Properties

Label 363.4.a.v.1.4
Level $363$
Weight $4$
Character 363.1
Self dual yes
Analytic conductor $21.418$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,4,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.4176933321\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 30x^{4} + 3x^{3} + 211x^{2} + 208x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 11 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.808830\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80883 q^{2} -3.00000 q^{3} -4.72813 q^{4} -21.4614 q^{5} -5.42649 q^{6} -18.7206 q^{7} -23.0230 q^{8} +9.00000 q^{9} -38.8200 q^{10} +14.1844 q^{12} +13.8787 q^{13} -33.8624 q^{14} +64.3841 q^{15} -3.81969 q^{16} -21.7681 q^{17} +16.2795 q^{18} -126.266 q^{19} +101.472 q^{20} +56.1618 q^{21} +1.06620 q^{23} +69.0691 q^{24} +335.590 q^{25} +25.1042 q^{26} -27.0000 q^{27} +88.5134 q^{28} +130.455 q^{29} +116.460 q^{30} -192.869 q^{31} +177.275 q^{32} -39.3748 q^{34} +401.769 q^{35} -42.5532 q^{36} +41.7438 q^{37} -228.394 q^{38} -41.6360 q^{39} +494.106 q^{40} -59.2714 q^{41} +101.587 q^{42} -172.713 q^{43} -193.152 q^{45} +1.92857 q^{46} -133.951 q^{47} +11.4591 q^{48} +7.46030 q^{49} +607.026 q^{50} +65.3044 q^{51} -65.6203 q^{52} -40.2812 q^{53} -48.8384 q^{54} +431.005 q^{56} +378.798 q^{57} +235.970 q^{58} +200.872 q^{59} -304.417 q^{60} +205.256 q^{61} -348.868 q^{62} -168.485 q^{63} +351.218 q^{64} -297.856 q^{65} -474.187 q^{67} +102.923 q^{68} -3.19860 q^{69} +726.733 q^{70} -422.982 q^{71} -207.207 q^{72} -1087.23 q^{73} +75.5075 q^{74} -1006.77 q^{75} +597.003 q^{76} -75.3125 q^{78} +575.020 q^{79} +81.9757 q^{80} +81.0000 q^{81} -107.212 q^{82} +671.681 q^{83} -265.540 q^{84} +467.174 q^{85} -312.409 q^{86} -391.364 q^{87} -311.151 q^{89} -349.380 q^{90} -259.817 q^{91} -5.04113 q^{92} +578.608 q^{93} -242.295 q^{94} +2709.84 q^{95} -531.825 q^{96} +684.390 q^{97} +13.4944 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 18 q^{3} + 17 q^{4} + 9 q^{5} - 15 q^{6} + q^{7} + 24 q^{8} + 54 q^{9} + 50 q^{10} - 51 q^{12} + 66 q^{13} - 42 q^{14} - 27 q^{15} - 71 q^{16} + 80 q^{17} + 45 q^{18} - 90 q^{19} + 455 q^{20}+ \cdots + 1405 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80883 0.639518 0.319759 0.947499i \(-0.396398\pi\)
0.319759 + 0.947499i \(0.396398\pi\)
\(3\) −3.00000 −0.577350
\(4\) −4.72813 −0.591017
\(5\) −21.4614 −1.91956 −0.959782 0.280748i \(-0.909418\pi\)
−0.959782 + 0.280748i \(0.909418\pi\)
\(6\) −5.42649 −0.369226
\(7\) −18.7206 −1.01082 −0.505408 0.862880i \(-0.668658\pi\)
−0.505408 + 0.862880i \(0.668658\pi\)
\(8\) −23.0230 −1.01748
\(9\) 9.00000 0.333333
\(10\) −38.8200 −1.22760
\(11\) 0 0
\(12\) 14.1844 0.341224
\(13\) 13.8787 0.296096 0.148048 0.988980i \(-0.452701\pi\)
0.148048 + 0.988980i \(0.452701\pi\)
\(14\) −33.8624 −0.646435
\(15\) 64.3841 1.10826
\(16\) −3.81969 −0.0596826
\(17\) −21.7681 −0.310561 −0.155281 0.987870i \(-0.549628\pi\)
−0.155281 + 0.987870i \(0.549628\pi\)
\(18\) 16.2795 0.213173
\(19\) −126.266 −1.52460 −0.762301 0.647223i \(-0.775930\pi\)
−0.762301 + 0.647223i \(0.775930\pi\)
\(20\) 101.472 1.13449
\(21\) 56.1618 0.583595
\(22\) 0 0
\(23\) 1.06620 0.00966600 0.00483300 0.999988i \(-0.498462\pi\)
0.00483300 + 0.999988i \(0.498462\pi\)
\(24\) 69.0691 0.587445
\(25\) 335.590 2.68472
\(26\) 25.1042 0.189359
\(27\) −27.0000 −0.192450
\(28\) 88.5134 0.597409
\(29\) 130.455 0.835338 0.417669 0.908599i \(-0.362847\pi\)
0.417669 + 0.908599i \(0.362847\pi\)
\(30\) 116.460 0.708752
\(31\) −192.869 −1.11743 −0.558716 0.829359i \(-0.688706\pi\)
−0.558716 + 0.829359i \(0.688706\pi\)
\(32\) 177.275 0.979316
\(33\) 0 0
\(34\) −39.3748 −0.198610
\(35\) 401.769 1.94033
\(36\) −42.5532 −0.197006
\(37\) 41.7438 0.185477 0.0927384 0.995691i \(-0.470438\pi\)
0.0927384 + 0.995691i \(0.470438\pi\)
\(38\) −228.394 −0.975010
\(39\) −41.6360 −0.170951
\(40\) 494.106 1.95312
\(41\) −59.2714 −0.225772 −0.112886 0.993608i \(-0.536009\pi\)
−0.112886 + 0.993608i \(0.536009\pi\)
\(42\) 101.587 0.373220
\(43\) −172.713 −0.612524 −0.306262 0.951947i \(-0.599078\pi\)
−0.306262 + 0.951947i \(0.599078\pi\)
\(44\) 0 0
\(45\) −193.152 −0.639854
\(46\) 1.92857 0.00618158
\(47\) −133.951 −0.415719 −0.207860 0.978159i \(-0.566650\pi\)
−0.207860 + 0.978159i \(0.566650\pi\)
\(48\) 11.4591 0.0344578
\(49\) 7.46030 0.0217501
\(50\) 607.026 1.71693
\(51\) 65.3044 0.179303
\(52\) −65.6203 −0.174998
\(53\) −40.2812 −0.104397 −0.0521985 0.998637i \(-0.516623\pi\)
−0.0521985 + 0.998637i \(0.516623\pi\)
\(54\) −48.8384 −0.123075
\(55\) 0 0
\(56\) 431.005 1.02849
\(57\) 378.798 0.880229
\(58\) 235.970 0.534214
\(59\) 200.872 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(60\) −304.417 −0.655000
\(61\) 205.256 0.430824 0.215412 0.976523i \(-0.430891\pi\)
0.215412 + 0.976523i \(0.430891\pi\)
\(62\) −348.868 −0.714617
\(63\) −168.485 −0.336939
\(64\) 351.218 0.685973
\(65\) −297.856 −0.568376
\(66\) 0 0
\(67\) −474.187 −0.864644 −0.432322 0.901719i \(-0.642306\pi\)
