Properties

Label 3630.2.a.o
Level $3630$
Weight $2$
Character orbit 3630.a
Self dual yes
Analytic conductor $28.986$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3630 = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3630.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(28.9856959337\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{7} + q^{8} + q^{9} - q^{10} - q^{12} - 7q^{13} + q^{14} + q^{15} + q^{16} - q^{17} + q^{18} + 7q^{19} - q^{20} - q^{21} + 2q^{23} - q^{24} + q^{25} - 7q^{26} - q^{27} + q^{28} - 9q^{29} + q^{30} + q^{32} - q^{34} - q^{35} + q^{36} - 7q^{37} + 7q^{38} + 7q^{39} - q^{40} - 12q^{41} - q^{42} + 12q^{43} - q^{45} + 2q^{46} + 2q^{47} - q^{48} - 6q^{49} + q^{50} + q^{51} - 7q^{52} + 6q^{53} - q^{54} + q^{56} - 7q^{57} - 9q^{58} - 10q^{59} + q^{60} - 2q^{61} + q^{63} + q^{64} + 7q^{65} - 6q^{67} - q^{68} - 2q^{69} - q^{70} + 5q^{71} + q^{72} + 4q^{73} - 7q^{74} - q^{75} + 7q^{76} + 7q^{78} - 14q^{79} - q^{80} + q^{81} - 12q^{82} + q^{83} - q^{84} + q^{85} + 12q^{86} + 9q^{87} - 8q^{89} - q^{90} - 7q^{91} + 2q^{92} + 2q^{94} - 7q^{95} - q^{96} - 6q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 −1.00000 −1.00000 1.00000 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3630.2.a.o yes 1
11.b odd 2 1 3630.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3630.2.a.c 1 11.b odd 2 1
3630.2.a.o yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3630))\):

\( T_{7} - 1 \)
\( T_{13} + 7 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( 1 + T \)
$5$ \( 1 + T \)
$7$ \( -1 + T \)
$11$ \( T \)
$13$ \( 7 + T \)
$17$ \( 1 + T \)
$19$ \( -7 + T \)
$23$ \( -2 + T \)
$29$ \( 9 + T \)
$31$ \( T \)
$37$ \( 7 + T \)
$41$ \( 12 + T \)
$43$ \( -12 + T \)
$47$ \( -2 + T \)
$53$ \( -6 + T \)
$59$ \( 10 + T \)
$61$ \( 2 + T \)
$67$ \( 6 + T \)
$71$ \( -5 + T \)
$73$ \( -4 + T \)
$79$ \( 14 + T \)
$83$ \( -1 + T \)
$89$ \( 8 + T \)
$97$ \( T \)
show more
show less