[N,k,chi] = [3645,2,Mod(1,3645)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3645, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3645.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(1\)
\(5\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{15} - 3 T_{2}^{14} - 15 T_{2}^{13} + 47 T_{2}^{12} + 84 T_{2}^{11} - 279 T_{2}^{10} - 219 T_{2}^{9} + 783 T_{2}^{8} + 279 T_{2}^{7} - 1054 T_{2}^{6} - 195 T_{2}^{5} + 609 T_{2}^{4} + 88 T_{2}^{3} - 102 T_{2}^{2} + 3 \)
T2^15 - 3*T2^14 - 15*T2^13 + 47*T2^12 + 84*T2^11 - 279*T2^10 - 219*T2^9 + 783*T2^8 + 279*T2^7 - 1054*T2^6 - 195*T2^5 + 609*T2^4 + 88*T2^3 - 102*T2^2 + 3
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3645))\).
$p$
$F_p(T)$
$2$
\( T^{15} - 3 T^{14} - 15 T^{13} + 47 T^{12} + \cdots + 3 \)
T^15 - 3*T^14 - 15*T^13 + 47*T^12 + 84*T^11 - 279*T^10 - 219*T^9 + 783*T^8 + 279*T^7 - 1054*T^6 - 195*T^5 + 609*T^4 + 88*T^3 - 102*T^2 + 3
$3$
\( T^{15} \)
T^15
$5$
\( (T + 1)^{15} \)
(T + 1)^15
$7$
\( T^{15} + 12 T^{14} + 21 T^{13} - 263 T^{12} + \cdots + 27 \)
T^15 + 12*T^14 + 21*T^13 - 263*T^12 - 1149*T^11 + 474*T^10 + 9963*T^9 + 13536*T^8 - 14247*T^7 - 42522*T^6 - 19665*T^5 + 16929*T^4 + 18288*T^3 + 5859*T^2 + 729*T + 27
$11$
\( T^{15} - 78 T^{13} + 44 T^{12} + \cdots + 51111 \)
T^15 - 78*T^13 + 44*T^12 + 2232*T^11 - 2043*T^10 - 29961*T^9 + 35424*T^8 + 193347*T^7 - 275284*T^6 - 518328*T^5 + 887154*T^4 + 283006*T^3 - 758628*T^2 + 112590*T + 51111
$13$
\( T^{15} + 12 T^{14} - 21 T^{13} + \cdots + 75853 \)
T^15 + 12*T^14 - 21*T^13 - 765*T^12 - 1965*T^11 + 11565*T^10 + 53027*T^9 - 28539*T^8 - 379836*T^7 - 179650*T^6 + 1011525*T^5 + 710103*T^4 - 887742*T^3 - 556755*T^2 + 217386*T + 75853
$17$
\( T^{15} - 12 T^{14} - 51 T^{13} + \cdots - 88719 \)
T^15 - 12*T^14 - 51*T^13 + 1001*T^12 - 276*T^11 - 29277*T^10 + 55977*T^9 + 331587*T^8 - 1072143*T^7 - 679258*T^6 + 6097026*T^5 - 7481586*T^4 + 1542490*T^3 + 1936734*T^2 - 586521*T - 88719
$19$
\( T^{15} + 24 T^{14} + 156 T^{13} + \cdots - 7019 \)
T^15 + 24*T^14 + 156*T^13 - 558*T^12 - 10977*T^11 - 41532*T^10 - 1225*T^9 + 273348*T^8 + 280368*T^7 - 616339*T^6 - 712959*T^5 + 561336*T^4 + 462330*T^3 - 81957*T^2 - 68574*T - 7019
$23$
\( T^{15} - 18 T^{14} + \cdots - 208681353 \)
T^15 - 18*T^14 - 39*T^13 + 2331*T^12 - 7137*T^11 - 99216*T^10 + 557985*T^9 + 1328427*T^8 - 13951278*T^7 + 8388306*T^6 + 122183559*T^5 - 240027381*T^4 - 170526465*T^3 + 633838527*T^2 - 142063146*T - 208681353
$29$
\( T^{15} + 3 T^{14} - 261 T^{13} + \cdots - 70766457 \)
T^15 + 3*T^14 - 261*T^13 - 830*T^12 + 24216*T^11 + 81189*T^10 - 956466*T^9 - 3339450*T^8 + 15401727*T^7 + 55415047*T^6 - 78201528*T^5 - 302801814*T^4 + 112922941*T^3 + 458584233*T^2 - 126510678*T - 70766457
$31$
\( T^{15} + 24 T^{14} + \cdots + 2774253969 \)
T^15 + 24*T^14 - 12*T^13 - 4424*T^12 - 25887*T^11 + 236961*T^10 + 2481114*T^9 - 1396215*T^8 - 76891545*T^7 - 149362641*T^6 + 771738030*T^5 + 2174992722*T^4 - 2965990041*T^3 - 7844494167*T^2 + 7164916722*T + 2774253969
$37$
\( T^{15} + 24 T^{14} + \cdots + 360965557 \)
T^15 + 24*T^14 - 6*T^13 - 4300*T^12 - 27210*T^11 + 189453*T^10 + 2191474*T^9 - 311625*T^8 - 61393770*T^7 - 123035543*T^6 + 645944748*T^5 + 2019096345*T^4 - 1752971119*T^3 - 7038948639*T^2 + 2219002221*T + 360965557
$41$
\( T^{15} + 9 T^{14} + \cdots + 7229668599 \)
T^15 + 9*T^14 - 282*T^13 - 2255*T^12 + 31032*T^11 + 215388*T^10 - 1697952*T^9 - 9836019*T^8 + 48895317*T^7 + 220508815*T^6 - 729456642*T^5 - 2202530493*T^4 + 5284019080*T^3 + 6334283169*T^2 - 16240975938*T + 7229668599
