Properties

Label 363.4.a.v.1.5
Level $363$
Weight $4$
Character 363.1
Self dual yes
Analytic conductor $21.418$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,4,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.4176933321\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 30x^{4} + 3x^{3} + 211x^{2} + 208x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 11 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.37704\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.37704 q^{2} -3.00000 q^{3} +3.40437 q^{4} +14.0063 q^{5} -10.1311 q^{6} +23.3415 q^{7} -15.5196 q^{8} +9.00000 q^{9} +47.2999 q^{10} -10.2131 q^{12} +37.7358 q^{13} +78.8251 q^{14} -42.0190 q^{15} -79.6452 q^{16} +8.60337 q^{17} +30.3933 q^{18} -88.5343 q^{19} +47.6828 q^{20} -70.0245 q^{21} +137.456 q^{23} +46.5588 q^{24} +71.1777 q^{25} +127.435 q^{26} -27.0000 q^{27} +79.4632 q^{28} +222.330 q^{29} -141.900 q^{30} +241.466 q^{31} -144.808 q^{32} +29.0539 q^{34} +326.929 q^{35} +30.6394 q^{36} +150.601 q^{37} -298.983 q^{38} -113.207 q^{39} -217.373 q^{40} -141.643 q^{41} -236.475 q^{42} +246.830 q^{43} +126.057 q^{45} +464.193 q^{46} +62.2452 q^{47} +238.936 q^{48} +201.826 q^{49} +240.370 q^{50} -25.8101 q^{51} +128.467 q^{52} -497.366 q^{53} -91.1800 q^{54} -362.251 q^{56} +265.603 q^{57} +750.816 q^{58} -586.139 q^{59} -143.048 q^{60} +646.573 q^{61} +815.440 q^{62} +210.074 q^{63} +148.140 q^{64} +528.540 q^{65} -963.421 q^{67} +29.2891 q^{68} -412.367 q^{69} +1104.05 q^{70} -149.817 q^{71} -139.676 q^{72} +432.996 q^{73} +508.584 q^{74} -213.533 q^{75} -301.404 q^{76} -382.305 q^{78} -1241.92 q^{79} -1115.54 q^{80} +81.0000 q^{81} -478.332 q^{82} +713.378 q^{83} -238.390 q^{84} +120.502 q^{85} +833.553 q^{86} -666.989 q^{87} +224.035 q^{89} +425.699 q^{90} +880.810 q^{91} +467.950 q^{92} -724.398 q^{93} +210.204 q^{94} -1240.04 q^{95} +434.424 q^{96} -1210.69 q^{97} +681.572 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 18 q^{3} + 17 q^{4} + 9 q^{5} - 15 q^{6} + q^{7} + 24 q^{8} + 54 q^{9} + 50 q^{10} - 51 q^{12} + 66 q^{13} - 42 q^{14} - 27 q^{15} - 71 q^{16} + 80 q^{17} + 45 q^{18} - 90 q^{19} + 455 q^{20}+ \cdots + 1405 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.37704 1.19396 0.596981 0.802255i \(-0.296367\pi\)
0.596981 + 0.802255i \(0.296367\pi\)
\(3\) −3.00000 −0.577350
\(4\) 3.40437 0.425547
\(5\) 14.0063 1.25277 0.626383 0.779516i \(-0.284535\pi\)
0.626383 + 0.779516i \(0.284535\pi\)
\(6\) −10.1311 −0.689335
\(7\) 23.3415 1.26032 0.630161 0.776464i \(-0.282989\pi\)
0.630161 + 0.776464i \(0.282989\pi\)
\(8\) −15.5196 −0.685876
\(9\) 9.00000 0.333333
\(10\) 47.2999 1.49576
\(11\) 0 0
\(12\) −10.2131 −0.245690
\(13\) 37.7358 0.805079 0.402539 0.915403i \(-0.368128\pi\)
0.402539 + 0.915403i \(0.368128\pi\)
\(14\) 78.8251 1.50478
\(15\) −42.0190 −0.723284
\(16\) −79.6452 −1.24446
\(17\) 8.60337 0.122743 0.0613713 0.998115i \(-0.480453\pi\)
0.0613713 + 0.998115i \(0.480453\pi\)
\(18\) 30.3933 0.397988
\(19\) −88.5343 −1.06901 −0.534504 0.845166i \(-0.679502\pi\)
−0.534504 + 0.845166i \(0.679502\pi\)
\(20\) 47.6828 0.533110
\(21\) −70.0245 −0.727648
\(22\) 0 0
\(23\) 137.456 1.24615 0.623076 0.782162i \(-0.285883\pi\)
0.623076 + 0.782162i \(0.285883\pi\)
\(24\) 46.5588 0.395991
\(25\) 71.1777 0.569421
\(26\) 127.435 0.961234
\(27\) −27.0000 −0.192450
\(28\) 79.4632 0.536326
\(29\) 222.330 1.42364 0.711821 0.702361i \(-0.247871\pi\)
0.711821 + 0.702361i \(0.247871\pi\)
\(30\) −141.900 −0.863575
\(31\) 241.466 1.39899 0.699493 0.714639i \(-0.253409\pi\)
0.699493 + 0.714639i \(0.253409\pi\)
\(32\) −144.808 −0.799959
\(33\) 0 0
\(34\) 29.0539 0.146550
\(35\) 326.929 1.57889
\(36\) 30.6394 0.141849
\(37\) 150.601 0.669151 0.334575 0.942369i \(-0.391407\pi\)
0.334575 + 0.942369i \(0.391407\pi\)
\(38\) −298.983 −1.27636
\(39\) −113.207 −0.464812
\(40\) −217.373 −0.859241
\(41\) −141.643 −0.539533 −0.269767 0.962926i \(-0.586947\pi\)
−0.269767 + 0.962926i \(0.586947\pi\)
\(42\) −236.475 −0.868784
\(43\) 246.830 0.875376 0.437688 0.899127i \(-0.355797\pi\)
0.437688 + 0.899127i \(0.355797\pi\)
\(44\) 0 0
\(45\) 126.057 0.417588
\(46\) 464.193 1.48786
\(47\) 62.2452 0.193179 0.0965893 0.995324i \(-0.469207\pi\)
0.0965893 + 0.995324i \(0.469207\pi\)
\(48\) 238.936 0.718487
\(49\) 201.826 0.588413
\(50\) 240.370 0.679868
\(51\) −25.8101 −0.0708654
\(52\) 128.467 0.342599
\(53\) −497.366 −1.28903 −0.644514 0.764592i \(-0.722940\pi\)
−0.644514 + 0.764592i \(0.722940\pi\)
\(54\) −91.1800 −0.229778
\(55\) 0 0
\(56\) −362.251 −0.864425
\(57\) 265.603 0.617192
\(58\) 750.816 1.69977
\(59\) −586.139 −1.29337 −0.646685 0.762757i \(-0.723845\pi\)
−0.646685 + 0.762757i \(0.723845\pi\)
\(60\) −143.048 −0.307791
\(61\) 646.573 1.35714 0.678568 0.734538i \(-0.262601\pi\)
0.678568 + 0.734538i \(0.262601\pi\)
\(62\) 815.440 1.67034
\(63\) 210.074 0.420108
\(64\) 148.140 0.289336
\(65\) 528.540 1.00857
\(66\) 0 0
\(67\) −963.421 −1.75673 −0.878363 0.477995i \(-0.841364\pi\)
