Properties

Label 363.4.a.v.1.3
Level $363$
Weight $4$
Character 363.1
Self dual yes
Analytic conductor $21.418$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,4,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.4176933321\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 30x^{4} + 3x^{3} + 211x^{2} + 208x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 11 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.303175\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30317 q^{2} -3.00000 q^{3} -6.30174 q^{4} -8.10194 q^{5} -3.90952 q^{6} +0.543555 q^{7} -18.6377 q^{8} +9.00000 q^{9} -10.5582 q^{10} +18.9052 q^{12} -69.6511 q^{13} +0.708348 q^{14} +24.3058 q^{15} +26.1258 q^{16} -42.5773 q^{17} +11.7286 q^{18} +75.4539 q^{19} +51.0563 q^{20} -1.63067 q^{21} +37.9924 q^{23} +55.9130 q^{24} -59.3586 q^{25} -90.7675 q^{26} -27.0000 q^{27} -3.42534 q^{28} +120.108 q^{29} +31.6747 q^{30} +277.188 q^{31} +183.148 q^{32} -55.4856 q^{34} -4.40385 q^{35} -56.7156 q^{36} -14.8922 q^{37} +98.3296 q^{38} +208.953 q^{39} +151.001 q^{40} +284.880 q^{41} -2.12504 q^{42} +312.130 q^{43} -72.9175 q^{45} +49.5107 q^{46} +337.320 q^{47} -78.3773 q^{48} -342.705 q^{49} -77.3546 q^{50} +127.732 q^{51} +438.923 q^{52} +169.723 q^{53} -35.1857 q^{54} -10.1306 q^{56} -226.362 q^{57} +156.522 q^{58} -801.918 q^{59} -153.169 q^{60} -386.778 q^{61} +361.224 q^{62} +4.89200 q^{63} +29.6673 q^{64} +564.309 q^{65} +981.580 q^{67} +268.311 q^{68} -113.977 q^{69} -5.73899 q^{70} -535.379 q^{71} -167.739 q^{72} +456.833 q^{73} -19.4072 q^{74} +178.076 q^{75} -475.490 q^{76} +272.302 q^{78} -619.503 q^{79} -211.669 q^{80} +81.0000 q^{81} +371.249 q^{82} +198.439 q^{83} +10.2760 q^{84} +344.959 q^{85} +406.759 q^{86} -360.325 q^{87} -1317.67 q^{89} -95.0242 q^{90} -37.8592 q^{91} -239.418 q^{92} -831.563 q^{93} +439.587 q^{94} -611.323 q^{95} -549.443 q^{96} -929.812 q^{97} -446.604 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 18 q^{3} + 17 q^{4} + 9 q^{5} - 15 q^{6} + q^{7} + 24 q^{8} + 54 q^{9} + 50 q^{10} - 51 q^{12} + 66 q^{13} - 42 q^{14} - 27 q^{15} - 71 q^{16} + 80 q^{17} + 45 q^{18} - 90 q^{19} + 455 q^{20}+ \cdots + 1405 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30317 0.460742 0.230371 0.973103i \(-0.426006\pi\)
0.230371 + 0.973103i \(0.426006\pi\)
\(3\) −3.00000 −0.577350
\(4\) −6.30174 −0.787717
\(5\) −8.10194 −0.724660 −0.362330 0.932050i \(-0.618019\pi\)
−0.362330 + 0.932050i \(0.618019\pi\)
\(6\) −3.90952 −0.266009
\(7\) 0.543555 0.0293492 0.0146746 0.999892i \(-0.495329\pi\)
0.0146746 + 0.999892i \(0.495329\pi\)
\(8\) −18.6377 −0.823676
\(9\) 9.00000 0.333333
\(10\) −10.5582 −0.333881
\(11\) 0 0
\(12\) 18.9052 0.454789
\(13\) −69.6511 −1.48598 −0.742989 0.669303i \(-0.766593\pi\)
−0.742989 + 0.669303i \(0.766593\pi\)
\(14\) 0.708348 0.0135224
\(15\) 24.3058 0.418382
\(16\) 26.1258 0.408215
\(17\) −42.5773 −0.607441 −0.303721 0.952761i \(-0.598229\pi\)
−0.303721 + 0.952761i \(0.598229\pi\)
\(18\) 11.7286 0.153581
\(19\) 75.4539 0.911069 0.455534 0.890218i \(-0.349448\pi\)
0.455534 + 0.890218i \(0.349448\pi\)
\(20\) 51.0563 0.570827
\(21\) −1.63067 −0.0169448
\(22\) 0 0
\(23\) 37.9924 0.344433 0.172217 0.985059i \(-0.444907\pi\)
0.172217 + 0.985059i \(0.444907\pi\)
\(24\) 55.9130 0.475550
\(25\) −59.3586 −0.474869
\(26\) −90.7675 −0.684653
\(27\) −27.0000 −0.192450
\(28\) −3.42534 −0.0231189
\(29\) 120.108 0.769088 0.384544 0.923107i \(-0.374359\pi\)
0.384544 + 0.923107i \(0.374359\pi\)
\(30\) 31.6747 0.192766
\(31\) 277.188 1.60595 0.802974 0.596014i \(-0.203250\pi\)
0.802974 + 0.596014i \(0.203250\pi\)
\(32\) 183.148 1.01176
\(33\) 0 0
\(34\) −55.4856 −0.279874
\(35\) −4.40385 −0.0212682
\(36\) −56.7156 −0.262572
\(37\) −14.8922 −0.0661694 −0.0330847 0.999453i \(-0.510533\pi\)
−0.0330847 + 0.999453i \(0.510533\pi\)
\(38\) 98.3296 0.419768
\(39\) 208.953 0.857930
\(40\) 151.001 0.596885
\(41\) 284.880 1.08514 0.542571 0.840010i \(-0.317451\pi\)
0.542571 + 0.840010i \(0.317451\pi\)
\(42\) −2.12504 −0.00780717
\(43\) 312.130 1.10696 0.553481 0.832862i \(-0.313299\pi\)
0.553481 + 0.832862i \(0.313299\pi\)
\(44\) 0 0
\(45\) −72.9175 −0.241553
\(46\) 49.5107 0.158695
\(47\) 337.320 1.04688 0.523438 0.852064i \(-0.324649\pi\)
0.523438 + 0.852064i \(0.324649\pi\)
\(48\) −78.3773 −0.235683
\(49\) −342.705 −0.999139
\(50\) −77.3546 −0.218792
\(51\) 127.732 0.350707
\(52\) 438.923 1.17053
\(53\) 169.723 0.439874 0.219937 0.975514i \(-0.429415\pi\)
0.219937 + 0.975514i \(0.429415\pi\)
\(54\) −35.1857 −0.0886698
\(55\) 0 0
\(56\) −10.1306 −0.0241743
\(57\) −226.362 −0.526006
\(58\) 156.522 0.354351
\(59\) −801.918 −1.76951 −0.884753 0.466061i \(-0.845673\pi\)
−0.884753 + 0.466061i \(0.845673\pi\)
\(60\) −153.169 −0.329567
\(61\) −386.778 −0.811833 −0.405916 0.913910i \(-0.633048\pi\)
−0.405916 + 0.913910i \(0.633048\pi\)
\(62\) 361.224 0.739927
\(63\) 4.89200 0.00978308
\(64\) 29.6673 0.0579440
\(65\) 564.309 1.07683
\(66\) 0 0
\(67\) 981.580 1.78984 0.894919 0.446229i \(-0.147233\pi\)
