Properties

Label 3640.2.a.t
Level $3640$
Weight $2$
Character orbit 3640.a
Self dual yes
Analytic conductor $29.066$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3640.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(29.0655463357\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.24197.1
Defining polynomial: \(x^{4} - 6 x^{2} - x + 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{3} - q^{5} + q^{7} + \beta_{2} q^{9} +O(q^{10})\) \( q + \beta_{1} q^{3} - q^{5} + q^{7} + \beta_{2} q^{9} + ( -\beta_{2} + \beta_{3} ) q^{11} + q^{13} -\beta_{1} q^{15} + ( -3 - \beta_{3} ) q^{17} + ( -1 - 2 \beta_{1} - \beta_{3} ) q^{19} + \beta_{1} q^{21} + ( -2 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{23} + q^{25} + ( 1 - \beta_{1} + \beta_{3} ) q^{27} + ( -4 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{29} + ( -2 + \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{31} + ( -2 \beta_{1} + \beta_{2} - \beta_{3} ) q^{33} - q^{35} + ( -\beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{37} + \beta_{1} q^{39} + ( -1 - 2 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{41} + ( -2 + 2 \beta_{1} - 2 \beta_{3} ) q^{43} -\beta_{2} q^{45} + ( \beta_{2} + 3 \beta_{3} ) q^{47} + q^{49} + ( -1 - 3 \beta_{1} - \beta_{2} ) q^{51} + ( -2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{53} + ( \beta_{2} - \beta_{3} ) q^{55} + ( -7 - \beta_{1} - 3 \beta_{2} ) q^{57} + ( -3 \beta_{1} + \beta_{2} + 3 \beta_{3} ) q^{59} + ( 6 - 2 \beta_{1} + \beta_{2} + 3 \beta_{3} ) q^{61} + \beta_{2} q^{63} - q^{65} + ( 1 + 2 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{67} + ( -6 - 4 \beta_{1} - \beta_{2} - \beta_{3} ) q^{69} + ( -4 + 4 \beta_{1} + 2 \beta_{2} ) q^{71} + ( 4 + 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{73} + \beta_{1} q^{75} + ( -\beta_{2} + \beta_{3} ) q^{77} + ( 1 + \beta_{2} - 2 \beta_{3} ) q^{79} + ( -2 + \beta_{1} - 3 \beta_{2} ) q^{81} + ( -4 + 2 \beta_{1} ) q^{83} + ( 3 + \beta_{3} ) q^{85} + ( -3 - 2 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{87} + ( -\beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{89} + q^{91} + ( -1 - 6 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{93} + ( 1 + 2 \beta_{1} + \beta_{3} ) q^{95} + ( -2 - 2 \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{97} + ( -6 + 2 \beta_{1} - 2 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 4 q^{7} + O(q^{10}) \) \( 4 q - 4 q^{5} + 4 q^{7} - q^{11} + 4 q^{13} - 11 q^{17} - 3 q^{19} - 9 q^{23} + 4 q^{25} + 3 q^{27} - 15 q^{29} - 6 q^{31} + q^{33} - 4 q^{35} + 2 q^{37} - 6 q^{41} - 6 q^{43} - 3 q^{47} + 4 q^{49} - 4 q^{51} - 2 q^{53} + q^{55} - 28 q^{57} - 3 q^{59} + 21 q^{61} - 4 q^{65} + 6 q^{67} - 23 q^{69} - 16 q^{71} + 15 q^{73} - q^{77} + 6 q^{79} - 8 q^{81} - 16 q^{83} + 11 q^{85} - 13 q^{87} + q^{89} + 4 q^{91} - 2 q^{93} + 3 q^{95} - 9 q^{97} - 22 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 6 x^{2} - x + 2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 5 \nu - 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 5 \beta_{1} + 1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.27460
−0.700017
0.509552
2.46506
0 −2.27460 0 −1.00000 0 1.00000 0 2.17380 0
1.2 0 −0.700017 0 −1.00000 0 1.00000 0 −2.50998 0
1.3 0 0.509552 0 −1.00000 0 1.00000 0 −2.74036 0
1.4 0 2.46506 0 −1.00000 0 1.00000 0 3.07653 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3640.2.a.t 4
4.b odd 2 1 7280.2.a.bv 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3640.2.a.t 4 1.a even 1 1 trivial
7280.2.a.bv 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3640))\):

\( T_{3}^{4} - 6 T_{3}^{2} - T_{3} + 2 \)
\( T_{11}^{4} + T_{11}^{3} - 18 T_{11}^{2} - 36 T_{11} - 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 2 - T - 6 T^{2} + T^{4} \)
$5$ \( ( 1 + T )^{4} \)
$7$ \( ( -1 + T )^{4} \)
$11$ \( -16 - 36 T - 18 T^{2} + T^{3} + T^{4} \)
$13$ \( ( -1 + T )^{4} \)
$17$ \( -16 + 22 T + 35 T^{2} + 11 T^{3} + T^{4} \)
$19$ \( 92 - 20 T - 39 T^{2} + 3 T^{3} + T^{4} \)
$23$ \( -128 - 144 T - 10 T^{2} + 9 T^{3} + T^{4} \)
$29$ \( -284 - 12 T + 59 T^{2} + 15 T^{3} + T^{4} \)
$31$ \( -1132 - 783 T - 100 T^{2} + 6 T^{3} + T^{4} \)
$37$ \( -26 + 99 T - 80 T^{2} - 2 T^{3} + T^{4} \)
$41$ \( -356 - 323 T - 44 T^{2} + 6 T^{3} + T^{4} \)
$43$ \( -64 - 184 T - 36 T^{2} + 6 T^{3} + T^{4} \)
$47$ \( 832 + 164 T - 122 T^{2} + 3 T^{3} + T^{4} \)
$53$ \( -512 - 432 T - 92 T^{2} + 2 T^{3} + T^{4} \)
$59$ \( -272 + 506 T - 131 T^{2} + 3 T^{3} + T^{4} \)
$61$ \( -7072 + 1344 T + 46 T^{2} - 21 T^{3} + T^{4} \)
$67$ \( -356 + 323 T - 44 T^{2} - 6 T^{3} + T^{4} \)
$71$ \( -9248 - 2312 T - 80 T^{2} + 16 T^{3} + T^{4} \)
$73$ \( -8 + 32 T + 16 T^{2} - 15 T^{3} + T^{4} \)
$79$ \( -136 + 203 T - 30 T^{2} - 6 T^{3} + T^{4} \)
$83$ \( -128 + 56 T + 72 T^{2} + 16 T^{3} + T^{4} \)
$89$ \( 2488 + 14 T - 119 T^{2} - T^{3} + T^{4} \)
$97$ \( 2656 - 392 T - 122 T^{2} + 9 T^{3} + T^{4} \)
show more
show less