Properties

Label 363.4.a.v.1.2
Level $363$
Weight $4$
Character 363.1
Self dual yes
Analytic conductor $21.418$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,4,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.4176933321\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 30x^{4} + 3x^{3} + 211x^{2} + 208x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 11 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.80972\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.80972 q^{2} -3.00000 q^{3} -0.105474 q^{4} +12.1997 q^{5} +8.42916 q^{6} +6.70654 q^{7} +22.7741 q^{8} +9.00000 q^{9} -34.2777 q^{10} +0.316423 q^{12} +78.8371 q^{13} -18.8435 q^{14} -36.5991 q^{15} -63.1451 q^{16} -67.3763 q^{17} -25.2875 q^{18} +47.1974 q^{19} -1.28676 q^{20} -20.1196 q^{21} -21.9125 q^{23} -68.3223 q^{24} +23.8328 q^{25} -221.510 q^{26} -27.0000 q^{27} -0.707368 q^{28} +81.8261 q^{29} +102.833 q^{30} -67.1775 q^{31} -4.77291 q^{32} +189.309 q^{34} +81.8178 q^{35} -0.949269 q^{36} -382.927 q^{37} -132.611 q^{38} -236.511 q^{39} +277.837 q^{40} +368.938 q^{41} +56.5305 q^{42} +153.423 q^{43} +109.797 q^{45} +61.5680 q^{46} +381.947 q^{47} +189.435 q^{48} -298.022 q^{49} -66.9634 q^{50} +202.129 q^{51} -8.31528 q^{52} +586.639 q^{53} +75.8624 q^{54} +152.736 q^{56} -141.592 q^{57} -229.909 q^{58} +119.466 q^{59} +3.86027 q^{60} +865.731 q^{61} +188.750 q^{62} +60.3589 q^{63} +518.571 q^{64} +961.789 q^{65} -884.849 q^{67} +7.10647 q^{68} +65.7375 q^{69} -229.885 q^{70} +673.884 q^{71} +204.967 q^{72} +290.003 q^{73} +1075.92 q^{74} -71.4983 q^{75} -4.97811 q^{76} +664.530 q^{78} -738.693 q^{79} -770.351 q^{80} +81.0000 q^{81} -1036.61 q^{82} -445.439 q^{83} +2.12210 q^{84} -821.971 q^{85} -431.077 q^{86} -245.478 q^{87} +304.691 q^{89} -308.500 q^{90} +528.724 q^{91} +2.31121 q^{92} +201.533 q^{93} -1073.16 q^{94} +575.794 q^{95} +14.3187 q^{96} +1680.23 q^{97} +837.359 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 18 q^{3} + 17 q^{4} + 9 q^{5} - 15 q^{6} + q^{7} + 24 q^{8} + 54 q^{9} + 50 q^{10} - 51 q^{12} + 66 q^{13} - 42 q^{14} - 27 q^{15} - 71 q^{16} + 80 q^{17} + 45 q^{18} - 90 q^{19} + 455 q^{20}+ \cdots + 1405 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.80972 −0.993386 −0.496693 0.867926i \(-0.665453\pi\)
−0.496693 + 0.867926i \(0.665453\pi\)
\(3\) −3.00000 −0.577350
\(4\) −0.105474 −0.0131843
\(5\) 12.1997 1.09117 0.545587 0.838054i \(-0.316307\pi\)
0.545587 + 0.838054i \(0.316307\pi\)
\(6\) 8.42916 0.573532
\(7\) 6.70654 0.362119 0.181060 0.983472i \(-0.442047\pi\)
0.181060 + 0.983472i \(0.442047\pi\)
\(8\) 22.7741 1.00648
\(9\) 9.00000 0.333333
\(10\) −34.2777 −1.08396
\(11\) 0 0
\(12\) 0.316423 0.00761195
\(13\) 78.8371 1.68196 0.840980 0.541067i \(-0.181979\pi\)
0.840980 + 0.541067i \(0.181979\pi\)
\(14\) −18.8435 −0.359724
\(15\) −36.5991 −0.629990
\(16\) −63.1451 −0.986642
\(17\) −67.3763 −0.961244 −0.480622 0.876928i \(-0.659589\pi\)
−0.480622 + 0.876928i \(0.659589\pi\)
\(18\) −25.2875 −0.331129
\(19\) 47.1974 0.569885 0.284943 0.958545i \(-0.408025\pi\)
0.284943 + 0.958545i \(0.408025\pi\)
\(20\) −1.28676 −0.0143864
\(21\) −20.1196 −0.209070
\(22\) 0 0
\(23\) −21.9125 −0.198655 −0.0993277 0.995055i \(-0.531669\pi\)
−0.0993277 + 0.995055i \(0.531669\pi\)
\(24\) −68.3223 −0.581093
\(25\) 23.8328 0.190662
\(26\) −221.510 −1.67083
\(27\) −27.0000 −0.192450
\(28\) −0.707368 −0.00477428
\(29\) 81.8261 0.523956 0.261978 0.965074i \(-0.415625\pi\)
0.261978 + 0.965074i \(0.415625\pi\)
\(30\) 102.833 0.625823
\(31\) −67.1775 −0.389208 −0.194604 0.980882i \(-0.562342\pi\)
−0.194604 + 0.980882i \(0.562342\pi\)
\(32\) −4.77291 −0.0263668
\(33\) 0 0
\(34\) 189.309 0.954887
\(35\) 81.8178 0.395135
\(36\) −0.949269 −0.00439476
\(37\) −382.927 −1.70143 −0.850714 0.525629i \(-0.823830\pi\)
−0.850714 + 0.525629i \(0.823830\pi\)
\(38\) −132.611 −0.566116
\(39\) −236.511 −0.971079
\(40\) 277.837 1.09825
\(41\) 368.938 1.40533 0.702664 0.711522i \(-0.251994\pi\)
0.702664 + 0.711522i \(0.251994\pi\)
\(42\) 56.5305 0.207687
\(43\) 153.423 0.544113 0.272056 0.962281i \(-0.412296\pi\)
0.272056 + 0.962281i \(0.412296\pi\)
\(44\) 0 0
\(45\) 109.797 0.363725
\(46\) 61.5680 0.197341
\(47\) 381.947 1.18538 0.592689 0.805432i \(-0.298066\pi\)
0.592689 + 0.805432i \(0.298066\pi\)
\(48\) 189.435 0.569638
\(49\) −298.022 −0.868870
\(50\) −66.9634 −0.189401
\(51\) 202.129 0.554975
\(52\) −8.31528 −0.0221754
\(53\) 586.639 1.52040 0.760198 0.649691i \(-0.225102\pi\)
0.760198 + 0.649691i \(0.225102\pi\)
\(54\) 75.8624 0.191177
\(55\) 0 0
\(56\) 152.736 0.364467
\(57\) −141.592 −0.329023
\(58\) −229.909 −0.520491
\(59\) 119.466 0.263613 0.131807 0.991275i \(-0.457922\pi\)
0.131807 + 0.991275i \(0.457922\pi\)
\(60\) 3.86027 0.00830597
\(61\) 865.731 1.81714 0.908570 0.417733i \(-0.137175\pi\)
0.908570 + 0.417733i \(0.137175\pi\)
\(62\) 188.750 0.386633
\(63\) 60.3589 0.120706
\(64\) 518.571 1.01283
\(65\) 961.789 1.83531
\(66\) 0 0
\(67\) −884.849 −1.61346 −0.806728 0.590923i \(-0.798764\pi\)
