Properties

Label 364.2.u
Level $364$
Weight $2$
Character orbit 364.u
Rep. character $\chi_{364}(225,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.u (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(364, [\chi])\).

Total New Old
Modular forms 124 16 108
Cusp forms 100 16 84
Eisenstein series 24 0 24

Trace form

\( 16 q - 14 q^{9} + 6 q^{11} + 10 q^{13} + 6 q^{15} + 2 q^{17} - 44 q^{25} - 12 q^{27} - 22 q^{29} + 42 q^{33} - 6 q^{35} + 12 q^{37} + 24 q^{39} + 36 q^{41} + 6 q^{43} - 30 q^{45} + 8 q^{49} - 4 q^{51} + 8 q^{53}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(364, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
364.2.u.a 364.u 13.e $16$ $2.907$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 364.2.u.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{1}-\beta _{2}+\beta _{14})q^{3}+(\beta _{2}+\beta _{12}-\beta _{13}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(364, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(364, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)