−0.432322 + 0.901719i \(0.642306\pi\)
\(68\) 102.923 0.183547
\(69\) −3.19860 −0.00558067
\(70\) 726.733 1.24087
\(71\) −422.982 −0.707024 −0.353512 0.935430i \(-0.615013\pi\)
−0.353512 + 0.935430i \(0.615013\pi\)
\(72\) −207.207 −0.339161
\(73\) −1087.23 −1.74316 −0.871582 0.490250i \(-0.836905\pi\)
−0.871582 + 0.490250i \(0.836905\pi\)
\(74\) 75.5075 0.118616
\(75\) −1006.77 −1.55003
\(76\) 597.003 0.901065
\(77\) 0 0
\(78\) −75.3125 −0.109326
\(79\) 575.020 0.818922 0.409461 0.912328i \(-0.365717\pi\)
0.409461 + 0.912328i \(0.365717\pi\)
\(80\) 81.9757 0.114565
\(81\) 81.0000 0.111111
\(82\) −107.212 −0.144385
\(83\) 671.681 0.888272 0.444136 0.895959i \(-0.353511\pi\)
0.444136 + 0.895959i \(0.353511\pi\)
\(84\) −265.540 −0.344915
\(85\) 467.174 0.596142
\(86\) −312.409 −0.391720
\(87\) −391.364 −0.482283
\(88\) 0 0
\(89\) −311.151 −0.370584 −0.185292 0.982684i \(-0.559323\pi\)
−0.185292 + 0.982684i \(0.559323\pi\)
\(90\) −349.380 −0.409198
\(91\) −259.817 −0.299299
\(92\) −5.04113 −0.00571277
\(93\) 578.608 0.645149
\(94\) −242.295 −0.265860
\(95\) 2709.84 2.92657
\(96\) −531.825 −0.565408
\(97\) 684.390 0.716384 0.358192 0.933648i \(-0.383393\pi\)
0.358192 + 0.933648i \(0.383393\pi\)
\(98\) 13.4944 0.0139096
\(99\) 0 0
\(100\) −1586.72 −1.58672
\(101\) −1161.20 −1.14399 −0.571997 0.820256i \(-0.693831\pi\)
−0.571997 + 0.820256i \(0.693831\pi\)
\(102\) 118.124 0.114667
\(103\) 449.261 0.429777 0.214888 0.976639i \(-0.431061\pi\)
0.214888 + 0.976639i \(0.431061\pi\)
\(104\) −319.529 −0.301273
\(105\) −1205.31 −1.12025
\(106\) −72.8618 −0.0667638
\(107\) 610.486 0.551570 0.275785 0.961219i \(-0.411062\pi\)
0.275785 + 0.961219i \(0.411062\pi\)
\(108\) 127.660 0.113741
\(109\) 1128.39 0.991560 0.495780 0.868448i \(-0.334882\pi\)
0.495780 + 0.868448i \(0.334882\pi\)
\(110\) 0 0
\(111\) −125.231 −0.107085
\(112\) 71.5068 0.0603282
\(113\) −246.156 −0.204924 −0.102462 0.994737i \(-0.532672\pi\)
−0.102462 + 0.994737i \(0.532672\pi\)
\(114\) 685.182 0.562922
\(115\) −22.8821 −0.0185545
\(116\) −616.806 −0.493699
\(117\) 124.908 0.0986988
\(118\) 363.343 0.283462
\(119\) 407.512 0.313921
\(120\) −1482.32 −1.12764
\(121\) 0 0
\(122\) 371.272 0.275520
\(123\) 177.814 0.130349
\(124\) 911.912 0.660421
\(125\) −4519.56 −3.23393
\(126\) −304.761 −0.215478
\(127\) 555.585 0.388190 0.194095 0.980983i \(-0.437823\pi\)
0.194095 + 0.980983i \(0.437823\pi\)
\(128\) −782.907 −0.540624
\(129\) 518.140 0.353641
\(130\) −538.770 −0.363487
\(131\) 1958.51 1.30623 0.653113 0.757260i \(-0.273463\pi\)
0.653113 + 0.757260i \(0.273463\pi\)
\(132\) 0 0
\(133\) 2363.77 1.54109
\(134\) −857.723 −0.552955
\(135\) 579.457 0.369420
\(136\) 501.168 0.315991
\(137\) 2498.83 1.55831 0.779157 0.626829i \(-0.215647\pi\)
0.779157 + 0.626829i \(0.215647\pi\)
\(138\) −5.78572 −0.00356894
\(139\) −2222.29 −1.35606 −0.678031 0.735033i \(-0.737166\pi\)
−0.678031 + 0.735033i \(0.737166\pi\)
\(140\) −1899.62 −1.14677
\(141\) 401.854 0.240016
\(142\) −765.102 −0.452155
\(143\) 0 0
\(144\) −34.3772 −0.0198942
\(145\) −2799.73 −1.60348
\(146\) −1966.62 −1.11478
\(147\) −22.3809 −0.0125574
\(148\) −197.370 −0.109620
\(149\) 2440.81 1.34200 0.671002 0.741455i \(-0.265864\pi\)
0.671002 + 0.741455i \(0.265864\pi\)
\(150\) −1821.08 −0.991269
\(151\) −1656.65 −0.892825 −0.446413 0.894827i \(-0.647299\pi\)
−0.446413 + 0.894827i \(0.647299\pi\)
\(152\) 2907.03 1.55126
\(153\) −195.913 −0.103520
\(154\) 0 0
\(155\) 4139.24 2.14498
\(156\) 196.861 0.101035
\(157\) −2600.65 −1.32200 −0.661001 0.750385i \(-0.729868\pi\)
−0.661001 + 0.750385i \(0.729868\pi\)
\(158\) 1040.11 0.523715
\(159\) 120.843 0.0602737
\(160\) −3804.57 −1.87986
\(161\) −19.9599 −0.00977055
\(162\) 146.515 0.0710576
\(163\) −1566.09 −0.752549 −0.376275 0.926508i \(-0.622795\pi\)
−0.376275 + 0.926508i \(0.622795\pi\)
\(164\) 280.243 0.133435
\(165\) 0 0
\(166\) 1214.96 0.568066
\(167\) 2782.40 1.28927 0.644636 0.764490i \(-0.277009\pi\)
0.644636 + 0.764490i \(0.277009\pi\)
\(168\) −1293.01 −0.593799
\(169\) −2004.38 −0.912327
\(170\) 845.038 0.381244
\(171\) −1136.39 −0.508200
\(172\) 816.612 0.362012
\(173\) 3207.19 1.40947 0.704734 0.709472i \(-0.251066\pi\)
0.704734 + 0.709472i \(0.251066\pi\)
\(174\) −707.910 −0.308428
\(175\) −6282.45 −2.71376
\(176\) 0 0
\(177\) −602.616 −0.255906
\(178\) −562.820 −0.236995
\(179\) −831.063 −0.347020 −0.173510 0.984832i \(-0.555511\pi\)
−0.173510 + 0.984832i \(0.555511\pi\)
\(180\) 913.250 0.378165
\(181\) 4101.12 1.68416 0.842082 0.539350i \(-0.181330\pi\)
0.842082 + 0.539350i \(0.181330\pi\)
\(182\) −469.965 −0.191407
\(183\) −615.767 −0.248736
\(184\) −24.5471 −0.00983500
\(185\) −895.879 −0.356034
\(186\) 1046.60 0.412585
\(187\) 0 0
\(188\) 633.339 0.245697
\(189\) 505.456 0.194532
\(190\) 4901.64 1.87159
\(191\) −1839.44 −0.696843 −0.348421 0.937338i \(-0.613282\pi\)
−0.348421 + 0.937338i \(0.613282\pi\)
\(192\) −1053.65 −0.396047
\(193\) −3237.11 −1.20732 −0.603659 0.797243i \(-0.706291\pi\)
