Properties

Label 3645.2.a.d.1.6
Level $3645$
Weight $2$
Character 3645.1
Self dual yes
Analytic conductor $29.105$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3645,2,Mod(1,3645)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3645, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3645.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3645 = 3^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3645.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,9,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1054715368\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3916917.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 6x^{4} + 12x^{3} + 18x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.40798\) of defining polynomial
Character \(\chi\) \(=\) 3645.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.40798 q^{2} +3.79838 q^{4} -1.00000 q^{5} +3.94007 q^{7} +4.33047 q^{8} -2.40798 q^{10} +6.56863 q^{11} -1.34680 q^{13} +9.48762 q^{14} +2.83093 q^{16} -6.08941 q^{17} -0.482880 q^{19} -3.79838 q^{20} +15.8171 q^{22} +6.35832 q^{23} +1.00000 q^{25} -3.24308 q^{26} +14.9659 q^{28} +6.23816 q^{29} +3.53651 q^{31} -1.84410 q^{32} -14.6632 q^{34} -3.94007 q^{35} -3.38013 q^{37} -1.16277 q^{38} -4.33047 q^{40} -10.4476 q^{41} -6.37329 q^{43} +24.9502 q^{44} +15.3107 q^{46} +0.593703 q^{47} +8.52416 q^{49} +2.40798 q^{50} -5.11567 q^{52} +2.41105 q^{53} -6.56863 q^{55} +17.0624 q^{56} +15.0214 q^{58} +2.33092 q^{59} +1.96422 q^{61} +8.51586 q^{62} -10.1024 q^{64} +1.34680 q^{65} -8.92981 q^{67} -23.1299 q^{68} -9.48762 q^{70} +5.68055 q^{71} -6.11390 q^{73} -8.13930 q^{74} -1.83416 q^{76} +25.8809 q^{77} -3.36559 q^{79} -2.83093 q^{80} -25.1575 q^{82} +16.6900 q^{83} +6.08941 q^{85} -15.3468 q^{86} +28.4452 q^{88} +7.35902 q^{89} -5.30649 q^{91} +24.1513 q^{92} +1.42963 q^{94} +0.482880 q^{95} +2.80919 q^{97} +20.5260 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} - 6 q^{5} + 3 q^{7} + 3 q^{8} - 3 q^{10} + 9 q^{11} - 6 q^{13} + 24 q^{14} - 9 q^{16} - 15 q^{17} - 9 q^{19} - 9 q^{20} + 3 q^{22} + 6 q^{23} + 6 q^{25} + 3 q^{26} + 12 q^{28} + 30 q^{29}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.40798 1.70270 0.851350 0.524597i \(-0.175784\pi\)
0.851350 + 0.524597i \(0.175784\pi\)
\(3\) 0 0
\(4\) 3.79838 1.89919
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.94007 1.48921 0.744604 0.667507i \(-0.232639\pi\)
0.744604 + 0.667507i \(0.232639\pi\)
\(8\) 4.33047 1.53105
\(9\) 0 0
\(10\) −2.40798 −0.761471
\(11\) 6.56863 1.98052 0.990258 0.139244i \(-0.0444674\pi\)
0.990258 + 0.139244i \(0.0444674\pi\)
\(12\) 0 0
\(13\) −1.34680 −0.373536 −0.186768 0.982404i \(-0.559801\pi\)
−0.186768 + 0.982404i \(0.559801\pi\)
\(14\) 9.48762 2.53567
\(15\) 0 0
\(16\) 2.83093 0.707734
\(17\) −6.08941 −1.47690 −0.738450 0.674309i \(-0.764442\pi\)
−0.738450 + 0.674309i \(0.764442\pi\)
\(18\) 0 0
\(19\) −0.482880 −0.110780 −0.0553902 0.998465i \(-0.517640\pi\)
−0.0553902 + 0.998465i \(0.517640\pi\)
\(20\) −3.79838 −0.849344
\(21\) 0 0
\(22\) 15.8171 3.37223
\(23\) 6.35832 1.32580 0.662901 0.748707i \(-0.269325\pi\)
0.662901 + 0.748707i \(0.269325\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −3.24308 −0.636019
\(27\) 0 0
\(28\) 14.9659 2.82829
\(29\) 6.23816 1.15840 0.579199 0.815187i \(-0.303366\pi\)
0.579199 + 0.815187i \(0.303366\pi\)
\(30\) 0 0
\(31\) 3.53651 0.635176 0.317588 0.948229i \(-0.397127\pi\)
0.317588 + 0.948229i \(0.397127\pi\)
\(32\) −1.84410 −0.325994
\(33\) 0 0
\(34\) −14.6632 −2.51472
\(35\) −3.94007 −0.665994
\(36\) 0 0
\(37\) −3.38013 −0.555690 −0.277845 0.960626i \(-0.589620\pi\)
−0.277845 + 0.960626i \(0.589620\pi\)
\(38\) −1.16277 −0.188626
\(39\) 0 0
\(40\) −4.33047 −0.684707
\(41\) −10.4476 −1.63163 −0.815817 0.578310i \(-0.803713\pi\)
−0.815817 + 0.578310i \(0.803713\pi\)
\(42\) 0 0
\(43\) −6.37329 −0.971917 −0.485959 0.873982i \(-0.661529\pi\)
−0.485959 + 0.873982i \(0.661529\pi\)
\(44\) 24.9502 3.76138
\(45\) 0 0
\(46\) 15.3107 2.25744
\(47\) 0.593703 0.0866005 0.0433003 0.999062i \(-0.486213\pi\)
0.0433003 + 0.999062i \(0.486213\pi\)
\(48\) 0 0
\(49\) 8.52416 1.21774
\(50\) 2.40798 0.340540
\(51\) 0 0
\(52\) −5.11567 −0.709415
\(53\) 2.41105 0.331184 0.165592 0.986194i \(-0.447047\pi\)
0.165592 + 0.986194i \(0.447047\pi\)
\(54\) 0 0
\(55\) −6.56863 −0.885714
\(56\) 17.0624 2.28005
\(57\) 0 0
\(58\) 15.0214 1.97240
\(59\) 2.33092 0.303460 0.151730 0.988422i \(-0.451516\pi\)
0.151730 + 0.988422i \(0.451516\pi\)
\(60\) 0 0
