Properties

Label 363.4.a.v.1.1
Level $363$
Weight $4$
Character 363.1
Self dual yes
Analytic conductor $21.418$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,4,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.4176933321\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 30x^{4} + 3x^{3} + 211x^{2} + 208x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 11 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.80390\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.80390 q^{2} -3.00000 q^{3} +6.46966 q^{4} -2.57942 q^{5} +11.4117 q^{6} +1.46925 q^{7} +5.82127 q^{8} +9.00000 q^{9} +9.81184 q^{10} -19.4090 q^{12} -25.3227 q^{13} -5.58890 q^{14} +7.73825 q^{15} -73.9008 q^{16} +71.0533 q^{17} -34.2351 q^{18} +24.4559 q^{19} -16.6879 q^{20} -4.40776 q^{21} -191.800 q^{23} -17.4638 q^{24} -118.347 q^{25} +96.3249 q^{26} -27.0000 q^{27} +9.50557 q^{28} +71.9978 q^{29} -29.4355 q^{30} -197.641 q^{31} +234.541 q^{32} -270.280 q^{34} -3.78982 q^{35} +58.2269 q^{36} +239.066 q^{37} -93.0279 q^{38} +75.9680 q^{39} -15.0155 q^{40} +250.936 q^{41} +16.7667 q^{42} -435.218 q^{43} -23.2147 q^{45} +729.590 q^{46} +496.677 q^{47} +221.702 q^{48} -340.841 q^{49} +450.179 q^{50} -213.160 q^{51} -163.829 q^{52} -15.6662 q^{53} +102.705 q^{54} +8.55293 q^{56} -73.3677 q^{57} -273.872 q^{58} +60.3380 q^{59} +50.0638 q^{60} -128.445 q^{61} +751.807 q^{62} +13.2233 q^{63} -300.965 q^{64} +65.3177 q^{65} +889.699 q^{67} +459.690 q^{68} +575.401 q^{69} +14.4161 q^{70} +106.009 q^{71} +52.3914 q^{72} +770.733 q^{73} -909.382 q^{74} +355.040 q^{75} +158.221 q^{76} -288.975 q^{78} +1110.45 q^{79} +190.621 q^{80} +81.0000 q^{81} -954.537 q^{82} +1175.97 q^{83} -28.5167 q^{84} -183.276 q^{85} +1655.53 q^{86} -215.993 q^{87} +1335.58 q^{89} +88.3066 q^{90} -37.2054 q^{91} -1240.88 q^{92} +592.923 q^{93} -1889.31 q^{94} -63.0820 q^{95} -703.623 q^{96} -665.725 q^{97} +1296.53 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 18 q^{3} + 17 q^{4} + 9 q^{5} - 15 q^{6} + q^{7} + 24 q^{8} + 54 q^{9} + 50 q^{10} - 51 q^{12} + 66 q^{13} - 42 q^{14} - 27 q^{15} - 71 q^{16} + 80 q^{17} + 45 q^{18} - 90 q^{19} + 455 q^{20}+ \cdots + 1405 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.80390 −1.34488 −0.672441 0.740151i \(-0.734754\pi\)
−0.672441 + 0.740151i \(0.734754\pi\)
\(3\) −3.00000 −0.577350
\(4\) 6.46966 0.808707
\(5\) −2.57942 −0.230710 −0.115355 0.993324i \(-0.536801\pi\)
−0.115355 + 0.993324i \(0.536801\pi\)
\(6\) 11.4117 0.776468
\(7\) 1.46925 0.0793323 0.0396661 0.999213i \(-0.487371\pi\)
0.0396661 + 0.999213i \(0.487371\pi\)