−0.603659 + 0.797243i \(0.706291\pi\)
\(194\) 1237.94 0.458140
\(195\) 893.567 0.328152
\(196\) −35.2733 −0.0128547
\(197\) 3195.60 1.15572 0.577860 0.816136i \(-0.303888\pi\)
0.577860 + 0.816136i \(0.303888\pi\)
\(198\) 0 0
\(199\) −2966.11 −1.05659 −0.528296 0.849060i \(-0.677169\pi\)
−0.528296 + 0.849060i \(0.677169\pi\)
\(200\) −7726.31 −2.73166
\(201\) 1422.56 0.499202
\(202\) −2100.41 −0.731604
\(203\) −2442.19 −0.844373
\(204\) −308.768 −0.105971
\(205\) 1272.05 0.433383
\(206\) 812.637 0.274850
\(207\) 9.59580 0.00322200
\(208\) −53.0122 −0.0176718
\(209\) 0 0
\(210\) −2180.20 −0.716419
\(211\) 3573.66 1.16598 0.582988 0.812481i \(-0.301883\pi\)
0.582988 + 0.812481i \(0.301883\pi\)
\(212\) 190.455 0.0617004
\(213\) 1268.95 0.408201
\(214\) 1104.27 0.352739
\(215\) 3706.67 1.17578
\(216\) 621.622 0.195815
\(217\) 3610.63 1.12952
\(218\) 2041.06 0.634121
\(219\) 3261.70 1.00642
\(220\) 0 0
\(221\) −302.113 −0.0919561
\(222\) −226.522 −0.0684828
\(223\) −1283.84 −0.385525 −0.192762 0.981245i \(-0.561745\pi\)
−0.192762 + 0.981245i \(0.561745\pi\)
\(224\) −3318.69 −0.989909
\(225\) 3020.31 0.894908
\(226\) −445.255 −0.131053
\(227\) −1122.08 −0.328085 −0.164043 0.986453i \(-0.552453\pi\)
−0.164043 + 0.986453i \(0.552453\pi\)
\(228\) −1791.01 −0.520230
\(229\) −4803.11 −1.38602 −0.693010 0.720928i \(-0.743716\pi\)
−0.693010 + 0.720928i \(0.743716\pi\)
\(230\) −41.3898 −0.0118659
\(231\) 0 0
\(232\) −3003.46 −0.849943
\(233\) −105.139 −0.0295619 −0.0147809 0.999891i \(-0.504705\pi\)
−0.0147809 + 0.999891i \(0.504705\pi\)
\(234\) 225.938 0.0631197
\(235\) 2874.78 0.797999
\(236\) −949.749 −0.261964
\(237\) −1725.06 −0.472805
\(238\) 737.120 0.200758
\(239\) −1090.69 −0.295193 −0.147596 0.989048i \(-0.547154\pi\)
−0.147596 + 0.989048i \(0.547154\pi\)
\(240\) −245.927 −0.0661438
\(241\) 1068.58 0.285615 0.142808 0.989750i \(-0.454387\pi\)
0.142808 + 0.989750i \(0.454387\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) −970.475 −0.254624
\(245\) −160.108 −0.0417508
\(246\) 321.636 0.0833608
\(247\) −1752.41 −0.451429
\(248\) 4440.44 1.13697
\(249\) −2015.04 −0.512844
\(250\) −8175.11 −2.06816
\(251\) 1992.38 0.501026 0.250513 0.968113i \(-0.419401\pi\)
0.250513 + 0.968113i \(0.419401\pi\)
\(252\) 796.621 0.199136
\(253\) 0 0
\(254\) 1004.96 0.248255
\(255\) −1401.52 −0.344183
\(256\) −4225.89 −1.03171
\(257\) 7985.30 1.93817 0.969084 0.246730i \(-0.0793560\pi\)
0.969084 + 0.246730i \(0.0793560\pi\)
\(258\) 937.227 0.226160
\(259\) −781.469 −0.187483
\(260\) 1408.30 0.335920
\(261\) 1174.09 0.278446
\(262\) 3542.61 0.835356
\(263\) −3975.12 −0.932002 −0.466001 0.884784i \(-0.654306\pi\)
−0.466001 + 0.884784i \(0.654306\pi\)
\(264\) 0 0
\(265\) 864.489 0.200397
\(266\) 4275.67 0.985556
\(267\) 933.454 0.213957
\(268\) 2242.02 0.511019
\(269\) −1127.52 −0.255561 −0.127781 0.991802i \(-0.540785\pi\)
−0.127781 + 0.991802i \(0.540785\pi\)
\(270\) 1048.14 0.236251
\(271\) −3949.98 −0.885404 −0.442702 0.896669i \(-0.645980\pi\)
−0.442702 + 0.896669i \(0.645980\pi\)
\(272\) 83.1474 0.0185351
\(273\) 779.451 0.172800
\(274\) 4519.95 0.996570
\(275\) 0 0
\(276\) 15.1234 0.00329827
\(277\) 656.095 0.142314 0.0711569 0.997465i \(-0.477331\pi\)
0.0711569 + 0.997465i \(0.477331\pi\)
\(278\) −4019.75 −0.867226
\(279\) −1735.82 −0.372477
\(280\) −9249.95 −1.97425
\(281\) 859.863 0.182545 0.0912725 0.995826i \(-0.470907\pi\)
0.0912725 + 0.995826i \(0.470907\pi\)
\(282\) 726.885 0.153494
\(283\) 7716.50 1.62084 0.810421 0.585848i \(-0.199238\pi\)
0.810421 + 0.585848i \(0.199238\pi\)
\(284\) 1999.91 0.417863
\(285\) −8129.53 −1.68965
\(286\) 0 0
\(287\) 1109.60 0.228214
\(288\) 1595.48 0.326439
\(289\) −4439.15 −0.903552
\(290\) −5064.24 −1.02546
\(291\) −2053.17 −0.413604
\(292\) 5140.58 1.03024
\(293\) −581.812 −0.116006 −0.0580031 0.998316i \(-0.518473\pi\)
−0.0580031 + 0.998316i \(0.518473\pi\)
\(294\) −40.4832 −0.00803071
\(295\) −4310.99 −0.850832
\(296\) −961.069 −0.188720
\(297\) 0 0
\(298\) 4415.01 0.858236
\(299\) 14.7974 0.00286207
\(300\) 4760.15 0.916091
\(301\) 3233.30 0.619150
\(302\) −2996.61 −0.570978
\(303\) 3483.59 0.660485
\(304\) 482.297 0.0909921
\(305\) −4405.06 −0.826994
\(306\) −354.373 −0.0662032
\(307\) 2369.06 0.440421 0.220211 0.975452i \(-0.429326\pi\)
0.220211 + 0.975452i \(0.429326\pi\)
\(308\) 0 0
\(309\) −1347.78 −0.248132
\(310\) 7487.19 1.37175
\(311\) 10507.8 1.91589 0.957946 0.286949i \(-0.0926412\pi\)
0.957946 + 0.286949i \(0.0926412\pi\)
\(312\) 958.588 0.173940
\(313\) −7261.22 −1.31127 −0.655637 0.755077i \(-0.727600\pi\)
−0.655637 + 0.755077i \(0.727600\pi\)
\(314\) −4704.13 −0.845444
\(315\) 3615.92 0.646775
\(316\) −2718.77 −0.483996
\(317\) −2943.52 −0.521528 −0.260764 0.965403i \(-0.583975\pi\)
−0.260764 + 0.965403i \(0.583975\pi\)
\(318\) 218.585 0.0385461
\(319\) 0 0
\(320\) −7537.62 −1.31677
\(321\) −1831.46 −0.318449
\(322\) −36.1040 −0.00624844
\(323\) 2748.57 0.473482
\(324\) −382.979 −0.0656685
\(325\) 4657.55 0.794937
\(326\) −2832.79 −0.481269