−0.878363 + 0.477995i \(0.841364\pi\)
\(68\) 29.2891 0.0522327
\(69\) −412.367 −0.719466
\(70\) 1104.05 1.88513
\(71\) −149.817 −0.250423 −0.125212 0.992130i \(-0.539961\pi\)
−0.125212 + 0.992130i \(0.539961\pi\)
\(72\) −139.676 −0.228625
\(73\) 432.996 0.694224 0.347112 0.937824i \(-0.387162\pi\)
0.347112 + 0.937824i \(0.387162\pi\)
\(74\) 508.584 0.798941
\(75\) −213.533 −0.328756
\(76\) −301.404 −0.454913
\(77\) 0 0
\(78\) −382.305 −0.554969
\(79\) −1241.92 −1.76869 −0.884347 0.466829i \(-0.845396\pi\)
−0.884347 + 0.466829i \(0.845396\pi\)
\(80\) −1115.54 −1.55901
\(81\) 81.0000 0.111111
\(82\) −478.332 −0.644182
\(83\) 713.378 0.943415 0.471707 0.881755i \(-0.343638\pi\)
0.471707 + 0.881755i \(0.343638\pi\)
\(84\) −238.390 −0.309648
\(85\) 120.502 0.153768
\(86\) 833.553 1.04517
\(87\) −666.989 −0.821940
\(88\) 0 0
\(89\) 224.035 0.266828 0.133414 0.991060i \(-0.457406\pi\)
0.133414 + 0.991060i \(0.457406\pi\)
\(90\) 425.699 0.498585
\(91\) 880.810 1.01466
\(92\) 467.950 0.530295
\(93\) −724.398 −0.807705
\(94\) 210.204 0.230648
\(95\) −1240.04 −1.33922
\(96\) 434.424 0.461857
\(97\) −1210.69 −1.26729 −0.633645 0.773624i \(-0.718442\pi\)
−0.633645 + 0.773624i \(0.718442\pi\)
\(98\) 681.572 0.702543
\(99\) 0 0
\(100\) 242.315 0.242315
\(101\) 1085.20 1.06913 0.534563 0.845128i \(-0.320476\pi\)
0.534563 + 0.845128i \(0.320476\pi\)
\(102\) −87.1617 −0.0846107
\(103\) −1054.83 −1.00908 −0.504540 0.863388i \(-0.668338\pi\)
−0.504540 + 0.863388i \(0.668338\pi\)
\(104\) −585.644 −0.552184
\(105\) −980.787 −0.911572
\(106\) −1679.62 −1.53905
\(107\) −538.523 −0.486551 −0.243275 0.969957i \(-0.578222\pi\)
−0.243275 + 0.969957i \(0.578222\pi\)
\(108\) −91.9181 −0.0818965
\(109\) −125.822 −0.110565 −0.0552825 0.998471i \(-0.517606\pi\)
−0.0552825 + 0.998471i \(0.517606\pi\)
\(110\) 0 0
\(111\) −451.802 −0.386334
\(112\) −1859.04 −1.56842
\(113\) −1700.43 −1.41560 −0.707802 0.706411i \(-0.750313\pi\)
−0.707802 + 0.706411i \(0.750313\pi\)
\(114\) 896.950 0.736904
\(115\) 1925.25 1.56113
\(116\) 756.894 0.605826
\(117\) 339.622 0.268360
\(118\) −1979.41 −1.54424
\(119\) 200.816 0.154695
\(120\) 652.118 0.496083
\(121\) 0 0
\(122\) 2183.50 1.62037
\(123\) 424.928 0.311500
\(124\) 822.041 0.595334
\(125\) −753.854 −0.539414
\(126\) 709.426 0.501593
\(127\) −1720.80 −1.20233 −0.601166 0.799124i \(-0.705297\pi\)
−0.601166 + 0.799124i \(0.705297\pi\)
\(128\) 1658.74 1.14541
\(129\) −740.489 −0.505399
\(130\) 1784.90 1.20420
\(131\) −676.499 −0.451191 −0.225595 0.974221i \(-0.572433\pi\)
−0.225595 + 0.974221i \(0.572433\pi\)
\(132\) 0 0
\(133\) −2066.52 −1.34730
\(134\) −3253.51 −2.09746
\(135\) −378.171 −0.241095
\(136\) −133.521 −0.0841861
\(137\) 282.000 0.175860 0.0879302 0.996127i \(-0.471975\pi\)
0.0879302 + 0.996127i \(0.471975\pi\)
\(138\) −1392.58 −0.859015
\(139\) −508.885 −0.310526 −0.155263 0.987873i \(-0.549622\pi\)
−0.155263 + 0.987873i \(0.549622\pi\)
\(140\) 1112.99 0.671891
\(141\) −186.736 −0.111532
\(142\) −505.939 −0.298996
\(143\) 0 0
\(144\) −716.807 −0.414819
\(145\) 3114.03 1.78349
\(146\) 1462.24 0.828877
\(147\) −605.477 −0.339720
\(148\) 512.701 0.284755
\(149\) −224.536 −0.123454 −0.0617271 0.998093i \(-0.519661\pi\)
−0.0617271 + 0.998093i \(0.519661\pi\)
\(150\) −721.109 −0.392522
\(151\) 2640.88 1.42326 0.711629 0.702556i \(-0.247958\pi\)
0.711629 + 0.702556i \(0.247958\pi\)
\(152\) 1374.02 0.733207
\(153\) 77.4303 0.0409142
\(154\) 0 0
\(155\) 3382.06 1.75260
\(156\) −385.400 −0.197799
\(157\) 314.983 0.160117 0.0800587 0.996790i \(-0.474489\pi\)
0.0800587 + 0.996790i \(0.474489\pi\)
\(158\) −4194.01 −2.11176
\(159\) 1492.10 0.744221
\(160\) −2028.23 −1.00216
\(161\) 3208.42 1.57055
\(162\) 273.540 0.132663
\(163\) −1398.07 −0.671814 −0.335907 0.941895i \(-0.609043\pi\)
−0.335907 + 0.941895i \(0.609043\pi\)
\(164\) −482.204 −0.229597
\(165\) 0 0
\(166\) 2409.10 1.12640
\(167\) −1157.20 −0.536206 −0.268103 0.963390i \(-0.586397\pi\)
−0.268103 + 0.963390i \(0.586397\pi\)
\(168\) 1086.75 0.499076
\(169\) −773.011 −0.351849
\(170\) 406.939 0.183593
\(171\) −796.809 −0.356336
\(172\) 840.301 0.372513
\(173\) 709.698 0.311892 0.155946 0.987766i \(-0.450157\pi\)
0.155946 + 0.987766i \(0.450157\pi\)
\(174\) −2252.45 −0.981366
\(175\) 1661.39 0.717654
\(176\) 0 0
\(177\) 1758.42 0.746727
\(178\) 756.576 0.318583
\(179\) −398.925 −0.166576 −0.0832878 0.996526i \(-0.526542\pi\)
−0.0832878 + 0.996526i \(0.526542\pi\)
\(180\) 429.145 0.177703
\(181\) 339.146 0.139273 0.0696367 0.997572i \(-0.477816\pi\)
0.0696367 + 0.997572i \(0.477816\pi\)
\(182\) 2974.53 1.21146
\(183\) −1939.72 −0.783542
\(184\) −2133.26 −0.854705
\(185\) 2109.36 0.838289
\(186\) −2446.32 −0.964370
\(187\) 0 0
\(188\) 211.906 0.0822065
\(189\) −630.221 −0.242549
\(190\) −4187.67 −1.59897
\(191\) −1499.60 −0.568100 −0.284050 0.958809i \(-0.591678\pi\)
−0.284050 + 0.958809i \(0.591678\pi\)
\(192\) −444.419 −0.167048
\(193\) −1269.54 −0.473489 −0.236745 0.971572i \(-0.576080\pi\)