$43$
\( T^{15} + 42 T^{14} + \cdots - 2166924437 \)
T^15 + 42*T^14 + 555*T^13 + 60*T^12 - 60225*T^11 - 454935*T^10 + 47630*T^9 + 12220497*T^8 + 28497735*T^7 - 115188307*T^6 - 405723777*T^5 + 406213509*T^4 + 2029140609*T^3 + 58748748*T^2 - 3439172832*T - 2166924437
$47$
\( T^{15} - 21 T^{14} + \cdots - 1262687781 \)
T^15 - 21*T^14 - 147*T^13 + 5765*T^12 - 16059*T^11 - 449514*T^10 + 3181782*T^9 + 5472711*T^8 - 113987079*T^7 + 300119273*T^6 + 510514266*T^5 - 4202546982*T^4 + 9321758050*T^3 - 10220547579*T^2 + 5659620957*T - 1262687781
$53$
\( T^{15} - 18 T^{14} + \cdots + 30327689193 \)
T^15 - 18*T^14 - 333*T^13 + 7997*T^12 + 11463*T^11 - 1122192*T^10 + 5246211*T^9 + 44100747*T^8 - 455758137*T^7 + 894100193*T^6 + 3843251685*T^5 - 17480125494*T^4 + 8172523291*T^3 + 54769653174*T^2 - 82558267434*T + 30327689193
$59$
\( T^{15} + 6 T^{14} + \cdots - 4279835777463 \)
T^15 + 6*T^14 - 531*T^13 - 3007*T^12 + 110439*T^11 + 594108*T^10 - 11499183*T^9 - 59117400*T^8 + 632359053*T^7 + 3128673734*T^6 - 17704716252*T^5 - 85301926488*T^4 + 220330587250*T^3 + 1059579915669*T^2 - 837962898417*T - 4279835777463
$61$
\( T^{15} + 15 T^{14} + \cdots - 1132793927 \)
T^15 + 15*T^14 - 339*T^13 - 4953*T^12 + 45495*T^11 + 582567*T^10 - 3380236*T^9 - 30174678*T^8 + 149637384*T^7 + 639536861*T^6 - 3477835707*T^5 - 2500801671*T^4 + 29480889750*T^3 - 40056843141*T^2 + 13197826416*T - 1132793927
$67$
\( T^{15} + 45 T^{14} + \cdots - 894784563 \)
T^15 + 45*T^14 + 639*T^13 + 184*T^12 - 77286*T^11 - 605775*T^10 + 944421*T^9 + 31771413*T^8 + 114715602*T^7 - 270752676*T^6 - 2767533318*T^5 - 5290427898*T^4 + 5563758078*T^3 + 30003634764*T^2 + 27242322246*T - 894784563
$71$
\( T^{15} + 12 T^{14} + \cdots + 462163501167 \)
T^15 + 12*T^14 - 465*T^13 - 6428*T^12 + 63930*T^11 + 1132254*T^10 - 2389359*T^9 - 87356682*T^8 - 116969229*T^7 + 2980615069*T^6 + 9752873988*T^5 - 36314566044*T^4 - 176201815421*T^3 + 75224833572*T^2 + 884732603202*T + 462163501167
$73$
\( T^{15} + 21 T^{14} + \cdots - 72125996039 \)
T^15 + 21*T^14 - 363*T^13 - 8856*T^12 + 37761*T^11 + 1218807*T^10 - 1668349*T^9 - 72068994*T^8 + 47683962*T^7 + 1889810882*T^6 - 284026242*T^5 - 22457173254*T^4 - 9170173926*T^3 + 103371773538*T^2 + 82925335962*T - 72125996039
$79$
\( T^{15} + 48 T^{14} + \cdots + 59845453641 \)
T^15 + 48*T^14 + 570*T^13 - 6464*T^12 - 177270*T^11 - 444396*T^10 + 14277168*T^9 + 93498498*T^8 - 355321971*T^7 - 4197445323*T^6 - 1721666394*T^5 + 60483668517*T^4 + 117573235425*T^3 - 98571013533*T^2 - 163992313098*T + 59845453641
$83$
\( T^{15} - 33 T^{14} + \cdots + 1117006209153 \)
T^15 - 33*T^14 + 36*T^13 + 9735*T^12 - 93960*T^11 - 672570*T^10 + 13392135*T^9 - 22294359*T^8 - 583186068*T^7 + 3022978374*T^6 + 5812152894*T^5 - 74703823749*T^4 + 111869175978*T^3 + 400633734285*T^2 - 1362273137199*T + 1117006209153
$89$
\( T^{15} + 9 T^{14} + \cdots + 446759170029 \)
T^15 + 9*T^14 - 486*T^13 - 4140*T^12 + 87255*T^11 + 730053*T^10 - 6995277*T^9 - 62189694*T^8 + 225048537*T^7 + 2632510962*T^6 - 227353959*T^5 - 46816647300*T^4 - 99037801224*T^3 + 125992428237*T^2 + 566463413880*T + 446759170029
$97$
\( T^{15} + 30 T^{14} + \cdots + 33134907354553 \)
T^15 + 30*T^14 - 408*T^13 - 20131*T^12 - 28608*T^11 + 4753554*T^10 + 34611769*T^9 - 429680007*T^8 - 5474589516*T^7 + 4557806443*T^6 + 283523717217*T^5 + 912544219095*T^4 - 2338592919595*T^3 - 11528722119669*T^2 + 6124800286131*T + 33134907354553
show more
show less