\(327\) −3385.17 −0.572477
\(328\) 1364.61 0.229719
\(329\) 2507.65 0.420216
\(330\) 0 0
\(331\) −6904.52 −1.14655 −0.573273 0.819364i \(-0.694327\pi\)
−0.573273 + 0.819364i \(0.694327\pi\)
\(332\) −3175.80 −0.524983
\(333\) 375.694 0.0618256
\(334\) 5032.88 0.824512
\(335\) 10176.7 1.65974
\(336\) −214.520 −0.0348305
\(337\) 10251.2 1.65702 0.828510 0.559974i \(-0.189189\pi\)
0.828510 + 0.559974i \(0.189189\pi\)
\(338\) −3625.59 −0.583449
\(339\) 738.468 0.118313
\(340\) −2208.86 −0.352330
\(341\) 0 0
\(342\) −2055.54 −0.325003
\(343\) 6281.50 0.988831
\(344\) 3976.39 0.623234
\(345\) 68.6463 0.0107124
\(346\) 5801.26 0.901380
\(347\) 5259.88 0.813733 0.406866 0.913488i \(-0.366621\pi\)
0.406866 + 0.913488i \(0.366621\pi\)
\(348\) 1850.42 0.285037
\(349\) 10566.1 1.62061 0.810304 0.586010i \(-0.199302\pi\)
0.810304 + 0.586010i \(0.199302\pi\)
\(350\) −11363.9 −1.73550
\(351\) −374.724 −0.0569838
\(352\) 0 0
\(353\) −1822.89 −0.274852 −0.137426 0.990512i \(-0.543883\pi\)
−0.137426 + 0.990512i \(0.543883\pi\)
\(354\) −1090.03 −0.163657
\(355\) 9077.77 1.35718
\(356\) 1471.16 0.219021
\(357\) −1222.54 −0.181242
\(358\) −1503.25 −0.221925
\(359\) 11524.0 1.69419 0.847093 0.531445i \(-0.178351\pi\)
0.847093 + 0.531445i \(0.178351\pi\)
\(360\) 4446.95 0.651042
\(361\) 9084.12 1.32441
\(362\) 7418.22 1.07705
\(363\) 0 0
\(364\) 1228.45 0.176891
\(365\) 23333.5 3.34611
\(366\) −1113.82 −0.159071
\(367\) −2579.26 −0.366857 −0.183428 0.983033i \(-0.558720\pi\)
−0.183428 + 0.983033i \(0.558720\pi\)
\(368\) −4.07255 −0.000576892 0
\(369\) −533.443 −0.0752572
\(370\) −1620.49 −0.227690
\(371\) 754.087 0.105526
\(372\) −2735.74 −0.381294
\(373\) 6084.16 0.844573 0.422287 0.906462i \(-0.361228\pi\)
0.422287 + 0.906462i \(0.361228\pi\)
\(374\) 0 0
\(375\) 13558.7 1.86711
\(376\) 3083.96 0.422988
\(377\) 1810.54 0.247341
\(378\) 914.284 0.124407
\(379\) 5898.93 0.799493 0.399746 0.916626i \(-0.369098\pi\)
0.399746 + 0.916626i \(0.369098\pi\)
\(380\) −12812.5 −1.72965
\(381\) −1666.75 −0.224122
\(382\) −3327.23 −0.445643
\(383\) −1599.92 −0.213452 −0.106726 0.994288i \(-0.534037\pi\)
−0.106726 + 0.994288i \(0.534037\pi\)
\(384\) 2348.72 0.312129
\(385\) 0 0
\(386\) −5855.38 −0.772102
\(387\) −1554.42 −0.204175
\(388\) −3235.89 −0.423395
\(389\) 2514.60 0.327751 0.163875 0.986481i \(-0.447600\pi\)
0.163875 + 0.986481i \(0.447600\pi\)
\(390\) 1616.31 0.209859
\(391\) −23.2092 −0.00300189
\(392\) −171.759 −0.0221304
\(393\) −5875.53 −0.754150
\(394\) 5780.29 0.739104
\(395\) −12340.7 −1.57197
\(396\) 0 0
\(397\) 5486.84 0.693644 0.346822 0.937931i \(-0.387261\pi\)
0.346822 + 0.937931i \(0.387261\pi\)
\(398\) −5365.19 −0.675710
\(399\) −7091.32 −0.889750
\(400\) −1281.85 −0.160231
\(401\) −14713.0 −1.83225 −0.916127 0.400889i \(-0.868701\pi\)
−0.916127 + 0.400889i \(0.868701\pi\)
\(402\) 2573.17 0.319249
\(403\) −2676.77 −0.330867
\(404\) 5490.29 0.676119
\(405\) −1738.37 −0.213285
\(406\) −4417.50 −0.539992
\(407\) 0 0
\(408\) −1503.50 −0.182438
\(409\) −7953.60 −0.961565 −0.480783 0.876840i \(-0.659647\pi\)
−0.480783 + 0.876840i \(0.659647\pi\)
\(410\) 2300.91 0.277156
\(411\) −7496.48 −0.899693
\(412\) −2124.17 −0.254005
\(413\) −3760.44 −0.448037
\(414\) 17.3572 0.00206053
\(415\) −14415.2 −1.70509
\(416\) 2460.34 0.289972
\(417\) 6666.88 0.782923
\(418\) 0 0
\(419\) 7289.12 0.849873 0.424936 0.905223i \(-0.360296\pi\)
0.424936 + 0.905223i \(0.360296\pi\)
\(420\) 5698.86 0.662085
\(421\) 5556.26 0.643220 0.321610 0.946872i \(-0.395776\pi\)
0.321610 + 0.946872i \(0.395776\pi\)
\(422\) 6464.15 0.745663
\(423\) −1205.56 −0.138573
\(424\) 927.394 0.106222
\(425\) −7305.17 −0.833771
\(426\) 2295.31 0.261052
\(427\) −3842.50 −0.435484
\(428\) −2886.46 −0.325987
\(429\) 0 0
\(430\) 6704.73 0.751932
\(431\) −13047.6 −1.45819 −0.729094 0.684414i \(-0.760058\pi\)
−0.729094 + 0.684414i \(0.760058\pi\)
\(432\) 103.132 0.0114859
\(433\) −14567.2 −1.61675 −0.808375 0.588668i \(-0.799653\pi\)
−0.808375 + 0.588668i \(0.799653\pi\)
\(434\) 6531.01 0.722347
\(435\) 8399.20 0.925772
\(436\) −5335.17 −0.586029
\(437\) −134.625 −0.0147368
\(438\) 5899.86 0.643621
\(439\) −9451.64 −1.02757 −0.513784 0.857920i \(-0.671757\pi\)
−0.513784 + 0.857920i \(0.671757\pi\)
\(440\) 0 0
\(441\) 67.1427 0.00725005
\(442\) −546.471 −0.0588076
\(443\) −12814.6 −1.37435 −0.687176 0.726491i \(-0.741150\pi\)
−0.687176 + 0.726491i \(0.741150\pi\)
\(444\) 592.111 0.0632891
\(445\) 6677.73 0.711359
\(446\) −2322.24 −0.246550
\(447\) −7322.42 −0.774807
\(448\) −6575.01 −0.693393
\(449\) 6073.88 0.638406 0.319203 0.947686i \(-0.396585\pi\)
0.319203 + 0.947686i \(0.396585\pi\)
\(450\) 5463.23 0.572310
\(451\) 0 0
\(452\) 1163.86 0.121114
\(453\) 4969.96 0.515473
\(454\) −2029.66 −0.209816
\(455\) 5576.03 0.574524
\(456\) −8721.08 −0.895619
\(457\) 15380.8 1.57436 0.787182 0.616721i \(-0.211539\pi\)
0.787182 + 0.616721i \(0.211539\pi\)
\(458\) −8688.02 −0.886385
\(459\) 587.739 0.0597676
\(460\) 108.190 0.0109660