−0.236745 + 0.971572i \(0.576080\pi\)
\(194\) −4088.55 −1.51310
\(195\) −1585.62 −0.582301
\(196\) 687.090 0.250397
\(197\) 1970.86 0.712782 0.356391 0.934337i \(-0.384007\pi\)
0.356391 + 0.934337i \(0.384007\pi\)
\(198\) 0 0
\(199\) 3706.78 1.32044 0.660218 0.751074i \(-0.270464\pi\)
0.660218 + 0.751074i \(0.270464\pi\)
\(200\) −1104.65 −0.390552
\(201\) 2890.26 1.01425
\(202\) 3664.77 1.27650
\(203\) 5189.51 1.79425
\(204\) −87.8672 −0.0301566
\(205\) −1983.90 −0.675909
\(206\) −3562.19 −1.20480
\(207\) 1237.10 0.415384
\(208\) −3005.47 −1.00189
\(209\) 0 0
\(210\) −3312.15 −1.08838
\(211\) −2899.74 −0.946098 −0.473049 0.881036i \(-0.656847\pi\)
−0.473049 + 0.881036i \(0.656847\pi\)
\(212\) −1693.22 −0.548542
\(213\) 449.452 0.144582
\(214\) −1818.61 −0.580924
\(215\) 3457.18 1.09664
\(216\) 419.029 0.131997
\(217\) 5636.18 1.76317
\(218\) −424.907 −0.132011
\(219\) −1298.99 −0.400810
\(220\) 0 0
\(221\) 324.655 0.0988174
\(222\) −1525.75 −0.461269
\(223\) −6270.93 −1.88311 −0.941553 0.336865i \(-0.890633\pi\)
−0.941553 + 0.336865i \(0.890633\pi\)
\(224\) −3380.04 −1.00821
\(225\) 640.599 0.189807
\(226\) −5742.42 −1.69018
\(227\) 1500.61 0.438761 0.219380 0.975639i \(-0.429596\pi\)
0.219380 + 0.975639i \(0.429596\pi\)
\(228\) 904.211 0.262644
\(229\) −2159.77 −0.623240 −0.311620 0.950207i \(-0.600872\pi\)
−0.311620 + 0.950207i \(0.600872\pi\)
\(230\) 6501.64 1.86394
\(231\) 0 0
\(232\) −3450.47 −0.976441
\(233\) 2000.73 0.562541 0.281270 0.959629i \(-0.409244\pi\)
0.281270 + 0.959629i \(0.409244\pi\)
\(234\) 1146.92 0.320411
\(235\) 871.827 0.242007
\(236\) −1995.44 −0.550389
\(237\) 3725.76 1.02116
\(238\) 678.161 0.184700
\(239\) 1765.46 0.477817 0.238908 0.971042i \(-0.423210\pi\)
0.238908 + 0.971042i \(0.423210\pi\)
\(240\) 3346.62 0.900096
\(241\) −2787.34 −0.745014 −0.372507 0.928029i \(-0.621502\pi\)
−0.372507 + 0.928029i \(0.621502\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 2201.18 0.577524
\(245\) 2826.84 0.737143
\(246\) 1435.00 0.371919
\(247\) −3340.91 −0.860636
\(248\) −3747.46 −0.959531
\(249\) −2140.13 −0.544681
\(250\) −2545.79 −0.644040
\(251\) −1025.23 −0.257816 −0.128908 0.991657i \(-0.541147\pi\)
−0.128908 + 0.991657i \(0.541147\pi\)
\(252\) 715.169 0.178775
\(253\) 0 0
\(254\) −5811.20 −1.43554
\(255\) −361.505 −0.0887778
\(256\) 4416.50 1.07825
\(257\) 1693.79 0.411111 0.205555 0.978645i \(-0.434100\pi\)
0.205555 + 0.978645i \(0.434100\pi\)
\(258\) −2500.66 −0.603427
\(259\) 3515.24 0.843346
\(260\) 1799.35 0.429196
\(261\) 2000.97 0.474547
\(262\) −2284.56 −0.538705
\(263\) −1139.53 −0.267172 −0.133586 0.991037i \(-0.542649\pi\)
−0.133586 + 0.991037i \(0.542649\pi\)
\(264\) 0 0
\(265\) −6966.29 −1.61485
\(266\) −6978.72 −1.60862
\(267\) −672.106 −0.154053
\(268\) −3279.84 −0.747569
\(269\) −5330.08 −1.20811 −0.604053 0.796944i \(-0.706449\pi\)
−0.604053 + 0.796944i \(0.706449\pi\)
\(270\) −1277.10 −0.287858
\(271\) −1522.14 −0.341193 −0.170596 0.985341i \(-0.554569\pi\)
−0.170596 + 0.985341i \(0.554569\pi\)
\(272\) −685.217 −0.152748
\(273\) −2642.43 −0.585813
\(274\) 952.324 0.209971
\(275\) 0 0
\(276\) −1403.85 −0.306166
\(277\) 2728.98 0.591943 0.295972 0.955197i \(-0.404357\pi\)
0.295972 + 0.955197i \(0.404357\pi\)
\(278\) −1718.52 −0.370756
\(279\) 2173.19 0.466329
\(280\) −5073.81 −1.08292
\(281\) 6880.19 1.46063 0.730316 0.683109i \(-0.239373\pi\)
0.730316 + 0.683109i \(0.239373\pi\)
\(282\) −630.613 −0.133165
\(283\) −871.549 −0.183068 −0.0915339 0.995802i \(-0.529177\pi\)
−0.0915339 + 0.995802i \(0.529177\pi\)
\(284\) −510.034 −0.106567
\(285\) 3720.12 0.773197
\(286\) 0 0
\(287\) −3306.15 −0.679986
\(288\) −1303.27 −0.266653
\(289\) −4838.98 −0.984934
\(290\) 10516.2 2.12942
\(291\) 3632.08 0.731671
\(292\) 1474.08 0.295425
\(293\) 4560.87 0.909383 0.454691 0.890649i \(-0.349750\pi\)
0.454691 + 0.890649i \(0.349750\pi\)
\(294\) −2044.72 −0.405613
\(295\) −8209.67 −1.62029
\(296\) −2337.26 −0.458954
\(297\) 0 0
\(298\) −758.265 −0.147400
\(299\) 5186.99 1.00325
\(300\) −726.946 −0.139901
\(301\) 5761.38 1.10326
\(302\) 8918.35 1.69932
\(303\) −3255.61 −0.617261
\(304\) 7051.33 1.33033
\(305\) 9056.13 1.70017
\(306\) 261.485 0.0488500
\(307\) −4841.69 −0.900097 −0.450048 0.893004i \(-0.648593\pi\)
−0.450048 + 0.893004i \(0.648593\pi\)
\(308\) 0 0
\(309\) 3164.48 0.582592
\(310\) 11421.3 2.09254
\(311\) 7270.61 1.32565 0.662827 0.748773i \(-0.269357\pi\)
0.662827 + 0.748773i \(0.269357\pi\)
\(312\) 1756.93 0.318804
\(313\) 2242.43 0.404952 0.202476 0.979287i \(-0.435101\pi\)
0.202476 + 0.979287i \(0.435101\pi\)
\(314\) 1063.71 0.191174
\(315\) 2942.36 0.526296
\(316\) −4227.96 −0.752662
\(317\) 5439.43 0.963751 0.481875 0.876240i \(-0.339956\pi\)
0.481875 + 0.876240i \(0.339956\pi\)
\(318\) 5038.87 0.888572
\(319\) 0 0
\(320\) 2074.90 0.362470
\(321\) 1615.57 0.280910
\(322\) 10835.0 1.87518
\(323\) −761.693 −0.131213
\(324\) 275.754 0.0472830
\(325\) 2685.94 0.458429
