Properties

Label 364.2.k.a.113.1
Level $364$
Weight $2$
Character 364.113
Analytic conductor $2.907$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [364,2,Mod(29,364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(364, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("364.29");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 113.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 364.113
Dual form 364.2.k.a.29.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +(0.500000 + 0.866025i) q^{7} +(1.50000 + 2.59808i) q^{9} +(1.00000 - 1.73205i) q^{11} +(3.50000 + 0.866025i) q^{13} +(1.50000 + 2.59808i) q^{17} +(3.00000 + 5.19615i) q^{19} +(2.00000 - 3.46410i) q^{23} -4.00000 q^{25} +(3.50000 - 6.06218i) q^{29} +4.00000 q^{31} +(-0.500000 - 0.866025i) q^{35} +(-4.50000 + 7.79423i) q^{37} +(-4.50000 + 7.79423i) q^{41} +(-5.00000 - 8.66025i) q^{43} +(-1.50000 - 2.59808i) q^{45} -2.00000 q^{47} +(-0.500000 + 0.866025i) q^{49} +9.00000 q^{53} +(-1.00000 + 1.73205i) q^{55} +(-7.00000 - 12.1244i) q^{59} +(2.50000 + 4.33013i) q^{61} +(-1.50000 + 2.59808i) q^{63} +(-3.50000 - 0.866025i) q^{65} +(4.00000 - 6.92820i) q^{67} +(-5.00000 - 8.66025i) q^{71} -7.00000 q^{73} +2.00000 q^{77} +2.00000 q^{79} +(-4.50000 + 7.79423i) q^{81} -6.00000 q^{83} +(-1.50000 - 2.59808i) q^{85} +(-3.00000 + 5.19615i) q^{89} +(1.00000 + 3.46410i) q^{91} +(-3.00000 - 5.19615i) q^{95} +(-1.00000 - 1.73205i) q^{97} +6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + q^{7} + 3 q^{9} + 2 q^{11} + 7 q^{13} + 3 q^{17} + 6 q^{19} + 4 q^{23} - 8 q^{25} + 7 q^{29} + 8 q^{31} - q^{35} - 9 q^{37} - 9 q^{41} - 10 q^{43} - 3 q^{45} - 4 q^{47} - q^{49} + 18 q^{53}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) 3.50000 + 0.866025i 0.970725 + 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) 3.00000 + 5.19615i 0.688247 + 1.19208i 0.972404 + 0.233301i \(0.0749529\pi\)
−0.284157 + 0.958778i \(0.591714\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.50000 6.06218i 0.649934 1.12572i −0.333205 0.942855i \(-0.608130\pi\)
0.983138 0.182864i \(-0.0585367\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.500000 0.866025i −0.0845154 0.146385i
\(36\) 0 0
\(37\) −4.50000 + 7.79423i −0.739795 + 1.28136i 0.212792 + 0.977098i \(0.431744\pi\)
−0.952587 + 0.304266i \(0.901589\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.50000 + 7.79423i −0.702782 + 1.21725i 0.264704 + 0.964330i \(0.414726\pi\)
−0.967486 + 0.252924i \(0.918608\pi\)
\(42\) 0 0
\(43\) −5.00000 8.66025i −0.762493 1.32068i −0.941562 0.336840i \(-0.890642\pi\)
0.179069 0.983836i \(-0.442691\pi\)
\(44\) 0 0
\(45\) −1.50000 2.59808i −0.223607 0.387298i
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) −1.00000 + 1.73205i −0.134840 + 0.233550i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.00000 12.1244i −0.911322 1.57846i −0.812198 0.583382i \(-0.801729\pi\)
−0.0991242 0.995075i \(-0.531604\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 0 0
\(63\) −1.50000 + 2.59808i −0.188982 + 0.327327i
\(64\) 0 0
\(65\) −3.50000 0.866025i −0.434122 0.107417i
\(66\) 0 0
