# Properties

 Label 3645.1.n.f Level $3645$ Weight $1$ Character orbit 3645.n Analytic conductor $1.819$ Analytic rank $0$ Dimension $6$ Projective image $D_{9}$ CM discriminant -15 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3645,1,Mod(404,3645)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3645, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([5, 9]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3645.404");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3645 = 3^{6} \cdot 5$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3645.n (of order $$18$$, degree $$6$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.81909197105$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} - x^{3} + 1$$ x^6 - x^3 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1215) Projective image: $$D_{9}$$ Projective field: Galois closure of 9.1.242137805625.3

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q + ( - \zeta_{18}^{4} + \zeta_{18}^{3}) q^{2} + (\zeta_{18}^{8} - \zeta_{18}^{7} + \zeta_{18}^{6}) q^{4} - \zeta_{18}^{4} q^{5} + (\zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} - 1) q^{8} +O(q^{10})$$ q + (-z^4 + z^3) * q^2 + (z^8 - z^7 + z^6) * q^4 - z^4 * q^5 + (z^3 + z^2 - z - 1) * q^8 $$q + ( - \zeta_{18}^{4} + \zeta_{18}^{3}) q^{2} + (\zeta_{18}^{8} - \zeta_{18}^{7} + \zeta_{18}^{6}) q^{4} - \zeta_{18}^{4} q^{5} + (\zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} - 1) q^{8} + (\zeta_{18}^{8} - \zeta_{18}^{7}) q^{10} + ( - \zeta_{18}^{7} - \zeta_{18}^{6} + \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{3}) q^{16} + (\zeta_{18}^{5} + \zeta_{18}) q^{17} + (\zeta_{18}^{8} + \zeta_{18}^{4}) q^{19} + (\zeta_{18}^{3} - \zeta_{18}^{2} + \zeta_{18}) q^{20} + ( - \zeta_{18}^{8} - \zeta_{18}^{6}) q^{23} + \zeta_{18}^{8} q^{25} + ( - \zeta_{18}^{3} + \zeta_{18}^{2}) q^{31} + ( - \zeta_{18}^{8} + \zeta_{18}^{7} - \zeta_{18}^{6} - \zeta_{18}^{2} - \zeta_{18} + 1) q^{32} + (\zeta_{18}^{8} - \zeta_{18}^{5} + \zeta_{18}^{4} + 1) q^{34} + ( - \zeta_{18}^{8} + \zeta_{18}^{7} + \zeta_{18}^{3} - \zeta_{18}^{2}) q^{38} + ( - \zeta_{18}^{7} + \zeta_{18}^{6} - \zeta_{18}^{5} + \zeta_{18}^{4}) q^{40} + ( - \zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} + 1) q^{46} + \zeta_{18}^{2} q^{47} + \zeta_{18}^{4} q^{49} + (\zeta_{18}^{3} - \zeta_{18}^{2}) q^{50} + ( - \zeta_{18}^{8} + \zeta_{18}) q^{53} + ( - \zeta_{18}^{7} + \zeta_{18}^{6}) q^{61} + (\zeta_{18}^{7} - 2 \zeta_{18}^{6} + \zeta_{18}^{5}) q^{62} + (\zeta_{18}^{6} + \zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}^{2} + \zeta_{18} + 1) q^{64} + ( - \zeta_{18}^{8} + \zeta_{18}^{7} - \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}^{2} - 1) q^{68} + ( - \zeta_{18}^{7} + \zeta_{18}^{6} - \zeta_{18}^{5} - \zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18}) q^{76} + ( - \zeta_{18}^{7} + 1) q^{79} + ( - \zeta_{18}^{8} + \zeta_{18}^{7} - \zeta_{18}^{2} + \zeta_{18} - 