\(326\) −4721.35 −0.802120
\(327\) 377.467 0.0638348
\(328\) 2198.24 0.370053
\(329\) 1452.90 0.243467
\(330\) 0 0
\(331\) 8447.66 1.40280 0.701398 0.712770i \(-0.252560\pi\)
0.701398 + 0.712770i \(0.252560\pi\)
\(332\) 2428.61 0.401467
\(333\) 1355.41 0.223050
\(334\) −3907.89 −0.640210
\(335\) −13494.0 −2.20076
\(336\) 5577.12 0.905526
\(337\) −3116.36 −0.503736 −0.251868 0.967762i \(-0.581045\pi\)
−0.251868 + 0.967762i \(0.581045\pi\)
\(338\) −2610.49 −0.420094
\(339\) 5101.30 0.817299
\(340\) 410.233 0.0654353
\(341\) 0 0
\(342\) −2690.85 −0.425452
\(343\) −3295.22 −0.518732
\(344\) −3830.70 −0.600399
\(345\) −5775.75 −0.901322
\(346\) 2396.67 0.372387
\(347\) 3813.71 0.590002 0.295001 0.955497i \(-0.404680\pi\)
0.295001 + 0.955497i \(0.404680\pi\)
\(348\) −2270.68 −0.349774
\(349\) −2006.69 −0.307781 −0.153890 0.988088i \(-0.549180\pi\)
−0.153890 + 0.988088i \(0.549180\pi\)
\(350\) 5610.59 0.856853
\(351\) −1018.87 −0.154937
\(352\) 0 0
\(353\) 7986.75 1.20423 0.602113 0.798411i \(-0.294326\pi\)
0.602113 + 0.798411i \(0.294326\pi\)
\(354\) 5938.24 0.891565
\(355\) −2098.39 −0.313722
\(356\) 762.700 0.113548
\(357\) −602.447 −0.0893133
\(358\) −1347.18 −0.198885
\(359\) −514.645 −0.0756600 −0.0378300 0.999284i \(-0.512045\pi\)
−0.0378300 + 0.999284i \(0.512045\pi\)
\(360\) −1956.36 −0.286414
\(361\) 979.319 0.142779
\(362\) 1145.31 0.166287
\(363\) 0 0
\(364\) 2998.61 0.431785
\(365\) 6064.69 0.869699
\(366\) −6550.51 −0.935520
\(367\) −2755.17 −0.391876 −0.195938 0.980616i \(-0.562775\pi\)
−0.195938 + 0.980616i \(0.562775\pi\)
\(368\) −10947.7 −1.55078
\(369\) −1274.78 −0.179844
\(370\) 7123.40 1.00089
\(371\) −11609.3 −1.62459
\(372\) −2466.12 −0.343716
\(373\) 191.959 0.0266468 0.0133234 0.999911i \(-0.495759\pi\)
0.0133234 + 0.999911i \(0.495759\pi\)
\(374\) 0 0
\(375\) 2261.56 0.311431
\(376\) −966.020 −0.132497
\(377\) 8389.79 1.14614
\(378\) −2128.28 −0.289595
\(379\) 1571.38 0.212972 0.106486 0.994314i \(-0.466040\pi\)
0.106486 + 0.994314i \(0.466040\pi\)
\(380\) −4221.56 −0.569899
\(381\) 5162.40 0.694167
\(382\) −5064.20 −0.678290
\(383\) −14348.3 −1.91427 −0.957134 0.289645i \(-0.906463\pi\)
−0.957134 + 0.289645i \(0.906463\pi\)
\(384\) −4976.21 −0.661306
\(385\) 0 0
\(386\) −4287.28 −0.565328
\(387\) 2221.47 0.291792
\(388\) −4121.65 −0.539291
\(389\) 7543.09 0.983162 0.491581 0.870832i \(-0.336419\pi\)
0.491581 + 0.870832i \(0.336419\pi\)
\(390\) −5354.70 −0.695245
\(391\) 1182.58 0.152956
\(392\) −3132.25 −0.403578
\(393\) 2029.50 0.260495
\(394\) 6655.67 0.851035
\(395\) −17394.8 −2.21576
\(396\) 0 0
\(397\) −3008.38 −0.380319 −0.190159 0.981753i \(-0.560900\pi\)
−0.190159 + 0.981753i \(0.560900\pi\)
\(398\) 12517.9 1.57655
\(399\) 6199.57 0.777861
\(400\) −5668.96 −0.708620
\(401\) 13178.4 1.64115 0.820573 0.571541i \(-0.193654\pi\)
0.820573 + 0.571541i \(0.193654\pi\)
\(402\) 9760.52 1.21097
\(403\) 9111.91 1.12629
\(404\) 3694.44 0.454963
\(405\) 1134.51 0.139196
\(406\) 17525.2 2.14226
\(407\) 0 0
\(408\) 400.562 0.0486049
\(409\) −10753.4 −1.30005 −0.650025 0.759912i \(-0.725242\pi\)
−0.650025 + 0.759912i \(0.725242\pi\)
\(410\) −6699.69 −0.807009
\(411\) −846.000 −0.101533
\(412\) −3591.03 −0.429410
\(413\) −13681.4 −1.63006
\(414\) 4177.73 0.495953
\(415\) 9991.82 1.18188
\(416\) −5464.44 −0.644030
\(417\) 1526.65 0.179282
\(418\) 0 0
\(419\) 440.292 0.0513358 0.0256679 0.999671i \(-0.491829\pi\)
0.0256679 + 0.999671i \(0.491829\pi\)
\(420\) −3338.97 −0.387916
\(421\) 10982.0 1.27133 0.635666 0.771964i \(-0.280725\pi\)
0.635666 + 0.771964i \(0.280725\pi\)
\(422\) −9792.54 −1.12961
\(423\) 560.207 0.0643929
\(424\) 7718.93 0.884114
\(425\) 612.368 0.0698922
\(426\) 1517.82 0.172625
\(427\) 15092.0 1.71043
\(428\) −1833.33 −0.207050
\(429\) 0 0
\(430\) 11675.0 1.30935
\(431\) 4312.39 0.481950 0.240975 0.970531i \(-0.422533\pi\)
0.240975 + 0.970531i \(0.422533\pi\)
\(432\) 2150.42 0.239496
\(433\) 10927.6 1.21281 0.606407 0.795154i \(-0.292610\pi\)
0.606407 + 0.795154i \(0.292610\pi\)
\(434\) 19033.6 2.10516
\(435\) −9342.08 −1.02970
\(436\) −428.346 −0.0470506
\(437\) −12169.5 −1.33215
\(438\) −4386.73 −0.478552
\(439\) −5655.67 −0.614876 −0.307438 0.951568i \(-0.599472\pi\)
−0.307438 + 0.951568i \(0.599472\pi\)
\(440\) 0 0
\(441\) 1816.43 0.196138
\(442\) 1096.37 0.117984
\(443\) 2903.15 0.311361 0.155681 0.987807i \(-0.450243\pi\)
0.155681 + 0.987807i \(0.450243\pi\)
\(444\) −1538.10 −0.164403
\(445\) 3137.92 0.334273
\(446\) −21177.2 −2.24836
\(447\) 673.607 0.0712763
\(448\) 3457.81 0.364656
\(449\) 3477.50 0.365509 0.182754 0.983159i \(-0.441499\pi\)
0.182754 + 0.983159i \(0.441499\pi\)
\(450\) 2163.33 0.226623
\(451\) 0 0
\(452\) −5788.91 −0.602406
\(453\) −7922.65 −0.821718
\(454\) 5067.60 0.523864
\(455\) 12336.9 1.27113
\(456\) −4122.05 −0.423317
\(457\) 3650.23 0.373634 0.186817 0.982395i \(-0.440183\pi\)
0.186817 + 0.982395i \(0.440183\pi\)
\(458\) −7293.64 −0.744125
\(459\) −232.291 −0.0236218
\(460\) 6554.27 0.664336