−0.806728 + 0.590923i \(0.798764\pi\)
\(68\) 7.10647 0.0126733
\(69\) 65.7375 0.114694
\(70\) −229.885 −0.392522
\(71\) 673.884 1.12641 0.563206 0.826316i \(-0.309568\pi\)
0.563206 + 0.826316i \(0.309568\pi\)
\(72\) 204.967 0.335494
\(73\) 290.003 0.464962 0.232481 0.972601i \(-0.425316\pi\)
0.232481 + 0.972601i \(0.425316\pi\)
\(74\) 1075.92 1.69017
\(75\) −71.4983 −0.110079
\(76\) −4.97811 −0.00751353
\(77\) 0 0
\(78\) 664.530 0.964657
\(79\) −738.693 −1.05202 −0.526010 0.850479i \(-0.676312\pi\)
−0.526010 + 0.850479i \(0.676312\pi\)
\(80\) −770.351 −1.07660
\(81\) 81.0000 0.111111
\(82\) −1036.61 −1.39603
\(83\) −445.439 −0.589075 −0.294538 0.955640i \(-0.595166\pi\)
−0.294538 + 0.955640i \(0.595166\pi\)
\(84\) 2.12210 0.00275643
\(85\) −821.971 −1.04889
\(86\) −431.077 −0.540514
\(87\) −245.478 −0.302506
\(88\) 0 0
\(89\) 304.691 0.362890 0.181445 0.983401i \(-0.441923\pi\)
0.181445 + 0.983401i \(0.441923\pi\)
\(90\) −308.500 −0.361319
\(91\) 528.724 0.609070
\(92\) 2.31121 0.00261913
\(93\) 201.533 0.224709
\(94\) −1073.16 −1.17754
\(95\) 575.794 0.621844
\(96\) 14.3187 0.0152229
\(97\) 1680.23 1.75877 0.879387 0.476107i \(-0.157952\pi\)
0.879387 + 0.476107i \(0.157952\pi\)
\(98\) 837.359 0.863123
\(99\) 0 0
\(100\) −2.51374 −0.00251374
\(101\) 570.857 0.562400 0.281200 0.959649i \(-0.409268\pi\)
0.281200 + 0.959649i \(0.409268\pi\)
\(102\) −567.926 −0.551304
\(103\) 981.463 0.938897 0.469448 0.882960i \(-0.344453\pi\)
0.469448 + 0.882960i \(0.344453\pi\)
\(104\) 1795.44 1.69286
\(105\) −245.453 −0.228131
\(106\) −1648.29 −1.51034
\(107\) −663.315 −0.599300 −0.299650 0.954049i \(-0.596870\pi\)
−0.299650 + 0.954049i \(0.596870\pi\)
\(108\) 2.84781 0.00253732
\(109\) −507.146 −0.445650 −0.222825 0.974859i \(-0.571528\pi\)
−0.222825 + 0.974859i \(0.571528\pi\)
\(110\) 0 0
\(111\) 1148.78 0.982320
\(112\) −423.485 −0.357282
\(113\) 1136.88 0.946449 0.473224 0.880942i \(-0.343090\pi\)
0.473224 + 0.880942i \(0.343090\pi\)
\(114\) 397.834 0.326847
\(115\) −267.326 −0.216768
\(116\) −8.63055 −0.00690799
\(117\) 709.534 0.560653
\(118\) −335.667 −0.261870
\(119\) −451.862 −0.348085
\(120\) −833.512 −0.634074
\(121\) 0 0
\(122\) −2432.46 −1.80512
\(123\) −1106.81 −0.811366
\(124\) 7.08550 0.00513143
\(125\) −1234.21 −0.883129
\(126\) −169.592 −0.119908
\(127\) 1428.00 0.997754 0.498877 0.866673i \(-0.333746\pi\)
0.498877 + 0.866673i \(0.333746\pi\)
\(128\) −1418.86 −0.979769
\(129\) −460.270 −0.314144
\(130\) −2702.36 −1.82317
\(131\) −746.926 −0.498162 −0.249081 0.968483i \(-0.580129\pi\)
−0.249081 + 0.968483i \(0.580129\pi\)
\(132\) 0 0
\(133\) 316.531 0.206366
\(134\) 2486.18 1.60278
\(135\) −329.392 −0.209997
\(136\) −1534.44 −0.967476
\(137\) −145.916 −0.0909961 −0.0454980 0.998964i \(-0.514487\pi\)
−0.0454980 + 0.998964i \(0.514487\pi\)
\(138\) −184.704 −0.113935
\(139\) −545.621 −0.332942 −0.166471 0.986046i \(-0.553237\pi\)
−0.166471 + 0.986046i \(0.553237\pi\)
\(140\) −8.62968 −0.00520958
\(141\) −1145.84 −0.684378
\(142\) −1893.43 −1.11896
\(143\) 0 0
\(144\) −568.306 −0.328881
\(145\) 998.255 0.571728
\(146\) −814.826 −0.461887
\(147\) 894.067 0.501642
\(148\) 40.3890 0.0224321
\(149\) 709.609 0.390157 0.195079 0.980788i \(-0.437504\pi\)
0.195079 + 0.980788i \(0.437504\pi\)
\(150\) 200.890 0.109351
\(151\) −1849.74 −0.996886 −0.498443 0.866923i \(-0.666095\pi\)
−0.498443 + 0.866923i \(0.666095\pi\)
\(152\) 1074.88 0.573580
\(153\) −606.387 −0.320415
\(154\) 0 0
\(155\) −819.546 −0.424693
\(156\) 24.9459 0.0128030
\(157\) −1031.79 −0.524498 −0.262249 0.965000i \(-0.584464\pi\)
−0.262249 + 0.965000i \(0.584464\pi\)
\(158\) 2075.52 1.04506
\(159\) −1759.92 −0.877801
\(160\) −58.2281 −0.0287708
\(161\) −146.957 −0.0719369
\(162\) −227.587 −0.110376
\(163\) −3134.37 −1.50615 −0.753076 0.657933i \(-0.771431\pi\)
−0.753076 + 0.657933i \(0.771431\pi\)
\(164\) −38.9135 −0.0185282
\(165\) 0 0
\(166\) 1251.56 0.585179
\(167\) 1862.40 0.862973 0.431487 0.902119i \(-0.357989\pi\)
0.431487 + 0.902119i \(0.357989\pi\)
\(168\) −458.207 −0.210425
\(169\) 4018.28 1.82899
\(170\) 2309.51 1.04195
\(171\) 424.776 0.189962
\(172\) −16.1822 −0.00717374
\(173\) 2769.23 1.21700 0.608500 0.793554i \(-0.291772\pi\)
0.608500 + 0.793554i \(0.291772\pi\)
\(174\) 689.726 0.300506
\(175\) 159.835 0.0690424
\(176\) 0 0
\(177\) −358.399 −0.152197
\(178\) −856.097 −0.360490
\(179\) 3474.79 1.45094 0.725469 0.688255i \(-0.241623\pi\)
0.725469 + 0.688255i \(0.241623\pi\)
\(180\) −11.5808 −0.00479545
\(181\) −1027.42 −0.421919 −0.210959 0.977495i \(-0.567659\pi\)
−0.210959 + 0.977495i \(0.567659\pi\)
\(182\) −1485.57 −0.605041
\(183\) −2597.19 −1.04913
\(184\) −499.038 −0.199943
\(185\) −4671.60 −1.85656
\(186\) −566.250 −0.223223
\(187\) 0 0
\(188\) −40.2856 −0.0156284
\(189\) −181.077 −0.0696899
\(190\) −1617.82 −0.617731
\(191\) −3070.47 −1.16320 −0.581601 0.813474i \(-0.697574\pi\)
−0.581601 + 0.813474i \(0.697574\pi\)
\(192\) −1555.71 −0.584760
\(193\) 757.933 0.282680 0.141340 0.989961i \(-0.454859\pi\)
