Defining parameters
Level: | \( N \) | \(=\) | \( 364 = 2^{2} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 364.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(364))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 62 | 6 | 56 |
Cusp forms | 51 | 6 | 45 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(364))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | 13 | |||||||
364.2.a.a | $1$ | $2.907$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-1\) | $-$ | $+$ | $-$ | \(q-2q^{3}+q^{5}-q^{7}+q^{9}-4q^{11}+q^{13}+\cdots\) | |
364.2.a.b | $1$ | $2.907$ | \(\Q\) | None | \(0\) | \(0\) | \(-3\) | \(1\) | $-$ | $-$ | $+$ | \(q-3q^{5}+q^{7}-3q^{9}-2q^{11}-q^{13}+\cdots\) | |
364.2.a.c | $2$ | $2.907$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(0\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | \(q+\beta q^{3}+(-1+\beta )q^{5}-q^{7}+3q^{9}+\cdots\) | |
364.2.a.d | $2$ | $2.907$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | \(q+(1+\beta )q^{3}-\beta q^{5}+q^{7}+(1+2\beta )q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(364))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(364)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 2}\)