\(461\) 11721.5 1.18422 0.592111 0.805856i \(-0.298295\pi\)
0.592111 + 0.805856i \(0.298295\pi\)
\(462\) 0 0
\(463\) −7337.56 −0.736512 −0.368256 0.929724i \(-0.620045\pi\)
−0.368256 + 0.929724i \(0.620045\pi\)
\(464\) −17707.5 −1.77166
\(465\) −10146.2 −1.01187
\(466\) 6756.53 0.671653
\(467\) −10527.0 −1.04311 −0.521553 0.853219i \(-0.674647\pi\)
−0.521553 + 0.853219i \(0.674647\pi\)
\(468\) 1156.20 0.114200
\(469\) −22487.7 −2.21404
\(470\) 2944.19 0.288948
\(471\) −944.950 −0.0924438
\(472\) 9096.64 0.887091
\(473\) 0 0
\(474\) 12582.0 1.21922
\(475\) −6301.66 −0.608716
\(476\) 683.651 0.0658300
\(477\) −4476.30 −0.429676
\(478\) 5962.03 0.570495
\(479\) −10530.9 −1.00453 −0.502265 0.864714i \(-0.667500\pi\)
−0.502265 + 0.864714i \(0.667500\pi\)
\(480\) 6084.69 0.578598
\(481\) 5683.03 0.538719
\(482\) −9412.94 −0.889518
\(483\) −9625.26 −0.906759
\(484\) 0 0
\(485\) −16957.4 −1.58762
\(486\) −820.620 −0.0765927
\(487\) 844.460 0.0785753 0.0392876 0.999228i \(-0.487491\pi\)
0.0392876 + 0.999228i \(0.487491\pi\)
\(488\) −10034.6 −0.930826
\(489\) 4194.22 0.387872
\(490\) 9546.34 0.880122
\(491\) −13213.6 −1.21451 −0.607254 0.794508i \(-0.707729\pi\)
−0.607254 + 0.794508i \(0.707729\pi\)
\(492\) 1446.61 0.132558
\(493\) 1912.79 0.174741
\(494\) −11282.4 −1.02757
\(495\) 0 0
\(496\) −19231.6 −1.74098
\(497\) −3496.96 −0.315614
\(498\) −7227.31 −0.650329
\(499\) −16991.4 −1.52433 −0.762165 0.647383i \(-0.775864\pi\)
−0.762165 + 0.647383i \(0.775864\pi\)
\(500\) −2566.40 −0.229546
\(501\) 3471.59 0.309579
\(502\) −3462.24 −0.307823
\(503\) 2571.04 0.227906 0.113953 0.993486i \(-0.463649\pi\)
0.113953 + 0.993486i \(0.463649\pi\)
\(504\) −3260.26 −0.288142
\(505\) 15199.7 1.33936
\(506\) 0 0
\(507\) 2319.03 0.203140
\(508\) −5858.24 −0.511649
\(509\) −20905.9 −1.82051 −0.910255 0.414048i \(-0.864115\pi\)
−0.910255 + 0.414048i \(0.864115\pi\)
\(510\) −1220.82 −0.105997
\(511\) 10106.8 0.874946
\(512\) 1644.78 0.141972
\(513\) 2390.43 0.205731
\(514\) 5719.98 0.490851
\(515\) −14774.3 −1.26414
\(516\) −2520.90 −0.215071
\(517\) 0 0
\(518\) 11871.1 1.00692
\(519\) −2129.09 −0.180071
\(520\) −8202.73 −0.691757
\(521\) 736.058 0.0618949 0.0309475 0.999521i \(-0.490148\pi\)
0.0309475 + 0.999521i \(0.490148\pi\)
\(522\) 6757.34 0.566592
\(523\) 13165.7 1.10075 0.550377 0.834916i \(-0.314484\pi\)
0.550377 + 0.834916i \(0.314484\pi\)
\(524\) −2303.06 −0.192003
\(525\) −4984.18 −0.414338
\(526\) −3848.22 −0.318993
\(527\) 2077.42 0.171715
\(528\) 0 0
\(529\) 6727.04 0.552892
\(530\) −23525.4 −1.92807
\(531\) −5275.25 −0.431123
\(532\) −7035.22 −0.573337
\(533\) −5344.99 −0.434367
\(534\) −2269.73 −0.183934
\(535\) −7542.73 −0.609534
\(536\) 14951.9 1.20490
\(537\) 1196.77 0.0961724
\(538\) −17999.9 −1.44243
\(539\) 0 0
\(540\) −1287.44 −0.102597
\(541\) −21964.9 −1.74555 −0.872776 0.488121i \(-0.837682\pi\)
−0.872776 + 0.488121i \(0.837682\pi\)
\(542\) −5140.31 −0.407371
\(543\) −1017.44 −0.0804096
\(544\) −1245.84 −0.0981890
\(545\) −1762.31 −0.138512
\(546\) −8923.58 −0.699439
\(547\) −17257.9 −1.34899 −0.674493 0.738281i \(-0.735638\pi\)
−0.674493 + 0.738281i \(0.735638\pi\)
\(548\) 960.033 0.0748368
\(549\) 5819.16 0.452378
\(550\) 0 0
\(551\) −19683.8 −1.52188
\(552\) 6399.77 0.493464
\(553\) −28988.3 −2.22913
\(554\) 9215.85 0.706758
\(555\) −6328.09 −0.483986
\(556\) −1732.43 −0.132143
\(557\) 18174.4 1.38254 0.691269 0.722597i \(-0.257052\pi\)
0.691269 + 0.722597i \(0.257052\pi\)
\(558\) 7338.96 0.556779
\(559\) 9314.31 0.704747
\(560\) −26038.3 −1.96486
\(561\) 0 0
\(562\) 23234.7 1.74394
\(563\) 22447.6 1.68038 0.840190 0.542292i \(-0.182443\pi\)
0.840190 + 0.542292i \(0.182443\pi\)
\(564\) −635.718 −0.0474619
\(565\) −23816.8 −1.77342
\(566\) −2943.25 −0.218576
\(567\) 1890.66 0.140036
\(568\) 2325.11 0.171759
\(569\) 9383.01 0.691311 0.345656 0.938361i \(-0.387657\pi\)
0.345656 + 0.938361i \(0.387657\pi\)
\(570\) 12563.0 0.923168
\(571\) 7968.11 0.583984 0.291992 0.956421i \(-0.405682\pi\)
0.291992 + 0.956421i \(0.405682\pi\)
\(572\) 0 0
\(573\) 4498.79 0.327993
\(574\) −11165.0 −0.811878
\(575\) 9783.77 0.709585
\(576\) 1333.26 0.0964452
\(577\) −4929.58 −0.355669 −0.177835 0.984060i \(-0.556909\pi\)
−0.177835 + 0.984060i \(0.556909\pi\)
\(578\) −16341.4 −1.17597
\(579\) 3808.62 0.273369
\(580\) 10601.3 0.758958
\(581\) 16651.3 1.18901
\(582\) 12265.7 0.873587
\(583\) 0 0
\(584\) −6719.92 −0.476151
\(585\) 4756.86 0.336192
\(586\) 15402.2 1.08577
\(587\) −2395.01 −0.168403 −0.0842016 0.996449i \(-0.526834\pi\)
−0.0842016 + 0.996449i \(0.526834\pi\)
\(588\) −2061.27 −0.144567
\(589\) −21378.0 −1.49553
\(590\) −27724.3 −1.93456
\(591\) −5912.58 −0.411525
\(592\) −11994.6 −0.832729
\(593\) −7389.73 −0.511737 −0.255868 0.966712i \(-0.582361\pi\)
−0.255868 + 0.966712i \(0.582361\pi\)
\(594\) 0 0
\(595\) 2812.69 0.193797
\(596\) −764.403 −0.0525355
\(597\) −11120.3 −0.762354
\(598\) 17516.7 1.19784
\(599\) 21832.8 1.48926 0.744629 0.667478i \(-0.232626\pi\)