\(61\) 1.96422 0.251492 0.125746 0.992062i \(-0.459868\pi\)
0.125746 + 0.992062i \(0.459868\pi\)
\(62\) 8.51586 1.08151
\(63\) 0 0
\(64\) −10.1024 −1.26280
\(65\) 1.34680 0.167050
\(66\) 0 0
\(67\) −8.92981 −1.09095 −0.545475 0.838127i \(-0.683651\pi\)
−0.545475 + 0.838127i \(0.683651\pi\)
\(68\) −23.1299 −2.80491
\(69\) 0 0
\(70\) −9.48762 −1.13399
\(71\) 5.68055 0.674158 0.337079 0.941476i \(-0.390561\pi\)
0.337079 + 0.941476i \(0.390561\pi\)
\(72\) 0 0
\(73\) −6.11390 −0.715578 −0.357789 0.933802i \(-0.616469\pi\)
−0.357789 + 0.933802i \(0.616469\pi\)
\(74\) −8.13930 −0.946175
\(75\) 0 0
\(76\) −1.83416 −0.210393
\(77\) 25.8809 2.94940
\(78\) 0 0
\(79\) −3.36559 −0.378658 −0.189329 0.981914i \(-0.560631\pi\)
−0.189329 + 0.981914i \(0.560631\pi\)
\(80\) −2.83093 −0.316508
\(81\) 0 0
\(82\) −25.1575 −2.77819
\(83\) 16.6900 1.83197 0.915985 0.401212i \(-0.131411\pi\)
0.915985 + 0.401212i \(0.131411\pi\)
\(84\) 0 0
\(85\) 6.08941 0.660489
\(86\) −15.3468 −1.65488
\(87\) 0 0
\(88\) 28.4452 3.03227
\(89\) 7.35902 0.780055 0.390027 0.920803i \(-0.372466\pi\)
0.390027 + 0.920803i \(0.372466\pi\)
\(90\) 0 0
\(91\) −5.30649 −0.556272
\(92\) 24.1513 2.51795
\(93\) 0 0
\(94\) 1.42963 0.147455
\(95\) 0.482880 0.0495425
\(96\) 0 0
\(97\) 2.80919 0.285230 0.142615 0.989778i \(-0.454449\pi\)
0.142615 + 0.989778i \(0.454449\pi\)
\(98\) 20.5260 2.07344
\(99\) 0 0
\(100\) 3.79838 0.379838
\(101\) 8.18280 0.814219 0.407110 0.913379i \(-0.366537\pi\)
0.407110 + 0.913379i \(0.366537\pi\)
\(102\) 0 0
\(103\) −6.30112 −0.620868 −0.310434 0.950595i \(-0.600474\pi\)
−0.310434 + 0.950595i \(0.600474\pi\)
\(104\) −5.83228 −0.571902
\(105\) 0 0
\(106\) 5.80577 0.563907
\(107\) −8.81610 −0.852285 −0.426142 0.904656i \(-0.640128\pi\)
−0.426142 + 0.904656i \(0.640128\pi\)
\(108\) 0 0
\(109\) 15.3178 1.46718 0.733588 0.679595i \(-0.237844\pi\)
0.733588 + 0.679595i \(0.237844\pi\)
\(110\) −15.8171 −1.50811
\(111\) 0 0
\(112\) 11.1541 1.05396
\(113\) 12.5478 1.18040 0.590199 0.807258i \(-0.299049\pi\)
0.590199 + 0.807258i \(0.299049\pi\)
\(114\) 0 0
\(115\) −6.35832 −0.592916
\(116\) 23.6949 2.20002
\(117\) 0 0
\(118\) 5.61283 0.516702
\(119\) −23.9927 −2.19941
\(120\) 0 0
\(121\) 32.1469 2.92244
\(122\) 4.72980 0.428216
\(123\) 0 0
\(124\) 13.4330 1.20632
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −15.6084 −1.38502 −0.692512 0.721406i \(-0.743496\pi\)
−0.692512 + 0.721406i \(0.743496\pi\)
\(128\) −20.6383 −1.82418
\(129\) 0 0
\(130\) 3.24308 0.284437
\(131\) −12.0675 −1.05434 −0.527171 0.849759i \(-0.676747\pi\)
−0.527171 + 0.849759i \(0.676747\pi\)
\(132\) 0 0
\(133\) −1.90258 −0.164975
\(134\) −21.5028 −1.85756
\(135\) 0 0
\(136\) −26.3700 −2.26121
\(137\) −8.53957 −0.729584 −0.364792 0.931089i \(-0.618860\pi\)
−0.364792 + 0.931089i \(0.618860\pi\)
\(138\) 0 0
\(139\) −8.95779 −0.759790 −0.379895 0.925030i \(-0.624040\pi\)
−0.379895 + 0.925030i \(0.624040\pi\)
\(140\) −14.9659 −1.26485
\(141\) 0 0
\(142\) 13.6787 1.14789
\(143\) −8.84664 −0.739793
\(144\) 0 0
\(145\) −6.23816 −0.518051
\(146\) −14.7222 −1.21842
\(147\) 0 0
\(148\) −12.8390 −1.05536
\(149\) −8.90236 −0.729310 −0.364655 0.931143i \(-0.618813\pi\)
−0.364655 + 0.931143i \(0.618813\pi\)
\(150\) 0 0
\(151\) −3.09157 −0.251589 −0.125794 0.992056i \(-0.540148\pi\)
−0.125794 + 0.992056i \(0.540148\pi\)
\(152\) −2.09110 −0.169610
\(153\) 0 0
\(154\) 62.3207 5.02194
\(155\) −3.53651 −0.284059
\(156\) 0 0
\(157\) −7.16009 −0.571438 −0.285719 0.958313i \(-0.592232\pi\)
−0.285719 + 0.958313i \(0.592232\pi\)
\(158\) −8.10427 −0.644741
\(159\) 0 0
\(160\) 1.84410 0.145789
\(161\) 25.0522 1.97439
\(162\) 0 0
\(163\) −14.0462 −1.10018 −0.550090 0.835105i \(-0.685407\pi\)
−0.550090 + 0.835105i \(0.685407\pi\)
\(164\) −39.6838 −3.09878
\(165\) 0 0
\(166\) 40.1893 3.11930
\(167\) −19.8357 −1.53493 −0.767465 0.641091i \(-0.778482\pi\)
−0.767465 + 0.641091i \(0.778482\pi\)
\(168\) 0 0
\(169\) −11.1861 −0.860471
\(170\) 14.6632 1.12462
\(171\) 0 0
\(172\) −24.2082 −1.84586
\(173\) −9.66735 −0.734995 −0.367498 0.930024i \(-0.619785\pi\)
−0.367498 + 0.930024i \(0.619785\pi\)
\(174\) 0 0
\(175\) 3.94007 0.297841
\(176\) 18.5954 1.40168
\(177\) 0 0
\(178\) 17.7204 1.32820
\(179\) 17.2392 1.28851 0.644257 0.764809i \(-0.277167\pi\)
0.644257 + 0.764809i \(0.277167\pi\)
\(180\) 0 0
\(181\) −3.30601 −0.245734 −0.122867 0.992423i \(-0.539209\pi\)
−0.122867 + 0.992423i \(0.539209\pi\)
\(182\) −12.7779 −0.947165
\(183\) 0 0
\(184\) 27.5345 2.02987
\(185\) 3.38013 0.248512