\(8\) 5.82127 0.257266
\(9\) 9.00000 0.333333
\(10\) 9.81184 0.310278
\(11\) 0 0
\(12\) −19.4090 −0.466907
\(13\) −25.3227 −0.540249 −0.270125 0.962825i \(-0.587065\pi\)
−0.270125 + 0.962825i \(0.587065\pi\)
\(14\) −5.58890 −0.106693
\(15\) 7.73825 0.133200
\(16\) −73.9008 −1.15470
\(17\) 71.0533 1.01370 0.506852 0.862033i \(-0.330809\pi\)
0.506852 + 0.862033i \(0.330809\pi\)
\(18\) −34.2351 −0.448294
\(19\) 24.4559 0.295293 0.147647 0.989040i \(-0.452830\pi\)
0.147647 + 0.989040i \(0.452830\pi\)
\(20\) −16.6879 −0.186577
\(21\) −4.40776 −0.0458025
\(22\) 0 0
\(23\) −191.800 −1.73883 −0.869416 0.494080i \(-0.835505\pi\)
−0.869416 + 0.494080i \(0.835505\pi\)
\(24\) −17.4638 −0.148533
\(25\) −118.347 −0.946773
\(26\) 96.3249 0.726572
\(27\) −27.0000 −0.192450
\(28\) 9.50557 0.0641566
\(29\) 71.9978 0.461022 0.230511 0.973070i \(-0.425960\pi\)
0.230511 + 0.973070i \(0.425960\pi\)
\(30\) −29.4355 −0.179139
\(31\) −197.641 −1.14508 −0.572539 0.819878i \(-0.694041\pi\)
−0.572539 + 0.819878i \(0.694041\pi\)
\(32\) 234.541 1.29567
\(33\) 0 0
\(34\) −270.280 −1.36331
\(35\) −3.78982 −0.0183027
\(36\) 58.2269 0.269569
\(37\) 239.066 1.06222 0.531110 0.847303i \(-0.321775\pi\)
0.531110 + 0.847303i \(0.321775\pi\)
\(38\) −93.0279 −0.397135
\(39\) 75.9680 0.311913
\(40\) −15.0155 −0.0593539
\(41\) 250.936 0.955846 0.477923 0.878402i \(-0.341390\pi\)
0.477923 + 0.878402i \(0.341390\pi\)
\(42\) 16.7667 0.0615990
\(43\) −435.218 −1.54349 −0.771746 0.635930i \(-0.780617\pi\)
−0.771746 + 0.635930i \(0.780617\pi\)
\(44\) 0 0
\(45\) −23.2147 −0.0769033
\(46\) 729.590 2.33852
\(47\) 496.677 1.54144 0.770721 0.637173i \(-0.219896\pi\)
0.770721 + 0.637173i \(0.219896\pi\)
\(48\) 221.702 0.666666
\(49\) −340.841 −0.993706
\(50\) 450.179 1.27330
\(51\) −213.160 −0.585262
\(52\) −163.829 −0.436904
\(53\) −15.6662 −0.0406023 −0.0203011 0.999794i \(-0.506462\pi\)
−0.0203011 + 0.999794i \(0.506462\pi\)
\(54\) 102.705 0.258823
\(55\) 0 0
\(56\) 8.55293 0.0204095
\(57\) −73.3677 −0.170488
\(58\) −273.872 −0.620021
\(59\) 60.3380 0.133141 0.0665707 0.997782i \(-0.478794\pi\)
0.0665707 + 0.997782i \(0.478794\pi\)
\(60\) 50.0638 0.107720
\(61\) −128.445 −0.269602 −0.134801 0.990873i \(-0.543039\pi\)
−0.134801 + 0.990873i \(0.543039\pi\)
\(62\) 751.807 1.53999
\(63\) 13.2233 0.0264441
\(64\) −300.965 −0.587822
\(65\) 65.3177 0.124641
\(66\) 0 0
\(67\) 889.699 1.62230 0.811149 0.584839i \(-0.198842\pi\)
0.811149 + 0.584839i \(0.198842\pi\)
\(68\) 459.690 0.819789
\(69\) 575.401 1.00392
\(70\) 14.4161 0.0246150
\(71\) 106.009 0.177196 0.0885982 0.996067i \(-0.471761\pi\)
