[N,k,chi] = [3645,2,Mod(1,3645)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3645, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3645.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(5\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{9} - 3T_{2}^{8} - 9T_{2}^{7} + 28T_{2}^{6} + 18T_{2}^{5} - 63T_{2}^{4} - 2T_{2}^{3} + 30T_{2}^{2} - 3 \)
T2^9 - 3*T2^8 - 9*T2^7 + 28*T2^6 + 18*T2^5 - 63*T2^4 - 2*T2^3 + 30*T2^2 - 3
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3645))\).
$p$
$F_p(T)$
$2$
\( T^{9} - 3 T^{8} - 9 T^{7} + 28 T^{6} + \cdots - 3 \)
T^9 - 3*T^8 - 9*T^7 + 28*T^6 + 18*T^5 - 63*T^4 - 2*T^3 + 30*T^2 - 3
$3$
\( T^{9} \)
T^9
$5$
\( (T + 1)^{9} \)
(T + 1)^9
$7$
\( T^{9} + 9 T^{8} + 3 T^{7} - 146 T^{6} + \cdots + 3048 \)
T^9 + 9*T^8 + 3*T^7 - 146*T^6 - 177*T^5 + 930*T^4 + 993*T^3 - 2790*T^2 - 1440*T + 3048
$11$
\( T^{9} - 15 T^{8} + 45 T^{7} + \cdots + 4401 \)
T^9 - 15*T^8 + 45*T^7 + 337*T^6 - 2406*T^5 + 4023*T^4 + 2971*T^3 - 9495*T^2 - 1431*T + 4401
$13$
\( T^{9} + 6 T^{8} - 69 T^{7} + \cdots - 14867 \)
T^9 + 6*T^8 - 69*T^7 - 337*T^6 + 1875*T^5 + 5916*T^4 - 23224*T^3 - 30555*T^2 + 105591*T - 14867
$17$
\( T^{9} - 15 T^{8} + 42 T^{7} + \cdots + 159 \)
T^9 - 15*T^8 + 42*T^7 + 316*T^6 - 2049*T^5 + 3693*T^4 - 1334*T^3 - 1203*T^2 + 387*T + 159
$19$
\( T^{9} + 6 T^{8} - 99 T^{7} + \cdots + 628021 \)
T^9 + 6*T^8 - 99*T^7 - 499*T^6 + 3447*T^5 + 14280*T^4 - 47695*T^3 - 166173*T^2 + 212502*T + 628021
$23$
\( T^{9} - 18 T^{8} + 39 T^{7} + \cdots + 292599 \)
T^9 - 18*T^8 + 39*T^7 + 918*T^6 - 5004*T^5 - 6183*T^4 + 80052*T^3 - 77976*T^2 - 232767*T + 292599
$29$
\( T^{9} + 9 T^{8} - 111 T^{7} + \cdots - 68799 \)
T^9 + 9*T^8 - 111*T^7 - 1153*T^6 + 723*T^5 + 30858*T^4 + 90085*T^3 + 61455*T^2 - 63495*T - 68799
$31$
\( T^{9} + 9 T^{8} - 117 T^{7} + \cdots - 546984 \)
T^9 + 9*T^8 - 117*T^7 - 1154*T^6 + 2316*T^5 + 41661*T^4 + 60855*T^3 - 320130*T^2 - 937656*T - 546984
$37$
\( T^{9} - 39 T^{8} + 636 T^{7} + \cdots - 719 \)
T^9 - 39*T^8 + 636*T^7 - 5601*T^6 + 28632*T^5 - 84525*T^4 + 133620*T^3 - 94071*T^2 + 22497*T - 719
$41$
\( T^{9} - 6 T^{8} - 90 T^{7} + \cdots - 7299 \)
T^9 - 6*T^8 - 90*T^7 + 560*T^6 + 1497*T^5 - 13986*T^4 + 20098*T^3 + 9657*T^2 - 16533*T - 7299
$43$
\( T^{9} - 6 T^{8} - 141 T^{7} + \cdots + 139231 \)
T^9 - 6*T^8 - 141*T^7 + 1313*T^6 - 288*T^5 - 23790*T^4 + 45206*T^3 + 80232*T^2 - 248049*T + 139231
$47$
\( T^{9} - 6 T^{8} - 276 T^{7} + \cdots - 2286897 \)
T^9 - 6*T^8 - 276*T^7 + 1519*T^6 + 24309*T^5 - 127668*T^4 - 713489*T^3 + 3466068*T^2 + 2417247*T - 2286897
$53$
\( T^{9} - 3 T^{8} - 264 T^{7} + \cdots + 67017 \)
T^9 - 3*T^8 - 264*T^7 + 862*T^6 + 16026*T^5 - 35970*T^4 - 233213*T^3 + 547827*T^2 - 349866*T + 67017
$59$
\( T^{9} - 3 T^{8} - 141 T^{7} + \cdots + 963 \)
T^9 - 3*T^8 - 141*T^7 + 274*T^6 + 5268*T^5 - 9363*T^4 - 54746*T^3 + 103140*T^2 + 24426*T + 963
$61$
\( T^{9} + 18 T^{8} - 123 T^{7} + \cdots + 30949993 \)
T^9 + 18*T^8 - 123*T^7 - 3610*T^6 - 4371*T^5 + 191343*T^4 + 487178*T^3 - 3971640*T^2 - 8269710*T + 30949993
$67$
\( T^{9} - 3 T^{8} - 345 T^{7} + \cdots + 5755641 \)
T^9 - 3*T^8 - 345*T^7 + 997*T^6 + 38109*T^5 - 105198*T^4 - 1479732*T^3 + 3492153*T^2 + 11666106*T + 5755641
$71$
\( T^{9} - 18 T^{8} - 96 T^{7} + \cdots + 24570867 \)
T^9 - 18*T^8 - 96*T^7 + 3392*T^6 - 9282*T^5 - 157686*T^4 + 871891*T^3 + 1399209*T^2 - 16325406*T + 24570867
$73$
\( T^{9} + 42 T^{8} + 354 T^{7} + \cdots - 41719697 \)
T^9 + 42*T^8 + 354*T^7 - 6844*T^6 - 116934*T^5 - 54420*T^4 + 6900377*T^3 + 28062567*T^2 - 14515998*T - 41719697
$79$
\( T^{9} + 3 T^{8} - 429 T^{7} + \cdots + 18385701 \)
T^9 + 3*T^8 - 429*T^7 - 2057*T^6 + 49587*T^5 + 297120*T^4 - 1262529*T^3 - 6551523*T^2 + 14211045*T + 18385701
$83$
\( T^{9} - 15 T^{8} - 207 T^{7} + \cdots - 15514497 \)
T^9 - 15*T^8 - 207*T^7 + 3318*T^6 + 11079*T^5 - 216270*T^4 - 75267*T^3 + 3874230*T^2 + 883467*T - 15514497
$89$
\( T^{9} - 15 T^{8} - 369 T^{7} + \cdots - 24482709 \)
T^9 - 15*T^8 - 369*T^7 + 5442*T^6 + 36090*T^5 - 598725*T^4 - 255834*T^3 + 18524862*T^2 - 36954144*T - 24482709
$97$
\( T^{9} - 9 T^{8} - 645 T^{7} + \cdots + 67355713 \)
T^9 - 9*T^8 - 645*T^7 + 5469*T^6 + 127674*T^5 - 902217*T^4 - 8239305*T^3 + 31755753*T^2 + 134601987*T + 67355713
show more
show less