0.141340 + 0.989961i \(0.454859\pi\)
\(194\) −4720.97 −1.74714
\(195\) −2885.37 −1.05962
\(196\) 31.4337 0.0114554
\(197\) 2783.97 1.00685 0.503425 0.864039i \(-0.332073\pi\)
0.503425 + 0.864039i \(0.332073\pi\)
\(198\) 0 0
\(199\) 1770.84 0.630813 0.315406 0.948957i \(-0.397859\pi\)
0.315406 + 0.948957i \(0.397859\pi\)
\(200\) 542.770 0.191898
\(201\) 2654.55 0.931529
\(202\) −1603.95 −0.558680
\(203\) 548.770 0.189735
\(204\) −21.3194 −0.00731694
\(205\) 4500.93 1.53346
\(206\) −2757.63 −0.932687
\(207\) −197.213 −0.0662184
\(208\) −4978.17 −1.65949
\(209\) 0 0
\(210\) 689.655 0.226623
\(211\) −2282.14 −0.744591 −0.372295 0.928114i \(-0.621429\pi\)
−0.372295 + 0.928114i \(0.621429\pi\)
\(212\) −61.8753 −0.0200453
\(213\) −2021.65 −0.650335
\(214\) 1863.73 0.595336
\(215\) 1871.72 0.593722
\(216\) −614.901 −0.193698
\(217\) −450.529 −0.140940
\(218\) 1424.94 0.442702
\(219\) −870.008 −0.268446
\(220\) 0 0
\(221\) −5311.75 −1.61677
\(222\) −3227.75 −0.975823
\(223\) 667.357 0.200402 0.100201 0.994967i \(-0.468051\pi\)
0.100201 + 0.994967i \(0.468051\pi\)
\(224\) −32.0097 −0.00954794
\(225\) 214.495 0.0635540
\(226\) −3194.32 −0.940189
\(227\) 1579.65 0.461873 0.230937 0.972969i \(-0.425821\pi\)
0.230937 + 0.972969i \(0.425821\pi\)
\(228\) 14.9343 0.00433794
\(229\) 1556.70 0.449212 0.224606 0.974450i \(-0.427890\pi\)
0.224606 + 0.974450i \(0.427890\pi\)
\(230\) 751.111 0.215334
\(231\) 0 0
\(232\) 1863.52 0.527353
\(233\) 2080.25 0.584899 0.292450 0.956281i \(-0.405530\pi\)
0.292450 + 0.956281i \(0.405530\pi\)
\(234\) −1993.59 −0.556945
\(235\) 4659.64 1.29345
\(236\) −12.6006 −0.00347555
\(237\) 2216.08 0.607384
\(238\) 1269.61 0.345783
\(239\) −3686.69 −0.997791 −0.498896 0.866662i \(-0.666261\pi\)
−0.498896 + 0.866662i \(0.666261\pi\)
\(240\) 2311.05 0.621574
\(241\) 4069.62 1.08775 0.543874 0.839167i \(-0.316957\pi\)
0.543874 + 0.839167i \(0.316957\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) −91.3124 −0.0239577
\(245\) −3635.78 −0.948089
\(246\) 3109.84 0.806000
\(247\) 3720.90 0.958523
\(248\) −1529.91 −0.391731
\(249\) 1336.32 0.340103
\(250\) 3467.79 0.877288
\(251\) 6203.06 1.55989 0.779947 0.625845i \(-0.215246\pi\)
0.779947 + 0.625845i \(0.215246\pi\)
\(252\) −6.36631 −0.00159143
\(253\) 0 0
\(254\) −4012.29 −0.991155
\(255\) 2465.91 0.605574
\(256\) −161.980 −0.0395460
\(257\) 1109.34 0.269256 0.134628 0.990896i \(-0.457016\pi\)
0.134628 + 0.990896i \(0.457016\pi\)
\(258\) 1293.23 0.312066
\(259\) −2568.12 −0.616120
\(260\) −101.444 −0.0241973
\(261\) 736.435 0.174652
\(262\) 2098.65 0.494867
\(263\) 6866.55 1.60992 0.804961 0.593327i \(-0.202186\pi\)
0.804961 + 0.593327i \(0.202186\pi\)
\(264\) 0 0
\(265\) 7156.82 1.65902
\(266\) −889.364 −0.205001
\(267\) −914.074 −0.209515
\(268\) 93.3289 0.0212723
\(269\) −2101.39 −0.476298 −0.238149 0.971229i \(-0.576541\pi\)
−0.238149 + 0.971229i \(0.576541\pi\)
\(270\) 925.499 0.208608
\(271\) −3640.81 −0.816101 −0.408050 0.912959i \(-0.633791\pi\)
−0.408050 + 0.912959i \(0.633791\pi\)
\(272\) 4254.48 0.948404
\(273\) −1586.17 −0.351647
\(274\) 409.984 0.0903942
\(275\) 0 0
\(276\) −6.93362 −0.00151215
\(277\) −5725.88 −1.24200 −0.621002 0.783809i \(-0.713274\pi\)
−0.621002 + 0.783809i \(0.713274\pi\)
\(278\) 1533.04 0.330740
\(279\) −604.598 −0.129736
\(280\) 1863.33 0.397697
\(281\) 3402.31 0.722294 0.361147 0.932509i \(-0.382385\pi\)
0.361147 + 0.932509i \(0.382385\pi\)
\(282\) 3219.49 0.679851
\(283\) 6487.92 1.36278 0.681390 0.731921i \(-0.261376\pi\)
0.681390 + 0.731921i \(0.261376\pi\)
\(284\) −71.0774 −0.0148510
\(285\) −1727.38 −0.359022
\(286\) 0 0
\(287\) 2474.30 0.508896
\(288\) −42.9562 −0.00878895
\(289\) −373.435 −0.0760095
\(290\) −2804.82 −0.567946
\(291\) −5040.68 −1.01543
\(292\) −30.5878 −0.00613019
\(293\) 4009.60 0.799465 0.399733 0.916632i \(-0.369103\pi\)
0.399733 + 0.916632i \(0.369103\pi\)
\(294\) −2512.08 −0.498324
\(295\) 1457.45 0.287648
\(296\) −8720.83 −1.71246
\(297\) 0 0
\(298\) −1993.80 −0.387577
\(299\) −1727.52 −0.334130
\(300\) 7.54123 0.00145131
\(301\) 1028.94 0.197034
\(302\) 5197.25 0.990292
\(303\) −1712.57 −0.324702
\(304\) −2980.28 −0.562272
\(305\) 10561.7 1.98282
\(306\) 1703.78 0.318296
\(307\) 8966.59 1.66694 0.833470 0.552565i \(-0.186351\pi\)
0.833470 + 0.552565i \(0.186351\pi\)
\(308\) 0 0
\(309\) −2944.39 −0.542072
\(310\) 2302.69 0.421885
\(311\) −1397.40 −0.254788 −0.127394 0.991852i \(-0.540661\pi\)
−0.127394 + 0.991852i \(0.540661\pi\)
\(312\) −5386.33 −0.977375
\(313\) −3037.00 −0.548438 −0.274219 0.961667i \(-0.588419\pi\)
−0.274219 + 0.961667i \(0.588419\pi\)
\(314\) 2899.05 0.521029
\(315\) 736.360 0.131712
\(316\) 77.9132 0.0138701
\(317\) 2997.34 0.531064 0.265532 0.964102i \(-0.414452\pi\)
0.265532 + 0.964102i \(0.414452\pi\)
\(318\) 4944.87 0.871996
\(319\) 0 0
\(320\) 6326.41 1.10518
\(321\) 1989.94 0.346006
\(322\) 412.908 0.0714611
\(323\) −3179.98 −0.547799
\(324\) −8.54342 −0.00146492
\(325\) 1878.90 0.320686
\(326\) 8806.71 1.49619
\(327\) 1521.44 0.257296