0.894919 + 0.446229i \(0.147233\pi\)
\(68\) 268.311 0.478492
\(69\) −113.977 −0.198859
\(70\) −5.73899 −0.00979915
\(71\) −535.379 −0.894899 −0.447450 0.894309i \(-0.647668\pi\)
−0.447450 + 0.894309i \(0.647668\pi\)
\(72\) −167.739 −0.274559
\(73\) 456.833 0.732442 0.366221 0.930528i \(-0.380652\pi\)
0.366221 + 0.930528i \(0.380652\pi\)
\(74\) −19.4072 −0.0304870
\(75\) 178.076 0.274165
\(76\) −475.490 −0.717664
\(77\) 0 0
\(78\) 272.302 0.395284
\(79\) −619.503 −0.882273 −0.441137 0.897440i \(-0.645425\pi\)
−0.441137 + 0.897440i \(0.645425\pi\)
\(80\) −211.669 −0.295817
\(81\) 81.0000 0.111111
\(82\) 371.249 0.499970
\(83\) 198.439 0.262428 0.131214 0.991354i \(-0.458112\pi\)
0.131214 + 0.991354i \(0.458112\pi\)
\(84\) 10.2760 0.0133477
\(85\) 344.959 0.440188
\(86\) 406.759 0.510023
\(87\) −360.325 −0.444033
\(88\) 0 0
\(89\) −1317.67 −1.56935 −0.784676 0.619906i \(-0.787171\pi\)
−0.784676 + 0.619906i \(0.787171\pi\)
\(90\) −95.0242 −0.111294
\(91\) −37.8592 −0.0436123
\(92\) −239.418 −0.271316
\(93\) −831.563 −0.927194
\(94\) 439.587 0.482339
\(95\) −611.323 −0.660215
\(96\) −549.443 −0.584139
\(97\) −929.812 −0.973279 −0.486640 0.873603i \(-0.661778\pi\)
−0.486640 + 0.873603i \(0.661778\pi\)
\(98\) −446.604 −0.460345
\(99\) 0 0
\(100\) 374.062 0.374062
\(101\) 1524.29 1.50171 0.750856 0.660466i \(-0.229641\pi\)
0.750856 + 0.660466i \(0.229641\pi\)
\(102\) 166.457 0.161585
\(103\) −142.828 −0.136633 −0.0683166 0.997664i \(-0.521763\pi\)
−0.0683166 + 0.997664i \(0.521763\pi\)
\(104\) 1298.13 1.22397
\(105\) 13.2116 0.0122792
\(106\) 221.179 0.202668
\(107\) 1548.47 1.39903 0.699513 0.714619i \(-0.253400\pi\)
0.699513 + 0.714619i \(0.253400\pi\)
\(108\) 170.147 0.151596
\(109\) −650.244 −0.571395 −0.285697 0.958320i \(-0.592225\pi\)
−0.285697 + 0.958320i \(0.592225\pi\)
\(110\) 0 0
\(111\) 44.6767 0.0382029
\(112\) 14.2008 0.0119808
\(113\) 79.4957 0.0661799 0.0330899 0.999452i \(-0.489465\pi\)
0.0330899 + 0.999452i \(0.489465\pi\)
\(114\) −294.989 −0.242353
\(115\) −307.812 −0.249597
\(116\) −756.891 −0.605824
\(117\) −626.859 −0.495326
\(118\) −1045.04 −0.815285
\(119\) −23.1431 −0.0178279
\(120\) −453.004 −0.344612
\(121\) 0 0
\(122\) −504.039 −0.374045
\(123\) −854.641 −0.626507
\(124\) −1746.76 −1.26503
\(125\) 1493.66 1.06878
\(126\) 6.37513 0.00450747
\(127\) −410.724 −0.286975 −0.143488 0.989652i \(-0.545832\pi\)
−0.143488 + 0.989652i \(0.545832\pi\)
\(128\) −1426.52 −0.985060
\(129\) −936.389 −0.639104
\(130\) 735.393 0.496140
\(131\) 2714.85 1.81067 0.905334 0.424699i \(-0.139620\pi\)
0.905334 + 0.424699i \(0.139620\pi\)
\(132\) 0 0
\(133\) 41.0134 0.0267392
\(134\) 1279.17 0.824653
\(135\) 218.752 0.139461
\(136\) 793.541 0.500335
\(137\) 2658.27 1.65775 0.828875 0.559434i \(-0.188981\pi\)
0.828875 + 0.559434i \(0.188981\pi\)
\(138\) −148.532 −0.0916224
\(139\) −199.838 −0.121943 −0.0609714 0.998140i \(-0.519420\pi\)
−0.0609714 + 0.998140i \(0.519420\pi\)
\(140\) 27.7519 0.0167533
\(141\) −1011.96 −0.604414
\(142\) −697.693 −0.412318
\(143\) 0 0
\(144\) 235.132 0.136072
\(145\) −973.110 −0.557327
\(146\) 595.333 0.337466
\(147\) 1028.11 0.576853
\(148\) 93.8469 0.0521228
\(149\) 2513.68 1.38207 0.691035 0.722822i \(-0.257155\pi\)
0.691035 + 0.722822i \(0.257155\pi\)
\(150\) 232.064 0.126319
\(151\) −2970.67 −1.60099 −0.800495 0.599339i \(-0.795430\pi\)
−0.800495 + 0.599339i \(0.795430\pi\)
\(152\) −1406.28 −0.750426
\(153\) −383.195 −0.202480
\(154\) 0 0
\(155\) −2245.76 −1.16377
\(156\) −1316.77 −0.675806
\(157\) 2052.60 1.04341 0.521705 0.853126i \(-0.325296\pi\)
0.521705 + 0.853126i \(0.325296\pi\)
\(158\) −807.321 −0.406500
\(159\) −509.170 −0.253961
\(160\) −1483.85 −0.733180
\(161\) 20.6510 0.0101088
\(162\) 105.557 0.0511935
\(163\) −2317.68 −1.11371 −0.556856 0.830609i \(-0.687992\pi\)
−0.556856 + 0.830609i \(0.687992\pi\)
\(164\) −1795.24 −0.854785
\(165\) 0 0
\(166\) 258.601 0.120912
\(167\) 1237.88 0.573591 0.286795 0.957992i \(-0.407410\pi\)
0.286795 + 0.957992i \(0.407410\pi\)
\(168\) 30.3918 0.0139570
\(169\) 2654.27 1.20813
\(170\) 449.541 0.202813
\(171\) 679.085 0.303690
\(172\) −1966.96 −0.871972
\(173\) −2290.75 −1.00672 −0.503360 0.864077i \(-0.667903\pi\)
−0.503360 + 0.864077i \(0.667903\pi\)
\(174\) −469.566 −0.204585
\(175\) −32.2647 −0.0139370
\(176\) 0 0
\(177\) 2405.75 1.02162
\(178\) −1717.15 −0.723066
\(179\) 540.198 0.225566 0.112783 0.993620i \(-0.464024\pi\)
0.112783 + 0.993620i \(0.464024\pi\)
\(180\) 459.507 0.190276
\(181\) −2240.37 −0.920029 −0.460015 0.887911i \(-0.652156\pi\)
−0.460015 + 0.887911i \(0.652156\pi\)
\(182\) −49.3372 −0.0200940
\(183\) 1160.33 0.468712
\(184\) −708.089 −0.283701
\(185\) 120.656 0.0479503
\(186\) −1083.67 −0.427197
\(187\) 0 0
\(188\) −2125.70 −0.824642
\(189\) −14.6760 −0.00564826
\(190\) −796.660 −0.304189
\(191\) 632.258 0.239521 0.119761 0.992803i \(-0.461787\pi\)
0.119761 + 0.992803i \(0.461787\pi\)
\(192\) −89.0020 −0.0334540
\(193\) 4124.77 1.53838 0.769190 0.639020i \(-0.220660\pi\)
