Properties

Label 3630.2.a.p
Level $3630$
Weight $2$
Character orbit 3630.a
Self dual yes
Analytic conductor $28.986$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3630 = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3630.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(28.9856959337\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 3q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 3q^{7} + q^{8} + q^{9} - q^{10} - q^{12} + q^{13} + 3q^{14} + q^{15} + q^{16} - 7q^{17} + q^{18} - 5q^{19} - q^{20} - 3q^{21} - 8q^{23} - q^{24} + q^{25} + q^{26} - q^{27} + 3q^{28} - 5q^{29} + q^{30} - 10q^{31} + q^{32} - 7q^{34} - 3q^{35} + q^{36} + 7q^{37} - 5q^{38} - q^{39} - q^{40} + 6q^{41} - 3q^{42} + 10q^{43} - q^{45} - 8q^{46} - 10q^{47} - q^{48} + 2q^{49} + q^{50} + 7q^{51} + q^{52} - 4q^{53} - q^{54} + 3q^{56} + 5q^{57} - 5q^{58} + 4q^{59} + q^{60} - 10q^{62} + 3q^{63} + q^{64} - q^{65} - 6q^{67} - 7q^{68} + 8q^{69} - 3q^{70} + 9q^{71} + q^{72} - 2q^{73} + 7q^{74} - q^{75} - 5q^{76} - q^{78} + 6q^{79} - q^{80} + q^{81} + 6q^{82} - 7q^{83} - 3q^{84} + 7q^{85} + 10q^{86} + 5q^{87} - q^{90} + 3q^{91} - 8q^{92} + 10q^{93} - 10q^{94} + 5q^{95} - q^{96} - 14q^{97} + 2q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 −1.00000 −1.00000 3.00000 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3630.2.a.p yes 1
11.b odd 2 1 3630.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3630.2.a.b 1 11.b odd 2 1
3630.2.a.p yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3630))\):

\( T_{7} - 3 \)
\( T_{13} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( 1 + T \)
$5$ \( 1 + T \)
$7$ \( -3 + T \)
$11$ \( T \)
$13$ \( -1 + T \)
$17$ \( 7 + T \)
$19$ \( 5 + T \)
$23$ \( 8 + T \)
$29$ \( 5 + T \)
$31$ \( 10 + T \)
$37$ \( -7 + T \)
$41$ \( -6 + T \)
$43$ \( -10 + T \)
$47$ \( 10 + T \)
$53$ \( 4 + T \)
$59$ \( -4 + T \)
$61$ \( T \)
$67$ \( 6 + T \)
$71$ \( -9 + T \)
$73$ \( 2 + T \)
$79$ \( -6 + T \)
$83$ \( 7 + T \)
$89$ \( T \)
$97$ \( 14 + T \)
show more
show less