\(328\) 8402.24 1.41444
\(329\) 2561.55 0.429248
\(330\) 0 0
\(331\) −7286.34 −1.20995 −0.604975 0.796245i \(-0.706817\pi\)
−0.604975 + 0.796245i \(0.706817\pi\)
\(332\) 46.9823 0.00776654
\(333\) −3446.34 −0.567143
\(334\) −5232.81 −0.857266
\(335\) −10794.9 −1.76056
\(336\) 1270.46 0.206277
\(337\) 1724.12 0.278691 0.139346 0.990244i \(-0.455500\pi\)
0.139346 + 0.990244i \(0.455500\pi\)
\(338\) −11290.2 −1.81689
\(339\) −3410.64 −0.546433
\(340\) 86.6968 0.0138288
\(341\) 0 0
\(342\) −1193.50 −0.188705
\(343\) −4299.04 −0.676754
\(344\) 3494.08 0.547640
\(345\) 801.978 0.125151
\(346\) −7780.77 −1.20895
\(347\) −5450.67 −0.843249 −0.421624 0.906771i \(-0.638540\pi\)
−0.421624 + 0.906771i \(0.638540\pi\)
\(348\) 25.8917 0.00398833
\(349\) −900.949 −0.138185 −0.0690927 0.997610i \(-0.522010\pi\)
−0.0690927 + 0.997610i \(0.522010\pi\)
\(350\) −449.093 −0.0685857
\(351\) −2128.60 −0.323693
\(352\) 0 0
\(353\) 10056.2 1.51625 0.758127 0.652107i \(-0.226115\pi\)
0.758127 + 0.652107i \(0.226115\pi\)
\(354\) 1007.00 0.151191
\(355\) 8221.18 1.22911
\(356\) −32.1371 −0.00478445
\(357\) 1355.59 0.200967
\(358\) −9763.18 −1.44134
\(359\) 358.995 0.0527772 0.0263886 0.999652i \(-0.491599\pi\)
0.0263886 + 0.999652i \(0.491599\pi\)
\(360\) 2500.54 0.366083
\(361\) −4631.41 −0.675231
\(362\) 2886.75 0.419128
\(363\) 0 0
\(364\) −55.7668 −0.00803015
\(365\) 3537.95 0.507355
\(366\) 7297.39 1.04219
\(367\) −11961.7 −1.70135 −0.850675 0.525693i \(-0.823806\pi\)
−0.850675 + 0.525693i \(0.823806\pi\)
\(368\) 1383.67 0.196002
\(369\) 3320.44 0.468443
\(370\) 13125.9 1.84428
\(371\) 3934.32 0.550565
\(372\) −21.2565 −0.00296263
\(373\) −6531.90 −0.906727 −0.453363 0.891326i \(-0.649776\pi\)
−0.453363 + 0.891326i \(0.649776\pi\)
\(374\) 0 0
\(375\) 3702.63 0.509875
\(376\) 8698.51 1.19306
\(377\) 6450.93 0.881273
\(378\) 508.775 0.0692290
\(379\) 660.161 0.0894728 0.0447364 0.998999i \(-0.485755\pi\)
0.0447364 + 0.998999i \(0.485755\pi\)
\(380\) −60.7314 −0.00819857
\(381\) −4284.01 −0.576053
\(382\) 8627.17 1.15551
\(383\) −7538.45 −1.00574 −0.502868 0.864363i \(-0.667722\pi\)
−0.502868 + 0.864363i \(0.667722\pi\)
\(384\) 4256.57 0.565670
\(385\) 0 0
\(386\) −2129.58 −0.280810
\(387\) 1380.81 0.181371
\(388\) −177.221 −0.0231882
\(389\) −4293.42 −0.559602 −0.279801 0.960058i \(-0.590268\pi\)
−0.279801 + 0.960058i \(0.590268\pi\)
\(390\) 8107.07 1.05261
\(391\) 1476.38 0.190956
\(392\) −6787.19 −0.874503
\(393\) 2240.78 0.287614
\(394\) −7822.17 −1.00019
\(395\) −9011.84 −1.14794
\(396\) 0 0
\(397\) 1240.68 0.156846 0.0784231 0.996920i \(-0.475011\pi\)
0.0784231 + 0.996920i \(0.475011\pi\)
\(398\) −4975.57 −0.626641
\(399\) −949.593 −0.119146
\(400\) −1504.92 −0.188115
\(401\) −7802.31 −0.971643 −0.485821 0.874058i \(-0.661479\pi\)
−0.485821 + 0.874058i \(0.661479\pi\)
\(402\) −7458.54 −0.925368
\(403\) −5296.08 −0.654631
\(404\) −60.2108 −0.00741485
\(405\) 988.176 0.121242
\(406\) −1541.89 −0.188480
\(407\) 0 0
\(408\) 4603.31 0.558573
\(409\) 3631.11 0.438990 0.219495 0.975614i \(-0.429559\pi\)
0.219495 + 0.975614i \(0.429559\pi\)
\(410\) −12646.4 −1.52332
\(411\) 437.749 0.0525366
\(412\) −103.519 −0.0123787
\(413\) 801.205 0.0954594
\(414\) 554.112 0.0657805
\(415\) −5434.22 −0.642784
\(416\) −376.282 −0.0443480
\(417\) 1636.86 0.192224
\(418\) 0 0
\(419\) −5274.50 −0.614979 −0.307489 0.951552i \(-0.599489\pi\)
−0.307489 + 0.951552i \(0.599489\pi\)
\(420\) 25.8890 0.00300775
\(421\) −9729.64 −1.12635 −0.563176 0.826337i \(-0.690421\pi\)
−0.563176 + 0.826337i \(0.690421\pi\)
\(422\) 6412.16 0.739666
\(423\) 3437.53 0.395126
\(424\) 13360.2 1.53025
\(425\) −1605.76 −0.183273
\(426\) 5680.28 0.646033
\(427\) 5806.06 0.658021
\(428\) 69.9627 0.00790134
\(429\) 0 0
\(430\) −5259.01 −0.589795
\(431\) −15030.2 −1.67977 −0.839883 0.542768i \(-0.817376\pi\)
−0.839883 + 0.542768i \(0.817376\pi\)
\(432\) 1704.92 0.189879
\(433\) 7264.80 0.806291 0.403146 0.915136i \(-0.367917\pi\)
0.403146 + 0.915136i \(0.367917\pi\)
\(434\) 1265.86 0.140007
\(435\) −2994.76 −0.330087
\(436\) 53.4909 0.00587557
\(437\) −1034.21 −0.113211
\(438\) 2444.48 0.266670
\(439\) −1279.92 −0.139151 −0.0695756 0.997577i \(-0.522164\pi\)
−0.0695756 + 0.997577i \(0.522164\pi\)
\(440\) 0 0
\(441\) −2682.20 −0.289623
\(442\) 14924.5 1.60608
\(443\) −2552.44 −0.273748 −0.136874 0.990588i \(-0.543705\pi\)
−0.136874 + 0.990588i \(0.543705\pi\)
\(444\) −121.167 −0.0129512
\(445\) 3717.14 0.395976
\(446\) −1875.09 −0.199076
\(447\) −2128.83 −0.225257
\(448\) 3477.82 0.366767
\(449\) 1816.63 0.190941 0.0954703 0.995432i \(-0.469565\pi\)
0.0954703 + 0.995432i \(0.469565\pi\)
\(450\) −602.670 −0.0631337
\(451\) 0 0
\(452\) −119.912 −0.0124783
\(453\) 5549.22 0.575552
\(454\) −4438.38 −0.458818
\(455\) 6450.28 0.664601
\(456\) −3224.63 −0.331156
\(457\) 8219.57 0.841346 0.420673 0.907212i \(-0.361794\pi\)
0.420673 + 0.907212i \(0.361794\pi\)
\(458\) −4373.89 −0.446241
\(459\) 1819.16 0.184992
\(460\) 28.1960 0.00285793