\(461\) −3156.66 −0.318916 −0.159458 0.987205i \(-0.550975\pi\)
−0.159458 + 0.987205i \(0.550975\pi\)
\(462\) 0 0
\(463\) 4925.34 0.494384 0.247192 0.968966i \(-0.420492\pi\)
0.247192 + 0.968966i \(0.420492\pi\)
\(464\) −498.295 −0.0498551
\(465\) −12417.7 −1.23840
\(466\) −190.179 −0.0189053
\(467\) −11651.6 −1.15455 −0.577274 0.816551i \(-0.695884\pi\)
−0.577274 + 0.816551i \(0.695884\pi\)
\(468\) −590.582 −0.0583327
\(469\) 8877.05 0.873996
\(470\) 5199.98 0.510335
\(471\) 7801.94 0.763258
\(472\) −4624.68 −0.450992
\(473\) 0 0
\(474\) −3120.34 −0.302367
\(475\) −42373.7 −4.09313
\(476\) −1926.77 −0.185532
\(477\) −362.530 −0.0347990
\(478\) −1972.88 −0.188781
\(479\) −13119.8 −1.25148 −0.625741 0.780031i \(-0.715203\pi\)
−0.625741 + 0.780031i \(0.715203\pi\)
\(480\) 11413.7 1.08534
\(481\) 579.349 0.0549190
\(482\) 1932.88 0.182656
\(483\) 59.8796 0.00564103
\(484\) 0 0
\(485\) −14687.9 −1.37514
\(486\) −439.546 −0.0410251
\(487\) 2777.27 0.258419 0.129210 0.991617i \(-0.458756\pi\)
0.129210 + 0.991617i \(0.458756\pi\)
\(488\) −4725.60 −0.438357
\(489\) 4698.27 0.434485
\(490\) −289.609 −0.0267004
\(491\) −12658.1 −1.16344 −0.581722 0.813387i \(-0.697621\pi\)
−0.581722 + 0.813387i \(0.697621\pi\)
\(492\) −840.729 −0.0770386
\(493\) −2839.75 −0.259424
\(494\) −3169.81 −0.288697
\(495\) 0 0
\(496\) 736.701 0.0666912
\(497\) 7918.47 0.714672
\(498\) −3644.87 −0.327973
\(499\) −10139.0 −0.909591 −0.454796 0.890596i \(-0.650288\pi\)
−0.454796 + 0.890596i \(0.650288\pi\)
\(500\) 21369.1 1.91131
\(501\) −8347.19 −0.744361
\(502\) 3603.87 0.320415
\(503\) −150.229 −0.0133169 −0.00665843 0.999978i \(-0.502119\pi\)
−0.00665843 + 0.999978i \(0.502119\pi\)
\(504\) 3879.04 0.342830
\(505\) 24920.9 2.19597
\(506\) 0 0
\(507\) 6013.15 0.526732
\(508\) −2626.88 −0.229427
\(509\) 7313.72 0.636886 0.318443 0.947942i \(-0.396840\pi\)
0.318443 + 0.947942i \(0.396840\pi\)
\(510\) −2535.11 −0.220111
\(511\) 20353.6 1.76202
\(512\) −1380.66 −0.119174
\(513\) 3409.18 0.293410
\(514\) 14444.1 1.23949
\(515\) −9641.76 −0.824984
\(516\) −2449.84 −0.209008
\(517\) 0 0
\(518\) −1413.54 −0.119899
\(519\) −9621.56 −0.813757
\(520\) 6857.54 0.578313
\(521\) 17688.4 1.48742 0.743708 0.668504i \(-0.233065\pi\)
0.743708 + 0.668504i \(0.233065\pi\)
\(522\) 2123.73 0.178071
\(523\) −21439.3 −1.79249 −0.896246 0.443557i \(-0.853716\pi\)
−0.896246 + 0.443557i \(0.853716\pi\)
\(524\) −9260.09 −0.772002
\(525\) 18847.3 1.56679
\(526\) −7190.32 −0.596032
\(527\) 4198.40 0.347031
\(528\) 0 0
\(529\) −12165.9 −0.999907
\(530\) 1563.71 0.128157
\(531\) 1807.85 0.147747
\(532\) −11176.2 −0.910811
\(533\) −822.609 −0.0668502
\(534\) 1688.46 0.136829
\(535\) −13101.9 −1.05877
\(536\) 10917.2 0.879761
\(537\) 2493.19 0.200352
\(538\) −2039.49 −0.163436
\(539\) 0 0
\(540\) −2739.75 −0.218333
\(541\) 7188.86 0.571300 0.285650 0.958334i \(-0.407791\pi\)
0.285650 + 0.958334i \(0.407791\pi\)
\(542\) −7144.85 −0.566232
\(543\) −12303.3 −0.972352
\(544\) −3858.95 −0.304138
\(545\) −24216.8 −1.90336
\(546\) 1409.89 0.110509
\(547\) −5564.78 −0.434978 −0.217489 0.976063i \(-0.569787\pi\)
−0.217489 + 0.976063i \(0.569787\pi\)
\(548\) −11814.8 −0.920990
\(549\) 1847.30 0.143608
\(550\) 0 0
\(551\) −16472.0 −1.27356
\(552\) 73.6414 0.00567824
\(553\) −10764.7 −0.827780
\(554\) 1186.76 0.0910123
\(555\) 2687.64 0.205557
\(556\) 10507.3 0.801455
\(557\) −1479.13 −0.112519 −0.0562593 0.998416i \(-0.517917\pi\)
−0.0562593 + 0.998416i \(0.517917\pi\)
\(558\) −3139.81 −0.238206
\(559\) −2397.03 −0.181366
\(560\) −1534.63 −0.115804
\(561\) 0 0
\(562\) 1555.35 0.116741
\(563\) −5810.38 −0.434952 −0.217476 0.976066i \(-0.569782\pi\)
−0.217476 + 0.976066i \(0.569782\pi\)
\(564\) −1900.02 −0.141853
\(565\) 5282.85 0.393365
\(566\) 13957.8 1.03656
\(567\) −1516.37 −0.112313
\(568\) 9738.32 0.719386
\(569\) −17138.1 −1.26268 −0.631341 0.775505i \(-0.717495\pi\)
−0.631341 + 0.775505i \(0.717495\pi\)
\(570\) −14704.9 −1.08056
\(571\) −4065.88 −0.297989 −0.148994 0.988838i \(-0.547604\pi\)
−0.148994 + 0.988838i \(0.547604\pi\)
\(572\) 0 0
\(573\) 5518.31 0.402322
\(574\) 2007.07 0.145947
\(575\) 357.806 0.0259505
\(576\) 3160.96 0.228658
\(577\) −5452.43 −0.393392 −0.196696 0.980464i \(-0.563021\pi\)
−0.196696 + 0.980464i \(0.563021\pi\)
\(578\) −8029.67 −0.577838
\(579\) 9711.33 0.697045
\(580\) 13237.5 0.947686
\(581\) −12574.3 −0.897880
\(582\) −3713.83 −0.264507
\(583\) 0 0
\(584\) 25031.4 1.77364
\(585\) −2680.70 −0.189459
\(586\) −1052.40 −0.0741880
\(587\) −13440.4 −0.945051 −0.472526 0.881317i \(-0.656658\pi\)
−0.472526 + 0.881317i \(0.656658\pi\)
\(588\) 105.820 0.00742166
\(589\) 24352.9 1.70364
\(590\) −7797.84 −0.544122
\(591\) −9586.79 −0.667255
\(592\) −159.448 −0.0110697
\(593\) −12395.2 −0.858367 −0.429183 0.903217i \(-0.641199\pi\)
−0.429183 + 0.903217i \(0.641199\pi\)
\(594\) 0 0
\(595\) −8745.76 −0.602591
\(596\) −11540.5 −0.793147
\(597\) 8898.32 0.610024
\(598\) 26.7661 0.00183034
\(599\) 13298.5 0.907118 0.453559 0.891226i \(-0.350154\pi\)