0.0885982 + 0.996067i \(0.471761\pi\)
\(72\) 52.3914 0.0857554
\(73\) 770.733 1.23572 0.617860 0.786288i \(-0.288000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(74\) −909.382 −1.42856
\(75\) 355.040 0.546620
\(76\) 158.221 0.238806
\(77\) 0 0
\(78\) −288.975 −0.419486
\(79\) 1110.45 1.58146 0.790730 0.612165i \(-0.209701\pi\)
0.790730 + 0.612165i \(0.209701\pi\)
\(80\) 190.621 0.266401
\(81\) 81.0000 0.111111
\(82\) −954.537 −1.28550
\(83\) 1175.97 1.55518 0.777590 0.628772i \(-0.216442\pi\)
0.777590 + 0.628772i \(0.216442\pi\)
\(84\) −28.5167 −0.0370408
\(85\) −183.276 −0.233871
\(86\) 1655.53 2.07582
\(87\) −215.993 −0.266171
\(88\) 0 0
\(89\) 1335.58 1.59069 0.795343 0.606159i \(-0.207291\pi\)
0.795343 + 0.606159i \(0.207291\pi\)
\(90\) 88.3066 0.103426
\(91\) −37.2054 −0.0428592
\(92\) −1240.88 −1.40621
\(93\) 592.923 0.661111
\(94\) −1889.31 −2.07306
\(95\) −63.0820 −0.0681271
\(96\) −703.623 −0.748055
\(97\) −665.725 −0.696847 −0.348423 0.937337i \(-0.613283\pi\)
−0.348423 + 0.937337i \(0.613283\pi\)
\(98\) 1296.53 1.33642
\(99\) 0 0
\(100\) −765.662 −0.765662
\(101\) −442.098 −0.435549 −0.217774 0.975999i \(-0.569880\pi\)
−0.217774 + 0.975999i \(0.569880\pi\)
\(102\) 810.839 0.787108
\(103\) 421.967 0.403666 0.201833 0.979420i \(-0.435310\pi\)
0.201833 + 0.979420i \(0.435310\pi\)
\(104\) −147.410 −0.138988
\(105\) 11.3695 0.0105671
\(106\) 59.5927 0.0546052
\(107\) 171.229 0.154704 0.0773518 0.997004i \(-0.475354\pi\)
0.0773518 + 0.997004i \(0.475354\pi\)
\(108\) −174.681 −0.155636
\(109\) −1058.07 −0.929772 −0.464886 0.885371i \(-0.653905\pi\)
−0.464886 + 0.885371i \(0.653905\pi\)
\(110\) 0 0
\(111\) −717.197 −0.613274
\(112\) −108.579 −0.0916050
\(113\) 155.617 0.129551 0.0647753 0.997900i \(-0.479367\pi\)
0.0647753 + 0.997900i \(0.479367\pi\)
\(114\) 279.084 0.229286
\(115\) 494.733 0.401166
\(116\) 465.801 0.372832
\(117\) −227.904 −0.180083
\(118\) −229.520 −0.179059
\(119\) 104.395 0.0804194
\(120\) 45.0464 0.0342680
\(121\) 0 0
\(122\) 488.592 0.362582
\(123\) −752.809 −0.551858
\(124\) −1278.67 −0.926032
\(125\) 627.692 0.449140
\(126\) −50.3001 −0.0355642
\(127\) −875.437 −0.611673 −0.305836 0.952084i \(-0.598936\pi\)
−0.305836 + 0.952084i \(0.598936\pi\)
\(128\) −731.489 −0.505118
\(129\) 1305.66 0.891136
\(130\) −248.462 −0.167627
\(131\) −1240.16 −0.827127 −0.413564 0.910475i \(-0.635716\pi\)
−0.413564 + 0.910475i \(0.635716\pi\)
\(132\) 0 0
\(133\) 35.9320 0.0234263
\(134\) −3384.33 −2.18180
\(135\) 69.6442 0.0444001
\(136\) 413.620 0.260792
\(137\) 298.904 0.186402 0.0932012 0.995647i \(-0.470290\pi\)