\(461\) −12922.7 −1.30558 −0.652789 0.757539i \(-0.726401\pi\)
−0.652789 + 0.757539i \(0.726401\pi\)
\(462\) 0 0
\(463\) −12352.7 −1.23991 −0.619954 0.784638i \(-0.712849\pi\)
−0.619954 + 0.784638i \(0.712849\pi\)
\(464\) −5166.92 −0.516957
\(465\) 2458.64 0.245197
\(466\) −5844.91 −0.581031
\(467\) −8484.64 −0.840733 −0.420366 0.907354i \(-0.638098\pi\)
−0.420366 + 0.907354i \(0.638098\pi\)
\(468\) −74.8376 −0.00739181
\(469\) −5934.28 −0.584263
\(470\) −13092.3 −1.28490
\(471\) 3095.38 0.302819
\(472\) 2720.74 0.265322
\(473\) 0 0
\(474\) −6226.57 −0.603366
\(475\) 1124.84 0.108655
\(476\) 47.6598 0.00458925
\(477\) 5279.75 0.506799
\(478\) 10358.6 0.991192
\(479\) −11531.4 −1.09996 −0.549980 0.835178i \(-0.685365\pi\)
−0.549980 + 0.835178i \(0.685365\pi\)
\(480\) 174.684 0.0166108
\(481\) −30188.9 −2.86173
\(482\) −11434.5 −1.08055
\(483\) 440.871 0.0415328
\(484\) 0 0
\(485\) 20498.3 1.91913
\(486\) 682.762 0.0637257
\(487\) 1749.21 0.162760 0.0813802 0.996683i \(-0.474067\pi\)
0.0813802 + 0.996683i \(0.474067\pi\)
\(488\) 19716.3 1.82892
\(489\) 9403.11 0.869578
\(490\) 10215.5 0.941818
\(491\) 1691.32 0.155454 0.0777271 0.996975i \(-0.475234\pi\)
0.0777271 + 0.996975i \(0.475234\pi\)
\(492\) 116.740 0.0106973
\(493\) −5513.14 −0.503650
\(494\) −10454.7 −0.952184
\(495\) 0 0
\(496\) 4241.93 0.384009
\(497\) 4519.43 0.407896
\(498\) −3754.67 −0.337853
\(499\) 4017.14 0.360385 0.180192 0.983631i \(-0.442328\pi\)
0.180192 + 0.983631i \(0.442328\pi\)
\(500\) 130.177 0.0116434
\(501\) −5587.19 −0.498238
\(502\) −17428.9 −1.54958
\(503\) 10632.0 0.942465 0.471232 0.882009i \(-0.343809\pi\)
0.471232 + 0.882009i \(0.343809\pi\)
\(504\) 1374.62 0.121489
\(505\) 6964.29 0.613677
\(506\) 0 0
\(507\) −12054.8 −1.05597
\(508\) −150.618 −0.0131547
\(509\) −11426.0 −0.994990 −0.497495 0.867467i \(-0.665747\pi\)
−0.497495 + 0.867467i \(0.665747\pi\)
\(510\) −6928.52 −0.601569
\(511\) 1944.91 0.168372
\(512\) 11806.0 1.01905
\(513\) −1274.33 −0.109674
\(514\) −3116.94 −0.267475
\(515\) 11973.6 1.02450
\(516\) 48.5467 0.00414176
\(517\) 0 0
\(518\) 7215.69 0.612045
\(519\) −8307.70 −0.702635
\(520\) 21903.9 1.84721
\(521\) 3567.00 0.299948 0.149974 0.988690i \(-0.452081\pi\)
0.149974 + 0.988690i \(0.452081\pi\)
\(522\) −2069.18 −0.173497
\(523\) −9974.64 −0.833959 −0.416979 0.908916i \(-0.636911\pi\)
−0.416979 + 0.908916i \(0.636911\pi\)
\(524\) 78.7815 0.00656791
\(525\) −479.506 −0.0398616
\(526\) −19293.1 −1.59927
\(527\) 4526.17 0.374124
\(528\) 0 0
\(529\) −11686.8 −0.960536
\(530\) −20108.7 −1.64805
\(531\) 1075.20 0.0878711
\(532\) −33.3859 −0.00272079
\(533\) 29086.0 2.36370
\(534\) 2568.29 0.208129
\(535\) −8092.24 −0.653941
\(536\) −20151.7 −1.62392
\(537\) −10424.4 −0.837699
\(538\) 5904.32 0.473148
\(539\) 0 0
\(540\) 34.7424 0.00276866
\(541\) 4082.16 0.324410 0.162205 0.986757i \(-0.448139\pi\)
0.162205 + 0.986757i \(0.448139\pi\)
\(542\) 10229.6 0.810703
\(543\) 3082.25 0.243595
\(544\) 321.581 0.0253450
\(545\) −6187.03 −0.486282
\(546\) 4456.70 0.349321
\(547\) −4088.15 −0.319555 −0.159778 0.987153i \(-0.551078\pi\)
−0.159778 + 0.987153i \(0.551078\pi\)
\(548\) 15.3904 0.00119972
\(549\) 7791.58 0.605713
\(550\) 0 0
\(551\) 3861.98 0.298595
\(552\) 1497.11 0.115437
\(553\) −4954.08 −0.380956
\(554\) 16088.1 1.23379
\(555\) 14014.8 1.07188
\(556\) 57.5490 0.00438960
\(557\) 4043.80 0.307615 0.153807 0.988101i \(-0.450846\pi\)
0.153807 + 0.988101i \(0.450846\pi\)
\(558\) 1698.75 0.128878
\(559\) 12095.4 0.915175
\(560\) −5166.39 −0.389857
\(561\) 0 0
\(562\) −9559.53 −0.717517
\(563\) −21672.9 −1.62238 −0.811192 0.584780i \(-0.801181\pi\)
−0.811192 + 0.584780i \(0.801181\pi\)
\(564\) 120.857 0.00902303
\(565\) 13869.6 1.03274
\(566\) −18229.2 −1.35377
\(567\) 543.230 0.0402355
\(568\) 15347.1 1.13372
\(569\) −17864.3 −1.31618 −0.658092 0.752937i \(-0.728636\pi\)
−0.658092 + 0.752937i \(0.728636\pi\)
\(570\) 4853.46 0.356647
\(571\) 1307.77 0.0958468 0.0479234 0.998851i \(-0.484740\pi\)
0.0479234 + 0.998851i \(0.484740\pi\)
\(572\) 0 0
\(573\) 9211.42 0.671575
\(574\) −6952.09 −0.505530
\(575\) −522.235 −0.0378760
\(576\) 4667.14 0.337611
\(577\) 2240.24 0.161633 0.0808167 0.996729i \(-0.474247\pi\)
0.0808167 + 0.996729i \(0.474247\pi\)
\(578\) 1049.25 0.0755067
\(579\) −2273.80 −0.163205
\(580\) −105.290 −0.00753782
\(581\) −2987.35 −0.213316
\(582\) 14162.9 1.00871
\(583\) 0 0
\(584\) 6604.55 0.467976
\(585\) 8656.10 0.611770
\(586\) −11265.8 −0.794177
\(587\) −12380.9 −0.870552 −0.435276 0.900297i \(-0.643349\pi\)
−0.435276 + 0.900297i \(0.643349\pi\)
\(588\) −94.3011 −0.00661379
\(589\) −3170.60 −0.221804
\(590\) −4095.03 −0.285746
\(591\) −8351.90 −0.581305
\(592\) 24180.0 1.67870
\(593\) −9317.16 −0.645210 −0.322605 0.946534i \(-0.604559\pi\)
−0.322605 + 0.946534i \(0.604559\pi\)
\(594\) 0 0
\(595\) −5512.58 −0.379822
\(596\) −74.8455 −0.00514394
\(597\) −5312.53 −0.364200
\(598\) 4853.84 0.331920
\(599\) −6260.19 −0.427019 −0.213510 0.976941i \(-0.568489\pi\)
−0.213510 + 0.976941i \(0.568489\pi\)
