Newspace parameters
Level: | \( N \) | \(=\) | \( 3648 = 2^{6} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3648.cr (of order \(18\), degree \(6\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.82058916609\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | \(\Q(\zeta_{18})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - x^{3} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 228) |
Projective image: | \(D_{9}\) |
Projective field: | Galois closure of 9.1.88042790804544.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3648\mathbb{Z}\right)^\times\).
\(n\) | \(1217\) | \(1921\) | \(2053\) | \(2623\) |
\(\chi(n)\) | \(-1\) | \(\zeta_{18}^{2}\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
833.1 |
|
0 | −0.939693 | + | 0.342020i | 0 | 0 | 0 | −0.939693 | − | 1.62760i | 0 | 0.766044 | − | 0.642788i | 0 | ||||||||||||||||||||||||||||||
1601.1 | 0 | 0.173648 | − | 0.984808i | 0 | 0 | 0 | 0.173648 | + | 0.300767i | 0 | −0.939693 | − | 0.342020i | 0 | |||||||||||||||||||||||||||||||
1985.1 | 0 | 0.766044 | − | 0.642788i | 0 | 0 | 0 | 0.766044 | − | 1.32683i | 0 | 0.173648 | − | 0.984808i | 0 | |||||||||||||||||||||||||||||||
2753.1 | 0 | 0.766044 | + | 0.642788i | 0 | 0 | 0 | 0.766044 | + | 1.32683i | 0 | 0.173648 | + | 0.984808i | 0 | |||||||||||||||||||||||||||||||
3329.1 | 0 | 0.173648 | + | 0.984808i | 0 | 0 | 0 | 0.173648 | − | 0.300767i | 0 | −0.939693 | + | 0.342020i | 0 | |||||||||||||||||||||||||||||||
3521.1 | 0 | −0.939693 | − | 0.342020i | 0 | 0 | 0 | −0.939693 | + | 1.62760i | 0 | 0.766044 | + | 0.642788i | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-3}) \) |
19.e | even | 9 | 1 | inner |
57.l | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3648.1.cr.a | 6 | |
3.b | odd | 2 | 1 | CM | 3648.1.cr.a | 6 | |
4.b | odd | 2 | 1 | 3648.1.cr.b | 6 | ||
8.b | even | 2 | 1 | 912.1.cb.a | 6 | ||
8.d | odd | 2 | 1 | 228.1.s.a | ✓ | 6 | |
12.b | even | 2 | 1 | 3648.1.cr.b | 6 | ||
19.e | even | 9 | 1 | inner | 3648.1.cr.a | 6 | |
24.f | even | 2 | 1 | 228.1.s.a | ✓ | 6 | |
24.h | odd | 2 | 1 | 912.1.cb.a | 6 | ||
57.l | odd | 18 | 1 | inner | 3648.1.cr.a | 6 | |
76.l | odd | 18 | 1 | 3648.1.cr.b | 6 | ||
152.t | even | 18 | 1 | 912.1.cb.a | 6 | ||
152.u | odd | 18 | 1 | 228.1.s.a | ✓ | 6 | |
228.v | even | 18 | 1 | 3648.1.cr.b | 6 | ||
456.bh | odd | 18 | 1 | 912.1.cb.a | 6 | ||
456.bu | even | 18 | 1 | 228.1.s.a | ✓ | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
228.1.s.a | ✓ | 6 | 8.d | odd | 2 | 1 | |
228.1.s.a | ✓ | 6 | 24.f | even | 2 | 1 | |
228.1.s.a | ✓ | 6 | 152.u | odd | 18 | 1 | |
228.1.s.a | ✓ | 6 | 456.bu | even | 18 | 1 | |
912.1.cb.a | 6 | 8.b | even | 2 | 1 | ||
912.1.cb.a | 6 | 24.h | odd | 2 | 1 | ||
912.1.cb.a | 6 | 152.t | even | 18 | 1 | ||
912.1.cb.a | 6 | 456.bh | odd | 18 | 1 | ||
3648.1.cr.a | 6 | 1.a | even | 1 | 1 | trivial | |
3648.1.cr.a | 6 | 3.b | odd | 2 | 1 | CM | |
3648.1.cr.a | 6 | 19.e | even | 9 | 1 | inner | |
3648.1.cr.a | 6 | 57.l | odd | 18 | 1 | inner | |
3648.1.cr.b | 6 | 4.b | odd | 2 | 1 | ||
3648.1.cr.b | 6 | 12.b | even | 2 | 1 | ||
3648.1.cr.b | 6 | 76.l | odd | 18 | 1 | ||
3648.1.cr.b | 6 | 228.v | even | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{6} + 3T_{7}^{4} - 2T_{7}^{3} + 9T_{7}^{2} - 3T_{7} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(3648, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} \)
$3$
\( T^{6} + T^{3} + 1 \)
$5$
\( T^{6} \)
$7$
\( T^{6} + 3 T^{4} - 2 T^{3} + 9 T^{2} + \cdots + 1 \)
$11$
\( T^{6} \)
$13$
\( T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1 \)
$17$
\( T^{6} \)
$19$
\( (T^{2} + T + 1)^{3} \)
$23$
\( T^{6} \)
$29$
\( T^{6} \)
$31$
\( T^{6} + 3 T^{4} - 2 T^{3} + 9 T^{2} + \cdots + 1 \)
$37$
\( (T^{3} - 3 T - 1)^{2} \)
$41$
\( T^{6} \)
$43$
\( T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1 \)
$47$
\( T^{6} \)
$53$
\( T^{6} \)
$59$
\( T^{6} \)
$61$
\( T^{6} + 6 T^{5} + 15 T^{4} + 19 T^{3} + \cdots + 1 \)
$67$
\( T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1 \)
$71$
\( T^{6} \)
$73$
\( T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1 \)
$79$
\( T^{6} + 6 T^{5} + 15 T^{4} + 19 T^{3} + \cdots + 1 \)
$83$
\( T^{6} \)
$89$
\( T^{6} \)
$97$
\( T^{6} - T^{3} + 1 \)
show more
show less