Properties

Label 366.2.a
Level 366
Weight 2
Character orbit a
Rep. character \(\chi_{366}(1,\cdot)\)
Character field \(\Q\)
Dimension 9
Newforms 8
Sturm bound 124
Trace bound 7

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 366 = 2 \cdot 3 \cdot 61 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 366.a (trivial)
Character field: \(\Q\)
Newforms: \( 8 \)
Sturm bound: \(124\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(366))\).

Total New Old
Modular forms 66 9 57
Cusp forms 59 9 50
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(61\)FrickeDim.
\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(7\)

Trace form

\( 9q - q^{2} - q^{3} + 9q^{4} - 6q^{5} + q^{6} - 4q^{7} - q^{8} + 9q^{9} + O(q^{10}) \) \( 9q - q^{2} - q^{3} + 9q^{4} - 6q^{5} + q^{6} - 4q^{7} - q^{8} + 9q^{9} + 2q^{10} + 4q^{11} - q^{12} + 2q^{13} + 6q^{15} + 9q^{16} - 2q^{17} - q^{18} + 4q^{19} - 6q^{20} - 4q^{21} + 8q^{23} + q^{24} + 15q^{25} - 6q^{26} - q^{27} - 4q^{28} + 10q^{29} + 6q^{30} + 4q^{31} - q^{32} + 4q^{33} - 2q^{34} + 16q^{35} + 9q^{36} + 14q^{37} - 12q^{38} - 6q^{39} + 2q^{40} + 22q^{41} + 4q^{42} - 16q^{43} + 4q^{44} - 6q^{45} + 8q^{46} - 8q^{47} - q^{48} - 11q^{49} - 31q^{50} - 14q^{51} + 2q^{52} + 2q^{53} + q^{54} + 8q^{55} - 12q^{57} - 18q^{58} + 4q^{59} + 6q^{60} + 5q^{61} - 12q^{62} - 4q^{63} + 9q^{64} - 4q^{66} - 40q^{67} - 2q^{68} + 8q^{69} - 4q^{70} - 48q^{71} - q^{72} - 6q^{73} - 30q^{74} - 31q^{75} + 4q^{76} - 36q^{77} + 6q^{78} - 4q^{79} - 6q^{80} + 9q^{81} - 18q^{82} + 20q^{83} - 4q^{84} - 20q^{85} + 8q^{86} - 2q^{87} + 22q^{89} + 2q^{90} - 16q^{91} + 8q^{92} - 20q^{93} + 32q^{94} + 24q^{95} + q^{96} - 26q^{97} - 9q^{98} + 4q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(366))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 61
366.2.a.a \(1\) \(2.923\) \(\Q\) None \(-1\) \(-1\) \(-2\) \(4\) \(+\) \(+\) \(-\) \(q-q^{2}-q^{3}+q^{4}-2q^{5}+q^{6}+4q^{7}+\cdots\)
366.2.a.b \(1\) \(2.923\) \(\Q\) None \(-1\) \(1\) \(-3\) \(-1\) \(+\) \(-\) \(-\) \(q-q^{2}+q^{3}+q^{4}-3q^{5}-q^{6}-q^{7}+\cdots\)
366.2.a.c \(1\) \(2.923\) \(\Q\) None \(-1\) \(1\) \(1\) \(-2\) \(+\) \(-\) \(+\) \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-2q^{7}+\cdots\)
366.2.a.d \(1\) \(2.923\) \(\Q\) None \(1\) \(-1\) \(-3\) \(-3\) \(-\) \(+\) \(-\) \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}-3q^{7}+\cdots\)
366.2.a.e \(1\) \(2.923\) \(\Q\) None \(1\) \(-1\) \(-1\) \(2\) \(-\) \(+\) \(+\) \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+2q^{7}+\cdots\)
366.2.a.f \(1\) \(2.923\) \(\Q\) None \(1\) \(1\) \(1\) \(-2\) \(-\) \(-\) \(-\) \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-2q^{7}+\cdots\)
366.2.a.g \(1\) \(2.923\) \(\Q\) None \(1\) \(1\) \(1\) \(1\) \(-\) \(-\) \(-\) \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
366.2.a.h \(2\) \(2.923\) \(\Q(\sqrt{17}) \) None \(-2\) \(-2\) \(0\) \(-3\) \(+\) \(+\) \(-\) \(q-q^{2}-q^{3}+q^{4}+(1-2\beta )q^{5}+q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(366))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(366)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(61))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(122))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(183))\)\(^{\oplus 2}\)