0.0932012 + 0.995647i \(0.470290\pi\)
\(138\) −2188.77 −1.35015
\(139\) −1463.28 −0.892905 −0.446452 0.894807i \(-0.647313\pi\)
−0.446452 + 0.894807i \(0.647313\pi\)
\(140\) −24.5188 −0.0148016
\(141\) −1490.03 −0.889952
\(142\) −403.247 −0.238308
\(143\) 0 0
\(144\) −665.107 −0.384900
\(145\) −185.712 −0.106362
\(146\) −2931.79 −1.66190
\(147\) 1022.52 0.573717
\(148\) 1546.67 0.859026
\(149\) 2088.32 1.14820 0.574100 0.818785i \(-0.305352\pi\)
0.574100 + 0.818785i \(0.305352\pi\)
\(150\) −1350.54 −0.735139
\(151\) 2818.20 1.51882 0.759410 0.650613i \(-0.225488\pi\)
0.759410 + 0.650613i \(0.225488\pi\)
\(152\) 142.364 0.0759690
\(153\) 639.480 0.337901
\(154\) 0 0
\(155\) 509.799 0.264181
\(156\) 491.487 0.252246
\(157\) −30.0537 −0.0152774 −0.00763869 0.999971i \(-0.502431\pi\)
−0.00763869 + 0.999971i \(0.502431\pi\)
\(158\) −4224.04 −2.12688
\(159\) 46.9986 0.0234417
\(160\) −604.979 −0.298924
\(161\) −281.804 −0.137946
\(162\) −308.116 −0.149431
\(163\) −576.514 −0.277031 −0.138516 0.990360i \(-0.544233\pi\)
−0.138516 + 0.990360i \(0.544233\pi\)
\(164\) 1623.47 0.773000
\(165\) 0 0
\(166\) −4473.29 −2.09153
\(167\) −720.139 −0.333689 −0.166844 0.985983i \(-0.553358\pi\)
−0.166844 + 0.985983i \(0.553358\pi\)
\(168\) −25.6588 −0.0117834
\(169\) −1555.76 −0.708131
\(170\) 697.164 0.314529
\(171\) 220.103 0.0984311
\(172\) −2815.71 −1.24823
\(173\) 4232.96 1.86026 0.930132 0.367226i \(-0.119692\pi\)
0.930132 + 0.367226i \(0.119692\pi\)
\(174\) 821.617 0.357969
\(175\) −173.881 −0.0751097
\(176\) 0 0
\(177\) −181.014 −0.0768692
\(178\) −5080.41 −2.13929
\(179\) −3089.40 −1.29001 −0.645007 0.764177i \(-0.723146\pi\)
−0.645007 + 0.764177i \(0.723146\pi\)
\(180\) −150.191 −0.0621923
\(181\) 2389.59 0.981310 0.490655 0.871354i \(-0.336758\pi\)
0.490655 + 0.871354i \(0.336758\pi\)
\(182\) 141.526 0.0576406
\(183\) 385.335 0.155655
\(184\) −1116.52 −0.447343
\(185\) −616.650 −0.245065
\(186\) −2255.42 −0.889116
\(187\) 0 0
\(188\) 3213.33 1.24657
\(189\) −39.6699 −0.0152675
\(190\) 239.958 0.0916229
\(191\) −1804.91 −0.683764 −0.341882 0.939743i \(-0.611064\pi\)
−0.341882 + 0.939743i \(0.611064\pi\)
\(192\) 902.894 0.339379
\(193\) 1029.17 0.383841 0.191920 0.981411i \(-0.438528\pi\)
0.191920 + 0.981411i \(0.438528\pi\)
\(194\) 2532.35 0.937177
\(195\) −195.953 −0.0719615
\(196\) −2205.13 −0.803618
\(197\) 2483.31 0.898116 0.449058 0.893503i \(-0.351760\pi\)
0.449058 + 0.893503i \(0.351760\pi\)
\(198\) 0 0
\(199\) 3936.02 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(200\) −688.927 −0.243573
\(201\) −2669.10 −0.936635
\(202\) 1681.70 0.585762