\(67\) 4.00000 6.92820i 0.488678 0.846415i −0.511237 0.859440i \(-0.670813\pi\)
0.999915 + 0.0130248i \(0.00414604\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00000 8.66025i −0.593391 1.02778i −0.993772 0.111434i \(-0.964456\pi\)
0.400381 0.916349i \(-0.368878\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) −1.50000 2.59808i −0.162698 0.281801i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 0 0
\(91\) 1.00000 + 3.46410i 0.104828 + 0.363137i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 5.19615i −0.307794 0.533114i
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 8.50000 14.7224i 0.845782 1.46494i −0.0391591 0.999233i \(-0.512468\pi\)
0.884941 0.465704i \(-0.154199\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.00000 + 1.73205i −0.0966736 + 0.167444i −0.910306 0.413936i \(-0.864154\pi\)
0.813632 + 0.581380i \(0.197487\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.50000 9.52628i −0.517396 0.896157i −0.999796 0.0202056i \(-0.993568\pi\)
0.482399 0.875951i \(-0.339765\pi\)
\(114\) 0 0
\(115\) −2.00000 + 3.46410i −0.186501 + 0.323029i
\(116\) 0 0
\(117\) 3.00000 + 10.3923i 0.277350 + 0.960769i
\(118\) 0 0
\(119\) −1.50000 + 2.59808i −0.137505 + 0.238165i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 7.00000 12.1244i 0.621150 1.07586i −0.368122 0.929777i \(-0.619999\pi\)
0.989272 0.146085i \(-0.0466674\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.0000 1.22319 0.611593 0.791173i \(-0.290529\pi\)
0.611593 + 0.791173i \(0.290529\pi\)
\(132\) 0 0
\(133\) −3.00000 + 5.19615i −0.260133 + 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.50000 12.9904i −0.640768 1.10984i −0.985262 0.171054i \(-0.945283\pi\)
0.344493 0.938789i \(-0.388051\pi\)
\(138\) 0 0
\(139\) 7.00000 + 12.1244i 0.593732 + 1.02837i 0.993724 + 0.111856i \(0.0356795\pi\)
−0.399992 + 0.916519i \(0.630987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.00000 5.19615i 0.418121 0.434524i
\(144\) 0 0
\(145\) −3.50000 + 6.06218i −0.290659 + 0.503436i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.50000 + 2.59808i 0.122885 + 0.212843i 0.920904 0.389789i \(-0.127452\pi\)
−0.798019 + 0.602632i \(0.794119\pi\)
\(150\) 0 0
\(151\) 18.0000 1.46482 0.732410 0.680864i \(-0.238396\pi\)
0.732410 + 0.680864i \(0.238396\pi\)
\(152\) 0 0
\(153\) −4.50000 + 7.79423i −0.363803 + 0.630126i
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) −1.00000 1.73205i −0.0783260 0.135665i 0.824202 0.566296i \(-0.191624\pi\)
−0.902528 + 0.430632i \(0.858291\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.00000 + 15.5885i −0.696441 + 1.20627i 0.273252 + 0.961943i \(0.411901\pi\)
−0.969693 + 0.244328i \(0.921432\pi\)
\(168\) 0 0
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 0 0
\(171\) −9.00000 + 15.5885i −0.688247 + 1.19208i
\(172\) 0 0
\(173\) −1.00000 1.73205i −0.0760286 0.131685i 0.825505 0.564396i \(-0.190891\pi\)
−0.901533 + 0.432710i \(0.857557\pi\)
\(174\) 0 0
\(175\) −2.00000 3.46410i −0.151186 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 15.0000 1.11494 0.557471 0.830197i \(-0.311772\pi\)