0.453559 + 0.891226i \(0.350154\pi\)
\(600\) 23178.9 1.57713
\(601\) −13300.2 −0.902709 −0.451355 0.892345i \(-0.649059\pi\)
−0.451355 + 0.892345i \(0.649059\pi\)
\(602\) 5848.48 0.395957
\(603\) −4267.68 −0.288215
\(604\) 7832.88 0.527675
\(605\) 0 0
\(606\) 6301.22 0.422392
\(607\) 1402.79 0.0938018 0.0469009 0.998900i \(-0.485066\pi\)
0.0469009 + 0.998900i \(0.485066\pi\)
\(608\) −22383.8 −1.49307
\(609\) 7326.56 0.487499
\(610\) −7968.01 −0.528878
\(611\) −1859.07 −0.123093
\(612\) 926.303 0.0611823
\(613\) 17095.6 1.12640 0.563200 0.826321i \(-0.309570\pi\)
0.563200 + 0.826321i \(0.309570\pi\)
\(614\) 4285.22 0.281657
\(615\) −3816.14 −0.250214
\(616\) 0 0
\(617\) −5567.24 −0.363255 −0.181628 0.983367i \(-0.558137\pi\)
−0.181628 + 0.983367i \(0.558137\pi\)
\(618\) −2437.91 −0.158685
\(619\) −6908.19 −0.448568 −0.224284 0.974524i \(-0.572004\pi\)
−0.224284 + 0.974524i \(0.572004\pi\)
\(620\) −19570.9 −1.26772
\(621\) −28.7874 −0.00186022
\(622\) 19006.8 1.22525
\(623\) 5824.93 0.374592
\(624\) 159.037 0.0102028
\(625\) 55047.1 3.52302
\(626\) −13134.3 −0.838583
\(627\) 0 0
\(628\) 12296.2 0.781325
\(629\) −908.684 −0.0576019
\(630\) 6540.59 0.413625
\(631\) 24021.9 1.51552 0.757761 0.652532i \(-0.226293\pi\)
0.757761 + 0.652532i \(0.226293\pi\)
\(632\) −13238.7 −0.833240
\(633\) −10721.0 −0.673177
\(634\) −5324.33 −0.333527
\(635\) −11923.6 −0.745156
\(636\) −571.364 −0.0356227
\(637\) 103.539 0.00644014
\(638\) 0 0
\(639\) −3806.84 −0.235675
\(640\) 16802.3 1.03776
\(641\) 16928.4 1.04311 0.521554 0.853218i \(-0.325352\pi\)
0.521554 + 0.853218i \(0.325352\pi\)
\(642\) −3312.80 −0.203654
\(643\) 331.007 0.0203012 0.0101506 0.999948i \(-0.496769\pi\)
0.0101506 + 0.999948i \(0.496769\pi\)
\(644\) 94.3730 0.00577456
\(645\) −11120.0 −0.678836
\(646\) 4971.70 0.302800
\(647\) 14400.6 0.875035 0.437517 0.899210i \(-0.355858\pi\)
0.437517 + 0.899210i \(0.355858\pi\)
\(648\) −1864.87 −0.113054
\(649\) 0 0
\(650\) 8424.72 0.508377
\(651\) −10831.9 −0.652128
\(652\) 7404.68 0.444769
\(653\) 13145.4 0.787779 0.393889 0.919158i \(-0.371129\pi\)
0.393889 + 0.919158i \(0.371129\pi\)
\(654\) −6123.19 −0.366110
\(655\) −42032.3 −2.50738
\(656\) 226.398 0.0134746
\(657\) −9785.09 −0.581055
\(658\) 4535.91 0.268736
\(659\) −3909.26 −0.231082 −0.115541 0.993303i \(-0.536860\pi\)
−0.115541 + 0.993303i \(0.536860\pi\)
\(660\) 0 0
\(661\) 20672.6 1.21645 0.608224 0.793765i \(-0.291882\pi\)
0.608224 + 0.793765i \(0.291882\pi\)
\(662\) −12489.1 −0.733237
\(663\) 906.338 0.0530909
\(664\) −15464.1 −0.903802
\(665\) −50729.8 −2.95822
\(666\) 679.567 0.0395386
\(667\) 139.091 0.00807437
\(668\) −13155.5 −0.761981
\(669\) 3851.51 0.222583
\(670\) 18407.9 1.06143
\(671\) 0 0
\(672\) 9956.08 0.571524
\(673\) 19328.2 1.10705 0.553526 0.832832i \(-0.313282\pi\)
0.553526 + 0.832832i \(0.313282\pi\)
\(674\) 18542.6 1.05969
\(675\) −9060.94 −0.516675
\(676\) 9476.99 0.539200
\(677\) 31564.4 1.79190 0.895952 0.444150i \(-0.146494\pi\)
0.895952 + 0.444150i \(0.146494\pi\)
\(678\) 1335.76 0.0756633
\(679\) −12812.2 −0.724133
\(680\) −10755.8 −0.606565
\(681\) 3366.25 0.189420
\(682\) 0 0
\(683\) −17726.5 −0.993096 −0.496548 0.868009i \(-0.665399\pi\)
−0.496548 + 0.868009i \(0.665399\pi\)
\(684\) 5373.02 0.300355
\(685\) −53628.2 −2.99128
\(686\) 11362.2 0.632375
\(687\) 14409.3 0.800219
\(688\) 659.711 0.0365570
\(689\) −559.049 −0.0309116
\(690\) 124.169 0.00685080
\(691\) −23126.9 −1.27321 −0.636606 0.771189i \(-0.719662\pi\)
−0.636606 + 0.771189i \(0.719662\pi\)
\(692\) −15164.0 −0.833019
\(693\) 0 0
\(694\) 9514.23 0.520397
\(695\) 47693.5 2.60305
\(696\) 9010.38 0.490715
\(697\) 1290.23 0.0701160
\(698\) 19112.3 1.03641
\(699\) 315.418 0.0170675
\(700\) 29704.3 1.60388
\(701\) −2215.31 −0.119359 −0.0596797 0.998218i \(-0.519008\pi\)
−0.0596797 + 0.998218i \(0.519008\pi\)
\(702\) −677.813 −0.0364422
\(703\) −5270.83 −0.282778
\(704\) 0 0
\(705\) −8624.33 −0.460725
\(706\) −3297.30 −0.175773
\(707\) 21738.3 1.15637
\(708\) 2849.25 0.151245
\(709\) −10763.9 −0.570165 −0.285082 0.958503i \(-0.592021\pi\)
−0.285082 + 0.958503i \(0.592021\pi\)
\(710\) 16420.1 0.867939
\(711\) 5175.18 0.272974
\(712\) 7163.65 0.377063
\(713\) −205.637 −0.0108011
\(714\) −2211.36 −0.115908
\(715\) 0 0
\(716\) 3929.38 0.205094
\(717\) 3272.08 0.170430
\(718\) 20844.9 1.08346
\(719\) −15669.7 −0.812768 −0.406384 0.913702i \(-0.633211\pi\)
−0.406384 + 0.913702i \(0.633211\pi\)
\(720\) 737.781 0.0381882
\(721\) −8410.43 −0.434426
\(722\) 16431.6 0.846983
\(723\) −3205.74 −0.164900
\(724\) −19390.6 −0.995369
\(725\) 43779.3 2.24265
\(726\) 0 0
\(727\) 7671.66 0.391370 0.195685 0.980667i \(-0.437307\pi\)
0.195685 + 0.980667i \(0.437307\pi\)
\(728\) 5981.78 0.304532
\(729\) 729.000 0.0370370
\(730\) 42206.3 2.13990
\(731\) 3759.65 0.190226
\(732\) 2911.43 0.147007
\(733\) 19563.6 0.985807 0.492904 0.870084i \(-0.335935\pi\)
0.492904 + 0.870084i \(0.335935\pi\)
\(734\) −4665.45 −0.234611