\(600\) −1628.31 −0.110792
\(601\) −1888.27 −0.128160 −0.0640799 0.997945i \(-0.520411\pi\)
−0.0640799 + 0.997945i \(0.520411\pi\)
\(602\) −2891.03 −0.195730
\(603\) −7963.64 −0.537819
\(604\) 195.100 0.0131432
\(605\) 0 0
\(606\) 4811.85 0.322554
\(607\) 20651.6 1.38093 0.690463 0.723367i \(-0.257407\pi\)
0.690463 + 0.723367i \(0.257407\pi\)
\(608\) −225.269 −0.0150261
\(609\) −1646.31 −0.109543
\(610\) −29675.3 −1.96970
\(611\) 30111.6 1.99376
\(612\) 63.9582 0.00422444
\(613\) 16808.1 1.10746 0.553729 0.832697i \(-0.313204\pi\)
0.553729 + 0.832697i \(0.313204\pi\)
\(614\) −25193.6 −1.65591
\(615\) −13502.8 −0.885342
\(616\) 0 0
\(617\) −20733.1 −1.35281 −0.676403 0.736531i \(-0.736462\pi\)
−0.676403 + 0.736531i \(0.736462\pi\)
\(618\) 8272.90 0.538487
\(619\) 8833.91 0.573610 0.286805 0.957989i \(-0.407407\pi\)
0.286805 + 0.957989i \(0.407407\pi\)
\(620\) 86.4410 0.00559928
\(621\) 591.638 0.0382312
\(622\) 3926.29 0.253103
\(623\) 2043.43 0.131409
\(624\) 14934.5 0.958108
\(625\) −18036.1 −1.15431
\(626\) 8533.11 0.544811
\(627\) 0 0
\(628\) 108.828 0.00691513
\(629\) 25800.2 1.63549
\(630\) −2068.97 −0.130841
\(631\) −2967.94 −0.187246 −0.0936228 0.995608i \(-0.529845\pi\)
−0.0936228 + 0.995608i \(0.529845\pi\)
\(632\) −16823.1 −1.05884
\(633\) 6846.41 0.429890
\(634\) −8421.68 −0.527551
\(635\) 17421.2 1.08872
\(636\) 185.626 0.0115732
\(637\) −23495.2 −1.46140
\(638\) 0 0
\(639\) 6064.96 0.375471
\(640\) −17309.6 −1.06910
\(641\) −4084.03 −0.251653 −0.125826 0.992052i \(-0.540158\pi\)
−0.125826 + 0.992052i \(0.540158\pi\)
\(642\) −5591.19 −0.343717
\(643\) 20973.2 1.28632 0.643159 0.765733i \(-0.277623\pi\)
0.643159 + 0.765733i \(0.277623\pi\)
\(644\) 15.5002 0.000948437 0
\(645\) −5615.16 −0.342785
\(646\) 8934.86 0.544176
\(647\) 21289.7 1.29364 0.646819 0.762644i \(-0.276099\pi\)
0.646819 + 0.762644i \(0.276099\pi\)
\(648\) 1844.70 0.111831
\(649\) 0 0
\(650\) −5279.19 −0.318565
\(651\) 1351.59 0.0813715
\(652\) 330.596 0.0198576
\(653\) −12892.8 −0.772643 −0.386321 0.922364i \(-0.626254\pi\)
−0.386321 + 0.922364i \(0.626254\pi\)
\(654\) −4274.82 −0.255594
\(655\) −9112.28 −0.543582
\(656\) −23296.6 −1.38656
\(657\) 2610.02 0.154987
\(658\) −7197.22 −0.426409
\(659\) −1601.22 −0.0946508 −0.0473254 0.998880i \(-0.515070\pi\)
−0.0473254 + 0.998880i \(0.515070\pi\)
\(660\) 0 0
\(661\) 2829.75 0.166512 0.0832561 0.996528i \(-0.473468\pi\)
0.0832561 + 0.996528i \(0.473468\pi\)
\(662\) 20472.6 1.20195
\(663\) 15935.2 0.933445
\(664\) −10144.5 −0.592894
\(665\) 3861.58 0.225182
\(666\) 9683.26 0.563392
\(667\) −1793.02 −0.104087
\(668\) −196.435 −0.0113777
\(669\) −2002.07 −0.115702
\(670\) 30330.6 1.74892
\(671\) 0 0
\(672\) 96.0292 0.00551251
\(673\) −11657.2 −0.667683 −0.333842 0.942629i \(-0.608345\pi\)
−0.333842 + 0.942629i \(0.608345\pi\)
\(674\) −4844.30 −0.276848
\(675\) −643.484 −0.0366929
\(676\) −423.826 −0.0241139
\(677\) −11435.1 −0.649166 −0.324583 0.945857i \(-0.605224\pi\)
−0.324583 + 0.945857i \(0.605224\pi\)
\(678\) 9582.95 0.542818
\(679\) 11268.5 0.636886
\(680\) −18719.7 −1.05569
\(681\) −4738.96 −0.266663
\(682\) 0 0
\(683\) 24568.3 1.37640 0.688199 0.725522i \(-0.258402\pi\)
0.688199 + 0.725522i \(0.258402\pi\)
\(684\) −44.8030 −0.00250451
\(685\) −1780.13 −0.0992926
\(686\) 12079.1 0.672278
\(687\) −4670.10 −0.259353
\(688\) −9687.93 −0.536844
\(689\) 46248.9 2.55724
\(690\) −2253.33 −0.124323
\(691\) 32559.0 1.79248 0.896240 0.443570i \(-0.146288\pi\)
0.896240 + 0.443570i \(0.146288\pi\)
\(692\) −292.083 −0.0160453
\(693\) 0 0
\(694\) 15314.9 0.837672
\(695\) −6656.41 −0.363298
\(696\) −5590.55 −0.304467
\(697\) −24857.7 −1.35086
\(698\) 2531.42 0.137271
\(699\) −6240.74 −0.337692
\(700\) −16.8585 −0.000910275 0
\(701\) −6004.68 −0.323529 −0.161764 0.986829i \(-0.551718\pi\)
−0.161764 + 0.986829i \(0.551718\pi\)
\(702\) 5980.77 0.321552
\(703\) −18073.1 −0.969618
\(704\) 0 0
\(705\) −13978.9 −0.746776
\(706\) −28255.1 −1.50623
\(707\) 3828.48 0.203656
\(708\) 37.8018 0.00200661
\(709\) 19015.2 1.00724 0.503618 0.863926i \(-0.332002\pi\)
0.503618 + 0.863926i \(0.332002\pi\)
\(710\) −23099.2 −1.22098
\(711\) −6648.24 −0.350673
\(712\) 6939.07 0.365243
\(713\) 1472.03 0.0773182
\(714\) −3808.82 −0.199638
\(715\) 0 0
\(716\) −366.501 −0.0191296
\(717\) 11060.1 0.576075
\(718\) −1008.67 −0.0524281
\(719\) −21816.5 −1.13160 −0.565798 0.824544i \(-0.691432\pi\)
−0.565798 + 0.824544i \(0.691432\pi\)
\(720\) −6933.16 −0.358866
\(721\) 6582.22 0.339993
\(722\) 13013.0 0.670765
\(723\) −12208.9 −0.628012
\(724\) 108.366 0.00556270
\(725\) 1950.14 0.0998986
\(726\) 0 0
\(727\) −2988.61 −0.152464 −0.0762321 0.997090i \(-0.524289\pi\)
−0.0762321 + 0.997090i \(0.524289\pi\)
\(728\) 12041.2 0.613018
\(729\) 729.000 0.0370370
\(730\) −9940.64 −0.503999
\(731\) −10337.1 −0.523025
\(732\) 273.937 0.0138320
\(733\) 22653.7 1.14152 0.570761 0.821117i \(-0.306648\pi\)
0.570761 + 0.821117i \(0.306648\pi\)
\(734\) 33609.0 1.69010
\(735\) 10907.4 0.547379
\(736\) 104.586 0.00523791