0.557471 + 0.830197i \(0.311772\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.50000 7.79423i 0.330847 0.573043i
\(186\) 0 0
\(187\) 6.00000 0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 + 6.92820i 0.289430 + 0.501307i 0.973674 0.227946i \(-0.0732010\pi\)
−0.684244 + 0.729253i \(0.739868\pi\)
\(192\) 0 0
\(193\) −5.50000 + 9.52628i −0.395899 + 0.685717i −0.993215 0.116289i \(-0.962900\pi\)
0.597317 + 0.802005i \(0.296234\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.00000 15.5885i 0.641223 1.11063i −0.343937 0.938993i \(-0.611761\pi\)
0.985160 0.171639i \(-0.0549062\pi\)
\(198\) 0 0
\(199\) −7.00000 12.1244i −0.496217 0.859473i 0.503774 0.863836i \(-0.331945\pi\)
−0.999990 + 0.00436292i \(0.998611\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.00000 0.491304
\(204\) 0 0
\(205\) 4.50000 7.79423i 0.314294 0.544373i
\(206\) 0 0
\(207\) 12.0000 0.834058
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −4.00000 + 6.92820i −0.275371 + 0.476957i −0.970229 0.242190i \(-0.922134\pi\)
0.694857 + 0.719148i \(0.255467\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.00000 + 8.66025i 0.340997 + 0.590624i
\(216\) 0 0
\(217\) 2.00000 + 3.46410i 0.135769 + 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.00000 + 10.3923i 0.201802 + 0.699062i
\(222\) 0 0
\(223\) −3.00000 + 5.19615i −0.200895 + 0.347960i −0.948817 0.315826i \(-0.897718\pi\)
0.747922 + 0.663786i \(0.231052\pi\)
\(224\) 0 0
\(225\) −6.00000 10.3923i −0.400000 0.692820i
\(226\) 0 0
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 1.50000 + 2.59808i 0.0966235 + 0.167357i 0.910285 0.413982i \(-0.135862\pi\)
−0.813662 + 0.581339i \(0.802529\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.500000 0.866025i 0.0319438 0.0553283i
\(246\) 0 0
\(247\) 6.00000 + 20.7846i 0.381771 + 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.0000 25.9808i −0.946792 1.63989i −0.752124 0.659022i \(-0.770970\pi\)
−0.194668 0.980869i \(-0.562363\pi\)
\(252\) 0 0
\(253\) −4.00000 6.92820i −0.251478 0.435572i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.50000 2.59808i 0.0935674 0.162064i −0.815442 0.578838i \(-0.803506\pi\)
0.909010 + 0.416775i \(0.136840\pi\)
\(258\) 0 0
\(259\) −9.00000 −0.559233
\(260\) 0 0
\(261\) 21.0000 1.29987
\(262\) 0 0
\(263\) 9.00000 15.5885i 0.554964 0.961225i −0.442943 0.896550i \(-0.646065\pi\)
0.997906 0.0646755i \(-0.0206012\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.00000 + 5.19615i 0.182913 + 0.316815i 0.942871 0.333157i \(-0.108114\pi\)
−0.759958 + 0.649972i \(0.774781\pi\)
\(270\) 0 0
\(271\) −5.00000 + 8.66025i −0.303728 + 0.526073i −0.976977 0.213343i \(-0.931565\pi\)
0.673249 + 0.739416i \(0.264898\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.00000 + 6.92820i −0.241209 + 0.417786i
\(276\) 0 0
\(277\) 1.50000 + 2.59808i 0.0901263 + 0.156103i 0.907564 0.419914i \(-0.137940\pi\)
−0.817438 + 0.576017i \(0.804606\pi\)
\(278\) 0 0
\(279\) 6.00000 + 10.3923i 0.359211 + 0.622171i
\(280\) 0 0
\(281\) 7.00000 0.417585 0.208792 0.977960i \(-0.433047\pi\)
0.208792 + 0.977960i \(0.433047\pi\)
\(282\) 0 0
