Properties

Label 364.2.k.c
Level $364$
Weight $2$
Character orbit 364.k
Analytic conductor $2.907$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [364,2,Mod(29,364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(364, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("364.29");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + (\beta_{3} + 1) q^{5} - \beta_{2} q^{7} + (\beta_{3} + \beta_1 - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{3} + (\beta_{3} + 1) q^{5} - \beta_{2} q^{7} + (\beta_{3} + \beta_1 - 1) q^{9} + ( - 4 \beta_{2} - \beta_1 - 4) q^{11} + (2 \beta_{3} - \beta_{2} + 2 \beta_1 - 2) q^{13} + (3 \beta_{2} - \beta_1 + 3) q^{15} + ( - 2 \beta_{3} + 3 \beta_{2} + \cdots + 2) q^{17}+ \cdots + ( - 5 \beta_{3} + 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 6 q^{5} + 2 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{3} + 6 q^{5} + 2 q^{7} - q^{9} - 9 q^{11} + 5 q^{15} - 4 q^{17} - 11 q^{19} - 2 q^{21} - 4 q^{23} + 2 q^{25} + 8 q^{27} - 3 q^{29} - 16 q^{31} - 11 q^{33} + 3 q^{35} - 4 q^{37} + 26 q^{39} + 10 q^{41} + q^{43} + 5 q^{45} + 32 q^{47} - 2 q^{49} - 22 q^{51} - 7 q^{55} - 2 q^{57} + 4 q^{59} + q^{63} + 13 q^{65} - 26 q^{67} - 2 q^{69} - 2 q^{71} + 16 q^{73} + 19 q^{75} - 18 q^{77} + 32 q^{79} + 14 q^{81} - 32 q^{83} - 19 q^{85} + 5 q^{87} - 21 q^{89} - 9 q^{93} - 23 q^{95} + 23 q^{97} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 4\nu^{2} - 4\nu - 3 ) / 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 7 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} + \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{3} - 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
1.15139 + 1.99426i
−0.651388 1.12824i
1.15139 1.99426i
−0.651388 + 1.12824i
0 −1.15139 1.99426i 0 −0.302776 0 0.500000 0.866025i 0 −1.15139 + 1.99426i 0
29.2 0 0.651388 + 1.12824i 0 3.30278 0 0.500000 0.866025i 0 0.651388 1.12824i 0
113.1 0 −1.15139 + 1.99426i 0 −0.302776 0 0.500000 + 0.866025i 0 −1.15139 1.99426i 0
113.2 0 0.651388 1.12824i 0 3.30278 0 0.500000 + 0.866025i 0 0.651388 + 1.12824i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 364.2.k.c 4
3.b odd 2 1 3276.2.z.d 4
4.b odd 2 1 1456.2.s.m 4
7.b odd 2 1 2548.2.k.f 4
7.c even 3 1 2548.2.i.j 4
7.c even 3 1 2548.2.l.k 4
7.d odd 6 1 2548.2.i.l 4
7.d odd 6 1 2548.2.l.i 4
13.c even 3 1 inner 364.2.k.c 4
13.c even 3 1 4732.2.a.k 2
13.e even 6 1 4732.2.a.j 2
13.f odd 12 2 4732.2.g.g 4
39.i odd 6 1 3276.2.z.d 4
52.j odd 6 1 1456.2.s.m 4
91.g even 3 1 2548.2.i.j 4
91.h even 3 1 2548.2.l.k 4
91.m odd 6 1 2548.2.i.l 4
91.n odd 6 1 2548.2.k.f 4
91.v odd 6 1 2548.2.l.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.k.c 4 1.a even 1 1 trivial
364.2.k.c 4 13.c even 3 1 inner
1456.2.s.m 4 4.b odd 2 1
1456.2.s.m 4 52.j odd 6 1
2548.2.i.j 4 7.c even 3 1
2548.2.i.j 4 91.g even 3 1
2548.2.i.l 4 7.d odd 6 1
2548.2.i.l 4 91.m odd 6 1
2548.2.k.f 4 7.b odd 2 1
2548.2.k.f 4 91.n odd 6 1
2548.2.l.i 4 7.d odd 6 1
2548.2.l.i 4 91.v odd 6 1
2548.2.l.k 4 7.c even 3 1
2548.2.l.k 4 91.h even 3 1
3276.2.z.d 4 3.b odd 2 1
3276.2.z.d 4 39.i odd 6 1
4732.2.a.j 2 13.e even 6 1
4732.2.a.k 2 13.c even 3 1
4732.2.g.g 4 13.f odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(364, [\chi])\):

\( T_{3}^{4} + T_{3}^{3} + 4T_{3}^{2} - 3T_{3} + 9 \) Copy content Toggle raw display
\( T_{5}^{2} - 3T_{5} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + 4 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} - 3 T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 9 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$13$ \( T^{4} + 13T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 4 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$19$ \( T^{4} + 11 T^{3} + \cdots + 729 \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( (T^{2} + 8 T + 3)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 2304 \) Copy content Toggle raw display
$41$ \( T^{4} - 10 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$43$ \( T^{4} - T^{3} + \cdots + 841 \) Copy content Toggle raw display
$47$ \( (T^{2} - 16 T + 51)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 117)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$61$ \( T^{4} + 52T^{2} + 2704 \) Copy content Toggle raw display
$67$ \( (T^{2} + 13 T + 169)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 2 T^{3} + \cdots + 13456 \) Copy content Toggle raw display
$73$ \( (T^{2} - 8 T - 36)^{2} \) Copy content Toggle raw display
$79$ \( (T - 8)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 16 T + 51)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 21 T^{3} + \cdots + 6561 \) Copy content Toggle raw display
$97$ \( T^{4} - 23 T^{3} + \cdots + 10609 \) Copy content Toggle raw display
show more
show less