Defining parameters
Level: | \( N \) | = | \( 3645 = 3^{6} \cdot 5 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 1 \) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(944784\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(3645))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5312 | 1992 | 3320 |
Cusp forms | 128 | 48 | 80 |
Eisenstein series | 5184 | 1944 | 3240 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 48 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(3645))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
3645.1.c | \(\chi_{3645}(2186, \cdot)\) | None | 0 | 1 |
3645.1.d | \(\chi_{3645}(3644, \cdot)\) | None | 0 | 1 |
3645.1.g | \(\chi_{3645}(2188, \cdot)\) | None | 0 | 2 |
3645.1.h | \(\chi_{3645}(1214, \cdot)\) | None | 0 | 2 |
3645.1.i | \(\chi_{3645}(971, \cdot)\) | None | 0 | 2 |
3645.1.l | \(\chi_{3645}(487, \cdot)\) | None | 0 | 4 |
3645.1.n | \(\chi_{3645}(404, \cdot)\) | 3645.1.n.a | 6 | 6 |
3645.1.n.b | 6 | |||
3645.1.n.c | 6 | |||
3645.1.n.d | 6 | |||
3645.1.n.e | 6 | |||
3645.1.n.f | 6 | |||
3645.1.n.g | 6 | |||
3645.1.n.h | 6 | |||
3645.1.o | \(\chi_{3645}(161, \cdot)\) | None | 0 | 6 |
3645.1.s | \(\chi_{3645}(82, \cdot)\) | None | 0 | 12 |
3645.1.u | \(\chi_{3645}(26, \cdot)\) | None | 0 | 18 |
3645.1.v | \(\chi_{3645}(134, \cdot)\) | None | 0 | 18 |
3645.1.x | \(\chi_{3645}(28, \cdot)\) | None | 0 | 36 |
3645.1.z | \(\chi_{3645}(71, \cdot)\) | None | 0 | 54 |
3645.1.bb | \(\chi_{3645}(44, \cdot)\) | None | 0 | 54 |
3645.1.bd | \(\chi_{3645}(37, \cdot)\) | None | 0 | 108 |
3645.1.bf | \(\chi_{3645}(14, \cdot)\) | None | 0 | 162 |
3645.1.bg | \(\chi_{3645}(11, \cdot)\) | None | 0 | 162 |
3645.1.bi | \(\chi_{3645}(7, \cdot)\) | None | 0 | 324 |
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(3645))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(3645)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(243))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(405))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(729))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1215))\)\(^{\oplus 2}\)