\(283\) 1.00000 1.73205i 0.0594438 0.102960i −0.834772 0.550596i \(-0.814401\pi\)
0.894216 + 0.447636i \(0.147734\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.5000 26.8468i −0.905520 1.56841i −0.820218 0.572051i \(-0.806148\pi\)
−0.0853015 0.996355i \(-0.527185\pi\)
\(294\) 0 0
\(295\) 7.00000 + 12.1244i 0.407556 + 0.705907i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.0000 10.3923i 0.578315 0.601003i
\(300\) 0 0
\(301\) 5.00000 8.66025i 0.288195 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.50000 4.33013i −0.143150 0.247942i
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 0 0
\(315\) 1.50000 2.59808i 0.0845154 0.146385i
\(316\) 0 0
\(317\) −3.00000 −0.168497 −0.0842484 0.996445i \(-0.526849\pi\)
−0.0842484 + 0.996445i \(0.526849\pi\)
\(318\) 0 0
\(319\) −7.00000 12.1244i −0.391925 0.678834i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9.00000 + 15.5885i −0.500773 + 0.867365i
\(324\) 0 0
\(325\) −14.0000 3.46410i −0.776580 0.192154i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.00000 1.73205i −0.0551318 0.0954911i
\(330\) 0 0
\(331\) −7.00000 12.1244i −0.384755 0.666415i 0.606980 0.794717i \(-0.292381\pi\)
−0.991735 + 0.128302i \(0.959047\pi\)
\(332\) 0 0
\(333\) −27.0000 −1.47959
\(334\) 0 0
\(335\) −4.00000 + 6.92820i −0.218543 + 0.378528i
\(336\) 0 0
\(337\) −25.0000 −1.36184 −0.680918 0.732359i \(-0.738419\pi\)
−0.680918 + 0.732359i \(0.738419\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.00000 6.92820i 0.216612 0.375183i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 7.00000 12.1244i 0.374701 0.649002i −0.615581 0.788074i \(-0.711079\pi\)
0.990282 + 0.139072i \(0.0444119\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.500000 + 0.866025i −0.0266123 + 0.0460939i −0.879025 0.476776i \(-0.841805\pi\)
0.852413 + 0.522870i \(0.175139\pi\)
\(354\) 0 0
\(355\) 5.00000 + 8.66025i 0.265372 + 0.459639i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −8.50000 + 14.7224i −0.447368 + 0.774865i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.00000 0.366397
\(366\) 0 0
\(367\) −10.0000 + 17.3205i −0.521996 + 0.904123i 0.477677 + 0.878536i \(0.341479\pi\)
−0.999673 + 0.0255875i \(0.991854\pi\)
\(368\) 0 0
\(369\) −27.0000 −1.40556
\(370\) 0 0
\(371\) 4.50000 + 7.79423i 0.233628 + 0.404656i
\(372\) 0 0
\(373\) −14.5000 25.1147i −0.750782 1.30039i −0.947444 0.319921i \(-0.896344\pi\)
0.196663 0.980471i \(-0.436990\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.5000 18.1865i 0.901296 0.936654i
\(378\) 0 0
\(379\) −8.00000 + 13.8564i −0.410932 + 0.711756i −0.994992 0.0999550i \(-0.968130\pi\)
0.584060 + 0.811711i \(0.301463\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.0000 25.9808i −0.766464 1.32755i −0.939469 0.342634i \(-0.888681\pi\)
0.173005 0.984921i \(-0.444652\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) 15.0000 25.9808i 0.762493 1.32068i
\(388\) 0 0
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.00000 −0.100631
\(396\) 0 0
\(397\) −7.00000 12.1244i −0.351320 0.608504i 0.635161 0.772380i \(-0.280934\pi\)