\(203\) 105.783 0.0365740
\(204\) −1379.07 −0.473305
\(205\) −647.270 −0.220523
\(206\) −1605.12 −0.542883
\(207\) −1726.20 −0.579611
\(208\) 1871.36 0.623826
\(209\) 0 0
\(210\) −43.2483 −0.0142115
\(211\) −924.114 −0.301510 −0.150755 0.988571i \(-0.548170\pi\)
−0.150755 + 0.988571i \(0.548170\pi\)
\(212\) −101.355 −0.0328353
\(213\) −318.027 −0.102304
\(214\) −651.336 −0.208058
\(215\) 1122.61 0.356099
\(216\) −157.174 −0.0495109
\(217\) −290.385 −0.0908416
\(218\) 4024.81 1.25043
\(219\) −2312.20 −0.713443
\(220\) 0 0
\(221\) −1799.26 −0.547653
\(222\) 2728.15 0.824780
\(223\) 6068.10 1.82220 0.911099 0.412188i \(-0.135235\pi\)
0.911099 + 0.412188i \(0.135235\pi\)
\(224\) 344.601 0.102788
\(225\) −1065.12 −0.315591
\(226\) −591.951 −0.174230
\(227\) 4143.05 1.21138 0.605692 0.795699i \(-0.292896\pi\)
0.605692 + 0.795699i \(0.292896\pi\)
\(228\) −474.664 −0.137875
\(229\) 5521.15 1.59322 0.796610 0.604493i \(-0.206624\pi\)
0.796610 + 0.604493i \(0.206624\pi\)
\(230\) −1881.92 −0.539521
\(231\) 0 0
\(232\) 419.118 0.118605
\(233\) 4823.91 1.35633 0.678164 0.734910i \(-0.262776\pi\)
0.678164 + 0.734910i \(0.262776\pi\)
\(234\) 866.924 0.242191
\(235\) −1281.14 −0.355626
\(236\) 390.366 0.107672
\(237\) −3331.35 −0.913056
\(238\) −397.110 −0.108155
\(239\) −281.091 −0.0760764 −0.0380382 0.999276i \(-0.512111\pi\)
−0.0380382 + 0.999276i \(0.512111\pi\)
\(240\) −571.863 −0.153807
\(241\) −70.9520 −0.0189644 −0.00948220 0.999955i \(-0.503018\pi\)
−0.00948220 + 0.999955i \(0.503018\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) −830.995 −0.218029
\(245\) 879.171 0.229258
\(246\) 2863.61 0.742184
\(247\) −619.289 −0.159532
\(248\) −1150.52 −0.294590
\(249\) −3527.92 −0.897883
\(250\) −2387.68 −0.604040
\(251\) −3991.19 −1.00367 −0.501836 0.864963i \(-0.667342\pi\)
−0.501836 + 0.864963i \(0.667342\pi\)
\(252\) 85.5502 0.0213855
\(253\) 0 0
\(254\) 3330.07 0.822628
\(255\) 549.828 0.135026
\(256\) 5190.23 1.26715
\(257\) −491.529 −0.119303 −0.0596513 0.998219i \(-0.518999\pi\)
−0.0596513 + 0.998219i \(0.518999\pi\)
\(258\) −4966.58 −1.19847
\(259\) 351.249 0.0842684
\(260\) 422.583 0.100798
\(261\) 647.980 0.153674
\(262\) 4717.46 1.11239
\(263\) 251.552 0.0589786 0.0294893 0.999565i \(-0.490612\pi\)
0.0294893 + 0.999565i \(0.490612\pi\)
\(264\) 0 0
\(265\) 40.4097 0.00936734
\(266\) −136.682 −0.0315056
\(267\) −4006.74 −0.918384
\(268\) 5756.05 1.31196
\(269\) 17.7838 0.00403084 0.00201542 0.999998i \(-0.499358\pi\)
0.00201542 + 0.999998i \(0.499358\pi\)
\(270\) −264.920 −0.0597130
\(271\) −20.6908 −0.00463791 −0.00231896 0.999997i \(-0.500738\pi\)