0.769190 + 0.639020i \(0.220660\pi\)
\(194\) −1211.71 −0.448431
\(195\) −1692.93 −0.621707
\(196\) 2159.63 0.787038
\(197\) 3297.43 1.19255 0.596274 0.802781i \(-0.296647\pi\)
0.596274 + 0.802781i \(0.296647\pi\)
\(198\) 0 0
\(199\) 47.3923 0.0168822 0.00844109 0.999964i \(-0.497313\pi\)
0.00844109 + 0.999964i \(0.497313\pi\)
\(200\) 1106.30 0.391138
\(201\) −2944.74 −1.03336
\(202\) 1986.42 0.691901
\(203\) 65.2855 0.0225721
\(204\) −804.932 −0.276257
\(205\) −2308.08 −0.786359
\(206\) −186.129 −0.0629527
\(207\) 341.931 0.114811
\(208\) −1819.69 −0.606599
\(209\) 0 0
\(210\) 17.2170 0.00565754
\(211\) −1518.83 −0.495547 −0.247774 0.968818i \(-0.579699\pi\)
−0.247774 + 0.968818i \(0.579699\pi\)
\(212\) −1069.55 −0.346496
\(213\) 1606.14 0.516670
\(214\) 2017.92 0.644590
\(215\) −2528.86 −0.802170
\(216\) 503.217 0.158517
\(217\) 150.667 0.0471333
\(218\) −847.381 −0.263266
\(219\) −1370.50 −0.422875
\(220\) 0 0
\(221\) 2965.55 0.902645
\(222\) 58.2215 0.0176017
\(223\) 1023.29 0.307284 0.153642 0.988127i \(-0.450900\pi\)
0.153642 + 0.988127i \(0.450900\pi\)
\(224\) 99.5509 0.0296943
\(225\) −534.227 −0.158290
\(226\) 103.597 0.0304918
\(227\) 2544.42 0.743959 0.371980 0.928241i \(-0.378679\pi\)
0.371980 + 0.928241i \(0.378679\pi\)
\(228\) 1426.47 0.414344
\(229\) −3578.08 −1.03251 −0.516257 0.856433i \(-0.672675\pi\)
−0.516257 + 0.856433i \(0.672675\pi\)
\(230\) −401.133 −0.115000
\(231\) 0 0
\(232\) −2238.54 −0.633479
\(233\) 1729.65 0.486323 0.243162 0.969986i \(-0.421815\pi\)
0.243162 + 0.969986i \(0.421815\pi\)
\(234\) −816.907 −0.228218
\(235\) −2732.94 −0.758628
\(236\) 5053.48 1.39387
\(237\) 1858.51 0.509381
\(238\) −30.1595 −0.00821408
\(239\) 5385.30 1.45752 0.728758 0.684771i \(-0.240098\pi\)
0.728758 + 0.684771i \(0.240098\pi\)
\(240\) 635.008 0.170790
\(241\) −3515.37 −0.939605 −0.469803 0.882771i \(-0.655675\pi\)
−0.469803 + 0.882771i \(0.655675\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 2437.37 0.639495
\(245\) 2776.57 0.724035
\(246\) −1113.75 −0.288658
\(247\) −5255.44 −1.35383
\(248\) −5166.13 −1.32278
\(249\) −595.318 −0.151513
\(250\) 1946.50 0.492431
\(251\) −1443.12 −0.362903 −0.181452 0.983400i \(-0.558080\pi\)
−0.181452 + 0.983400i \(0.558080\pi\)
\(252\) −30.8281 −0.00770630
\(253\) 0 0
\(254\) −535.245 −0.132221
\(255\) −1034.88 −0.254143
\(256\) −2096.34 −0.511803
\(257\) −6125.91 −1.48686 −0.743431 0.668812i \(-0.766803\pi\)
−0.743431 + 0.668812i \(0.766803\pi\)
\(258\) −1220.28 −0.294462
\(259\) −8.09475 −0.00194202
\(260\) −3556.12 −0.848236
\(261\) 1080.97 0.256363
\(262\) 3537.93 0.834251
\(263\) 2135.26 0.500631 0.250315 0.968164i \(-0.419466\pi\)
0.250315 + 0.968164i \(0.419466\pi\)
\(264\) 0 0
\(265\) −1375.09 −0.318759
\(266\) 53.4476 0.0123199
\(267\) 3953.00 0.906066
\(268\) −6185.66 −1.40989
\(269\) −2.07944 −0.000471323 0 −0.000235662 1.00000i \(-0.500075\pi\)
−0.000235662 1.00000i \(0.500075\pi\)
\(270\) 285.073 0.0642554
\(271\) 4514.27 1.01189 0.505946 0.862565i \(-0.331144\pi\)
0.505946 + 0.862565i \(0.331144\pi\)
\(272\) −1112.36 −0.247967
\(273\) 113.578 0.0251796
\(274\) 3464.20 0.763795
\(275\) 0 0
\(276\) 718.254 0.156644
\(277\) 4832.57 1.04823 0.524117 0.851646i \(-0.324395\pi\)
0.524117 + 0.851646i \(0.324395\pi\)
\(278\) −260.424 −0.0561842
\(279\) 2494.69 0.535316
\(280\) 82.0775 0.0175181
\(281\) 196.899 0.0418008 0.0209004 0.999782i \(-0.493347\pi\)
0.0209004 + 0.999782i \(0.493347\pi\)
\(282\) −1318.76 −0.278479
\(283\) −2738.90 −0.575303 −0.287652 0.957735i \(-0.592875\pi\)
−0.287652 + 0.957735i \(0.592875\pi\)
\(284\) 3373.82 0.704927
\(285\) 1833.97 0.381175
\(286\) 0 0
\(287\) 154.848 0.0318481
\(288\) 1648.33 0.337253
\(289\) −3100.18 −0.631015
\(290\) −1268.13 −0.256784
\(291\) 2789.44 0.561923
\(292\) −2878.84 −0.576957
\(293\) 6640.68 1.32407 0.662035 0.749473i \(-0.269693\pi\)
0.662035 + 0.749473i \(0.269693\pi\)
\(294\) 1339.81 0.265780
\(295\) 6497.09 1.28229
\(296\) 277.556 0.0545022
\(297\) 0 0
\(298\) 3275.76 0.636777
\(299\) −2646.21 −0.511820
\(300\) −1122.19 −0.215965
\(301\) 169.660 0.0324885
\(302\) −3871.30 −0.737643
\(303\) −4572.88 −0.867014
\(304\) 1971.29 0.371912
\(305\) 3133.65 0.588302
\(306\) −499.371 −0.0932912
\(307\) 3278.70 0.609530 0.304765 0.952428i \(-0.401422\pi\)
0.304765 + 0.952428i \(0.401422\pi\)
\(308\) 0 0
\(309\) 428.483 0.0788853
\(310\) −2926.62 −0.536195
\(311\) 6562.80 1.19660 0.598299 0.801273i \(-0.295843\pi\)
0.598299 + 0.801273i \(0.295843\pi\)
\(312\) −3894.40 −0.706657
\(313\) 677.351 0.122320 0.0611599 0.998128i \(-0.480520\pi\)
0.0611599 + 0.998128i \(0.480520\pi\)
\(314\) 2674.90 0.480743
\(315\) −39.6347 −0.00708940
\(316\) 3903.95 0.694982
\(317\) 3805.72 0.674293 0.337146 0.941452i \(-0.390538\pi\)
0.337146 + 0.941452i \(0.390538\pi\)
\(318\) −663.538 −0.117011
\(319\) 0 0
\(320\) −240.363 −0.0419897
\(321\) −4645.40 −0.807729
\(322\) 26.9118 0.00465757
\(323\) −3212.62 −0.553421
\(324\) −510.441 −0.0875241
\(325\) 4134.39 0.705645
\(326\) −3020.35 −0.513134