−0.986481 + 0.163876i \(0.947600\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.50000 + 12.9904i −0.374532 + 0.648709i −0.990257 0.139253i \(-0.955530\pi\)
0.615725 + 0.787961i \(0.288863\pi\)
\(402\) 0 0
\(403\) 14.0000 + 3.46410i 0.697390 + 0.172559i
\(404\) 0 0
\(405\) 4.50000 7.79423i 0.223607 0.387298i
\(406\) 0 0
\(407\) 9.00000 + 15.5885i 0.446113 + 0.772691i
\(408\) 0 0
\(409\) −0.500000 0.866025i −0.0247234 0.0428222i 0.853399 0.521258i \(-0.174537\pi\)
−0.878122 + 0.478436i \(0.841204\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.00000 12.1244i 0.344447 0.596601i
\(414\) 0 0
\(415\) 6.00000 0.294528
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.0000 + 31.1769i −0.879358 + 1.52309i −0.0273103 + 0.999627i \(0.508694\pi\)
−0.852047 + 0.523465i \(0.824639\pi\)
\(420\) 0 0
\(421\) 25.0000 1.21843 0.609213 0.793007i \(-0.291486\pi\)
0.609213 + 0.793007i \(0.291486\pi\)
\(422\) 0 0
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 0 0
\(425\) −6.00000 10.3923i −0.291043 0.504101i
\(426\) 0 0
\(427\) −2.50000 + 4.33013i −0.120983 + 0.209550i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 + 20.7846i −0.578020 + 1.00116i 0.417687 + 0.908591i \(0.362841\pi\)
−0.995706 + 0.0925683i \(0.970492\pi\)
\(432\) 0 0
\(433\) −0.500000 0.866025i −0.0240285 0.0416185i 0.853761 0.520665i \(-0.174316\pi\)
−0.877790 + 0.479046i \(0.840983\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 17.0000 29.4449i 0.811366 1.40533i −0.100543 0.994933i \(-0.532058\pi\)
0.911908 0.410394i \(-0.134609\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) 3.00000 5.19615i 0.142214 0.246321i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13.0000 + 22.5167i 0.613508 + 1.06263i 0.990644 + 0.136469i \(0.0435755\pi\)
−0.377136 + 0.926158i \(0.623091\pi\)
\(450\) 0 0
\(451\) 9.00000 + 15.5885i 0.423793 + 0.734032i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.00000 3.46410i −0.0468807 0.162400i
\(456\) 0 0
\(457\) 8.50000 14.7224i 0.397613 0.688686i −0.595818 0.803120i \(-0.703172\pi\)
0.993431 + 0.114433i \(0.0365053\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.5000 + 18.1865i 0.489034 + 0.847031i 0.999920 0.0126168i \(-0.00401615\pi\)
−0.510887 + 0.859648i \(0.670683\pi\)
\(462\) 0 0
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.0000 0.647843 0.323921 0.946084i \(-0.394999\pi\)
0.323921 + 0.946084i \(0.394999\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20.0000 −0.919601
\(474\) 0 0
\(475\) −12.0000 20.7846i −0.550598 0.953663i
\(476\) 0 0
\(477\) 13.5000 + 23.3827i 0.618123 + 1.07062i
\(478\) 0 0
\(479\) −6.00000 + 10.3923i −0.274147 + 0.474837i −0.969920 0.243426i \(-0.921729\pi\)
0.695773 + 0.718262i \(0.255062\pi\)
\(480\) 0 0
\(481\) −22.5000 + 23.3827i −1.02591 + 1.06616i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 + 1.73205i 0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) 8.00000 + 13.8564i 0.362515 + 0.627894i 0.988374 0.152042i \(-0.0485850\pi\)
−0.625859 + 0.779936i \(0.715252\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.00000 + 13.8564i −0.361035 + 0.625331i −0.988131 0.153611i \(-0.950910\pi\)
0.627096 + 0.778942i \(0.284243\pi\)