\(186\) 0 0
\(187\) −39.9991 −2.92502
\(188\) 2.25511 0.164471
\(189\) 0 0
\(190\) 1.16277 0.0843560
\(191\) 11.2735 0.815719 0.407860 0.913045i \(-0.366275\pi\)
0.407860 + 0.913045i \(0.366275\pi\)
\(192\) 0 0
\(193\) 14.6707 1.05602 0.528010 0.849238i \(-0.322938\pi\)
0.528010 + 0.849238i \(0.322938\pi\)
\(194\) 6.76449 0.485662
\(195\) 0 0
\(196\) 32.3780 2.31272
\(197\) 5.79770 0.413069 0.206534 0.978439i \(-0.433781\pi\)
0.206534 + 0.978439i \(0.433781\pi\)
\(198\) 0 0
\(199\) 27.9170 1.97898 0.989492 0.144585i \(-0.0461846\pi\)
0.989492 + 0.144585i \(0.0461846\pi\)
\(200\) 4.33047 0.306210
\(201\) 0 0
\(202\) 19.7040 1.38637
\(203\) 24.5788 1.72509
\(204\) 0 0
\(205\) 10.4476 0.729689
\(206\) −15.1730 −1.05715
\(207\) 0 0
\(208\) −3.81271 −0.264364
\(209\) −3.17186 −0.219402
\(210\) 0 0
\(211\) 4.34100 0.298846 0.149423 0.988773i \(-0.452258\pi\)
0.149423 + 0.988773i \(0.452258\pi\)
\(212\) 9.15810 0.628981
\(213\) 0 0
\(214\) −21.2290 −1.45119
\(215\) 6.37329 0.434655
\(216\) 0 0
\(217\) 13.9341 0.945909
\(218\) 36.8849 2.49816
\(219\) 0 0
\(220\) −24.9502 −1.68214
\(221\) 8.20123 0.551674
\(222\) 0 0
\(223\) 7.63577 0.511329 0.255665 0.966766i \(-0.417706\pi\)
0.255665 + 0.966766i \(0.417706\pi\)
\(224\) −7.26588 −0.485472
\(225\) 0 0
\(226\) 30.2149 2.00986
\(227\) −6.01960 −0.399535 −0.199767 0.979843i \(-0.564019\pi\)
−0.199767 + 0.979843i \(0.564019\pi\)
\(228\) 0 0
\(229\) −20.5180 −1.35587 −0.677935 0.735122i \(-0.737125\pi\)
−0.677935 + 0.735122i \(0.737125\pi\)
\(230\) −15.3107 −1.00956
\(231\) 0 0
\(232\) 27.0142 1.77357
\(233\) 12.2290 0.801146 0.400573 0.916265i \(-0.368811\pi\)
0.400573 + 0.916265i \(0.368811\pi\)
\(234\) 0 0
\(235\) −0.593703 −0.0387289
\(236\) 8.85374 0.576329
\(237\) 0 0
\(238\) −57.7741 −3.74494
\(239\) 3.96799 0.256668 0.128334 0.991731i \(-0.459037\pi\)
0.128334 + 0.991731i \(0.459037\pi\)
\(240\) 0 0
\(241\) −26.7499 −1.72311 −0.861556 0.507663i \(-0.830510\pi\)
−0.861556 + 0.507663i \(0.830510\pi\)
\(242\) 77.4091 4.97605
\(243\) 0 0
\(244\) 7.46085 0.477632
\(245\) −8.52416 −0.544589
\(246\) 0 0
\(247\) 0.650344 0.0413804
\(248\) 15.3147 0.972488
\(249\) 0 0
\(250\) −2.40798 −0.152294
\(251\) −25.4711 −1.60772 −0.803862 0.594815i \(-0.797225\pi\)
−0.803862 + 0.594815i \(0.797225\pi\)
\(252\) 0 0
\(253\) 41.7654 2.62577
\(254\) −37.5848 −2.35828
\(255\) 0 0
\(256\) −29.4917 −1.84323
\(257\) −5.93207 −0.370032 −0.185016 0.982735i \(-0.559234\pi\)
−0.185016 + 0.982735i \(0.559234\pi\)
\(258\) 0 0
\(259\) −13.3180 −0.827538
\(260\) 5.11567 0.317260
\(261\) 0 0
\(262\) −29.0583 −1.79523
\(263\) 25.0690 1.54582 0.772909 0.634517i \(-0.218801\pi\)
0.772909 + 0.634517i \(0.218801\pi\)
\(264\) 0 0
\(265\) −2.41105 −0.148110
\(266\) −4.58139 −0.280903
\(267\) 0 0
\(268\) −33.9188 −2.07192
\(269\) −6.18572 −0.377150 −0.188575 0.982059i \(-0.560387\pi\)
−0.188575 + 0.982059i \(0.560387\pi\)
\(270\) 0 0
\(271\) 12.1585 0.738579 0.369290 0.929314i \(-0.379601\pi\)
0.369290 + 0.929314i \(0.379601\pi\)
\(272\) −17.2387 −1.04525
\(273\) 0 0
\(274\) −20.5631 −1.24226
\(275\) 6.56863 0.396103
\(276\) 0 0
\(277\) −11.5754 −0.695497 −0.347749 0.937588i \(-0.613054\pi\)
−0.347749 + 0.937588i \(0.613054\pi\)
\(278\) −21.5702 −1.29370
\(279\) 0 0
\(280\) −17.0624 −1.01967
\(281\) −14.7833 −0.881897 −0.440948 0.897532i \(-0.645358\pi\)
−0.440948 + 0.897532i \(0.645358\pi\)
\(282\) 0 0
\(283\) −10.5967 −0.629908 −0.314954 0.949107i \(-0.601989\pi\)
−0.314954 + 0.949107i \(0.601989\pi\)
\(284\) 21.5769 1.28035
\(285\) 0 0
\(286\) −21.3026 −1.25965
\(287\) −41.1641 −2.42984
\(288\) 0 0
\(289\) 20.0809 1.18123
\(290\) −15.0214 −0.882086
\(291\) 0 0
\(292\) −23.2229 −1.35902
\(293\) 13.4017 0.782935 0.391468 0.920192i \(-0.371968\pi\)
0.391468 + 0.920192i \(0.371968\pi\)
\(294\) 0 0
\(295\) −2.33092 −0.135712
\(296\) −14.6376 −0.850791
\(297\) 0 0
\(298\) −21.4367 −1.24180
\(299\) −8.56339 −0.495234
\(300\) 0 0
\(301\) −25.1112 −1.44739
\(302\) −7.44445 −0.428380
\(303\) 0 0
\(304\) −1.36700 −0.0784029
\(305\) −1.96422 −0.112471
\(306\) 0 0
\(307\) −14.3319 −0.817962 −0.408981 0.912543i \(-0.634116\pi\)
−0.408981 + 0.912543i \(0.634116\pi\)
\(308\) 98.3054 5.60147
\(309\) 0 0
\(310\) −8.51586 −0.483668
\(311\) 6.33603 0.359283 0.179642 0.983732i \(-0.442506\pi\)
0.179642 + 0.983732i \(0.442506\pi\)
\(312\) 0 0
\(313\) −11.1503 −0.630252 −0.315126 0.949050i \(-0.602047\pi\)
−0.315126 + 0.949050i \(0.602047\pi\)
\(314\) −17.2414 −0.972987
\(315\) 0 0