\(327\) 1950.73 0.329895
\(328\) −5309.50 −0.893806
\(329\) 183.352 0.0307250
\(330\) 0 0
\(331\) 3339.46 0.554542 0.277271 0.960792i \(-0.410570\pi\)
0.277271 + 0.960792i \(0.410570\pi\)
\(332\) −1250.51 −0.206719
\(333\) −134.030 −0.0220565
\(334\) 1613.17 0.264277
\(335\) −7952.70 −1.29702
\(336\) −42.6024 −0.00691712
\(337\) 9635.36 1.55748 0.778741 0.627345i \(-0.215859\pi\)
0.778741 + 0.627345i \(0.215859\pi\)
\(338\) 3458.98 0.556638
\(339\) −238.487 −0.0382090
\(340\) −2173.84 −0.346744
\(341\) 0 0
\(342\) 884.966 0.139923
\(343\) −372.718 −0.0586732
\(344\) −5817.37 −0.911777
\(345\) 923.436 0.144105
\(346\) −2985.25 −0.463838
\(347\) 2663.13 0.412001 0.206001 0.978552i \(-0.433955\pi\)
0.206001 + 0.978552i \(0.433955\pi\)
\(348\) 2270.67 0.349772
\(349\) 5393.98 0.827316 0.413658 0.910432i \(-0.364251\pi\)
0.413658 + 0.910432i \(0.364251\pi\)
\(350\) −42.0465 −0.00642137
\(351\) 1880.58 0.285977
\(352\) 0 0
\(353\) 3003.14 0.452807 0.226403 0.974034i \(-0.427303\pi\)
0.226403 + 0.974034i \(0.427303\pi\)
\(354\) 3135.12 0.470705
\(355\) 4337.61 0.648497
\(356\) 8303.58 1.23620
\(357\) 69.4293 0.0102930
\(358\) 703.972 0.103928
\(359\) 2027.48 0.298067 0.149034 0.988832i \(-0.452384\pi\)
0.149034 + 0.988832i \(0.452384\pi\)
\(360\) 1359.01 0.198962
\(361\) −1165.71 −0.169954
\(362\) −2919.59 −0.423896
\(363\) 0 0
\(364\) 238.579 0.0343542
\(365\) −3701.23 −0.530771
\(366\) 1512.12 0.215955
\(367\) −2441.40 −0.347248 −0.173624 0.984812i \(-0.555548\pi\)
−0.173624 + 0.984812i \(0.555548\pi\)
\(368\) 992.580 0.140603
\(369\) 2563.92 0.361714
\(370\) 157.236 0.0220927
\(371\) 92.2541 0.0129100
\(372\) 5240.29 0.730367
\(373\) 10410.5 1.44513 0.722565 0.691302i \(-0.242963\pi\)
0.722565 + 0.691302i \(0.242963\pi\)
\(374\) 0 0
\(375\) −4480.99 −0.617059
\(376\) −6286.85 −0.862286
\(377\) −8365.67 −1.14285
\(378\) −19.1254 −0.00260239
\(379\) 4880.16 0.661417 0.330708 0.943733i \(-0.392712\pi\)
0.330708 + 0.943733i \(0.392712\pi\)
\(380\) 3852.40 0.520062
\(381\) 1232.17 0.165685
\(382\) 823.942 0.110357
\(383\) 11959.2 1.59553 0.797763 0.602971i \(-0.206017\pi\)
0.797763 + 0.602971i \(0.206017\pi\)
\(384\) 4279.56 0.568725
\(385\) 0 0
\(386\) 5375.30 0.708796
\(387\) 2809.17 0.368987
\(388\) 5859.43 0.766669
\(389\) 7177.52 0.935513 0.467757 0.883857i \(-0.345062\pi\)
0.467757 + 0.883857i \(0.345062\pi\)
\(390\) −2206.18 −0.286447
\(391\) −1617.61 −0.209223
\(392\) 6387.21 0.822966
\(393\) −8144.55 −1.04539
\(394\) 4297.12 0.549457
\(395\) 5019.18 0.639348
\(396\) 0 0
\(397\) −2881.37 −0.364262 −0.182131 0.983274i \(-0.558299\pi\)
−0.182131 + 0.983274i \(0.558299\pi\)
\(398\) 61.7605 0.00777833
\(399\) −123.040 −0.0154379
\(400\) −1550.79 −0.193848
\(401\) −3963.18 −0.493545 −0.246773 0.969073i \(-0.579370\pi\)
−0.246773 + 0.969073i \(0.579370\pi\)
\(402\) −3837.51 −0.476114
\(403\) −19306.4 −2.38640
\(404\) −9605.69 −1.18292
\(405\) −656.257 −0.0805177
\(406\) 85.0784 0.0103999
\(407\) 0 0
\(408\) −2380.62 −0.288869
\(409\) 9041.81 1.09313 0.546563 0.837418i \(-0.315936\pi\)
0.546563 + 0.837418i \(0.315936\pi\)
\(410\) −3007.84 −0.362308
\(411\) −7974.82 −0.957102
\(412\) 900.062 0.107628
\(413\) −435.887 −0.0519336
\(414\) 445.596 0.0528982
\(415\) −1607.74 −0.190171
\(416\) −12756.4 −1.50345
\(417\) 599.514 0.0704037
\(418\) 0 0
\(419\) −840.109 −0.0979523 −0.0489761 0.998800i \(-0.515596\pi\)
−0.0489761 + 0.998800i \(0.515596\pi\)
\(420\) −83.2558 −0.00967254
\(421\) 2004.95 0.232103 0.116052 0.993243i \(-0.462976\pi\)
0.116052 + 0.993243i \(0.462976\pi\)
\(422\) −1979.30 −0.228319
\(423\) 3035.88 0.348958
\(424\) −3163.25 −0.362313
\(425\) 2527.33 0.288455
\(426\) 2093.08 0.238052
\(427\) −210.235 −0.0238267
\(428\) −9758.02 −1.10204
\(429\) 0 0
\(430\) −3295.54 −0.369593
\(431\) −11919.4 −1.33211 −0.666054 0.745904i \(-0.732018\pi\)
−0.666054 + 0.745904i \(0.732018\pi\)
\(432\) −705.396 −0.0785610
\(433\) 960.857 0.106642 0.0533208 0.998577i \(-0.483019\pi\)
0.0533208 + 0.998577i \(0.483019\pi\)
\(434\) 196.345 0.0217163
\(435\) 2919.33 0.321773
\(436\) 4097.66 0.450097
\(437\) 2866.67 0.313802
\(438\) −1786.00 −0.194836
\(439\) −7590.46 −0.825223 −0.412611 0.910907i \(-0.635383\pi\)
−0.412611 + 0.910907i \(0.635383\pi\)
\(440\) 0 0
\(441\) −3084.34 −0.333046
\(442\) 3864.63 0.415886
\(443\) 424.716 0.0455505 0.0227753 0.999741i \(-0.492750\pi\)
0.0227753 + 0.999741i \(0.492750\pi\)
\(444\) −281.541 −0.0300931
\(445\) 10675.6 1.13725
\(446\) 1333.52 0.141578
\(447\) −7541.03 −0.797938
\(448\) 16.1258 0.00170061
\(449\) −4733.53 −0.497525 −0.248763 0.968564i \(-0.580024\pi\)
−0.248763 + 0.968564i \(0.580024\pi\)
\(450\) −696.191 −0.0729306
\(451\) 0 0
\(452\) −500.961 −0.0521310
\(453\) 8912.00 0.924332
\(454\) 3315.82 0.342773
\(455\) 306.733 0.0316041
\(456\) 4218.85 0.433258
\(457\) −15170.8 −1.55286 −0.776431 0.630202i \(-0.782972\pi\)
−0.776431 + 0.630202i \(0.782972\pi\)
\(458\) −4662.86 −0.475723
\(459\) 1149.59 0.116902
\(460\) 1939.75 0.196612
\(461\) −12952.3 −1.30856 −0.654282 0.756251i \(-0.727029\pi\)
