Properties

Label 3648.2.k.h
Level $3648$
Weight $2$
Character orbit 3648.k
Analytic conductor $29.129$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3648,2,Mod(2431,3648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3648.2431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3648, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3648 = 2^{6} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3648.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1294266574\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 912)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + \beta_{3} q^{5} - \beta_1 q^{7} + q^{9} + \beta_1 q^{11} + ( - 2 \beta_{2} + 2 \beta_1) q^{13} + \beta_{3} q^{15} + (\beta_{3} + 2) q^{17} + (\beta_{2} + 4) q^{19} - \beta_1 q^{21} + ( - 4 \beta_{2} + 2 \beta_1) q^{23}+ \cdots + \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 2 q^{5} + 4 q^{9} + 2 q^{15} + 10 q^{17} + 16 q^{19} + 14 q^{25} + 4 q^{27} - 12 q^{31} + 2 q^{45} + 14 q^{49} + 10 q^{51} + 16 q^{57} - 16 q^{59} - 10 q^{61} + 8 q^{67} + 16 q^{71} + 18 q^{73}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + \nu^{2} - \nu + 3 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 5\nu + 3 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 2\beta_{2} + \beta _1 + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{2} - 2\beta _1 + 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3648\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(1921\) \(2053\) \(2623\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2431.1
−1.18614 1.26217i
−1.18614 + 1.26217i
1.68614 0.396143i
1.68614 + 0.396143i
0 1.00000 0 −2.37228 0 2.52434i 0 1.00000 0
2431.2 0 1.00000 0 −2.37228 0 2.52434i 0 1.00000 0
2431.3 0 1.00000 0 3.37228 0 0.792287i 0 1.00000 0
2431.4 0 1.00000 0 3.37228 0 0.792287i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
76.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3648.2.k.h 4
4.b odd 2 1 3648.2.k.g 4
8.b even 2 1 912.2.k.g 4
8.d odd 2 1 912.2.k.h yes 4
19.b odd 2 1 3648.2.k.g 4
24.f even 2 1 2736.2.k.o 4
24.h odd 2 1 2736.2.k.n 4
76.d even 2 1 inner 3648.2.k.h 4
152.b even 2 1 912.2.k.g 4
152.g odd 2 1 912.2.k.h yes 4
456.l odd 2 1 2736.2.k.n 4
456.p even 2 1 2736.2.k.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
912.2.k.g 4 8.b even 2 1
912.2.k.g 4 152.b even 2 1
912.2.k.h yes 4 8.d odd 2 1
912.2.k.h yes 4 152.g odd 2 1
2736.2.k.n 4 24.h odd 2 1
2736.2.k.n 4 456.l odd 2 1
2736.2.k.o 4 24.f even 2 1
2736.2.k.o 4 456.p even 2 1
3648.2.k.g 4 4.b odd 2 1
3648.2.k.g 4 19.b odd 2 1
3648.2.k.h 4 1.a even 1 1 trivial
3648.2.k.h 4 76.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3648, [\chi])\):

\( T_{5}^{2} - T_{5} - 8 \) Copy content Toggle raw display
\( T_{31}^{2} + 6T_{31} - 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - T - 8)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 7T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{4} + 7T^{2} + 4 \) Copy content Toggle raw display
$13$ \( T^{4} + 28T^{2} + 64 \) Copy content Toggle raw display
$17$ \( (T^{2} - 5 T - 2)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 8 T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 76T^{2} + 256 \) Copy content Toggle raw display
$29$ \( T^{4} + 112T^{2} + 1024 \) Copy content Toggle raw display
$31$ \( (T^{2} + 6 T - 24)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 28T^{2} + 64 \) Copy content Toggle raw display
$41$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 87T^{2} + 36 \) Copy content Toggle raw display
$47$ \( T^{4} + 19T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{4} + 112T^{2} + 1024 \) Copy content Toggle raw display
$59$ \( (T + 4)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 5 T - 2)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 4 T - 128)^{2} \) Copy content Toggle raw display
$71$ \( (T - 4)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 9 T - 54)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 2 T - 32)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 176)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 176)^{2} \) Copy content Toggle raw display
show more
show less