0.744629 + 0.667478i \(0.232626\pi\)
\(600\) 3313.95 0.225485
\(601\) −4785.00 −0.324766 −0.162383 0.986728i \(-0.551918\pi\)
−0.162383 + 0.986728i \(0.551918\pi\)
\(602\) 19456.4 1.31725
\(603\) −8670.79 −0.585575
\(604\) 8990.55 0.605663
\(605\) 0 0
\(606\) −10994.3 −0.736986
\(607\) −16848.3 −1.12661 −0.563305 0.826249i \(-0.690471\pi\)
−0.563305 + 0.826249i \(0.690471\pi\)
\(608\) 12820.5 0.855163
\(609\) −15568.5 −1.03591
\(610\) 30582.9 2.02994
\(611\) 2348.87 0.155524
\(612\) 263.602 0.0174109
\(613\) 3437.67 0.226503 0.113251 0.993566i \(-0.463873\pi\)
0.113251 + 0.993566i \(0.463873\pi\)
\(614\) −16350.6 −1.07468
\(615\) 5951.69 0.390236
\(616\) 0 0
\(617\) 12049.1 0.786186 0.393093 0.919499i \(-0.371405\pi\)
0.393093 + 0.919499i \(0.371405\pi\)
\(618\) 10686.6 0.695593
\(619\) 22046.7 1.43156 0.715778 0.698328i \(-0.246072\pi\)
0.715778 + 0.698328i \(0.246072\pi\)
\(620\) 11513.8 0.745814
\(621\) −3711.30 −0.239822
\(622\) 24553.1 1.58278
\(623\) 5229.32 0.336290
\(624\) 9016.42 0.578439
\(625\) −19455.9 −1.24518
\(626\) 7572.78 0.483497
\(627\) 0 0
\(628\) 1072.32 0.0681374
\(629\) 1295.67 0.0821333
\(630\) 9936.46 0.628378
\(631\) 2847.78 0.179664 0.0898322 0.995957i \(-0.471367\pi\)
0.0898322 + 0.995957i \(0.471367\pi\)
\(632\) 19274.1 1.21310
\(633\) 8699.23 0.546230
\(634\) 18369.2 1.15068
\(635\) −24102.1 −1.50624
\(636\) 5079.66 0.316701
\(637\) 7616.05 0.473719
\(638\) 0 0
\(639\) −1348.36 −0.0834744
\(640\) 23232.9 1.43494
\(641\) 10179.3 0.627236 0.313618 0.949549i \(-0.398459\pi\)
0.313618 + 0.949549i \(0.398459\pi\)
\(642\) 5455.83 0.335396
\(643\) −15705.5 −0.963240 −0.481620 0.876380i \(-0.659952\pi\)
−0.481620 + 0.876380i \(0.659952\pi\)
\(644\) 10922.7 0.668343
\(645\) −10371.5 −0.633146
\(646\) −2572.27 −0.156663
\(647\) −3404.79 −0.206887 −0.103444 0.994635i \(-0.532986\pi\)
−0.103444 + 0.994635i \(0.532986\pi\)
\(648\) −1257.09 −0.0762084
\(649\) 0 0
\(650\) 9070.53 0.547347
\(651\) −16908.5 −1.01797
\(652\) −4759.57 −0.285888
\(653\) 25658.3 1.53765 0.768826 0.639458i \(-0.220841\pi\)
0.768826 + 0.639458i \(0.220841\pi\)
\(654\) 1274.72 0.0762163
\(655\) −9475.28 −0.565236
\(656\) 11281.2 0.671426
\(657\) 3896.96 0.231408
\(658\) 4906.48 0.290691
\(659\) 30937.0 1.82873 0.914367 0.404887i \(-0.132689\pi\)
0.914367 + 0.404887i \(0.132689\pi\)
\(660\) 0 0
\(661\) −17637.6 −1.03786 −0.518928 0.854818i \(-0.673669\pi\)
−0.518928 + 0.854818i \(0.673669\pi\)
\(662\) 28528.1 1.67489
\(663\) −973.964 −0.0570523
\(664\) −11071.3 −0.647065
\(665\) −28944.4 −1.68784
\(666\) 4577.25 0.266314
\(667\) 30560.5 1.77407
\(668\) −3939.53 −0.228181
\(669\) 18812.8 1.08721
\(670\) −45569.7 −2.62763
\(671\) 0 0
\(672\) 10140.1 0.582088
\(673\) 27408.3 1.56985 0.784927 0.619588i \(-0.212700\pi\)
0.784927 + 0.619588i \(0.212700\pi\)
\(674\) −10524.1 −0.601442
\(675\) −1921.80 −0.109585
\(676\) −2631.62 −0.149728
\(677\) 1842.79 0.104615 0.0523074 0.998631i \(-0.483342\pi\)
0.0523074 + 0.998631i \(0.483342\pi\)
\(678\) 17227.3 0.975825
\(679\) −28259.4 −1.59720
\(680\) −1870.14 −0.105465
\(681\) −4501.82 −0.253319
\(682\) 0 0
\(683\) 9024.46 0.505580 0.252790 0.967521i \(-0.418652\pi\)
0.252790 + 0.967521i \(0.418652\pi\)
\(684\) −2712.63 −0.151638
\(685\) 3949.79 0.220312
\(686\) −11128.1 −0.619347
\(687\) 6479.32 0.359828
\(688\) −19658.8 −1.08937
\(689\) −18768.5 −1.03777
\(690\) −19504.9 −1.07614
\(691\) 7697.01 0.423745 0.211873 0.977297i \(-0.432044\pi\)
0.211873 + 0.977297i \(0.432044\pi\)
\(692\) 2416.08 0.132725
\(693\) 0 0
\(694\) 12879.0 0.704440
\(695\) −7127.62 −0.389016
\(696\) 10351.4 0.563749
\(697\) −1218.60 −0.0662237
\(698\) −6776.65 −0.367478
\(699\) −6002.18 −0.324783
\(700\) 5656.00 0.305395
\(701\) −13348.5 −0.719212 −0.359606 0.933104i \(-0.617089\pi\)
−0.359606 + 0.933104i \(0.617089\pi\)
\(702\) −3440.75 −0.184990
\(703\) −13333.3 −0.715328
\(704\) 0 0
\(705\) −2615.48 −0.139723
\(706\) 26971.5 1.43780
\(707\) 25330.3 1.34744
\(708\) 5986.31 0.317767
\(709\) −24251.4 −1.28460 −0.642299 0.766455i \(-0.722019\pi\)
−0.642299 + 0.766455i \(0.722019\pi\)
\(710\) −7086.35 −0.374572
\(711\) −11177.3 −0.589565
\(712\) −3476.94 −0.183011
\(713\) 33190.9 1.74335
\(714\) −2034.48 −0.106637
\(715\) 0 0
\(716\) −1358.09 −0.0708857
\(717\) −5296.38 −0.275868
\(718\) −1737.98 −0.0903352
\(719\) −14231.5 −0.738170 −0.369085 0.929396i \(-0.620329\pi\)
−0.369085 + 0.929396i \(0.620329\pi\)
\(720\) −10039.8 −0.519671
\(721\) −24621.2 −1.27177
\(722\) 3307.19 0.170472
\(723\) 8362.02 0.430134
\(724\) 1154.58 0.0592674
\(725\) 15824.9 0.810652
\(726\) 0 0
\(727\) −9582.44 −0.488849 −0.244424 0.969668i \(-0.578599\pi\)
−0.244424 + 0.969668i \(0.578599\pi\)
\(728\) −13669.8 −0.695930
\(729\) 729.000 0.0370370
\(730\) 20480.7 1.03839
\(731\) 2123.57 0.107446
\(732\) −6603.53 −0.333434
\(733\) 18811.0 0.947883 0.473942 0.880556i \(-0.342831\pi\)
0.473942 + 0.880556i \(0.342831\pi\)
\(734\) −9304.30 −0.467885
\(735\) −8480.52 −0.425590