−0.654282 + 0.756251i \(0.727029\pi\)
\(462\) 0 0
\(463\) −6774.30 −0.679975 −0.339988 0.940430i \(-0.610423\pi\)
−0.339988 + 0.940430i \(0.610423\pi\)
\(464\) 3137.92 0.313953
\(465\) 6737.27 0.671900
\(466\) 2254.04 0.224069
\(467\) 5187.23 0.513996 0.256998 0.966412i \(-0.417267\pi\)
0.256998 + 0.966412i \(0.417267\pi\)
\(468\) 3950.30 0.390177
\(469\) 533.543 0.0525304
\(470\) −3561.50 −0.349532
\(471\) −6157.80 −0.602413
\(472\) 14945.9 1.45750
\(473\) 0 0
\(474\) 2421.96 0.234693
\(475\) −4478.83 −0.432638
\(476\) 145.842 0.0140434
\(477\) 1527.51 0.146625
\(478\) 7017.99 0.671539
\(479\) −2753.01 −0.262606 −0.131303 0.991342i \(-0.541916\pi\)
−0.131303 + 0.991342i \(0.541916\pi\)
\(480\) 4451.56 0.423302
\(481\) 1037.26 0.0983264
\(482\) −4581.14 −0.432915
\(483\) −61.9529 −0.00583634
\(484\) 0 0
\(485\) 7533.28 0.705296
\(486\) −316.671 −0.0295566
\(487\) −9320.38 −0.867242 −0.433621 0.901095i \(-0.642764\pi\)
−0.433621 + 0.901095i \(0.642764\pi\)
\(488\) 7208.63 0.668687
\(489\) 6953.05 0.643002
\(490\) 3618.36 0.333593
\(491\) −9787.37 −0.899588 −0.449794 0.893132i \(-0.648503\pi\)
−0.449794 + 0.893132i \(0.648503\pi\)
\(492\) 5385.72 0.493510
\(493\) −5113.88 −0.467176
\(494\) −6848.76 −0.623766
\(495\) 0 0
\(496\) 7241.74 0.655572
\(497\) −291.008 −0.0262646
\(498\) −775.804 −0.0698084
\(499\) 8749.24 0.784909 0.392454 0.919771i \(-0.371626\pi\)
0.392454 + 0.919771i \(0.371626\pi\)
\(500\) −9412.66 −0.841894
\(501\) −3713.63 −0.331163
\(502\) −1880.63 −0.167205
\(503\) −20829.8 −1.84643 −0.923214 0.384287i \(-0.874447\pi\)
−0.923214 + 0.384287i \(0.874447\pi\)
\(504\) −91.1754 −0.00805808
\(505\) −12349.7 −1.08823
\(506\) 0 0
\(507\) −7962.81 −0.697516
\(508\) 2588.27 0.226055
\(509\) −2497.25 −0.217463 −0.108732 0.994071i \(-0.534679\pi\)
−0.108732 + 0.994071i \(0.534679\pi\)
\(510\) −1348.62 −0.117094
\(511\) 248.314 0.0214966
\(512\) 8680.26 0.749252
\(513\) −2037.25 −0.175335
\(514\) −7983.13 −0.685060
\(515\) 1157.18 0.0990126
\(516\) 5900.88 0.503433
\(517\) 0 0
\(518\) −10.5489 −0.000894770 0
\(519\) 6872.26 0.581231
\(520\) −10517.4 −0.886958
\(521\) 1557.78 0.130994 0.0654968 0.997853i \(-0.479137\pi\)
0.0654968 + 0.997853i \(0.479137\pi\)
\(522\) 1408.70 0.118117
\(523\) 678.171 0.0567005 0.0283502 0.999598i \(-0.490975\pi\)
0.0283502 + 0.999598i \(0.490975\pi\)
\(524\) −17108.3 −1.42629
\(525\) 96.7940 0.00804655
\(526\) 2782.62 0.230661
\(527\) −11801.9 −0.975519
\(528\) 0 0
\(529\) −10723.6 −0.881366
\(530\) −1791.98 −0.146865
\(531\) −7217.26 −0.589835
\(532\) −258.455 −0.0210629
\(533\) −19842.2 −1.61250
\(534\) 5151.45 0.417462
\(535\) −12545.6 −1.01382
\(536\) −18294.4 −1.47425
\(537\) −1620.59 −0.130231
\(538\) −2.70988 −0.000217158 0
\(539\) 0 0
\(540\) −1378.52 −0.109856
\(541\) 10074.0 0.800580 0.400290 0.916388i \(-0.368909\pi\)
0.400290 + 0.916388i \(0.368909\pi\)
\(542\) 5882.89 0.466221
\(543\) 6721.10 0.531179
\(544\) −7797.93 −0.614584
\(545\) 5268.24 0.414067
\(546\) 148.011 0.0116013
\(547\) 8890.78 0.694958 0.347479 0.937688i \(-0.387038\pi\)
0.347479 + 0.937688i \(0.387038\pi\)
\(548\) −16751.7 −1.30584
\(549\) −3481.00 −0.270611
\(550\) 0 0
\(551\) 9062.64 0.700692
\(552\) 2124.27 0.163795
\(553\) −336.734 −0.0258940
\(554\) 6297.68 0.482965
\(555\) −361.968 −0.0276841
\(556\) 1259.33 0.0960564
\(557\) 13329.0 1.01395 0.506974 0.861961i \(-0.330764\pi\)
0.506974 + 0.861961i \(0.330764\pi\)
\(558\) 3251.02 0.246642
\(559\) −21740.2 −1.64492
\(560\) −115.054 −0.00868200
\(561\) 0 0
\(562\) 256.594 0.0192594
\(563\) −13841.1 −1.03611 −0.518057 0.855346i \(-0.673345\pi\)
−0.518057 + 0.855346i \(0.673345\pi\)
\(564\) 6377.10 0.476107
\(565\) −644.069 −0.0479579
\(566\) −3569.27 −0.265066
\(567\) 44.0280 0.00326103
\(568\) 9978.22 0.737107
\(569\) 860.552 0.0634028 0.0317014 0.999497i \(-0.489907\pi\)
0.0317014 + 0.999497i \(0.489907\pi\)
\(570\) 2389.98 0.175623
\(571\) −20409.1 −1.49579 −0.747895 0.663817i \(-0.768935\pi\)
−0.747895 + 0.663817i \(0.768935\pi\)
\(572\) 0 0
\(573\) −1896.77 −0.138288
\(574\) 201.794 0.0146737
\(575\) −2255.17 −0.163560
\(576\) 267.006 0.0193147
\(577\) 17478.0 1.26104 0.630518 0.776175i \(-0.282843\pi\)
0.630518 + 0.776175i \(0.282843\pi\)
\(578\) −4040.07 −0.290735
\(579\) −12374.3 −0.888185
\(580\) 6132.28 0.439016
\(581\) 107.863 0.00770207
\(582\) 3635.12 0.258901
\(583\) 0 0
\(584\) −8514.29 −0.603294
\(585\) 5078.78 0.358943
\(586\) 8653.97 0.610055
\(587\) −5473.09 −0.384836 −0.192418 0.981313i \(-0.561633\pi\)
−0.192418 + 0.981313i \(0.561633\pi\)
\(588\) −6478.90 −0.454397
\(589\) 20914.9 1.46313
\(590\) 8466.84 0.590804
\(591\) −9892.28 −0.688518
\(592\) −389.071 −0.0270114
\(593\) −5410.65 −0.374686 −0.187343 0.982295i \(-0.559988\pi\)
−0.187343 + 0.982295i \(0.559988\pi\)
\(594\) 0 0
\(595\) 187.504 0.0129192
\(596\) −15840.5 −1.08868
\(597\) −142.177 −0.00974693
\(598\) −3448.47 −0.235817
\(599\) 1011.78 0.0690155 0.0345078 0.999404i \(-0.489014\pi\)
0.0345078 + 0.999404i \(0.489014\pi\)