\(735\) 480.325 0.0241048
\(736\) 189.011 0.00946606
\(737\) 0 0
\(738\) −964.907 −0.0481284
\(739\) 5972.99 0.297321 0.148660 0.988888i \(-0.452504\pi\)
0.148660 + 0.988888i \(0.452504\pi\)
\(740\) 4235.84 0.210422
\(741\) 5257.22 0.260633
\(742\) 1364.02 0.0674859
\(743\) 1319.52 0.0651526 0.0325763 0.999469i \(-0.489629\pi\)
0.0325763 + 0.999469i \(0.489629\pi\)
\(744\) −13321.3 −0.656429
\(745\) −52383.1 −2.57606
\(746\) 11005.2 0.540120
\(747\) 6045.13 0.296091
\(748\) 0 0
\(749\) −11428.7 −0.557536
\(750\) 24525.3 1.19405
\(751\) 32452.2 1.57683 0.788414 0.615145i \(-0.210902\pi\)
0.788414 + 0.615145i \(0.210902\pi\)
\(752\) 511.652 0.0248112
\(753\) −5977.13 −0.289268
\(754\) 3274.95 0.158179
\(755\) 35554.1 1.71383
\(756\) −2389.86 −0.114972
\(757\) 2891.12 0.138810 0.0694051 0.997589i \(-0.477890\pi\)
0.0694051 + 0.997589i \(0.477890\pi\)
\(758\) 10670.2 0.511290
\(759\) 0 0
\(760\) −62388.8 −2.97774
\(761\) −22428.7 −1.06838 −0.534191 0.845364i \(-0.679384\pi\)
−0.534191 + 0.845364i \(0.679384\pi\)
\(762\) −3014.88 −0.143330
\(763\) −21124.1 −1.00229
\(764\) 8697.10 0.411846
\(765\) 4204.56 0.198714
\(766\) −2893.98 −0.136506
\(767\) 2787.84 0.131243
\(768\) 12677.7 0.595659
\(769\) 5386.04 0.252569 0.126285 0.991994i \(-0.459695\pi\)
0.126285 + 0.991994i \(0.459695\pi\)
\(770\) 0 0
\(771\) −23955.9 −1.11900
\(772\) 15305.5 0.713545
\(773\) 7509.87 0.349432 0.174716 0.984619i \(-0.444099\pi\)
0.174716 + 0.984619i \(0.444099\pi\)
\(774\) −2811.68 −0.130573
\(775\) −64725.1 −2.99999
\(776\) −15756.7 −0.728909
\(777\) 2344.41 0.108243
\(778\) 4548.48 0.209603
\(779\) 7483.97 0.344212
\(780\) −4224.90 −0.193943
\(781\) 0 0
\(782\) −41.9814 −0.00191976
\(783\) −3522.27 −0.160761
\(784\) −28.4960 −0.00129810
\(785\) 55813.5 2.53767
\(786\) −10627.8 −0.482293
\(787\) 759.591 0.0344047 0.0172023 0.999852i \(-0.494524\pi\)
0.0172023 + 0.999852i \(0.494524\pi\)
\(788\) −15109.2 −0.683050
\(789\) 11925.4 0.538092
\(790\) −22322.3 −1.00530
\(791\) 4608.19 0.207141
\(792\) 0 0
\(793\) 2848.68 0.127566
\(794\) 9924.76 0.443598
\(795\) −2593.47 −0.115699
\(796\) 14024.2 0.624464
\(797\) 26047.6 1.15766 0.578830 0.815448i \(-0.303510\pi\)
0.578830 + 0.815448i \(0.303510\pi\)
\(798\) −12827.0 −0.569011
\(799\) 2915.87 0.129106
\(800\) 59491.8 2.62919
\(801\) −2800.36 −0.123528
\(802\) −26613.4 −1.17176
\(803\) 0 0
\(804\) −6726.05 −0.295037
\(805\) 428.366 0.0187552
\(806\) −4841.83 −0.211596
\(807\) 3382.55 0.147548
\(808\) 26734.3 1.16399
\(809\) 11238.3 0.488403 0.244202 0.969724i \(-0.421474\pi\)
0.244202 + 0.969724i \(0.421474\pi\)
\(810\) −3144.42 −0.136399
\(811\) 3933.59 0.170317 0.0851585 0.996367i \(-0.472860\pi\)
0.0851585 + 0.996367i \(0.472860\pi\)
\(812\) 11547.0 0.499039
\(813\) 11850.0 0.511188
\(814\) 0 0
\(815\) 33610.4 1.44457
\(816\) −249.442 −0.0107013
\(817\) 21807.8 0.933855
\(818\) −14386.7 −0.614938
\(819\) −2338.35 −0.0997664
\(820\) −6014.40 −0.256137
\(821\) 12639.9 0.537314 0.268657 0.963236i \(-0.413420\pi\)
0.268657 + 0.963236i \(0.413420\pi\)
\(822\) −13559.9 −0.575370
\(823\) −27042.8 −1.14538 −0.572692 0.819770i \(-0.694101\pi\)
−0.572692 + 0.819770i \(0.694101\pi\)
\(824\) −10343.4 −0.437291
\(825\) 0 0
\(826\) −6802.00 −0.286528
\(827\) 7525.49 0.316429 0.158215 0.987405i \(-0.449426\pi\)
0.158215 + 0.987405i \(0.449426\pi\)
\(828\) −45.3702 −0.00190426
\(829\) −25018.8 −1.04818 −0.524089 0.851663i \(-0.675594\pi\)
−0.524089 + 0.851663i \(0.675594\pi\)
\(830\) −26074.6 −1.09044
\(831\) −1968.29 −0.0821650
\(832\) 4874.44 0.203114
\(833\) −162.397 −0.00675475
\(834\) 12059.3 0.500693
\(835\) −59714.0 −2.47484
\(836\) 0 0
\(837\) 5207.47 0.215050
\(838\) 13184.8 0.543509
\(839\) 12384.0 0.509585 0.254793 0.966996i \(-0.417993\pi\)
0.254793 + 0.966996i \(0.417993\pi\)
\(840\) 27749.8 1.13983
\(841\) −7370.61 −0.302210
\(842\) 10050.3 0.411351
\(843\) −2579.59 −0.105392
\(844\) −16896.7 −0.689111
\(845\) 43016.8 1.75127
\(846\) −2180.66 −0.0886200
\(847\) 0 0
\(848\) 153.861 0.00623069
\(849\) −23149.5 −0.935794
\(850\) −13213.8 −0.533212
\(851\) 44.5072 0.00179282
\(852\) −5999.74 −0.241253
\(853\) 21243.7 0.852719 0.426360 0.904554i \(-0.359796\pi\)
0.426360 + 0.904554i \(0.359796\pi\)
\(854\) −6950.44 −0.278500
\(855\) 24388.6 0.975523
\(856\) −14055.2 −0.561213
\(857\) 44030.0 1.75500 0.877501 0.479575i \(-0.159209\pi\)
0.877501 + 0.479575i \(0.159209\pi\)
\(858\) 0 0
\(859\) 16585.2 0.658764 0.329382 0.944197i \(-0.393160\pi\)
0.329382 + 0.944197i \(0.393160\pi\)
\(860\) −17525.6 −0.694905
\(861\) −3328.79 −0.131759
\(862\) −23600.8 −0.932537
\(863\) −36409.9 −1.43616 −0.718081 0.695960i \(-0.754979\pi\)
−0.718081 + 0.695960i \(0.754979\pi\)
\(864\) −4786.43 −0.188469
\(865\) −68830.6 −2.70556
\(866\) −26349.5 −1.03394
\(867\) 13317.4 0.521666
\(868\) −17071.5 −0.667564
\(869\) 0 0
\(870\) 15192.7 0.592048
\(871\) −6581.09 −0.256018
\(872\) −25978.9 −1.00890
\(873\) 6159.51 0.238795
\(874\) −243.513 −0.00942444
\(875\) 84608.8 3.26891
