Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [363,4,Mod(362,363)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(363, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("363.362");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 363.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(21.4176933321\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
362.1 | −5.30886 | −5.19217 | − | 0.203515i | 20.1840 | − | 14.8127i | 27.5645 | + | 1.08043i | − | 9.97480i | −64.6829 | 26.9172 | + | 2.11337i | 78.6385i | ||||||||||
362.2 | −5.30886 | −5.19217 | + | 0.203515i | 20.1840 | 14.8127i | 27.5645 | − | 1.08043i | 9.97480i | −64.6829 | 26.9172 | − | 2.11337i | − | 78.6385i | |||||||||||
362.3 | −5.22678 | 3.03140 | + | 4.22026i | 19.3192 | − | 9.40366i | −15.8445 | − | 22.0584i | 24.5139i | −59.1628 | −8.62120 | + | 25.5866i | 49.1508i | |||||||||||
362.4 | −5.22678 | 3.03140 | − | 4.22026i | 19.3192 | 9.40366i | −15.8445 | + | 22.0584i | − | 24.5139i | −59.1628 | −8.62120 | − | 25.5866i | − | 49.1508i | ||||||||||
362.5 | −4.71918 | 3.92886 | + | 3.40060i | 14.2706 | 19.6157i | −18.5410 | − | 16.0480i | 7.51156i | −29.5922 | 3.87181 | + | 26.7209i | − | 92.5699i | |||||||||||
362.6 | −4.71918 | 3.92886 | − | 3.40060i | 14.2706 | − | 19.6157i | −18.5410 | + | 16.0480i | − | 7.51156i | −29.5922 | 3.87181 | − | 26.7209i | 92.5699i | ||||||||||
362.7 | −4.00331 | −4.84768 | − | 1.87084i | 8.02649 | 7.39054i | 19.4067 | + | 7.48955i | 7.67817i | −0.106061 | 19.9999 | + | 18.1385i | − | 29.5866i | |||||||||||
362.8 | −4.00331 | −4.84768 | + | 1.87084i | 8.02649 | − | 7.39054i | 19.4067 | − | 7.48955i | − | 7.67817i | −0.106061 | 19.9999 | − | 18.1385i | 29.5866i | ||||||||||
362.9 | −3.13301 | 1.63897 | + | 4.93090i | 1.81573 | 1.61815i | −5.13491 | − | 15.4485i | − | 14.9583i | 19.3754 | −21.6275 | + | 16.1632i | − | 5.06967i | ||||||||||
362.10 | −3.13301 | 1.63897 | − | 4.93090i | 1.81573 | − | 1.61815i | −5.13491 | + | 15.4485i | 14.9583i | 19.3754 | −21.6275 | − | 16.1632i | 5.06967i | |||||||||||
362.11 | −2.65152 | 4.96436 | − | 1.53464i | −0.969417 | 11.9200i | −13.1631 | + | 4.06913i | − | 10.9714i | 23.7826 | 22.2898 | − | 15.2370i | − | 31.6061i | ||||||||||
362.12 | −2.65152 | 4.96436 | + | 1.53464i | −0.969417 | − | 11.9200i | −13.1631 | − | 4.06913i | 10.9714i | 23.7826 | 22.2898 | + | 15.2370i | 31.6061i | |||||||||||
362.13 | −1.91863 | −2.77646 | + | 4.39218i | −4.31885 | − | 10.4360i | 5.32701 | − | 8.42699i | − | 27.3772i | 23.6353 | −11.5825 | − | 24.3894i | 20.0229i | ||||||||||
362.14 | −1.91863 | −2.77646 | − | 4.39218i | −4.31885 | 10.4360i | 5.32701 | + | 8.42699i | 27.3772i | 23.6353 | −11.5825 | + | 24.3894i | − | 20.0229i | |||||||||||
362.15 | −1.71840 | 4.33004 | − | 2.87241i | −5.04710 | 18.0808i | −7.44074 | + | 4.93596i | 28.2971i | 22.4201 | 10.4985 | − | 24.8753i | − | 31.0701i | |||||||||||
362.16 | −1.71840 | 4.33004 | + | 2.87241i | −5.04710 | − | 18.0808i | −7.44074 | − | 4.93596i | − | 28.2971i | 22.4201 | 10.4985 | + | 24.8753i | 31.0701i | ||||||||||
362.17 | −1.40461 | −3.70570 | + | 3.64250i | −6.02706 | 4.83460i | 5.20508 | − | 5.11630i | 4.83009i | 19.7026 | 0.464443 | − | 26.9960i | − | 6.79075i | |||||||||||
362.18 | −1.40461 | −3.70570 | − | 3.64250i | −6.02706 | − | 4.83460i | 5.20508 | + | 5.11630i | − | 4.83009i | 19.7026 | 0.464443 | + | 26.9960i | 6.79075i | ||||||||||
362.19 | −0.863967 | 0.628371 | + | 5.15802i | −7.25356 | 17.1130i | −0.542892 | − | 4.45636i | − | 27.0279i | 13.1786 | −26.2103 | + | 6.48230i | − | 14.7851i | ||||||||||
362.20 | −0.863967 | 0.628371 | − | 5.15802i | −7.25356 | − | 17.1130i | −0.542892 | + | 4.45636i | 27.0279i | 13.1786 | −26.2103 | − | 6.48230i | 14.7851i | |||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 363.4.d.e | ✓ | 40 |
3.b | odd | 2 | 1 | inner | 363.4.d.e | ✓ | 40 |
11.b | odd | 2 | 1 | inner | 363.4.d.e | ✓ | 40 |
33.d | even | 2 | 1 | inner | 363.4.d.e | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
363.4.d.e | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
363.4.d.e | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
363.4.d.e | ✓ | 40 | 11.b | odd | 2 | 1 | inner |
363.4.d.e | ✓ | 40 | 33.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{20} - 120 T_{2}^{18} + 5967 T_{2}^{16} - 159812 T_{2}^{14} + 2517195 T_{2}^{12} + \cdots + 303595776 \)
acting on \(S_{4}^{\mathrm{new}}(363, [\chi])\).