\(316\) −12.7838 −0.719143
\(317\) 9.62378 0.540525 0.270263 0.962787i \(-0.412889\pi\)
0.270263 + 0.962787i \(0.412889\pi\)
\(318\) 0 0
\(319\) 40.9762 2.29422
\(320\) 10.1024 0.564743
\(321\) 0 0
\(322\) 60.3253 3.36180
\(323\) 2.94046 0.163611
\(324\) 0 0
\(325\) −1.34680 −0.0747071
\(326\) −33.8229 −1.87328
\(327\) 0 0
\(328\) −45.2428 −2.49812
\(329\) 2.33923 0.128966
\(330\) 0 0
\(331\) −15.8753 −0.872584 −0.436292 0.899805i \(-0.643709\pi\)
−0.436292 + 0.899805i \(0.643709\pi\)
\(332\) 63.3951 3.47926
\(333\) 0 0
\(334\) −47.7639 −2.61353
\(335\) 8.92981 0.487887
\(336\) 0 0
\(337\) −11.5120 −0.627099 −0.313549 0.949572i \(-0.601518\pi\)
−0.313549 + 0.949572i \(0.601518\pi\)
\(338\) −26.9360 −1.46513
\(339\) 0 0
\(340\) 23.1299 1.25440
\(341\) 23.2300 1.25798
\(342\) 0 0
\(343\) 6.00532 0.324257
\(344\) −27.5993 −1.48806
\(345\) 0 0
\(346\) −23.2788 −1.25148
\(347\) −4.62381 −0.248219 −0.124110 0.992269i \(-0.539607\pi\)
−0.124110 + 0.992269i \(0.539607\pi\)
\(348\) 0 0
\(349\) 11.7836 0.630762 0.315381 0.948965i \(-0.397868\pi\)
0.315381 + 0.948965i \(0.397868\pi\)
\(350\) 9.48762 0.507135
\(351\) 0 0
\(352\) −12.1132 −0.645635
\(353\) −16.7720 −0.892682 −0.446341 0.894863i \(-0.647273\pi\)
−0.446341 + 0.894863i \(0.647273\pi\)
\(354\) 0 0
\(355\) −5.68055 −0.301492
\(356\) 27.9524 1.48147
\(357\) 0 0
\(358\) 41.5116 2.19396
\(359\) −25.6262 −1.35250 −0.676249 0.736673i \(-0.736396\pi\)
−0.676249 + 0.736673i \(0.736396\pi\)
\(360\) 0 0
\(361\) −18.7668 −0.987728
\(362\) −7.96083 −0.418412
\(363\) 0 0
\(364\) −20.1561 −1.05647
\(365\) 6.11390 0.320016
\(366\) 0 0
\(367\) −24.4708 −1.27737 −0.638684 0.769469i \(-0.720521\pi\)
−0.638684 + 0.769469i \(0.720521\pi\)
\(368\) 18.0000 0.938314
\(369\) 0 0
\(370\) 8.13930 0.423142
\(371\) 9.49972 0.493201
\(372\) 0 0
\(373\) 5.09000 0.263550 0.131775 0.991280i \(-0.457932\pi\)
0.131775 + 0.991280i \(0.457932\pi\)
\(374\) −96.3171 −4.98044
\(375\) 0 0
\(376\) 2.57101 0.132590
\(377\) −8.40156 −0.432703
\(378\) 0 0
\(379\) −27.4745 −1.41127 −0.705636 0.708574i \(-0.749339\pi\)
−0.705636 + 0.708574i \(0.749339\pi\)
\(380\) 1.83416 0.0940906
\(381\) 0 0
\(382\) 27.1463 1.38893
\(383\) 27.5511 1.40780 0.703898 0.710301i \(-0.251441\pi\)
0.703898 + 0.710301i \(0.251441\pi\)
\(384\) 0 0
\(385\) −25.8809 −1.31901
\(386\) 35.3268 1.79809
\(387\) 0 0
\(388\) 10.6704 0.541706
\(389\) −28.1192 −1.42570 −0.712849 0.701317i \(-0.752596\pi\)
−0.712849 + 0.701317i \(0.752596\pi\)
\(390\) 0 0
\(391\) −38.7184 −1.95807
\(392\) 36.9136 1.86442
\(393\) 0 0
\(394\) 13.9608 0.703333
\(395\) 3.36559 0.169341
\(396\) 0 0
\(397\) 20.7164 1.03973 0.519864 0.854249i \(-0.325983\pi\)
0.519864 + 0.854249i \(0.325983\pi\)
\(398\) 67.2237 3.36962
\(399\) 0 0
\(400\) 2.83093 0.141547
\(401\) 6.63004 0.331088 0.165544 0.986202i \(-0.447062\pi\)
0.165544 + 0.986202i \(0.447062\pi\)
\(402\) 0 0
\(403\) −4.76298 −0.237261
\(404\) 31.0814 1.54636
\(405\) 0 0
\(406\) 59.1853 2.93732
\(407\) −22.2028 −1.10055
\(408\) 0 0
\(409\) −36.7363 −1.81649 −0.908246 0.418436i \(-0.862578\pi\)
−0.908246 + 0.418436i \(0.862578\pi\)
\(410\) 25.1575 1.24244
\(411\) 0 0
\(412\) −23.9341 −1.17915
\(413\) 9.18401 0.451915
\(414\) 0 0
\(415\) −16.6900 −0.819282
\(416\) 2.48363 0.121770
\(417\) 0 0
\(418\) −7.63779 −0.373576
\(419\) −2.06774 −0.101016 −0.0505078 0.998724i \(-0.516084\pi\)
−0.0505078 + 0.998724i \(0.516084\pi\)
\(420\) 0 0
\(421\) 17.9504 0.874850 0.437425 0.899255i \(-0.355891\pi\)
0.437425 + 0.899255i \(0.355891\pi\)
\(422\) 10.4530 0.508846
\(423\) 0 0
\(424\) 10.4410 0.507059
\(425\) −6.08941 −0.295380
\(426\) 0 0
\(427\) 7.73916 0.374524
\(428\) −33.4869 −1.61865
\(429\) 0 0
\(430\) 15.3468 0.740087
\(431\) 17.1773 0.827404 0.413702 0.910412i \(-0.364236\pi\)
0.413702 + 0.910412i \(0.364236\pi\)
\(432\) 0 0
\(433\) 29.3865 1.41222 0.706112 0.708100i \(-0.250447\pi\)
0.706112 + 0.708100i \(0.250447\pi\)
\(434\) 33.5531 1.61060
\(435\) 0 0
\(436\) 58.1827 2.78645
\(437\) −3.07031 −0.146873
\(438\) 0 0
\(439\) 0.909475 0.0434069 0.0217034 0.999764i \(-0.493091\pi\)
0.0217034 + 0.999764i \(0.493091\pi\)
\(440\) −28.4452 −1.35607
\(441\) 0 0
\(442\) 19.7484 0.939337
\(443\) 5.88122 0.279425 0.139713 0.990192i \(-0.455382\pi\)
0.139713 + 0.990192i \(0.455382\pi\)
\(444\) 0 0
\(445\) −7.35902 −0.348851
\(446\) 18.3868 0.870640
\(447\) 0 0
\(448\) −39.8043 −1.88058
\(449\) −15.6446 −0.738313 −0.369156 0.929367i \(-0.620353\pi\)
−0.369156 + 0.929367i \(0.620353\pi\)
\(450\) 0 0