\(492\) 0 0
\(493\) 21.0000 0.945792
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) 5.00000 8.66025i 0.224281 0.388465i
\(498\) 0 0
\(499\) 40.0000 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.00000 + 1.73205i 0.0445878 + 0.0772283i 0.887458 0.460889i \(-0.152469\pi\)
−0.842870 + 0.538117i \(0.819136\pi\)
\(504\) 0 0
\(505\) −8.50000 + 14.7224i −0.378245 + 0.655140i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.5000 25.1147i 0.642701 1.11319i −0.342126 0.939654i \(-0.611147\pi\)
0.984827 0.173537i \(-0.0555197\pi\)
\(510\) 0 0
\(511\) −3.50000 6.06218i −0.154831 0.268175i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.0000 0.616914
\(516\) 0 0
\(517\) −2.00000 + 3.46410i −0.0879599 + 0.152351i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) 0 0
\(523\) 6.00000 10.3923i 0.262362 0.454424i −0.704507 0.709697i \(-0.748832\pi\)
0.966869 + 0.255273i \(0.0821653\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 + 10.3923i 0.261364 + 0.452696i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) 21.0000 36.3731i 0.911322 1.57846i
\(532\) 0 0
\(533\) −22.5000 + 23.3827i −0.974583 + 1.01282i
\(534\) 0 0
\(535\) 1.00000 1.73205i 0.0432338 0.0748831i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.00000 + 1.73205i 0.0430730 + 0.0746047i
\(540\) 0 0
\(541\) −7.00000 −0.300954 −0.150477 0.988614i \(-0.548081\pi\)
−0.150477 + 0.988614i \(0.548081\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.0000 0.599694
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) −7.50000 + 12.9904i −0.320092 + 0.554416i
\(550\) 0 0
\(551\) 42.0000 1.78926
\(552\) 0 0
\(553\) 1.00000 + 1.73205i 0.0425243 + 0.0736543i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.50000 2.59808i 0.0635570 0.110084i −0.832496 0.554031i \(-0.813089\pi\)
0.896053 + 0.443947i \(0.146422\pi\)
\(558\) 0 0
\(559\) −10.0000 34.6410i −0.422955 1.46516i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.00000 + 8.66025i 0.210725 + 0.364986i 0.951942 0.306280i \(-0.0990842\pi\)
−0.741217 + 0.671266i \(0.765751\pi\)
\(564\) 0 0
\(565\) 5.50000 + 9.52628i 0.231387 + 0.400774i
\(566\) 0 0
\(567\) −9.00000 −0.377964
\(568\) 0 0
\(569\) −11.0000 + 19.0526i −0.461144 + 0.798725i −0.999018 0.0443003i \(-0.985894\pi\)
0.537874 + 0.843025i \(0.319228\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8.00000 + 13.8564i −0.333623 + 0.577852i
\(576\) 0 0
\(577\) −27.0000 −1.12402 −0.562012 0.827129i \(-0.689973\pi\)
−0.562012 + 0.827129i \(0.689973\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.00000 5.19615i −0.124461 0.215573i
\(582\) 0 0
\(583\) 9.00000 15.5885i 0.372742 0.645608i
\(584\) 0 0
\(585\) −3.00000 10.3923i −0.124035 0.429669i
\(586\) 0 0
\(587\) −22.0000 + 38.1051i −0.908037 + 1.57277i −0.0912496 + 0.995828i \(0.529086\pi\)
−0.816788 + 0.576938i \(0.804247\pi\)
\(588\) 0 0
\(589\) 12.0000 + 20.7846i 0.494451 + 0.856415i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 29.0000 1.19089 0.595444 0.803397i \(-0.296976\pi\)
0.595444 + 0.803397i \(0.296976\pi\)
\(594\) 0 0