\(736\) −19904.7 −0.996870
\(737\) 0 0
\(738\) −4304.99 −0.214727
\(739\) 14421.3 0.717854 0.358927 0.933366i \(-0.383143\pi\)
0.358927 + 0.933366i \(0.383143\pi\)
\(740\) 7181.06 0.356731
\(741\) 10022.7 0.496888
\(742\) −39205.0 −1.93970
\(743\) 9349.25 0.461629 0.230815 0.972998i \(-0.425861\pi\)
0.230815 + 0.972998i \(0.425861\pi\)
\(744\) 11242.4 0.553985
\(745\) −3144.92 −0.154659
\(746\) 648.253 0.0318153
\(747\) 6420.40 0.314472
\(748\) 0 0
\(749\) −12569.9 −0.613211
\(750\) 7637.38 0.371837
\(751\) −7699.82 −0.374128 −0.187064 0.982348i \(-0.559897\pi\)
−0.187064 + 0.982348i \(0.559897\pi\)
\(752\) −4957.53 −0.240402
\(753\) 3075.69 0.148850
\(754\) 28332.6 1.36845
\(755\) 36989.1 1.78301
\(756\) −2145.51 −0.103216
\(757\) 39855.1 1.91355 0.956776 0.290825i \(-0.0939297\pi\)
0.956776 + 0.290825i \(0.0939297\pi\)
\(758\) 5306.60 0.254280
\(759\) 0 0
\(760\) 19244.9 0.918536
\(761\) 29206.0 1.39122 0.695609 0.718421i \(-0.255135\pi\)
0.695609 + 0.718421i \(0.255135\pi\)
\(762\) 17433.6 0.828810
\(763\) −2936.88 −0.139348
\(764\) −5105.19 −0.241753
\(765\) 1084.52 0.0512559
\(766\) −48454.8 −2.28556
\(767\) −22118.4 −1.04126
\(768\) −13249.5 −0.622526
\(769\) 19737.4 0.925553 0.462777 0.886475i \(-0.346853\pi\)
0.462777 + 0.886475i \(0.346853\pi\)
\(770\) 0 0
\(771\) −5081.36 −0.237355
\(772\) −4321.98 −0.201492
\(773\) −36154.9 −1.68228 −0.841139 0.540820i \(-0.818114\pi\)
−0.841139 + 0.540820i \(0.818114\pi\)
\(774\) 7501.98 0.348389
\(775\) 17187.0 0.796613
\(776\) 18789.5 0.869204
\(777\) −10545.7 −0.486906
\(778\) 25473.3 1.17386
\(779\) 12540.2 0.576765
\(780\) −5398.05 −0.247796
\(781\) 0 0
\(782\) 3993.62 0.182623
\(783\) −6002.90 −0.273980
\(784\) −16074.4 −0.732254
\(785\) 4411.77 0.200589
\(786\) 6853.68 0.311021
\(787\) 10538.2 0.477316 0.238658 0.971104i \(-0.423293\pi\)
0.238658 + 0.971104i \(0.423293\pi\)
\(788\) 6709.55 0.303322
\(789\) 3418.58 0.154252
\(790\) −58742.7 −2.64553
\(791\) −39690.7 −1.78412
\(792\) 0 0
\(793\) 24398.9 1.09260
\(794\) −10159.4 −0.454086
\(795\) 20898.9 0.932335
\(796\) 12619.3 0.561907
\(797\) −27550.3 −1.22444 −0.612222 0.790686i \(-0.709724\pi\)
−0.612222 + 0.790686i \(0.709724\pi\)
\(798\) 20936.2 0.928737
\(799\) 535.518 0.0237112
\(800\) −10307.1 −0.455514
\(801\) 2016.32 0.0889427
\(802\) 44504.1 1.95947
\(803\) 0 0
\(804\) 9839.53 0.431609
\(805\) 44938.2 1.96753
\(806\) 30771.2 1.34475
\(807\) 15990.2 0.697501
\(808\) −16841.9 −0.733288
\(809\) 42469.4 1.84567 0.922834 0.385198i \(-0.125867\pi\)
0.922834 + 0.385198i \(0.125867\pi\)
\(810\) 3831.29 0.166195
\(811\) −3094.04 −0.133966 −0.0669830 0.997754i \(-0.521337\pi\)
−0.0669830 + 0.997754i \(0.521337\pi\)
\(812\) 17667.0 0.763536
\(813\) 4566.41 0.196988
\(814\) 0 0
\(815\) −19581.9 −0.841625
\(816\) 2055.65 0.0881890
\(817\) −21852.9 −0.935784
\(818\) −36314.6 −1.55221
\(819\) 7927.29 0.338220
\(820\) −6753.92 −0.287631
\(821\) −29731.6 −1.26387 −0.631937 0.775020i \(-0.717740\pi\)
−0.631937 + 0.775020i \(0.717740\pi\)
\(822\) −2856.97 −0.121227
\(823\) −29074.9 −1.23145 −0.615727 0.787959i \(-0.711138\pi\)
−0.615727 + 0.787959i \(0.711138\pi\)
\(824\) 16370.5 0.692103
\(825\) 0 0
\(826\) −46202.5 −1.94623
\(827\) −34713.8 −1.45963 −0.729817 0.683643i \(-0.760395\pi\)
−0.729817 + 0.683643i \(0.760395\pi\)
\(828\) 4211.55 0.176765
\(829\) 36539.1 1.53083 0.765413 0.643540i \(-0.222535\pi\)
0.765413 + 0.643540i \(0.222535\pi\)
\(830\) 33742.7 1.41112
\(831\) −8186.93 −0.341758
\(832\) 5590.17 0.232938
\(833\) 1736.38 0.0722233
\(834\) 5155.57 0.214056
\(835\) −16208.1 −0.671741
\(836\) 0 0
\(837\) −6519.58 −0.269235
\(838\) 1486.88 0.0612930
\(839\) 4839.31 0.199132 0.0995658 0.995031i \(-0.468255\pi\)
0.0995658 + 0.995031i \(0.468255\pi\)
\(840\) 15221.4 0.625225
\(841\) 25041.5 1.02676
\(842\) 37086.7 1.51792
\(843\) −20640.6 −0.843297
\(844\) −9871.81 −0.402609
\(845\) −10827.1 −0.440784
\(846\) 1891.84 0.0768827
\(847\) 0 0
\(848\) 39612.9 1.60414
\(849\) 2614.65 0.105694
\(850\) 2067.99 0.0834487
\(851\) 20700.9 0.833863
\(852\) 1530.10 0.0615264
\(853\) −42549.0 −1.70791 −0.853957 0.520344i \(-0.825804\pi\)
−0.853957 + 0.520344i \(0.825804\pi\)
\(854\) 50966.2 2.04219
\(855\) −11160.4 −0.446406
\(856\) 8357.65 0.333714
\(857\) 4754.94 0.189528 0.0947640 0.995500i \(-0.469790\pi\)
0.0947640 + 0.995500i \(0.469790\pi\)
\(858\) 0 0
\(859\) −15180.5 −0.602972 −0.301486 0.953471i \(-0.597483\pi\)
−0.301486 + 0.953471i \(0.597483\pi\)
\(860\) 11769.5 0.466672
\(861\) 9918.45 0.392590
\(862\) 14563.1 0.575430
\(863\) −32968.3 −1.30041 −0.650206 0.759758i \(-0.725317\pi\)
−0.650206 + 0.759758i \(0.725317\pi\)
\(864\) 3909.82 0.153952
\(865\) 9940.27 0.390728
\(866\) 36903.0 1.44805
\(867\) 14516.9 0.568652
\(868\) 19187.7 0.750313
\(869\) 0 0
\(870\) −31548.6 −1.22942
\(871\) −36355.4 −1.41430
\(872\) 1952.71 0.0758339
\(873\) −10896.2 −0.422430
\(874\) −41097.0 −1.59053
\(875\) −17596.1 −0.679836
\(876\) −4422.24 −0.170563