−0.00231896 + 0.999997i \(0.500738\pi\)
\(272\) −5250.89 −1.17052
\(273\) 111.616 0.0247448
\(274\) −1137.00 −0.250689
\(275\) 0 0
\(276\) 3722.65 0.811874
\(277\) 8024.17 1.74052 0.870262 0.492588i \(-0.163949\pi\)
0.870262 + 0.492588i \(0.163949\pi\)
\(278\) 5566.17 1.20085
\(279\) −1778.77 −0.381692
\(280\) −22.0615 −0.00470868
\(281\) −2925.95 −0.621165 −0.310583 0.950546i \(-0.600524\pi\)
−0.310583 + 0.950546i \(0.600524\pi\)
\(282\) 5667.93 1.19688
\(283\) −8667.94 −1.82069 −0.910346 0.413848i \(-0.864184\pi\)
−0.910346 + 0.413848i \(0.864184\pi\)
\(284\) 685.842 0.143300
\(285\) 189.246 0.0393332
\(286\) 0 0
\(287\) 368.690 0.0758295
\(288\) 2110.87 0.431890
\(289\) 135.570 0.0275942
\(290\) 706.430 0.143045
\(291\) 1997.18 0.402325
\(292\) 4986.38 0.999335
\(293\) 5072.03 1.01130 0.505651 0.862738i \(-0.331252\pi\)
0.505651 + 0.862738i \(0.331252\pi\)
\(294\) −3889.58 −0.771581
\(295\) −155.637 −0.0307170
\(296\) 1391.67 0.273274
\(297\) 0 0
\(298\) −7943.76 −1.54419
\(299\) 4856.90 0.939404
\(300\) 2296.99 0.442055
\(301\) −639.447 −0.122449
\(302\) −10720.1 −2.04263
\(303\) 1326.30 0.251464
\(304\) −1807.31 −0.340975
\(305\) 331.313 0.0621998
\(306\) −2432.52 −0.454437
\(307\) 3010.24 0.559620 0.279810 0.960055i \(-0.409729\pi\)
0.279810 + 0.960055i \(0.409729\pi\)
\(308\) 0 0
\(309\) −1265.90 −0.233057
\(310\) −1939.22 −0.355292
\(311\) −2888.96 −0.526745 −0.263373 0.964694i \(-0.584835\pi\)
−0.263373 + 0.964694i \(0.584835\pi\)
\(312\) 442.230 0.0802447
\(313\) 8776.88 1.58498 0.792490 0.609885i \(-0.208785\pi\)
0.792490 + 0.609885i \(0.208785\pi\)
\(314\) 114.321 0.0205463
\(315\) −34.1084 −0.00610092
\(316\) 7184.23 1.27894
\(317\) −2738.39 −0.485185 −0.242592 0.970128i \(-0.577998\pi\)
−0.242592 + 0.970128i \(0.577998\pi\)
\(318\) −178.778 −0.0315263
\(319\) 0 0
\(320\) 776.313 0.135616
\(321\) −513.686 −0.0893182
\(322\) 1071.95 0.185521
\(323\) 1737.67 0.299340
\(324\) 524.042 0.0898564
\(325\) 2996.85 0.511494
\(326\) 2193.00 0.372574
\(327\) 3174.22 0.536804
\(328\) 1460.77 0.245907
\(329\) 729.744 0.122286
\(330\) 0 0
\(331\) 3715.53 0.616990 0.308495 0.951226i \(-0.400175\pi\)
0.308495 + 0.951226i \(0.400175\pi\)
\(332\) 7608.15 1.25768
\(333\) 2151.59 0.354074
\(334\) 2739.34 0.448772
\(335\) −2294.90 −0.374280
\(336\) 325.737 0.0528882
\(337\) 6704.10 1.08367 0.541833 0.840486i \(-0.317730\pi\)
0.541833 + 0.840486i \(0.317730\pi\)
\(338\) 5917.97 0.952352
\(339\) −466.851 −0.0747961
\(340\) −1185.73 −0.189134
\(341\) 0 0
\(342\) −837.251 −0.132378
\(343\) −1004.74 −0.158165