\(451\) −68.6261 −3.23148
\(452\) 47.6613 2.24180
\(453\) 0 0
\(454\) −14.4951 −0.680288
\(455\) 5.30649 0.248772
\(456\) 0 0
\(457\) 3.95314 0.184920 0.0924601 0.995716i \(-0.470527\pi\)
0.0924601 + 0.995716i \(0.470527\pi\)
\(458\) −49.4070 −2.30864
\(459\) 0 0
\(460\) −24.1513 −1.12606
\(461\) 26.8327 1.24972 0.624861 0.780736i \(-0.285155\pi\)
0.624861 + 0.780736i \(0.285155\pi\)
\(462\) 0 0
\(463\) −7.00138 −0.325382 −0.162691 0.986677i \(-0.552017\pi\)
−0.162691 + 0.986677i \(0.552017\pi\)
\(464\) 17.6598 0.819837
\(465\) 0 0
\(466\) 29.4471 1.36411
\(467\) −26.2788 −1.21604 −0.608018 0.793923i \(-0.708035\pi\)
−0.608018 + 0.793923i \(0.708035\pi\)
\(468\) 0 0
\(469\) −35.1841 −1.62465
\(470\) −1.42963 −0.0659438
\(471\) 0 0
\(472\) 10.0940 0.464614
\(473\) −41.8638 −1.92490
\(474\) 0 0
\(475\) −0.482880 −0.0221561
\(476\) −91.1335 −4.17710
\(477\) 0 0
\(478\) 9.55484 0.437028
\(479\) −5.06329 −0.231348 −0.115674 0.993287i \(-0.536903\pi\)
−0.115674 + 0.993287i \(0.536903\pi\)
\(480\) 0 0
\(481\) 4.55237 0.207570
\(482\) −64.4133 −2.93394
\(483\) 0 0
\(484\) 122.106 5.55028
\(485\) −2.80919 −0.127559
\(486\) 0 0
\(487\) −5.36202 −0.242976 −0.121488 0.992593i \(-0.538767\pi\)
−0.121488 + 0.992593i \(0.538767\pi\)
\(488\) 8.50599 0.385048
\(489\) 0 0
\(490\) −20.5260 −0.927272
\(491\) −21.5483 −0.972462 −0.486231 0.873830i \(-0.661629\pi\)
−0.486231 + 0.873830i \(0.661629\pi\)
\(492\) 0 0
\(493\) −37.9867 −1.71084
\(494\) 1.56602 0.0704584
\(495\) 0 0
\(496\) 10.0116 0.449535
\(497\) 22.3818 1.00396
\(498\) 0 0
\(499\) −6.52706 −0.292191 −0.146096 0.989270i \(-0.546671\pi\)
−0.146096 + 0.989270i \(0.546671\pi\)
\(500\) −3.79838 −0.169869
\(501\) 0 0
\(502\) −61.3341 −2.73747
\(503\) −28.4359 −1.26789 −0.633947 0.773377i \(-0.718566\pi\)
−0.633947 + 0.773377i \(0.718566\pi\)
\(504\) 0 0
\(505\) −8.18280 −0.364130
\(506\) 100.570 4.47090
\(507\) 0 0
\(508\) −59.2868 −2.63042
\(509\) 34.3217 1.52128 0.760641 0.649172i \(-0.224885\pi\)
0.760641 + 0.649172i \(0.224885\pi\)
\(510\) 0 0
\(511\) −24.0892 −1.06564
\(512\) −29.7391 −1.31429
\(513\) 0 0
\(514\) −14.2843 −0.630054
\(515\) 6.30112 0.277661
\(516\) 0 0
\(517\) 3.89982 0.171514
\(518\) −32.0694 −1.40905
\(519\) 0 0
\(520\) 5.83228 0.255763
\(521\) 15.3994 0.674660 0.337330 0.941386i \(-0.390476\pi\)
0.337330 + 0.941386i \(0.390476\pi\)
\(522\) 0 0
\(523\) −1.83273 −0.0801396 −0.0400698 0.999197i \(-0.512758\pi\)
−0.0400698 + 0.999197i \(0.512758\pi\)
\(524\) −45.8369 −2.00240
\(525\) 0 0
\(526\) 60.3656 2.63207
\(527\) −21.5353 −0.938091
\(528\) 0 0
\(529\) 17.4282 0.757749
\(530\) −5.80577 −0.252187
\(531\) 0 0
\(532\) −7.22673 −0.313319
\(533\) 14.0708 0.609474
\(534\) 0 0
\(535\) 8.81610 0.381153
\(536\) −38.6703 −1.67030
\(537\) 0 0
\(538\) −14.8951 −0.642174
\(539\) 55.9921 2.41175
\(540\) 0 0
\(541\) 12.7445 0.547930 0.273965 0.961740i \(-0.411665\pi\)
0.273965 + 0.961740i \(0.411665\pi\)
\(542\) 29.2776 1.25758
\(543\) 0 0
\(544\) 11.2295 0.481460
\(545\) −15.3178 −0.656141
\(546\) 0 0
\(547\) 19.1533 0.818934 0.409467 0.912325i \(-0.365715\pi\)
0.409467 + 0.912325i \(0.365715\pi\)
\(548\) −32.4365 −1.38562
\(549\) 0 0
\(550\) 15.8171 0.674445
\(551\) −3.01228 −0.128328
\(552\) 0 0
\(553\) −13.2606 −0.563900
\(554\) −27.8733 −1.18422
\(555\) 0 0
\(556\) −34.0251 −1.44299
\(557\) −2.77969 −0.117779 −0.0588896 0.998265i \(-0.518756\pi\)
−0.0588896 + 0.998265i \(0.518756\pi\)
\(558\) 0 0
\(559\) 8.58356 0.363046
\(560\) −11.1541 −0.471346
\(561\) 0 0
\(562\) −35.5979 −1.50161
\(563\) 42.8517 1.80598 0.902991 0.429660i \(-0.141366\pi\)
0.902991 + 0.429660i \(0.141366\pi\)
\(564\) 0 0
\(565\) −12.5478 −0.527890
\(566\) −25.5167 −1.07254
\(567\) 0 0
\(568\) 24.5995 1.03217
\(569\) −14.8618 −0.623038 −0.311519 0.950240i \(-0.600838\pi\)
−0.311519 + 0.950240i \(0.600838\pi\)
\(570\) 0 0
\(571\) 2.11464 0.0884949 0.0442475 0.999021i \(-0.485911\pi\)
0.0442475 + 0.999021i \(0.485911\pi\)
\(572\) −33.6029 −1.40501
\(573\) 0 0
\(574\) −99.1225 −4.13729
\(575\) 6.35832 0.265160
\(576\) 0 0
\(577\) −13.2388 −0.551139 −0.275570 0.961281i \(-0.588866\pi\)
−0.275570 + 0.961281i \(0.588866\pi\)
\(578\) 48.3545 2.01128
\(579\) 0 0
\(580\) −23.6949 −0.983877
\(581\) 65.7600 2.72818
\(582\) 0 0
\(583\) 15.8373 0.655914
\(584\) −26.4761 −1.09559
\(585\) 0 0
\(586\) 32.2710 1.33310
\(587\) 14.3788 0.593476 0.296738 0.954959i \(-0.404101\pi\)
0.296738 + 0.954959i \(0.404101\pi\)
\(588\) 0 0
\(589\) −1.70771 −0.0703650
\(590\) −5.61283 −0.231076