\(595\) 1.50000 2.59808i 0.0614940 0.106511i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 34.0000 1.38920 0.694601 0.719395i \(-0.255581\pi\)
0.694601 + 0.719395i \(0.255581\pi\)
\(600\) 0 0
\(601\) 17.5000 30.3109i 0.713840 1.23641i −0.249565 0.968358i \(-0.580288\pi\)
0.963405 0.268049i \(-0.0863789\pi\)
\(602\) 0 0
\(603\) 24.0000 0.977356
\(604\) 0 0
\(605\) −3.50000 6.06218i −0.142295 0.246463i
\(606\) 0 0
\(607\) −9.00000 15.5885i −0.365299 0.632716i 0.623525 0.781803i \(-0.285700\pi\)
−0.988824 + 0.149087i \(0.952366\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.00000 1.73205i −0.283190 0.0700713i
\(612\) 0 0
\(613\) −8.50000 + 14.7224i −0.343312 + 0.594633i −0.985046 0.172294i \(-0.944882\pi\)
0.641734 + 0.766927i \(0.278215\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.5000 + 35.5070i 0.825299 + 1.42946i 0.901691 + 0.432382i \(0.142327\pi\)
−0.0763917 + 0.997078i \(0.524340\pi\)
\(618\) 0 0
\(619\) −2.00000 −0.0803868 −0.0401934 0.999192i \(-0.512797\pi\)
−0.0401934 + 0.999192i \(0.512797\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27.0000 −1.07656
\(630\) 0 0
\(631\) 16.0000 + 27.7128i 0.636950 + 1.10323i 0.986098 + 0.166162i \(0.0531375\pi\)
−0.349148 + 0.937067i \(0.613529\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.00000 + 12.1244i −0.277787 + 0.481140i
\(636\) 0 0
\(637\) −2.50000 + 2.59808i −0.0990536 + 0.102940i
\(638\) 0 0
\(639\) 15.0000 25.9808i 0.593391 1.02778i
\(640\) 0 0
\(641\) 20.5000 + 35.5070i 0.809701 + 1.40244i 0.913071 + 0.407801i \(0.133704\pi\)
−0.103370 + 0.994643i \(0.532962\pi\)
\(642\) 0 0
\(643\) −10.0000 17.3205i −0.394362 0.683054i 0.598658 0.801005i \(-0.295701\pi\)
−0.993019 + 0.117951i \(0.962368\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.0000 + 39.8372i −0.904223 + 1.56616i −0.0822669 + 0.996610i \(0.526216\pi\)
−0.821956 + 0.569550i \(0.807117\pi\)
\(648\) 0 0
\(649\) −28.0000 −1.09910
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) 0 0
\(655\) −14.0000 −0.547025
\(656\) 0 0
\(657\) −10.5000 18.1865i −0.409644 0.709524i
\(658\) 0 0
\(659\) −18.0000 31.1769i −0.701180 1.21448i −0.968052 0.250748i \(-0.919323\pi\)
0.266872 0.963732i \(-0.414010\pi\)
\(660\) 0 0
\(661\) 6.50000 11.2583i 0.252821 0.437898i −0.711481 0.702706i \(-0.751975\pi\)
0.964301 + 0.264807i \(0.0853084\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.00000 5.19615i 0.116335 0.201498i
\(666\) 0 0
\(667\) −14.0000 24.2487i −0.542082 0.938914i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) 20.5000 35.5070i 0.790217 1.36870i −0.135615 0.990762i \(-0.543301\pi\)
0.925832 0.377934i \(-0.123365\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) 1.00000 1.73205i 0.0383765 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.00000 + 1.73205i 0.0382639 + 0.0662751i 0.884523 0.466496i \(-0.154484\pi\)
−0.846259 + 0.532771i \(0.821151\pi\)
\(684\) 0 0
\(685\) 7.50000 + 12.9904i 0.286560 + 0.496337i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 31.5000 + 7.79423i 1.20005 + 0.296936i
\(690\) 0 0
\(691\) 10.0000 17.3205i 0.380418 0.658903i −0.610704 0.791859i \(-0.709113\pi\)
0.991122 + 0.132956i \(0.0424468\pi\)