\(877\) 40465.2 1.55805 0.779027 0.626990i \(-0.215713\pi\)
0.779027 + 0.626990i \(0.215713\pi\)
\(878\) −19099.4 −0.734138
\(879\) −13682.6 −0.525032
\(880\) 0 0
\(881\) −33385.1 −1.27670 −0.638350 0.769746i \(-0.720383\pi\)
−0.638350 + 0.769746i \(0.720383\pi\)
\(882\) 6134.15 0.234181
\(883\) −12966.0 −0.494155 −0.247078 0.968996i \(-0.579470\pi\)
−0.247078 + 0.968996i \(0.579470\pi\)
\(884\) 1105.25 0.0420514
\(885\) 24629.0 0.935474
\(886\) 9804.06 0.371754
\(887\) 14228.6 0.538612 0.269306 0.963055i \(-0.413206\pi\)
0.269306 + 0.963055i \(0.413206\pi\)
\(888\) 7011.78 0.264977
\(889\) −40166.0 −1.51533
\(890\) 10596.9 0.399110
\(891\) 0 0
\(892\) −21348.6 −0.801349
\(893\) −5510.83 −0.206509
\(894\) 2274.79 0.0851013
\(895\) −5587.47 −0.208680
\(896\) 38717.4 1.44359
\(897\) −15561.0 −0.579226
\(898\) 11743.7 0.436404
\(899\) 53685.1 1.99166
\(900\) 2180.84 0.0807718
\(901\) −4279.03 −0.158219
\(902\) 0 0
\(903\) −17284.1 −0.636965
\(904\) 26390.0 0.970929
\(905\) 4750.19 0.174477
\(906\) −26755.1 −0.981101
\(907\) 21189.4 0.775726 0.387863 0.921717i \(-0.373213\pi\)
0.387863 + 0.921717i \(0.373213\pi\)
\(908\) 5108.62 0.186713
\(909\) 9766.83 0.356376
\(910\) 41662.2 1.51768
\(911\) −28318.4 −1.02989 −0.514946 0.857223i \(-0.672188\pi\)
−0.514946 + 0.857223i \(0.672188\pi\)
\(912\) −21154.0 −0.768069
\(913\) 0 0
\(914\) 12327.0 0.446105
\(915\) −27168.4 −0.981595
\(916\) −7352.68 −0.265218
\(917\) −15790.5 −0.568646
\(918\) −784.455 −0.0282036
\(919\) −7151.26 −0.256690 −0.128345 0.991730i \(-0.540967\pi\)
−0.128345 + 0.991730i \(0.540967\pi\)
\(920\) −29879.1 −1.07074
\(921\) 14525.1 0.519671
\(922\) 39584.1 1.41392
\(923\) −5653.47 −0.201610
\(924\) 0 0
\(925\) 10719.4 0.381029
\(926\) −24779.2 −0.879368
\(927\) −9493.44 −0.336360
\(928\) −32195.1 −1.13886
\(929\) −33378.1 −1.17880 −0.589398 0.807843i \(-0.700635\pi\)
−0.589398 + 0.807843i \(0.700635\pi\)
\(930\) −34264.0 −1.20813
\(931\) −17868.5 −0.629018
\(932\) 6811.22 0.239387
\(933\) −21811.8 −0.765367
\(934\) −35550.0 −1.24543
\(935\) 0 0
\(936\) −5270.80 −0.184061
\(937\) 10090.5 0.351808 0.175904 0.984407i \(-0.443715\pi\)
0.175904 + 0.984407i \(0.443715\pi\)
\(938\) −75941.7 −2.64348
\(939\) −6727.30 −0.233799
\(940\) 2968.03 0.102985
\(941\) 20807.3 0.720828 0.360414 0.932792i \(-0.382635\pi\)
0.360414 + 0.932792i \(0.382635\pi\)
\(942\) −3191.13 −0.110374
\(943\) −19469.6 −0.672340
\(944\) 46683.2 1.60954
\(945\) −8827.08 −0.303857
\(946\) 0 0
\(947\) 35396.1 1.21459 0.607296 0.794476i \(-0.292254\pi\)
0.607296 + 0.794476i \(0.292254\pi\)
\(948\) 12683.9 0.434550
\(949\) 16339.4 0.558904
\(950\) −21280.9 −0.726784
\(951\) −16318.3 −0.556422
\(952\) −3116.58 −0.106102
\(953\) −31152.7 −1.05890 −0.529452 0.848340i \(-0.677603\pi\)
−0.529452 + 0.848340i \(0.677603\pi\)
\(954\) −15116.6 −0.513017
\(955\) −21003.9 −0.711696
\(956\) 6010.29 0.203333
\(957\) 0 0
\(958\) −35563.3 −1.19937
\(959\) 6582.30 0.221641
\(960\) −6224.69 −0.209272
\(961\) 28514.9 0.957164
\(962\) 19191.8 0.643210
\(963\) −4846.70 −0.162184
\(964\) −9489.14 −0.317038
\(965\) −17781.6 −0.593171
\(966\) −32504.9 −1.08264
\(967\) −10002.0 −0.332620 −0.166310 0.986074i \(-0.553185\pi\)
−0.166310 + 0.986074i \(0.553185\pi\)
\(968\) 0 0
\(969\) 2285.08 0.0757557
\(970\) −57265.7 −1.89556
\(971\) 20654.6 0.682633 0.341316 0.939948i \(-0.389127\pi\)
0.341316 + 0.939948i \(0.389127\pi\)
\(972\) −827.263 −0.0272988
\(973\) −11878.1 −0.391362
\(974\) 2851.77 0.0938159
\(975\) −8057.83 −0.264674
\(976\) −51496.5 −1.68890
\(977\) −8005.35 −0.262143 −0.131072 0.991373i \(-0.541842\pi\)
−0.131072 + 0.991373i \(0.541842\pi\)
\(978\) 14164.0 0.463104
\(979\) 0 0
\(980\) 9623.62 0.313689
\(981\) −1132.40 −0.0368550
\(982\) −44622.9 −1.45008
\(983\) −5988.91 −0.194320 −0.0971600 0.995269i \(-0.530976\pi\)
−0.0971600 + 0.995269i \(0.530976\pi\)
\(984\) −6594.71 −0.213650
\(985\) 27604.6 0.892949
\(986\) 6459.55 0.208635
\(987\) −4358.69 −0.140566
\(988\) −11373.7 −0.366241
\(989\) 33928.1 1.09085
\(990\) 0 0
\(991\) 24763.7 0.793787 0.396894 0.917865i \(-0.370088\pi\)
0.396894 + 0.917865i \(0.370088\pi\)
\(992\) −34966.2 −1.11913
\(993\) −25343.0 −0.809905
\(994\) −11809.4 −0.376831
\(995\) 51918.5 1.65420
\(996\) −7285.82 −0.231787
\(997\) −10142.2 −0.322174 −0.161087 0.986940i \(-0.551500\pi\)
−0.161087 + 0.986940i \(0.551500\pi\)
\(998\) −57380.7 −1.81999
\(999\) −4066.22 −0.128778
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.4.a.v.1.5 6
3.2 odd 2 1089.4.a.bi.1.2 6
11.5 even 5 33.4.e.c.25.1 yes 12
11.9 even 5 33.4.e.c.4.1 12
11.10 odd 2 363.4.a.u.1.2 6
33.5 odd 10 99.4.f.d.91.3 12
33.20 odd 10 99.4.f.d.37.3 12
33.32 even 2 1089.4.a.bk.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.4.1 12 11.9 even 5
33.4.e.c.25.1 yes 12 11.5 even 5
99.4.f.d.37.3 12 33.20 odd 10
99.4.f.d.91.3 12 33.5 odd 10
363.4.a.u.1.2 6 11.10 odd 2
363.4.a.v.1.5 6 1.1 even 1 trivial
1089.4.a.bi.1.2 6 3.2 odd 2
1089.4.a.bk.1.5 6 33.32 even 2