\(344\) −2533.52 −0.397088
\(345\) −1484.20 −0.231613
\(346\) −16101.7 −2.50183
\(347\) 8547.28 1.32231 0.661156 0.750249i \(-0.270066\pi\)
0.661156 + 0.750249i \(0.270066\pi\)
\(348\) −1397.40 −0.215255
\(349\) 3589.58 0.550561 0.275280 0.961364i \(-0.411229\pi\)
0.275280 + 0.961364i \(0.411229\pi\)
\(350\) 661.427 0.101014
\(351\) 683.712 0.103971
\(352\) 0 0
\(353\) −8820.68 −1.32996 −0.664982 0.746859i \(-0.731561\pi\)
−0.664982 + 0.746859i \(0.731561\pi\)
\(354\) 688.559 0.103380
\(355\) −273.441 −0.0408810
\(356\) 8640.74 1.28640
\(357\) −313.186 −0.0464302
\(358\) 11751.8 1.73492
\(359\) −12990.2 −1.90974 −0.954872 0.297018i \(-0.904008\pi\)
−0.954872 + 0.297018i \(0.904008\pi\)
\(360\) −135.139 −0.0197846
\(361\) −6260.91 −0.912802
\(362\) −9089.77 −1.31975
\(363\) 0 0
\(364\) −240.706 −0.0346606
\(365\) −1988.04 −0.285093
\(366\) −1465.78 −0.209337
\(367\) −7657.56 −1.08916 −0.544579 0.838709i \(-0.683311\pi\)
−0.544579 + 0.838709i \(0.683311\pi\)
\(368\) 14174.2 2.00783
\(369\) 2258.43 0.318615
\(370\) 2345.68 0.329583
\(371\) −23.0177 −0.00322107
\(372\) 3836.01 0.534645
\(373\) 10252.1 1.42314 0.711570 0.702615i \(-0.247984\pi\)
0.711570 + 0.702615i \(0.247984\pi\)
\(374\) 0 0
\(375\) −1883.08 −0.259311
\(376\) 2891.29 0.396561
\(377\) −1823.17 −0.249067
\(378\) 150.900 0.0205330
\(379\) −521.447 −0.0706726 −0.0353363 0.999375i \(-0.511250\pi\)
−0.0353363 + 0.999375i \(0.511250\pi\)
\(380\) −408.119 −0.0550949
\(381\) 2626.31 0.353150
\(382\) 6865.71 0.919582
\(383\) −2090.55 −0.278909 −0.139454 0.990228i \(-0.544535\pi\)
−0.139454 + 0.990228i \(0.544535\pi\)
\(384\) 2194.47 0.291630
\(385\) 0 0
\(386\) −3914.86 −0.516220
\(387\) −3916.97 −0.514498
\(388\) −4307.01 −0.563545
\(389\) 2482.02 0.323505 0.161753 0.986831i \(-0.448285\pi\)
0.161753 + 0.986831i \(0.448285\pi\)
\(390\) 745.386 0.0967797
\(391\) −13628.1 −1.76266
\(392\) −1984.13 −0.255647
\(393\) 3720.49 0.477542
\(394\) −9446.28 −1.20786
\(395\) −2864.31 −0.364859
\(396\) 0 0
\(397\) 2074.35 0.262239 0.131119 0.991367i \(-0.458143\pi\)
0.131119 + 0.991367i \(0.458143\pi\)
\(398\) −14972.2 −1.88565
\(399\) −107.796 −0.0135252
\(400\) 8745.91 1.09324
\(401\) −10370.6 −1.29147 −0.645737 0.763560i \(-0.723450\pi\)
−0.645737 + 0.763560i \(0.723450\pi\)
\(402\) 10153.0 1.25966
\(403\) 5004.80 0.618627
\(404\) −2860.23 −0.352232
\(405\) −208.933 −0.0256344
\(406\) −402.388 −0.0491877
\(407\) 0 0
\(408\) −1240.86 −0.150568
\(409\) −3415.16 −0.412882 −0.206441 0.978459i \(-0.566188\pi\)
−0.206441 + 0.978459i \(0.566188\pi\)
\(410\) 2462.15 0.296578
\(411\) −896.713 −0.107619