1) q^{80} + ( - \zeta_{18}^{6} + \zeta_{18}) q^{83} + ( - \zeta_{18}^{5} + 1) q^{85} + (\zeta_{18}^{7} - \zeta_{18}^{6} + 2 \zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18}^{3}) q^{92} + ( - \zeta_{18}^{6} + \zeta_{18}^{5}) q^{94} + ( - \zeta_{18}^{8} + \zeta_{18}^{3}) q^{95} + ( - \zeta_{18}^{8} + \zeta_{18}^{7}) q^{98} +O(q^{100})$$ q + (-z^4 + z^3) * q^2 + (z^8 - z^7 + z^6) * q^4 - z^4 * q^5 + (z^3 + z^2 - z - 1) * q^8 + (z^8 - z^7) * q^10 + (-z^7 - z^6 + z^5 - z^4 - z^3) * q^16 + (z^5 + z) * q^17 + (z^8 + z^4) * q^19 + (z^3 - z^2 + z) * q^20 + (-z^8 - z^6) * q^23 + z^8 * q^25 + (-z^3 + z^2) * q^31 + (-z^8 + z^7 - z^6 - z^2 - z + 1) * q^32 + (z^8 - z^5 + z^4 + 1) * q^34 + (-z^8 + z^7 + z^3 - z^2) * q^38 + (-z^7 + z^6 - z^5 + z^4) * q^40 + (-z^3 + z^2 - z + 1) * q^46 + z^2 * q^47 + z^4 * q^49 + (z^3 - z^2) * q^50 + (-z^8 + z) * q^53 + (-z^7 + z^6) * q^61 + (z^7 - 2*z^6 + z^5) * q^62 + (z^6 + z^5 - z^4 + z^3 - z^2 + z + 1) * q^64 + (-z^8 + z^7 - z^4 + z^3 - z^2 - 1) * q^68 + (-z^7 + z^6 - z^5 - z^3 + z^2 - z) * q^76 + (-z^7 + 1) * q^79 + (-z^8 + z^7 - z^2 + z - 1) * q^80 + (-z^6 + z) * q^83 + (-z^5 + 1) * q^85 + (z^7 - z^6 + 2*z^5 - z^4 + z^3) * q^92 + (-z^6 + z^5) * q^94 + (-z^8 + z^3) * q^95 + (-z^8 + z^7) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + 3 q^{2} - 3 q^{4} - 3 q^{8}+O(q^{10})$$ 6 * q + 3 * q^2 - 3 * q^4 - 3 * q^8 $$6 q + 3 q^{2} - 3 q^{4} - 3 q^{8} - 6 q^{16} + 3 q^{20} + 3 q^{23} - 3 q^{31} - 3 q^{32} + 6 q^{34} + 3 q^{38} - 3 q^{40} + 3 q^{46} + 3 q^{50} - 3 q^{61} + 6 q^{62} - 3 q^{68} - 6 q^{76} + 6 q^{79} - 6 q^{80} + 3 q^{83} + 6 q^{85} + 6 q^{92} + 3 q^{94} + 3 q^{95}+O(q^{100})$$ 6 * q + 3 * q^2 - 3 * q^4 - 3 * q^8 - 6 * q^16 + 3 * q^20 + 3 * q^23 - 3 * q^31 - 3 * q^32 + 6 * q^34 + 3 * q^38 - 3 * q^40 + 3 * q^46 + 3 * q^50 - 3 * q^61 + 6 * q^62 - 3 * q^68 - 6 * q^76 + 6 * q^79 - 6 * q^80 + 3 * q^83 + 6 * q^85 + 6 * q^92 + 3 * q^94 + 3 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3645\mathbb{Z}\right)^\times$$.

 $$n$$ $$731$$ $$2917$$ $$\chi(n)$$ $$\zeta_{18}^{7}$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
404.1
 −0.766044 − 0.642788i −0.173648 − 0.984808i 0.939693 − 0.342020i 0.939693 + 0.342020i −0.173648 + 0.984808i −0.766044 + 0.642788i
1.43969 1.20805i 0 0.439693 2.49362i 0.939693 0.342020i 0 0 −1.43969 2.49362i 0 0.939693 1.62760i
809.1 −0.266044 + 1.50881i 0 −1.26604 0.460802i −0.766044 + 0.642788i 0 0 0.266044 0.460802i 0 −0.766044 1.32683i
1619.1 0.326352 + 0.118782i 0 −0.673648 0.565258i −0.173648 + 0.984808i 0 0 −0.326352 0.565258i 0 −0.173648 + 0.300767i
2024.1 0.326352 0.118782i 0 −0.673648 + 0.565258i −0.173648 0.984808i 0 0 −0.326352 + 0.565258i 0 −0.173648 0.300767i
2834.1 −0.266044 1.50881i 0 −1.26604 + 0.460802i −0.766044 0.642788i 0 0 0.266044 + 0.460802i 0 −0.766044 + 1.32683i
3239.1 1.43969 + 1.20805i 0 0.439693 + 2.49362i 0.939693 + 0.342020i 0 0 −1.43969 + 2.49362i 0 0.939693 + 1.62760i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 404.1 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by $$\Q(\sqrt{-15})$$