\(591\) 0 0
\(592\) −9.56893 −0.393281
\(593\) 42.8331 1.75895 0.879473 0.475949i \(-0.157895\pi\)
0.879473 + 0.475949i \(0.157895\pi\)
\(594\) 0 0
\(595\) 23.9927 0.983606
\(596\) −33.8145 −1.38510
\(597\) 0 0
\(598\) −20.6205 −0.843235
\(599\) 37.3269 1.52513 0.762567 0.646909i \(-0.223939\pi\)
0.762567 + 0.646909i \(0.223939\pi\)
\(600\) 0 0
\(601\) −14.3405 −0.584960 −0.292480 0.956272i \(-0.594480\pi\)
−0.292480 + 0.956272i \(0.594480\pi\)
\(602\) −60.4674 −2.46447
\(603\) 0 0
\(604\) −11.7430 −0.477815
\(605\) −32.1469 −1.30696
\(606\) 0 0
\(607\) −2.85292 −0.115796 −0.0578981 0.998322i \(-0.518440\pi\)
−0.0578981 + 0.998322i \(0.518440\pi\)
\(608\) 0.890478 0.0361137
\(609\) 0 0
\(610\) −4.72980 −0.191504
\(611\) −0.799601 −0.0323484
\(612\) 0 0
\(613\) −30.0143 −1.21227 −0.606133 0.795363i \(-0.707280\pi\)
−0.606133 + 0.795363i \(0.707280\pi\)
\(614\) −34.5109 −1.39274
\(615\) 0 0
\(616\) 112.076 4.51568
\(617\) −7.41672 −0.298586 −0.149293 0.988793i \(-0.547700\pi\)
−0.149293 + 0.988793i \(0.547700\pi\)
\(618\) 0 0
\(619\) 25.3423 1.01859 0.509296 0.860591i \(-0.329906\pi\)
0.509296 + 0.860591i \(0.329906\pi\)
\(620\) −13.4330 −0.539483
\(621\) 0 0
\(622\) 15.2570 0.611752
\(623\) 28.9951 1.16166
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −26.8497 −1.07313
\(627\) 0 0
\(628\) −27.1968 −1.08527
\(629\) 20.5830 0.820699
\(630\) 0 0
\(631\) −0.549999 −0.0218951 −0.0109476 0.999940i \(-0.503485\pi\)
−0.0109476 + 0.999940i \(0.503485\pi\)
\(632\) −14.5746 −0.579745
\(633\) 0 0
\(634\) 23.1739 0.920353
\(635\) 15.6084 0.619402
\(636\) 0 0
\(637\) −11.4804 −0.454868
\(638\) 98.6699 3.90638
\(639\) 0 0
\(640\) 20.6383 0.815799
\(641\) −46.0246 −1.81786 −0.908931 0.416946i \(-0.863101\pi\)
−0.908931 + 0.416946i \(0.863101\pi\)
\(642\) 0 0
\(643\) −43.6229 −1.72032 −0.860161 0.510023i \(-0.829637\pi\)
−0.860161 + 0.510023i \(0.829637\pi\)
\(644\) 95.1579 3.74975
\(645\) 0 0
\(646\) 7.08057 0.278581
\(647\) −15.9348 −0.626461 −0.313230 0.949677i \(-0.601411\pi\)
−0.313230 + 0.949677i \(0.601411\pi\)
\(648\) 0 0
\(649\) 15.3110 0.601008
\(650\) −3.24308 −0.127204
\(651\) 0 0
\(652\) −53.3527 −2.08945
\(653\) −29.6779 −1.16138 −0.580692 0.814123i \(-0.697218\pi\)
−0.580692 + 0.814123i \(0.697218\pi\)
\(654\) 0 0
\(655\) 12.0675 0.471516
\(656\) −29.5764 −1.15476
\(657\) 0 0
\(658\) 5.63283 0.219591
\(659\) 23.4793 0.914622 0.457311 0.889307i \(-0.348813\pi\)
0.457311 + 0.889307i \(0.348813\pi\)
\(660\) 0 0
\(661\) 17.9520 0.698253 0.349126 0.937076i \(-0.386478\pi\)
0.349126 + 0.937076i \(0.386478\pi\)
\(662\) −38.2274 −1.48575
\(663\) 0 0
\(664\) 72.2757 2.80484
\(665\) 1.90258 0.0737790
\(666\) 0 0
\(667\) 39.6642 1.53580
\(668\) −75.3434 −2.91512
\(669\) 0 0
\(670\) 21.5028 0.830726
\(671\) 12.9022 0.498085
\(672\) 0 0
\(673\) −6.87183 −0.264890 −0.132445 0.991190i \(-0.542283\pi\)
−0.132445 + 0.991190i \(0.542283\pi\)
\(674\) −27.7207 −1.06776
\(675\) 0 0
\(676\) −42.4892 −1.63420
\(677\) −6.33279 −0.243389 −0.121694 0.992568i \(-0.538833\pi\)
−0.121694 + 0.992568i \(0.538833\pi\)
\(678\) 0 0
\(679\) 11.0684 0.424767
\(680\) 26.3700 1.01124
\(681\) 0 0
\(682\) 55.9375 2.14196
\(683\) −8.46512 −0.323909 −0.161954 0.986798i \(-0.551780\pi\)
−0.161954 + 0.986798i \(0.551780\pi\)
\(684\) 0 0
\(685\) 8.53957 0.326280
\(686\) 14.4607 0.552112
\(687\) 0 0
\(688\) −18.0424 −0.687859
\(689\) −3.24721 −0.123709
\(690\) 0 0
\(691\) 36.4484 1.38656 0.693281 0.720668i \(-0.256165\pi\)
0.693281 + 0.720668i \(0.256165\pi\)
\(692\) −36.7203 −1.39590
\(693\) 0 0
\(694\) −11.1341 −0.422643
\(695\) 8.95779 0.339789
\(696\) 0 0
\(697\) 63.6195 2.40976
\(698\) 28.3747 1.07400
\(699\) 0 0
\(700\) 14.9659 0.565658
\(701\) 22.9932 0.868443 0.434221 0.900806i \(-0.357024\pi\)
0.434221 + 0.900806i \(0.357024\pi\)
\(702\) 0 0
\(703\) 1.63220 0.0615596
\(704\) −66.3591 −2.50100
\(705\) 0 0
\(706\) −40.3866 −1.51997
\(707\) 32.2408 1.21254
\(708\) 0 0
\(709\) −3.28329 −0.123306 −0.0616532 0.998098i \(-0.519637\pi\)
−0.0616532 + 0.998098i \(0.519637\pi\)
\(710\) −13.6787 −0.513352
\(711\) 0 0
\(712\) 31.8680 1.19430
\(713\) 22.4863 0.842117
\(714\) 0 0
\(715\) 8.84664 0.330846
\(716\) 65.4809 2.44713
\(717\) 0 0
\(718\) −61.7074 −2.30290
\(719\) −40.7581 −1.52002 −0.760010 0.649912i \(-0.774806\pi\)
−0.760010 + 0.649912i \(0.774806\pi\)
\(720\) 0 0
\(721\) −24.8269 −0.924601
\(722\) −45.1902 −1.68180
\(723\) 0 0
\(724\) −12.5575 −0.466696
\(725\) 6.23816 0.231679
\(726\) 0 0