\(600\) −3318.91 −0.225824
\(601\) −6054.83 −0.410951 −0.205476 0.978662i \(-0.565874\pi\)
−0.205476 + 0.978662i \(0.565874\pi\)
\(602\) 221.096 0.0149688
\(603\) 8834.22 0.596612
\(604\) 18720.4 1.26113
\(605\) 0 0
\(606\) −5959.26 −0.399469
\(607\) −6920.07 −0.462730 −0.231365 0.972867i \(-0.574319\pi\)
−0.231365 + 0.972867i \(0.574319\pi\)
\(608\) 13819.2 0.921781
\(609\) −195.857 −0.0130320
\(610\) 4083.69 0.271056
\(611\) −23494.7 −1.55563
\(612\) 2414.80 0.159497
\(613\) −7242.95 −0.477227 −0.238613 0.971115i \(-0.576693\pi\)
−0.238613 + 0.971115i \(0.576693\pi\)
\(614\) 4272.73 0.280836
\(615\) 6924.25 0.454004
\(616\) 0 0
\(617\) 26187.8 1.70872 0.854361 0.519680i \(-0.173949\pi\)
0.854361 + 0.519680i \(0.173949\pi\)
\(618\) 558.388 0.0363457
\(619\) 8431.55 0.547484 0.273742 0.961803i \(-0.411739\pi\)
0.273742 + 0.961803i \(0.411739\pi\)
\(620\) 14152.2 0.916718
\(621\) −1025.79 −0.0662862
\(622\) 8552.48 0.551323
\(623\) −716.224 −0.0460593
\(624\) 5459.06 0.350220
\(625\) −4681.74 −0.299631
\(626\) 882.706 0.0563579
\(627\) 0 0
\(628\) −12935.0 −0.821912
\(629\) 634.071 0.0401940
\(630\) −51.6509 −0.00326638
\(631\) 11427.4 0.720947 0.360473 0.932770i \(-0.382615\pi\)
0.360473 + 0.932770i \(0.382615\pi\)
\(632\) 11546.1 0.726707
\(633\) 4556.48 0.286104
\(634\) 4959.52 0.310675
\(635\) 3327.66 0.207959
\(636\) 3208.66 0.200050
\(637\) 23869.7 1.48470
\(638\) 0 0
\(639\) −4818.41 −0.298300
\(640\) 11557.6 0.713833
\(641\) −22759.2 −1.40239 −0.701195 0.712969i \(-0.747350\pi\)
−0.701195 + 0.712969i \(0.747350\pi\)
\(642\) −6053.77 −0.372154
\(643\) −722.522 −0.0443134 −0.0221567 0.999755i \(-0.507053\pi\)
−0.0221567 + 0.999755i \(0.507053\pi\)
\(644\) −130.137 −0.00796291
\(645\) 7586.57 0.463133
\(646\) −4186.61 −0.254984
\(647\) 12986.6 0.789112 0.394556 0.918872i \(-0.370898\pi\)
0.394556 + 0.918872i \(0.370898\pi\)
\(648\) −1509.65 −0.0915196
\(649\) 0 0
\(650\) 5387.83 0.325120
\(651\) −452.001 −0.0272124
\(652\) 14605.4 0.877290
\(653\) −17876.8 −1.07132 −0.535662 0.844432i \(-0.679938\pi\)
−0.535662 + 0.844432i \(0.679938\pi\)
\(654\) 2542.14 0.151996
\(655\) −21995.6 −1.31212
\(656\) 7442.72 0.442971
\(657\) 4111.49 0.244147
\(658\) 238.940 0.0141563
\(659\) 14584.5 0.862114 0.431057 0.902325i \(-0.358141\pi\)
0.431057 + 0.902325i \(0.358141\pi\)
\(660\) 0 0
\(661\) 28799.8 1.69468 0.847340 0.531051i \(-0.178203\pi\)
0.847340 + 0.531051i \(0.178203\pi\)
\(662\) 4351.90 0.255501
\(663\) −8896.66 −0.521142
\(664\) −3698.45 −0.216156
\(665\) −332.288 −0.0193768
\(666\) −174.665 −0.0101623
\(667\) 4563.20 0.264899
\(668\) −7800.76 −0.451827
\(669\) −3069.86 −0.177410
\(670\) −10363.8 −0.597593
\(671\) 0 0
\(672\) −298.653 −0.0171440
\(673\) 9585.30 0.549014 0.274507 0.961585i \(-0.411485\pi\)
0.274507 + 0.961585i \(0.411485\pi\)
\(674\) 12556.6 0.717597
\(675\) 1602.68 0.0913885
\(676\) −16726.5 −0.951667
\(677\) −978.240 −0.0555345 −0.0277672 0.999614i \(-0.508840\pi\)
−0.0277672 + 0.999614i \(0.508840\pi\)
\(678\) −310.790 −0.0176045
\(679\) −505.404 −0.0285650
\(680\) −6429.22 −0.362573
\(681\) −7633.25 −0.429525
\(682\) 0 0
\(683\) −32472.0 −1.81919 −0.909594 0.415499i \(-0.863607\pi\)
−0.909594 + 0.415499i \(0.863607\pi\)
\(684\) −4279.41 −0.239221
\(685\) −21537.2 −1.20130
\(686\) −485.717 −0.0270332
\(687\) 10734.2 0.596123
\(688\) 8154.63 0.451878
\(689\) −11821.4 −0.653643
\(690\) 1203.40 0.0663951
\(691\) 29595.8 1.62934 0.814672 0.579922i \(-0.196917\pi\)
0.814672 + 0.579922i \(0.196917\pi\)
\(692\) 14435.7 0.793011
\(693\) 0 0
\(694\) 3470.53 0.189826
\(695\) 1619.08 0.0883670
\(696\) 6715.61 0.365739
\(697\) −12129.4 −0.659160
\(698\) 7029.30 0.381179
\(699\) −5188.96 −0.280779
\(700\) 203.323 0.0109784
\(701\) 26738.3 1.44064 0.720321 0.693641i \(-0.243994\pi\)
0.720321 + 0.693641i \(0.243994\pi\)
\(702\) 2450.72 0.131761
\(703\) −1123.68 −0.0602849
\(704\) 0 0
\(705\) 8198.83 0.437994
\(706\) 3913.61 0.208627
\(707\) 828.538 0.0440741
\(708\) −15160.4 −0.804751
\(709\) 3143.76 0.166525 0.0832625 0.996528i \(-0.473466\pi\)
0.0832625 + 0.996528i \(0.473466\pi\)
\(710\) 5652.67 0.298790
\(711\) −5575.53 −0.294091
\(712\) 24558.2 1.29264
\(713\) 10531.0 0.553141
\(714\) 90.4785 0.00474240
\(715\) 0 0
\(716\) −3404.18 −0.177682
\(717\) −16155.9 −0.841497
\(718\) 2642.15 0.137332
\(719\) −8528.65 −0.442371 −0.221186 0.975232i \(-0.570993\pi\)
−0.221186 + 0.975232i \(0.570993\pi\)
\(720\) −1905.02 −0.0986056
\(721\) −77.6347 −0.00401008
\(722\) −1519.13 −0.0783047
\(723\) 10546.1 0.542481
\(724\) 14118.2 0.724722
\(725\) −7129.46 −0.365216
\(726\) 0 0
\(727\) −34617.2 −1.76600 −0.882999 0.469374i \(-0.844480\pi\)
−0.882999 + 0.469374i \(0.844480\pi\)
\(728\) 705.607 0.0359224
\(729\) 729.000 0.0370370
\(730\) −4823.35 −0.244548
\(731\) −13289.6 −0.672414
\(732\) −7312.11 −0.369212
\(733\) 9800.28 0.493836 0.246918 0.969036i \(-0.420582\pi\)
0.246918 + 0.969036i \(0.420582\pi\)
\(734\) −3181.57 −0.159992
\(735\) −8329.72 −0.418022
\(736\) 6958.22 0.348483