\(692\) 0 0
\(693\) 3.00000 + 5.19615i 0.113961 + 0.197386i
\(694\) 0 0
\(695\) −7.00000 12.1244i −0.265525 0.459903i
\(696\) 0 0
\(697\) −27.0000 −1.02270
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −54.0000 −2.03665
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.0000 0.639351
\(708\) 0 0
\(709\) 21.5000 + 37.2391i 0.807449 + 1.39854i 0.914625 + 0.404303i \(0.132486\pi\)
−0.107176 + 0.994240i \(0.534181\pi\)
\(710\) 0 0
\(711\) 3.00000 + 5.19615i 0.112509 + 0.194871i
\(712\) 0 0
\(713\) 8.00000 13.8564i 0.299602 0.518927i
\(714\) 0 0
\(715\) −5.00000 + 5.19615i −0.186989 + 0.194325i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.00000 12.1244i −0.261056 0.452162i 0.705467 0.708743i \(-0.250737\pi\)
−0.966523 + 0.256581i \(0.917404\pi\)
\(720\) 0 0
\(721\) −7.00000 12.1244i −0.260694 0.451535i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −14.0000 + 24.2487i −0.519947 + 0.900575i
\(726\) 0 0
\(727\) 52.0000 1.92857 0.964287 0.264861i \(-0.0853260\pi\)
0.964287 + 0.264861i \(0.0853260\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 15.0000 25.9808i 0.554795 0.960933i
\(732\) 0 0
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 13.8564i −0.294684 0.510407i
\(738\) 0 0
\(739\) 18.0000 31.1769i 0.662141 1.14686i −0.317911 0.948120i \(-0.602981\pi\)
0.980052 0.198741i \(-0.0636852\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.00000 + 13.8564i −0.293492 + 0.508342i −0.974633 0.223810i \(-0.928151\pi\)
0.681141 + 0.732152i \(0.261484\pi\)
\(744\) 0 0
\(745\) −1.50000 2.59808i −0.0549557 0.0951861i
\(746\) 0 0
\(747\) −9.00000 15.5885i −0.329293 0.570352i
\(748\) 0 0
\(749\) −2.00000 −0.0730784
\(750\) 0 0
\(751\) 3.00000 5.19615i 0.109472 0.189610i −0.806085 0.591800i \(-0.798417\pi\)
0.915556 + 0.402190i \(0.131751\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.0000 −0.655087
\(756\) 0 0
\(757\) −3.00000 + 5.19615i −0.109037 + 0.188857i −0.915380 0.402590i \(-0.868110\pi\)
0.806343 + 0.591448i \(0.201443\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.00000 + 5.19615i 0.108750 + 0.188360i 0.915264 0.402854i \(-0.131982\pi\)
−0.806514 + 0.591215i \(0.798649\pi\)
\(762\) 0 0
\(763\) −7.00000 12.1244i −0.253417 0.438931i
\(764\) 0 0
\(765\) 4.50000 7.79423i 0.162698 0.281801i
\(766\) 0 0
\(767\) −14.0000 48.4974i −0.505511 1.75114i
\(768\) 0 0
\(769\) −9.00000 + 15.5885i −0.324548 + 0.562134i −0.981421 0.191867i \(-0.938546\pi\)
0.656873 + 0.754002i \(0.271879\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.00000 1.73205i −0.0359675 0.0622975i 0.847481 0.530825i \(-0.178118\pi\)
−0.883449 + 0.468528i \(0.844785\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −54.0000 −1.93475
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.0000 −0.392607
\(786\) 0 0
\(787\) 26.0000 + 45.0333i 0.926800 + 1.60526i 0.788641 + 0.614855i \(0.210785\pi\)
0.138159 + 0.990410i \(0.455881\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.50000 9.52628i 0.195557 0.338716i
\(792\) 0 0
\(793\) 5.00000 + 17.3205i 0.177555 + 0.615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0