\(737\) 0 0
\(738\) −9329.51 −0.465344
\(739\) 33676.1 1.67631 0.838157 0.545429i \(-0.183633\pi\)
0.838157 + 0.545429i \(0.183633\pi\)
\(740\) 492.733 0.0244774
\(741\) −11162.7 −0.553404
\(742\) −11054.3 −0.546923
\(743\) −37527.9 −1.85298 −0.926491 0.376317i \(-0.877191\pi\)
−0.926491 + 0.376317i \(0.877191\pi\)
\(744\) 4589.72 0.226166
\(745\) 8657.01 0.425729
\(746\) 18352.8 0.900730
\(747\) −4008.95 −0.196358
\(748\) 0 0
\(749\) −4448.55 −0.217018
\(750\) −10403.4 −0.506502
\(751\) −18617.9 −0.904630 −0.452315 0.891858i \(-0.649402\pi\)
−0.452315 + 0.891858i \(0.649402\pi\)
\(752\) −24118.1 −1.16954
\(753\) −18609.2 −0.900606
\(754\) −18125.3 −0.875444
\(755\) −22566.3 −1.08778
\(756\) 19.0989 0.000918811 0
\(757\) −40533.2 −1.94611 −0.973053 0.230581i \(-0.925937\pi\)
−0.973053 + 0.230581i \(0.925937\pi\)
\(758\) −1854.87 −0.0888810
\(759\) 0 0
\(760\) 13113.2 0.625876
\(761\) −10978.4 −0.522954 −0.261477 0.965210i \(-0.584210\pi\)
−0.261477 + 0.965210i \(0.584210\pi\)
\(762\) 12036.9 0.572243
\(763\) −3401.20 −0.161378
\(764\) 323.856 0.0153360
\(765\) −7397.74 −0.349628
\(766\) 21180.9 0.999084
\(767\) 9418.37 0.443387
\(768\) 485.941 0.0228319
\(769\) −11205.6 −0.525466 −0.262733 0.964869i \(-0.584624\pi\)
−0.262733 + 0.964869i \(0.584624\pi\)
\(770\) 0 0
\(771\) −3328.02 −0.155455
\(772\) −79.9425 −0.00372693
\(773\) 11187.2 0.520536 0.260268 0.965536i \(-0.416189\pi\)
0.260268 + 0.965536i \(0.416189\pi\)
\(774\) −3879.69 −0.180171
\(775\) −1601.03 −0.0742071
\(776\) 38265.7 1.77018
\(777\) 7704.35 0.355717
\(778\) 12063.3 0.555901
\(779\) 17412.9 0.800875
\(780\) 304.332 0.0139703
\(781\) 0 0
\(782\) −4148.22 −0.189693
\(783\) −2209.31 −0.100835
\(784\) 18818.6 0.857263
\(785\) −12587.6 −0.572318
\(786\) −6295.96 −0.285712
\(787\) −18540.0 −0.839746 −0.419873 0.907583i \(-0.637925\pi\)
−0.419873 + 0.907583i \(0.637925\pi\)
\(788\) −293.637 −0.0132746
\(789\) −20599.7 −0.929489
\(790\) 25320.7 1.14034
\(791\) 7624.54 0.342727
\(792\) 0 0
\(793\) 68251.7 3.05636
\(794\) −3485.96 −0.155809
\(795\) −21470.5 −0.957835
\(796\) −186.778 −0.00831682
\(797\) 2336.61 0.103848 0.0519241 0.998651i \(-0.483465\pi\)
0.0519241 + 0.998651i \(0.483465\pi\)
\(798\) 2668.09 0.118358
\(799\) −25734.2 −1.13944
\(800\) −113.752 −0.00502716
\(801\) 2742.22 0.120963
\(802\) 21922.3 0.965216
\(803\) 0 0
\(804\) −279.987 −0.0122815
\(805\) −1792.83 −0.0784957
\(806\) 14880.5 0.650302
\(807\) 6304.18 0.274991
\(808\) 13000.8 0.566046
\(809\) 20445.1 0.888518 0.444259 0.895898i \(-0.353467\pi\)
0.444259 + 0.895898i \(0.353467\pi\)
\(810\) −2776.50 −0.120440
\(811\) 2552.90 0.110536 0.0552678 0.998472i \(-0.482399\pi\)
0.0552678 + 0.998472i \(0.482399\pi\)
\(812\) −57.8812 −0.00250152
\(813\) 10922.4 0.471176
\(814\) 0 0
\(815\) −38238.4 −1.64348
\(816\) −12763.4 −0.547561
\(817\) 7241.18 0.310082
\(818\) −10202.4 −0.436086
\(819\) 4758.52 0.203023
\(820\) −474.733 −0.0202176
\(821\) −11464.4 −0.487346 −0.243673 0.969857i \(-0.578352\pi\)
−0.243673 + 0.969857i \(0.578352\pi\)
\(822\) −1229.95 −0.0521891
\(823\) 1340.56 0.0567790 0.0283895 0.999597i \(-0.490962\pi\)
0.0283895 + 0.999597i \(0.490962\pi\)
\(824\) 22351.9 0.944984
\(825\) 0 0
\(826\) −2251.16 −0.0948280
\(827\) 10155.1 0.426999 0.213500 0.976943i \(-0.431514\pi\)
0.213500 + 0.976943i \(0.431514\pi\)
\(828\) 20.8008 0.000873043 0
\(829\) 28863.4 1.20925 0.604625 0.796510i \(-0.293323\pi\)
0.604625 + 0.796510i \(0.293323\pi\)
\(830\) 15268.6 0.638533
\(831\) 17177.6 0.717071
\(832\) 40882.6 1.70355
\(833\) 20079.6 0.835196
\(834\) −4599.12 −0.190953
\(835\) 22720.7 0.941654
\(836\) 0 0
\(837\) 1813.79 0.0749030
\(838\) 14819.9 0.610911
\(839\) −2469.12 −0.101601 −0.0508007 0.998709i \(-0.516177\pi\)
−0.0508007 + 0.998709i \(0.516177\pi\)
\(840\) −5589.98 −0.229610
\(841\) −17693.5 −0.725470
\(842\) 27337.6 1.11890
\(843\) −10206.9 −0.417017
\(844\) 240.707 0.00981690
\(845\) 49021.9 1.99574
\(846\) −9658.48 −0.392512
\(847\) 0 0
\(848\) −37043.3 −1.50009
\(849\) −19463.8 −0.786801
\(850\) 4511.74 0.182061
\(851\) 8390.89 0.337998
\(852\) 213.232 0.00857420
\(853\) 9927.90 0.398505 0.199253 0.979948i \(-0.436149\pi\)
0.199253 + 0.979948i \(0.436149\pi\)
\(854\) −16313.4 −0.653669
\(855\) 5182.14 0.207281
\(856\) −15106.4 −0.603185
\(857\) 32734.5 1.30477 0.652385 0.757888i \(-0.273769\pi\)
0.652385 + 0.757888i \(0.273769\pi\)
\(858\) 0 0
\(859\) 1731.02 0.0687563 0.0343782 0.999409i \(-0.489055\pi\)
0.0343782 + 0.999409i \(0.489055\pi\)
\(860\) −197.418 −0.00782780
\(861\) −7422.90 −0.293811
\(862\) 42230.6 1.66866
\(863\) −12057.4 −0.475597 −0.237798 0.971315i \(-0.576426\pi\)
−0.237798 + 0.971315i \(0.576426\pi\)
\(864\) 128.869 0.00507430
\(865\) 33783.8 1.32796
\(866\) −20412.1 −0.800958
\(867\) 1120.30 0.0438841
\(868\) 47.5192 0.00185819
\(869\) 0 0
\(870\) 8414.45 0.327904
\(871\) −69758.9 −2.71377
\(872\) −11549.8 −0.448539
\(873\) 15122.0 0.586258
\(874\) 2905.85 0.112462
\(875\) −8277.28 −0.319798
\(876\) 91.7635 0.00353927