\(737\) 0 0
\(738\) 3341.24 0.166657
\(739\) −1846.17 −0.0918978 −0.0459489 0.998944i \(-0.514631\pi\)
−0.0459489 + 0.998944i \(0.514631\pi\)
\(740\) −760.342 −0.0377713
\(741\) 15766.3 0.781634
\(742\) 120.223 0.00594816
\(743\) 21690.8 1.07101 0.535504 0.844533i \(-0.320122\pi\)
0.535504 + 0.844533i \(0.320122\pi\)
\(744\) 15498.4 0.763708
\(745\) −20365.6 −1.00153
\(746\) 13566.7 0.665832
\(747\) 1785.95 0.0874761
\(748\) 0 0
\(749\) 841.677 0.0410604
\(750\) −5839.51 −0.284305
\(751\) −12211.7 −0.593359 −0.296680 0.954977i \(-0.595879\pi\)
−0.296680 + 0.954977i \(0.595879\pi\)
\(752\) 8812.74 0.427350
\(753\) 4329.35 0.209522
\(754\) −10901.9 −0.526558
\(755\) 24068.2 1.16017
\(756\) 92.4842 0.00444923
\(757\) −746.885 −0.0358600 −0.0179300 0.999839i \(-0.505708\pi\)
−0.0179300 + 0.999839i \(0.505708\pi\)
\(758\) 6359.70 0.304742
\(759\) 0 0
\(760\) 11393.6 0.543803
\(761\) 4937.60 0.235201 0.117600 0.993061i \(-0.462480\pi\)
0.117600 + 0.993061i \(0.462480\pi\)
\(762\) 1605.73 0.0763381
\(763\) −353.443 −0.0167700
\(764\) −3984.32 −0.188675
\(765\) 3104.63 0.146729
\(766\) 15584.9 0.735126
\(767\) 55854.4 2.62945
\(768\) 6289.03 0.295489
\(769\) −2022.76 −0.0948538 −0.0474269 0.998875i \(-0.515102\pi\)
−0.0474269 + 0.998875i \(0.515102\pi\)
\(770\) 0 0
\(771\) 18377.7 0.858440
\(772\) −25993.2 −1.21181
\(773\) −10864.5 −0.505521 −0.252761 0.967529i \(-0.581338\pi\)
−0.252761 + 0.967529i \(0.581338\pi\)
\(774\) 3660.84 0.170008
\(775\) −16453.5 −0.762614
\(776\) 17329.5 0.801667
\(777\) 24.2843 0.00112123
\(778\) 9353.56 0.431030
\(779\) 21495.3 0.988639
\(780\) 10668.4 0.489729
\(781\) 0 0
\(782\) −2108.03 −0.0963977
\(783\) −3242.92 −0.148011
\(784\) −8953.42 −0.407863
\(785\) −16630.1 −0.756117
\(786\) −10613.8 −0.481655
\(787\) −18860.6 −0.854266 −0.427133 0.904189i \(-0.640476\pi\)
−0.427133 + 0.904189i \(0.640476\pi\)
\(788\) −20779.5 −0.939390
\(789\) −6405.78 −0.289039
\(790\) 6540.87 0.294574
\(791\) 43.2103 0.00194233
\(792\) 0 0
\(793\) 26939.5 1.20637
\(794\) −3754.93 −0.167831
\(795\) 4125.27 0.184035
\(796\) −298.654 −0.0132984
\(797\) 35879.7 1.59463 0.797317 0.603560i \(-0.206252\pi\)
0.797317 + 0.603560i \(0.206252\pi\)
\(798\) −160.343 −0.00711287
\(799\) −14362.2 −0.635916
\(800\) −10871.4 −0.480452
\(801\) −11859.0 −0.523117
\(802\) −5164.71 −0.227397
\(803\) 0 0
\(804\) 18557.0 0.813998
\(805\) −167.313 −0.00732547
\(806\) −25159.6 −1.09952
\(807\) 6.23833 0.000272118 0
\(808\) −28409.3 −1.23692
\(809\) −35351.3 −1.53632 −0.768161 0.640256i \(-0.778828\pi\)
−0.768161 + 0.640256i \(0.778828\pi\)
\(810\) −855.218 −0.0370979
\(811\) −9326.21 −0.403807 −0.201904 0.979405i \(-0.564713\pi\)
−0.201904 + 0.979405i \(0.564713\pi\)
\(812\) −411.412 −0.0177805
\(813\) −13542.8 −0.584216
\(814\) 0 0
\(815\) 18777.7 0.807062
\(816\) 3337.09 0.143164
\(817\) 23551.4 1.00852
\(818\) 11783.1 0.503649
\(819\) −340.733 −0.0145374
\(820\) 14544.9 0.619428
\(821\) 46531.1 1.97801 0.989005 0.147881i \(-0.0472453\pi\)
0.989005 + 0.147881i \(0.0472453\pi\)
\(822\) −10392.6 −0.440977
\(823\) 17984.1 0.761710 0.380855 0.924635i \(-0.375630\pi\)
0.380855 + 0.924635i \(0.375630\pi\)
\(824\) 2661.97 0.112542
\(825\) 0 0
\(826\) −568.037 −0.0239280
\(827\) 43270.0 1.81940 0.909701 0.415264i \(-0.136311\pi\)
0.909701 + 0.415264i \(0.136311\pi\)
\(828\) −2154.76 −0.0904386
\(829\) −35904.2 −1.50423 −0.752114 0.659033i \(-0.770966\pi\)
−0.752114 + 0.659033i \(0.770966\pi\)
\(830\) −2095.17 −0.0876199
\(831\) −14497.7 −0.605198
\(832\) −2066.36 −0.0861036
\(833\) 14591.4 0.606918
\(834\) 781.272 0.0324379
\(835\) −10029.2 −0.415658
\(836\) 0 0
\(837\) −7484.07 −0.309065
\(838\) −1094.81 −0.0451307
\(839\) 29387.6 1.20926 0.604632 0.796505i \(-0.293320\pi\)
0.604632 + 0.796505i \(0.293320\pi\)
\(840\) −246.233 −0.0101141
\(841\) −9963.00 −0.408504
\(842\) 2612.80 0.106940
\(843\) −590.697 −0.0241337
\(844\) 9571.25 0.390351
\(845\) −21504.7 −0.875485
\(846\) 3956.28 0.160780
\(847\) 0 0
\(848\) 4434.15 0.179563
\(849\) 8216.70 0.332151
\(850\) 3293.55 0.132903
\(851\) −565.792 −0.0227909
\(852\) −10121.5 −0.406990
\(853\) 17281.7 0.693686 0.346843 0.937923i \(-0.387254\pi\)
0.346843 + 0.937923i \(0.387254\pi\)
\(854\) −273.973 −0.0109779
\(855\) −5501.91 −0.220072
\(856\) −28859.8 −1.15234
\(857\) 25834.0 1.02972 0.514862 0.857273i \(-0.327843\pi\)
0.514862 + 0.857273i \(0.327843\pi\)
\(858\) 0 0
\(859\) −29861.7 −1.18611 −0.593055 0.805162i \(-0.702078\pi\)
−0.593055 + 0.805162i \(0.702078\pi\)
\(860\) 15936.2 0.631883
\(861\) −464.545 −0.0183875
\(862\) −15533.1 −0.613758
\(863\) −1581.90 −0.0623970 −0.0311985 0.999513i \(-0.509932\pi\)
−0.0311985 + 0.999513i \(0.509932\pi\)
\(864\) −4944.99 −0.194713
\(865\) 18559.5 0.729530
\(866\) 1252.16 0.0491342
\(867\) 9300.53 0.364317
\(868\) −949.463 −0.0371277
\(869\) 0 0
\(870\) 3804.40 0.148254
\(871\) −68368.1 −2.65966
\(872\) 12119.0 0.470644
\(873\) −8368.31 −0.324426
\(874\) 3735.78 0.144582
\(875\) 811.888 0.0313678
\(876\) 8636.52 0.333106