27.e even 9 1 inner
135.n odd 18 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3645.1.n.f 6
3.b odd 2 1 3645.1.n.b 6
5.b even 2 1 3645.1.n.b 6
9.c even 3 1 3645.1.n.a 6
9.c even 3 1 3645.1.n.g 6
9.d odd 6 1 3645.1.n.c 6
9.d odd 6 1 3645.1.n.h 6
15.d odd 2 1 CM 3645.1.n.f 6
27.e even 9 1 1215.1.d.a 3
27.e even 9 2 1215.1.h.b 6
27.e even 9 1 3645.1.n.a 6
27.e even 9 1 inner 3645.1.n.f 6
27.e even 9 1 3645.1.n.g 6
27.f odd 18 1 1215.1.d.b yes 3
27.f odd 18 2 1215.1.h.a 6
27.f odd 18 1 3645.1.n.b 6
27.f odd 18 1 3645.1.n.c 6
27.f odd 18 1 3645.1.n.h 6
45.h odd 6 1 3645.1.n.a 6
45.h odd 6 1 3645.1.n.g 6
45.j even 6 1 3645.1.n.c 6
45.j even 6 1 3645.1.n.h 6
135.n odd 18 1 1215.1.d.a 3
135.n odd 18 2 1215.1.h.b 6
135.n odd 18 1 3645.1.n.a 6
135.n odd 18 1 inner 3645.1.n.f 6
135.n odd 18 1 3645.1.n.g 6
135.p even 18 1 1215.1.d.b yes 3
135.p even 18 2 1215.1.h.a 6
135.p even 18 1 3645.1.n.b 6
135.p even 18 1 3645.1.n.c 6
135.p even 18 1 3645.1.n.h 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1215.1.d.a 3 27.e even 9 1
1215.1.d.a 3 135.n odd 18 1
1215.1.d.b yes 3 27.f odd 18 1
1215.1.d.b yes 3 135.p even 18 1
1215.1.h.a 6 27.f odd 18 2
1215.1.h.a 6 135.p even 18 2
1215.1.h.b 6 27.e even 9 2
1215.1.h.b 6 135.n odd 18 2
3645.1.n.a 6 9.c even 3 1
3645.1.n.a 6 27.e even 9 1
3645.1.n.a 6 45.h odd 6 1
3645.1.n.a 6 135.n odd 18 1
3645.1.n.b 6 3.b odd 2 1
3645.1.n.b 6 5.b even 2 1
3645.1.n.b 6 27.f odd 18 1
3645.1.n.b 6 135.p even 18 1
3645.1.n.c 6 9.d odd 6 1
3645.1.n.c 6 27.f odd 18 1
3645.1.n.c 6 45.j even 6 1
3645.1.n.c 6 135.p even 18 1
3645.1.n.f 6 1.a even 1 1 trivial
3645.1.n.f 6 15.d odd 2 1 CM
3645.1.n.f 6 27.e even 9 1 inner
3645.1.n.f 6 135.n odd 18 1 inner
3645.1.n.g 6 9.c even 3 1
3645.1.n.g 6 27.e even 9 1
3645.1.n.g 6 45.h odd 6 1
3645.1.n.g 6 135.n odd 18 1
3645.1.n.h 6 9.d odd 6 1
3645.1.n.h 6 27.f odd 18 1
3645.1.n.h 6 45.j even 6 1
3645.1.n.h 6 135.p even 18 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{6} - 3T_{2}^{5} + 6T_{2}^{4} - 8T_{2}^{3} + 12T_{2}^{2} - 6T_{2} + 1$$ acting on $$S_{1}^{\mathrm{new}}(3645, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1$$
$3$ $$T^{6}$$
$5$ $$T^{6} - T^{3} + 1$$
$7$ $$T^{6}$$
$11$ $$T^{6}$$
$13$ $$T^{6}$$
$17$ $$T^{6} + 3 T^{4} - 2 T^{3} + 9 T^{2} + \cdots + 1$$
$19$ $$T^{6} + 3 T^{4} + 2 T^{3} + 9 T^{2} + \cdots + 1$$
$23$ $$T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1$$
$29$ $$T^{6}$$
$31$ $$T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1$$
$37$ $$T^{6}$$
$41$ $$T^{6}$$
$43$ $$T^{6}$$
$47$ $$T^{6} + T^{3} + 1$$
$53$ $$(T^{3} - 3 T - 1)^{2}$$
$59$ $$T^{6}$$
$61$ $$T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1$$
$67$ $$T^{6}$$
$71$ $$T^{6}$$
$73$ $$T^{6}$$
$79$ $$T^{6} - 6 T^{5} + 15 T^{4} - 19 T^{3} + \cdots + 1$$
$83$ $$T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1$$
$89$ $$T^{6}$$
$97$ $$T^{6}$$