\(877\) 24565.9 0.945874 0.472937 0.881096i \(-0.343194\pi\)
0.472937 + 0.881096i \(0.343194\pi\)
\(878\) 3596.22 0.138231
\(879\) −12028.8 −0.461571
\(880\) 0 0
\(881\) 29413.2 1.12481 0.562404 0.826863i \(-0.309877\pi\)
0.562404 + 0.826863i \(0.309877\pi\)
\(882\) 7536.23 0.287708
\(883\) −45396.6 −1.73014 −0.865072 0.501648i \(-0.832727\pi\)
−0.865072 + 0.501648i \(0.832727\pi\)
\(884\) 560.253 0.0213160
\(885\) −4372.36 −0.166074
\(886\) 7171.65 0.271937
\(887\) 13952.6 0.528163 0.264082 0.964500i \(-0.414931\pi\)
0.264082 + 0.964500i \(0.414931\pi\)
\(888\) 26162.5 0.988688
\(889\) 9576.96 0.361306
\(890\) −10444.1 −0.393357
\(891\) 0 0
\(892\) −70.3890 −0.00264215
\(893\) 18026.9 0.675529
\(894\) 5981.40 0.223767
\(895\) 42391.4 1.58323
\(896\) −9515.62 −0.354793
\(897\) 5182.55 0.192910
\(898\) −5104.24 −0.189678
\(899\) −5496.88 −0.203928
\(900\) −22.6237 −0.000837914 0
\(901\) −39525.5 −1.46147
\(902\) 0 0
\(903\) −3086.82 −0.113757
\(904\) 25891.4 0.952585
\(905\) −12534.2 −0.460387
\(906\) −15591.8 −0.571745
\(907\) 11631.2 0.425808 0.212904 0.977073i \(-0.431708\pi\)
0.212904 + 0.977073i \(0.431708\pi\)
\(908\) −166.613 −0.00608947
\(909\) 5137.72 0.187467
\(910\) −18123.5 −0.660206
\(911\) −23556.1 −0.856695 −0.428348 0.903614i \(-0.640904\pi\)
−0.428348 + 0.903614i \(0.640904\pi\)
\(912\) 8940.84 0.324628
\(913\) 0 0
\(914\) −23094.7 −0.835781
\(915\) −31685.0 −1.14478
\(916\) −164.192 −0.00592255
\(917\) −5009.29 −0.180394
\(918\) −5111.33 −0.183768
\(919\) 4266.91 0.153158 0.0765791 0.997064i \(-0.475600\pi\)
0.0765791 + 0.997064i \(0.475600\pi\)
\(920\) −6088.11 −0.218173
\(921\) −26899.8 −0.962408
\(922\) 36309.3 1.29694
\(923\) 53127.0 1.89458
\(924\) 0 0
\(925\) −9126.21 −0.324398
\(926\) 34707.6 1.23171
\(927\) 8833.16 0.312966
\(928\) −390.549 −0.0138151
\(929\) 24778.5 0.875087 0.437543 0.899197i \(-0.355849\pi\)
0.437543 + 0.899197i \(0.355849\pi\)
\(930\) −6908.08 −0.243575
\(931\) −14065.9 −0.495156
\(932\) −219.413 −0.00771148
\(933\) 4192.19 0.147102
\(934\) 23839.5 0.835172
\(935\) 0 0
\(936\) 16159.0 0.564288
\(937\) 14524.9 0.506413 0.253206 0.967412i \(-0.418515\pi\)
0.253206 + 0.967412i \(0.418515\pi\)
\(938\) 16673.7 0.580399
\(939\) 9110.99 0.316641
\(940\) −491.473 −0.0170533
\(941\) −27484.4 −0.952141 −0.476071 0.879407i \(-0.657939\pi\)
−0.476071 + 0.879407i \(0.657939\pi\)
\(942\) −8697.16 −0.300816
\(943\) −8084.35 −0.279176
\(944\) −7543.70 −0.260092
\(945\) −2209.08 −0.0760438
\(946\) 0 0
\(947\) −36072.2 −1.23779 −0.618896 0.785473i \(-0.712420\pi\)
−0.618896 + 0.785473i \(0.712420\pi\)
\(948\) −233.740 −0.00800792
\(949\) 22863.0 0.782047
\(950\) −3160.49 −0.107937
\(951\) −8992.01 −0.306610
\(952\) −10290.8 −0.350342
\(953\) 17861.7 0.607133 0.303567 0.952810i \(-0.401822\pi\)
0.303567 + 0.952810i \(0.401822\pi\)
\(954\) −14834.6 −0.503447
\(955\) −37458.9 −1.26926
\(956\) 388.851 0.0131552
\(957\) 0 0
\(958\) 32399.9 1.09269
\(959\) −978.593 −0.0329514
\(960\) −18979.2 −0.638075
\(961\) −25278.2 −0.848517
\(962\) 84822.2 2.84280
\(963\) −5969.83 −0.199767
\(964\) −429.240 −0.0143412
\(965\) 9246.56 0.308453
\(966\) −1238.72 −0.0412581
\(967\) −26773.3 −0.890352 −0.445176 0.895443i \(-0.646859\pi\)
−0.445176 + 0.895443i \(0.646859\pi\)
\(968\) 0 0
\(969\) 9539.95 0.316272
\(970\) −57594.4 −1.90644
\(971\) 53427.8 1.76579 0.882893 0.469574i \(-0.155592\pi\)
0.882893 + 0.469574i \(0.155592\pi\)
\(972\) 25.6303 0.000845772 0
\(973\) −3659.23 −0.120565
\(974\) −4914.79 −0.161684
\(975\) −5636.71 −0.185148
\(976\) −54666.7 −1.79287
\(977\) −37120.9 −1.21556 −0.607780 0.794105i \(-0.707940\pi\)
−0.607780 + 0.794105i \(0.707940\pi\)
\(978\) −26420.1 −0.863826
\(979\) 0 0
\(980\) 383.482 0.0124999
\(981\) −4564.32 −0.148550
\(982\) −4752.12 −0.154426
\(983\) 39035.8 1.26658 0.633290 0.773914i \(-0.281704\pi\)
0.633290 + 0.773914i \(0.281704\pi\)
\(984\) −25206.7 −0.816627
\(985\) 33963.6 1.09865
\(986\) 15490.4 0.500319
\(987\) −7684.64 −0.247826
\(988\) −392.459 −0.0126374
\(989\) −3361.89 −0.108091
\(990\) 0 0
\(991\) −34917.1 −1.11925 −0.559626 0.828745i \(-0.689055\pi\)
−0.559626 + 0.828745i \(0.689055\pi\)
\(992\) 320.632 0.0102622
\(993\) 21859.0 0.698565
\(994\) −12698.3 −0.405198
\(995\) 21603.8 0.688327
\(996\) −140.947 −0.00448401
\(997\) −54943.4 −1.74531 −0.872656 0.488335i \(-0.837604\pi\)
−0.872656 + 0.488335i \(0.837604\pi\)
\(998\) −11287.0 −0.358001
\(999\) 10339.0 0.327440
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.4.a.v.1.2 6
3.2 odd 2 1089.4.a.bi.1.5 6
11.3 even 5 33.4.e.c.31.1 yes 12
11.4 even 5 33.4.e.c.16.1 12
11.10 odd 2 363.4.a.u.1.5 6
33.14 odd 10 99.4.f.d.64.3 12
33.26 odd 10 99.4.f.d.82.3 12
33.32 even 2 1089.4.a.bk.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.16.1 12 11.4 even 5
33.4.e.c.31.1 yes 12 11.3 even 5
99.4.f.d.64.3 12 33.14 odd 10
99.4.f.d.82.3 12 33.26 odd 10
363.4.a.u.1.5 6 11.10 odd 2
363.4.a.v.1.2 6 1.1 even 1 trivial
1089.4.a.bi.1.5 6 3.2 odd 2
1089.4.a.bk.1.2 6 33.32 even 2