.104 even 2 3675.1.bf.d.668.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3675.1.k.a.293.2 8 21.11 odd 6
3675.1.k.a.293.2 8 35.4 even 6
3675.1.k.a.293.3 yes 8 7.3 odd 6
3675.1.k.a.293.3 yes 8 105.59 even 6
3675.1.k.a.2057.2 yes 8 35.17 even 12
3675.1.k.a.2057.2 yes 8 105.38 odd 12
3675.1.k.a.2057.3 yes 8 35.18 odd 12
3675.1.k.a.2057.3 yes 8 105.32 even 12
3675.1.k.c.293.2 yes 8 21.17 even 6
3675.1.k.c.293.2 yes 8 35.24 odd 6
3675.1.k.c.293.3 yes 8 7.4 even 3
3675.1.k.c.293.3 yes 8 105.74 odd 6
3675.1.k.c.2057.2 yes 8 35.32 odd 12
3675.1.k.c.2057.2 yes 8 105.53 even 12
3675.1.k.c.2057.3 yes 8 35.3 even 12
3675.1.k.c.2057.3 yes 8 105.17 odd 12
3675.1.bf.c.68.2 16 7.2 even 3 inner
3675.1.bf.c.68.2 16 105.44 odd 6 inner
3675.1.bf.c.68.3 16 21.5 even 6 inner
3675.1.bf.c.68.3 16 35.19 odd 6 inner
3675.1.bf.c.668.2 16 21.20 even 2 inner
3675.1.bf.c.668.2 16 35.34 odd 2 inner
3675.1.bf.c.668.3 16 1.1 even 1 trivial
3675.1.bf.c.668.3 16 15.14 odd 2 CM
3675.1.bf.c.1832.2 16 35.2 odd 12 inner
3675.1.bf.c.1832.2 16 105.23 even 12 inner
3675.1.bf.c.1832.3 16 35.33 even 12 inner
3675.1.bf.c.1832.3 16 105.47 odd 12 inner
3675.1.bf.c.2432.2 16 35.13 even 4 inner
3675.1.bf.c.2432.2 16 105.62 odd 4 inner
3675.1.bf.c.2432.3 16 5.2 odd 4 inner
3675.1.bf.c.2432.3 16 15.8 even 4 inner
3675.1.bf.d.68.2 16 7.5 odd 6
3675.1.bf.d.68.2 16 105.89 even 6
3675.1.bf.d.68.3 16 21.2 odd 6
3675.1.bf.d.68.3 16 35.9 even 6
3675.1.bf.d.668.2 16 3.2 odd 2
3675.1.bf.d.668.2 16 5.4 even 2
3675.1.bf.d.668.3 16 7.6 odd 2
3675.1.bf.d.668.3 16 105.104 even 2
3675.1.bf.d.1832.2 16 35.12 even 12
3675.1.bf.d.1832.2 16 105.68 odd 12
3675.1.bf.d.1832.3 16 35.23 odd 12
3675.1.bf.d.1832.3 16 105.2 even 12
3675.1.bf.d.2432.2 16 5.3 odd 4
3675.1.bf.d.2432.2 16 15.2 even 4
3675.1.bf.d.2432.3 16 35.27 even 4
3675.1.bf.d.2432.3 16 105.83 odd 4