\(876\) −15421.7 −0.594809
\(877\) 12665.7 0.487675 0.243837 0.969816i \(-0.421594\pi\)
0.243837 + 0.969816i \(0.421594\pi\)
\(878\) −17096.4 −0.657148
\(879\) 1745.44 0.0669762
\(880\) 0 0
\(881\) −33584.8 −1.28434 −0.642169 0.766563i \(-0.721965\pi\)
−0.642169 + 0.766563i \(0.721965\pi\)
\(882\) 121.450 0.00463653
\(883\) −16487.8 −0.628381 −0.314190 0.949360i \(-0.601733\pi\)
−0.314190 + 0.949360i \(0.601733\pi\)
\(884\) 1428.43 0.0543476
\(885\) 12933.0 0.491228
\(886\) −23179.4 −0.878923
\(887\) 9359.13 0.354283 0.177141 0.984185i \(-0.443315\pi\)
0.177141 + 0.984185i \(0.443315\pi\)
\(888\) 2883.21 0.108957
\(889\) −10400.9 −0.392389
\(890\) 12078.9 0.454927
\(891\) 0 0
\(892\) 6070.15 0.227852
\(893\) 16913.5 0.633806
\(894\) −13245.0 −0.495503
\(895\) 17835.7 0.666126
\(896\) 14656.5 0.546472
\(897\) −44.3923 −0.00165242
\(898\) 10986.6 0.408272
\(899\) −25160.7 −0.933433
\(900\) −14280.4 −0.528905
\(901\) 876.845 0.0324217
\(902\) 0 0
\(903\) −9699.89 −0.357466
\(904\) 5667.26 0.208507
\(905\) −88015.6 −3.23286
\(906\) 8989.82 0.329654
\(907\) 36421.5 1.33336 0.666678 0.745345i \(-0.267715\pi\)
0.666678 + 0.745345i \(0.267715\pi\)
\(908\) 5305.36 0.193904
\(909\) −10450.8 −0.381331
\(910\) 10086.1 0.367418
\(911\) −49025.8 −1.78298 −0.891492 0.453037i \(-0.850341\pi\)
−0.891492 + 0.453037i \(0.850341\pi\)
\(912\) −1446.89 −0.0525343
\(913\) 0 0
\(914\) 27821.3 1.00683
\(915\) 13215.2 0.477465
\(916\) 22709.8 0.819161
\(917\) −36664.4 −1.32036
\(918\) 1063.12 0.0382224
\(919\) 12936.3 0.464340 0.232170 0.972675i \(-0.425417\pi\)
0.232170 + 0.972675i \(0.425417\pi\)
\(920\) 526.815 0.0188789
\(921\) −7107.18 −0.254277
\(922\) −5709.86 −0.203952
\(923\) −5870.43 −0.209347
\(924\) 0 0
\(925\) 14008.8 0.497954
\(926\) 8909.10 0.316168
\(927\) 4043.35 0.143259
\(928\) 23126.3 0.818060
\(929\) −2273.34 −0.0802864 −0.0401432 0.999194i \(-0.512781\pi\)
−0.0401432 + 0.999194i \(0.512781\pi\)
\(930\) −22461.6 −0.791982
\(931\) −941.982 −0.0331603
\(932\) 497.113 0.0174716
\(933\) −31523.4 −1.10614
\(934\) −21075.8 −0.738354
\(935\) 0 0
\(936\) −2875.76 −0.100424
\(937\) −17198.9 −0.599642 −0.299821 0.953996i \(-0.596927\pi\)
−0.299821 + 0.953996i \(0.596927\pi\)
\(938\) 16057.1 0.558936
\(939\) 21783.7 0.757064
\(940\) −13592.3 −0.471631
\(941\) −33205.7 −1.15035 −0.575173 0.818032i \(-0.695065\pi\)
−0.575173 + 0.818032i \(0.695065\pi\)
\(942\) 14112.4 0.488117
\(943\) −63.1951 −0.00218231
\(944\) −767.268 −0.0264539
\(945\) −10847.8 −0.373416
\(946\) 0 0
\(947\) 23096.7 0.792546 0.396273 0.918133i \(-0.370303\pi\)
0.396273 + 0.918133i \(0.370303\pi\)
\(948\) 8156.32 0.279435
\(949\) −15089.4 −0.516145
\(950\) −76646.8 −2.61763
\(951\) 8830.56 0.301105
\(952\) −9382.16 −0.319409
\(953\) 8790.13 0.298783 0.149391 0.988778i \(-0.452269\pi\)
0.149391 + 0.988778i \(0.452269\pi\)
\(954\) −655.756 −0.0222546
\(955\) 39476.8 1.33763
\(956\) 5156.94 0.174464
\(957\) 0 0
\(958\) −23731.5 −0.800346
\(959\) −46779.5 −1.57517
\(960\) 22612.9 0.760236
\(961\) 7407.61 0.248653
\(962\) 1047.94 0.0351217
\(963\) 5494.38 0.183857
\(964\) −5052.39 −0.168803
\(965\) 69472.8 2.31752
\(966\) 108.312 0.00360754
\(967\) 29582.8 0.983785 0.491892 0.870656i \(-0.336305\pi\)
0.491892 + 0.870656i \(0.336305\pi\)
\(968\) 0 0
\(969\) −8245.72 −0.273365
\(970\) −26568.0 −0.879429
\(971\) 34522.7 1.14097 0.570487 0.821307i \(-0.306755\pi\)
0.570487 + 0.821307i \(0.306755\pi\)
\(972\) 1148.94 0.0379137
\(973\) 41602.7 1.37073
\(974\) 5023.61 0.165264
\(975\) −13972.7 −0.458957
\(976\) −784.012 −0.0257127
\(977\) 58011.5 1.89964 0.949822 0.312790i \(-0.101264\pi\)
0.949822 + 0.312790i \(0.101264\pi\)
\(978\) 8498.37 0.277861
\(979\) 0 0
\(980\) 757.013 0.0246754
\(981\) 10155.5 0.330520
\(982\) −22896.3 −0.744044
\(983\) −21992.2 −0.713574 −0.356787 0.934186i \(-0.616128\pi\)
−0.356787 + 0.934186i \(0.616128\pi\)
\(984\) −4093.82 −0.132628
\(985\) −68581.9 −2.21848
\(986\) −5136.63 −0.165906
\(987\) −7522.94 −0.242612
\(988\) 8285.61 0.266802
\(989\) −184.147 −0.00592066
\(990\) 0 0
\(991\) −48417.3 −1.55199 −0.775997 0.630737i \(-0.782753\pi\)
−0.775997 + 0.630737i \(0.782753\pi\)
\(992\) −34190.9 −1.09432
\(993\) 20713.6 0.661959
\(994\) 14323.2 0.457045
\(995\) 63656.7 2.02820
\(996\) 9527.39 0.303099
\(997\) 25882.6 0.822178 0.411089 0.911595i \(-0.365149\pi\)
0.411089 + 0.911595i \(0.365149\pi\)
\(998\) −18339.8 −0.581700
\(999\) −1127.08 −0.0356950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.4.a.v.1.4 6
3.2 odd 2 1089.4.a.bi.1.3 6
11.5 even 5 33.4.e.c.25.2 yes 12
11.9 even 5 33.4.e.c.4.2 12
11.10 odd 2 363.4.a.u.1.3 6
33.5 odd 10 99.4.f.d.91.2 12
33.20 odd 10 99.4.f.d.37.2 12
33.32 even 2 1089.4.a.bk.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.4.2 12 11.9 even 5
33.4.e.c.25.2 yes 12 11.5 even 5
99.4.f.d.37.2 12 33.20 odd 10
99.4.f.d.91.2 12 33.5 odd 10
363.4.a.u.1.3 6 11.10 odd 2
363.4.a.v.1.4 6 1.1 even 1 trivial
1089.4.a.bi.1.3 6 3.2 odd 2
1089.4.a.bk.1.4 6 33.32 even 2