\(727\) −18.4367 −0.683778 −0.341889 0.939740i \(-0.611067\pi\)
−0.341889 + 0.939740i \(0.611067\pi\)
\(728\) −22.9796 −0.851681
\(729\) 0 0
\(730\) 14.7222 0.544892
\(731\) 38.8096 1.43542
\(732\) 0 0
\(733\) −7.11572 −0.262825 −0.131413 0.991328i \(-0.541951\pi\)
−0.131413 + 0.991328i \(0.541951\pi\)
\(734\) −58.9254 −2.17498
\(735\) 0 0
\(736\) −11.7254 −0.432203
\(737\) −58.6566 −2.16064
\(738\) 0 0
\(739\) 16.1585 0.594398 0.297199 0.954816i \(-0.403947\pi\)
0.297199 + 0.954816i \(0.403947\pi\)
\(740\) 12.8390 0.471972
\(741\) 0 0
\(742\) 22.8752 0.839774
\(743\) −0.520135 −0.0190819 −0.00954096 0.999954i \(-0.503037\pi\)
−0.00954096 + 0.999954i \(0.503037\pi\)
\(744\) 0 0
\(745\) 8.90236 0.326157
\(746\) 12.2566 0.448747
\(747\) 0 0
\(748\) −151.932 −5.55518
\(749\) −34.7361 −1.26923
\(750\) 0 0
\(751\) −42.7669 −1.56059 −0.780293 0.625414i \(-0.784930\pi\)
−0.780293 + 0.625414i \(0.784930\pi\)
\(752\) 1.68073 0.0612901
\(753\) 0 0
\(754\) −20.2308 −0.736763
\(755\) 3.09157 0.112514
\(756\) 0 0
\(757\) −22.8812 −0.831630 −0.415815 0.909449i \(-0.636504\pi\)
−0.415815 + 0.909449i \(0.636504\pi\)
\(758\) −66.1582 −2.40298
\(759\) 0 0
\(760\) 2.09110 0.0758521
\(761\) 28.8117 1.04442 0.522212 0.852816i \(-0.325107\pi\)
0.522212 + 0.852816i \(0.325107\pi\)
\(762\) 0 0
\(763\) 60.3531 2.18493
\(764\) 42.8209 1.54921
\(765\) 0 0
\(766\) 66.3426 2.39705
\(767\) −3.13929 −0.113353
\(768\) 0 0
\(769\) 47.8149 1.72425 0.862125 0.506696i \(-0.169133\pi\)
0.862125 + 0.506696i \(0.169133\pi\)
\(770\) −62.3207 −2.24588
\(771\) 0 0
\(772\) 55.7249 2.00558
\(773\) 17.6616 0.635243 0.317622 0.948218i \(-0.397116\pi\)
0.317622 + 0.948218i \(0.397116\pi\)
\(774\) 0 0
\(775\) 3.53651 0.127035
\(776\) 12.1651 0.436702
\(777\) 0 0
\(778\) −67.7105 −2.42754
\(779\) 5.04492 0.180753
\(780\) 0 0
\(781\) 37.3134 1.33518
\(782\) −93.2333 −3.33402
\(783\) 0 0
\(784\) 24.1313 0.861834
\(785\) 7.16009 0.255555
\(786\) 0 0
\(787\) 21.4334 0.764017 0.382009 0.924159i \(-0.375232\pi\)
0.382009 + 0.924159i \(0.375232\pi\)
\(788\) 22.0219 0.784497
\(789\) 0 0
\(790\) 8.10427 0.288337
\(791\) 49.4392 1.75786
\(792\) 0 0
\(793\) −2.64541 −0.0939413
\(794\) 49.8848 1.77034
\(795\) 0 0
\(796\) 106.039 3.75847
\(797\) 50.5109 1.78919 0.894593 0.446882i \(-0.147466\pi\)
0.894593 + 0.446882i \(0.147466\pi\)
\(798\) 0 0
\(799\) −3.61530 −0.127900
\(800\) −1.84410 −0.0651987
\(801\) 0 0
\(802\) 15.9650 0.563744
\(803\) −40.1600 −1.41721
\(804\) 0 0
\(805\) −25.0522 −0.882975
\(806\) −11.4692 −0.403984
\(807\) 0 0
\(808\) 35.4354 1.24661
\(809\) −33.5209 −1.17853 −0.589266 0.807939i \(-0.700583\pi\)
−0.589266 + 0.807939i \(0.700583\pi\)
\(810\) 0 0
\(811\) 24.5151 0.860842 0.430421 0.902628i \(-0.358365\pi\)
0.430421 + 0.902628i \(0.358365\pi\)
\(812\) 93.3596 3.27628
\(813\) 0 0
\(814\) −53.4641 −1.87391
\(815\) 14.0462 0.492015
\(816\) 0 0
\(817\) 3.07753 0.107669
\(818\) −88.4603 −3.09294
\(819\) 0 0
\(820\) 39.6838 1.38582
\(821\) −35.0050 −1.22168 −0.610842 0.791753i \(-0.709169\pi\)
−0.610842 + 0.791753i \(0.709169\pi\)
\(822\) 0 0
\(823\) 38.4754 1.34117 0.670584 0.741834i \(-0.266044\pi\)
0.670584 + 0.741834i \(0.266044\pi\)
\(824\) −27.2868 −0.950582
\(825\) 0 0
\(826\) 22.1149 0.769477
\(827\) 28.7521 0.999808 0.499904 0.866081i \(-0.333369\pi\)
0.499904 + 0.866081i \(0.333369\pi\)
\(828\) 0 0
\(829\) 1.40464 0.0487852 0.0243926 0.999702i \(-0.492235\pi\)
0.0243926 + 0.999702i \(0.492235\pi\)
\(830\) −40.1893 −1.39499
\(831\) 0 0
\(832\) 13.6060 0.471702
\(833\) −51.9071 −1.79848
\(834\) 0 0
\(835\) 19.8357 0.686441
\(836\) −12.0479 −0.416686
\(837\) 0 0
\(838\) −4.97907 −0.171999
\(839\) −18.6650 −0.644387 −0.322193 0.946674i \(-0.604420\pi\)
−0.322193 + 0.946674i \(0.604420\pi\)
\(840\) 0 0
\(841\) 9.91463 0.341884
\(842\) 43.2243 1.48961
\(843\) 0 0
\(844\) 16.4888 0.567566
\(845\) 11.1861 0.384814
\(846\) 0 0
\(847\) 126.661 4.35212
\(848\) 6.82553 0.234390
\(849\) 0 0
\(850\) −14.6632 −0.502944
\(851\) −21.4920 −0.736735
\(852\) 0 0
\(853\) 21.8751 0.748991 0.374495 0.927229i \(-0.377816\pi\)
0.374495 + 0.927229i \(0.377816\pi\)
\(854\) 18.6358 0.637703
\(855\) 0 0
\(856\) −38.1779 −1.30489
\(857\) 27.9593 0.955070 0.477535 0.878613i \(-0.341530\pi\)
0.477535 + 0.878613i \(0.341530\pi\)
\(858\) 0 0
\(859\) 32.5591 1.11090 0.555451 0.831549i \(-0.312546\pi\)
0.555451 + 0.831549i \(0.312546\pi\)
\(860\) 24.2082 0.825492
\(861\) 0 0
\(862\) 41.3627 1.40882
\(863\) −34.3952 −1.17083 −0.585414 0.810735i \(-0.699068\pi\)
