Properties

Label 364.2.a
Level $364$
Weight $2$
Character orbit 364.a
Rep. character $\chi_{364}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $4$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(364))\).

Total New Old
Modular forms 62 6 56
Cusp forms 51 6 45
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(13\)FrickeDim
\(-\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(4\)

Trace form

\( 6 q - 4 q^{5} + 6 q^{9} + O(q^{10}) \) \( 6 q - 4 q^{5} + 6 q^{9} + 8 q^{11} + 4 q^{15} + 8 q^{19} + 4 q^{21} - 10 q^{23} + 12 q^{27} - 6 q^{29} - 20 q^{31} - 4 q^{33} - 2 q^{35} - 12 q^{37} + 8 q^{41} - 2 q^{43} - 8 q^{45} + 16 q^{47} + 6 q^{49} + 16 q^{51} + 2 q^{53} - 12 q^{55} + 28 q^{59} - 12 q^{61} - 8 q^{63} + 6 q^{65} - 12 q^{67} - 4 q^{69} - 20 q^{75} - 10 q^{79} - 18 q^{81} - 12 q^{83} - 20 q^{85} + 16 q^{87} - 16 q^{89} + 2 q^{91} - 20 q^{93} + 26 q^{95} - 24 q^{97} + 20 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(364))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 13
364.2.a.a 364.a 1.a $1$ $2.907$ \(\Q\) None 364.2.a.a \(0\) \(-2\) \(1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}-q^{7}+q^{9}-4q^{11}+q^{13}+\cdots\)
364.2.a.b 364.a 1.a $1$ $2.907$ \(\Q\) None 364.2.a.b \(0\) \(0\) \(-3\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{5}+q^{7}-3q^{9}-2q^{11}-q^{13}+\cdots\)
364.2.a.c 364.a 1.a $2$ $2.907$ \(\Q(\sqrt{6}) \) None 364.2.a.c \(0\) \(0\) \(-2\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-1+\beta )q^{5}-q^{7}+3q^{9}+\cdots\)
364.2.a.d 364.a 1.a $2$ $2.907$ \(\Q(\sqrt{3}) \) None 364.2.a.d \(0\) \(2\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-\beta q^{5}+q^{7}+(1+2\beta )q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(364))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(364)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 2}\)