\(877\) −21886.5 −0.842708 −0.421354 0.906896i \(-0.638445\pi\)
−0.421354 + 0.906896i \(0.638445\pi\)
\(878\) −9891.69 −0.380215
\(879\) −19922.0 −0.764452
\(880\) 0 0
\(881\) −2989.02 −0.114305 −0.0571524 0.998365i \(-0.518202\pi\)
−0.0571524 + 0.998365i \(0.518202\pi\)
\(882\) −4019.43 −0.153448
\(883\) 9041.43 0.344585 0.172292 0.985046i \(-0.444883\pi\)
0.172292 + 0.985046i \(0.444883\pi\)
\(884\) −18688.1 −0.711029
\(885\) −19491.3 −0.740330
\(886\) 553.480 0.0209870
\(887\) −32723.5 −1.23872 −0.619361 0.785106i \(-0.712608\pi\)
−0.619361 + 0.785106i \(0.712608\pi\)
\(888\) −832.669 −0.0314668
\(889\) −223.251 −0.00842250
\(890\) 13912.2 0.523977
\(891\) 0 0
\(892\) −6448.47 −0.242052
\(893\) 25452.1 0.953776
\(894\) −9827.27 −0.367643
\(895\) −4376.65 −0.163458
\(896\) −775.393 −0.0289108
\(897\) 7938.63 0.295500
\(898\) −6168.61 −0.229231
\(899\) 33292.5 1.23512
\(900\) 3366.56 0.124687
\(901\) −7226.36 −0.267198
\(902\) 0 0
\(903\) −508.979 −0.0187572
\(904\) −1481.61 −0.0545108
\(905\) 18151.3 0.666708
\(906\) 11613.9 0.425878
\(907\) −10904.5 −0.399204 −0.199602 0.979877i \(-0.563965\pi\)
−0.199602 + 0.979877i \(0.563965\pi\)
\(908\) −16034.2 −0.586029
\(909\) 13718.6 0.500571
\(910\) 399.727 0.0145613
\(911\) 23757.0 0.864000 0.432000 0.901873i \(-0.357808\pi\)
0.432000 + 0.901873i \(0.357808\pi\)
\(912\) −5913.87 −0.214723
\(913\) 0 0
\(914\) −19770.1 −0.715468
\(915\) −9400.95 −0.339657
\(916\) 22548.1 0.813329
\(917\) 1475.67 0.0531417
\(918\) 1498.11 0.0538617
\(919\) 16951.8 0.608473 0.304236 0.952597i \(-0.401599\pi\)
0.304236 + 0.952597i \(0.401599\pi\)
\(920\) 5736.90 0.205587
\(921\) −9836.11 −0.351912
\(922\) −16879.1 −0.602910
\(923\) 37289.7 1.32980
\(924\) 0 0
\(925\) 883.982 0.0314218
\(926\) −8828.10 −0.313293
\(927\) −1285.45 −0.0455444
\(928\) 21997.6 0.778131
\(929\) 38495.6 1.35953 0.679763 0.733432i \(-0.262082\pi\)
0.679763 + 0.733432i \(0.262082\pi\)
\(930\) 8779.85 0.309573
\(931\) −25858.4 −0.910284
\(932\) −10899.8 −0.383085
\(933\) −19688.4 −0.690857
\(934\) 6759.86 0.236819
\(935\) 0 0
\(936\) 11683.2 0.407988
\(937\) 48776.4 1.70059 0.850297 0.526304i \(-0.176423\pi\)
0.850297 + 0.526304i \(0.176423\pi\)
\(938\) 695.300 0.0242029
\(939\) −2032.05 −0.0706214
\(940\) 17222.3 0.597584
\(941\) 7854.68 0.272110 0.136055 0.990701i \(-0.456558\pi\)
0.136055 + 0.990701i \(0.456558\pi\)
\(942\) −8024.70 −0.277557
\(943\) 10823.3 0.373759
\(944\) −20950.7 −0.722339
\(945\) 118.904 0.00409307
\(946\) 0 0
\(947\) −38877.6 −1.33406 −0.667029 0.745032i \(-0.732434\pi\)
−0.667029 + 0.745032i \(0.732434\pi\)
\(948\) −11711.8 −0.401248
\(949\) −31818.9 −1.08839
\(950\) −5836.70 −0.199334
\(951\) −11417.2 −0.389303
\(952\) 431.333 0.0146844
\(953\) −12903.2 −0.438590 −0.219295 0.975659i \(-0.570376\pi\)
−0.219295 + 0.975659i \(0.570376\pi\)
\(954\) 1990.61 0.0675561
\(955\) −5122.51 −0.173571
\(956\) −33936.8 −1.14811
\(957\) 0 0
\(958\) −3587.66 −0.120994
\(959\) 1444.92 0.0486537
\(960\) 721.089 0.0242428
\(961\) 47042.0 1.57907
\(962\) 1351.73 0.0453031
\(963\) 13936.2 0.466342
\(964\) 22152.9 0.740143
\(965\) −33418.6 −1.11480
\(966\) −80.7354 −0.00268905
\(967\) −5006.71 −0.166499 −0.0832497 0.996529i \(-0.526530\pi\)
−0.0832497 + 0.996529i \(0.526530\pi\)
\(968\) 0 0
\(969\) 9637.86 0.319518
\(970\) 9817.18 0.324959
\(971\) −15655.8 −0.517425 −0.258712 0.965954i \(-0.583298\pi\)
−0.258712 + 0.965954i \(0.583298\pi\)
\(972\) 1531.32 0.0505321
\(973\) −108.623 −0.00357893
\(974\) −12146.1 −0.399575
\(975\) −12403.2 −0.407404
\(976\) −10104.9 −0.331402
\(977\) −11179.4 −0.366080 −0.183040 0.983105i \(-0.558594\pi\)
−0.183040 + 0.983105i \(0.558594\pi\)
\(978\) 9061.04 0.296258
\(979\) 0 0
\(980\) −17497.2 −0.570335
\(981\) −5852.19 −0.190465
\(982\) −12754.7 −0.414478
\(983\) −27168.3 −0.881521 −0.440760 0.897625i \(-0.645291\pi\)
−0.440760 + 0.897625i \(0.645291\pi\)
\(984\) 15928.5 0.516039
\(985\) −26715.5 −0.864191
\(986\) −6664.28 −0.215247
\(987\) −550.056 −0.0177391
\(988\) 33118.4 1.06643
\(989\) 11858.6 0.381274
\(990\) 0 0
\(991\) 59150.4 1.89604 0.948020 0.318212i \(-0.103082\pi\)
0.948020 + 0.318212i \(0.103082\pi\)
\(992\) 50766.3 1.62483
\(993\) −10018.4 −0.320165
\(994\) −379.235 −0.0121012
\(995\) −383.970 −0.0122338
\(996\) 3751.54 0.119349
\(997\) −43855.7 −1.39310 −0.696552 0.717506i \(-0.745284\pi\)
−0.696552 + 0.717506i \(0.745284\pi\)
\(998\) 11401.8 0.361640
\(999\) 402.090 0.0127343
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.4.a.v.1.3 6
3.2 odd 2 1089.4.a.bi.1.4 6
11.3 even 5 33.4.e.c.31.2 yes 12
11.4 even 5 33.4.e.c.16.2 12
11.10 odd 2 363.4.a.u.1.4 6
33.14 odd 10 99.4.f.d.64.2 12
33.26 odd 10 99.4.f.d.82.2 12
33.32 even 2 1089.4.a.bk.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.16.2 12 11.4 even 5
33.4.e.c.31.2 yes 12 11.3 even 5
99.4.f.d.64.2 12 33.14 odd 10
99.4.f.d.82.2 12 33.26 odd 10
363.4.a.u.1.4 6 11.10 odd 2
363.4.a.v.1.3 6 1.1 even 1 trivial
1089.4.a.bi.1.4 6 3.2 odd 2
1089.4.a.bk.1.3 6 33.32 even 2