−0.585414 + 0.810735i \(0.699068\pi\)
\(864\) 0 0
\(865\) 9.66735 0.328700
\(866\) 70.7621 2.40460
\(867\) 0 0
\(868\) 52.9270 1.79646
\(869\) −22.1073 −0.749938
\(870\) 0 0
\(871\) 12.0267 0.407508
\(872\) 66.3331 2.24632
\(873\) 0 0
\(874\) −7.39324 −0.250080
\(875\) −3.94007 −0.133199
\(876\) 0 0
\(877\) −2.67092 −0.0901907 −0.0450953 0.998983i \(-0.514359\pi\)
−0.0450953 + 0.998983i \(0.514359\pi\)
\(878\) 2.19000 0.0739089
\(879\) 0 0
\(880\) −18.5954 −0.626849
\(881\) 18.5901 0.626315 0.313158 0.949701i \(-0.398613\pi\)
0.313158 + 0.949701i \(0.398613\pi\)
\(882\) 0 0
\(883\) −23.5921 −0.793938 −0.396969 0.917832i \(-0.629938\pi\)
−0.396969 + 0.917832i \(0.629938\pi\)
\(884\) 31.1514 1.04773
\(885\) 0 0
\(886\) 14.1619 0.475778
\(887\) 18.6899 0.627544 0.313772 0.949498i \(-0.398407\pi\)
0.313772 + 0.949498i \(0.398407\pi\)
\(888\) 0 0
\(889\) −61.4983 −2.06259
\(890\) −17.7204 −0.593989
\(891\) 0 0
\(892\) 29.0036 0.971111
\(893\) −0.286688 −0.00959363
\(894\) 0 0
\(895\) −17.2392 −0.576241
\(896\) −81.3163 −2.71659
\(897\) 0 0
\(898\) −37.6719 −1.25713
\(899\) 22.0613 0.735786
\(900\) 0 0
\(901\) −14.6819 −0.489125
\(902\) −165.251 −5.50224
\(903\) 0 0
\(904\) 54.3378 1.80725
\(905\) 3.30601 0.109896
\(906\) 0 0
\(907\) 22.0745 0.732973 0.366487 0.930423i \(-0.380561\pi\)
0.366487 + 0.930423i \(0.380561\pi\)
\(908\) −22.8647 −0.758792
\(909\) 0 0
\(910\) 12.7779 0.423585
\(911\) 5.69732 0.188761 0.0943803 0.995536i \(-0.469913\pi\)
0.0943803 + 0.995536i \(0.469913\pi\)
\(912\) 0 0
\(913\) 109.631 3.62825
\(914\) 9.51910 0.314864
\(915\) 0 0
\(916\) −77.9353 −2.57505
\(917\) −47.5468 −1.57013
\(918\) 0 0
\(919\) 2.18705 0.0721441 0.0360720 0.999349i \(-0.488515\pi\)
0.0360720 + 0.999349i \(0.488515\pi\)
\(920\) −27.5345 −0.907786
\(921\) 0 0
\(922\) 64.6126 2.12790
\(923\) −7.65058 −0.251822
\(924\) 0 0
\(925\) −3.38013 −0.111138
\(926\) −16.8592 −0.554028
\(927\) 0 0
\(928\) −11.5038 −0.377630
\(929\) −15.8184 −0.518984 −0.259492 0.965745i \(-0.583555\pi\)
−0.259492 + 0.965745i \(0.583555\pi\)
\(930\) 0 0
\(931\) −4.11615 −0.134901
\(932\) 46.4502 1.52153
\(933\) 0 0
\(934\) −63.2788 −2.07055
\(935\) 39.9991 1.30811
\(936\) 0 0
\(937\) 19.4465 0.635291 0.317645 0.948210i \(-0.397108\pi\)
0.317645 + 0.948210i \(0.397108\pi\)
\(938\) −84.7226 −2.76629
\(939\) 0 0
\(940\) −2.25511 −0.0735536
\(941\) 53.2005 1.73429 0.867144 0.498058i \(-0.165953\pi\)
0.867144 + 0.498058i \(0.165953\pi\)
\(942\) 0 0
\(943\) −66.4289 −2.16322
\(944\) 6.59869 0.214769
\(945\) 0 0
\(946\) −100.807 −3.27753
\(947\) −1.63964 −0.0532811 −0.0266405 0.999645i \(-0.508481\pi\)
−0.0266405 + 0.999645i \(0.508481\pi\)
\(948\) 0 0
\(949\) 8.23421 0.267294
\(950\) −1.16277 −0.0377251
\(951\) 0 0
\(952\) −103.900 −3.36741
\(953\) 12.6586 0.410053 0.205026 0.978756i \(-0.434272\pi\)
0.205026 + 0.978756i \(0.434272\pi\)
\(954\) 0 0
\(955\) −11.2735 −0.364801
\(956\) 15.0719 0.487461
\(957\) 0 0
\(958\) −12.1923 −0.393916
\(959\) −33.6465 −1.08650
\(960\) 0 0
\(961\) −18.4931 −0.596552
\(962\) 10.9620 0.353430
\(963\) 0 0
\(964\) −101.606 −3.27252
\(965\) −14.6707 −0.472266
\(966\) 0 0
\(967\) 35.1289 1.12967 0.564835 0.825204i \(-0.308940\pi\)
0.564835 + 0.825204i \(0.308940\pi\)
\(968\) 139.211 4.47441
\(969\) 0 0
\(970\) −6.76449 −0.217195
\(971\) −28.8861 −0.926998 −0.463499 0.886097i \(-0.653406\pi\)
−0.463499 + 0.886097i \(0.653406\pi\)
\(972\) 0 0
\(973\) −35.2944 −1.13148
\(974\) −12.9116 −0.413716
\(975\) 0 0
\(976\) 5.56057 0.177990
\(977\) 52.2559 1.67181 0.835907 0.548871i \(-0.184942\pi\)
0.835907 + 0.548871i \(0.184942\pi\)
\(978\) 0 0
\(979\) 48.3387 1.54491
\(980\) −32.3780 −1.03428
\(981\) 0 0
\(982\) −51.8880 −1.65581
\(983\) −22.9959 −0.733455 −0.366727 0.930328i \(-0.619522\pi\)
−0.366727 + 0.930328i \(0.619522\pi\)
\(984\) 0 0
\(985\) −5.79770 −0.184730
\(986\) −91.4714 −2.91304
\(987\) 0 0
\(988\) 2.47025 0.0785892
\(989\) −40.5234 −1.28857
\(990\) 0 0
\(991\) 21.0308 0.668067 0.334033 0.942561i \(-0.391590\pi\)
0.334033 + 0.942561i \(0.391590\pi\)
\(992\) −6.52167 −0.207063
\(993\) 0 0
\(994\) 53.8950 1.70944
\(995\) −27.9170 −0.885029
\(996\) 0 0
\(997\) −16.1889 −0.512709 −0.256354 0.966583i \(-0.582521\pi\)
−0.256354 + 0.966583i \(0.582521\pi\)
\(998\) −15.7170 −0.497514
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3645.2.a.d.1.6 yes 6
3.2 odd 2 3645.2.a.c.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3645.2.a.c.1.1 6 3.2 odd 2
3645.2.a.d.1.6 yes 6 1.1 even 1 trivial