\(412\) 2729.98 0.326448
\(413\) 88.6519 0.0105624
\(414\) 6566.31 0.779508
\(415\) −3033.33 −0.358795
\(416\) −5939.21 −0.699984
\(417\) 4389.84 0.515519
\(418\) 0 0
\(419\) −7647.52 −0.891661 −0.445830 0.895117i \(-0.647092\pi\)
−0.445830 + 0.895117i \(0.647092\pi\)
\(420\) 73.5565 0.00854569
\(421\) −7614.05 −0.881440 −0.440720 0.897645i \(-0.645277\pi\)
−0.440720 + 0.897645i \(0.645277\pi\)
\(422\) 3515.24 0.405495
\(423\) 4470.09 0.513814
\(424\) −91.1972 −0.0104456
\(425\) −8408.92 −0.959747
\(426\) 1209.74 0.137587
\(427\) −188.718 −0.0213881
\(428\) 1107.79 0.125110
\(429\) 0 0
\(430\) −4270.29 −0.478911
\(431\) 6492.48 0.725595 0.362798 0.931868i \(-0.381822\pi\)
0.362798 + 0.931868i \(0.381822\pi\)
\(432\) 1995.32 0.222222
\(433\) −1837.96 −0.203988 −0.101994 0.994785i \(-0.532522\pi\)
−0.101994 + 0.994785i \(0.532522\pi\)
\(434\) 1104.60 0.122171
\(435\) 557.136 0.0614084
\(436\) −6845.38 −0.751913
\(437\) −4690.66 −0.513466
\(438\) 8795.38 0.959497
\(439\) −16807.1 −1.82725 −0.913623 0.406562i \(-0.866727\pi\)
−0.913623 + 0.406562i \(0.866727\pi\)
\(440\) 0 0
\(441\) −3067.57 −0.331235
\(442\) 6844.20 0.736528
\(443\) 12104.8 1.29823 0.649114 0.760692i \(-0.275140\pi\)
0.649114 + 0.760692i \(0.275140\pi\)
\(444\) −4640.02 −0.495959
\(445\) −3445.01 −0.366987
\(446\) −23082.5 −2.45064
\(447\) −6264.96 −0.662914
\(448\) −442.194 −0.0466332
\(449\) 6734.71 0.707863 0.353931 0.935271i \(-0.384845\pi\)
0.353931 + 0.935271i \(0.384845\pi\)
\(450\) 4051.61 0.424433
\(451\) 0 0
\(452\) 1006.79 0.104768
\(453\) −8454.59 −0.876891
\(454\) −15759.8 −1.62917
\(455\) 95.9683 0.00988805
\(456\) −427.093 −0.0438607
\(457\) −5950.32 −0.609068 −0.304534 0.952501i \(-0.598501\pi\)
−0.304534 + 0.952501i \(0.598501\pi\)
\(458\) −21001.9 −2.14269
\(459\) −1918.44 −0.195087
\(460\) 3200.75 0.324426
\(461\) 2917.31 0.294735 0.147367 0.989082i \(-0.452920\pi\)
0.147367 + 0.989082i \(0.452920\pi\)
\(462\) 0 0
\(463\) −537.106 −0.0539123 −0.0269562 0.999637i \(-0.508581\pi\)
−0.0269562 + 0.999637i \(0.508581\pi\)
\(464\) −5320.69 −0.532342
\(465\) −1529.40 −0.152525
\(466\) −18349.7 −1.82410
\(467\) 12124.7 1.20143 0.600713 0.799465i \(-0.294883\pi\)
0.600713 + 0.799465i \(0.294883\pi\)
\(468\) −1474.46 −0.145635
\(469\) 1307.19 0.128701
\(470\) 4873.31 0.478275
\(471\) 90.1612 0.00882040
\(472\) 351.244 0.0342528
\(473\) 0 0
\(474\) 12672.1 1.22795
\(475\) −2894.27 −0.279576
\(476\) 675.402 0.0650357
\(477\) −140.996 −0.0135341
\(478\) 1069.24 0.102314
\(479\) −3854.34 −0.367660 −0.183830 0.982958i \(-0.558850\pi\)
−0.183830 + 0.982958i \(0.558850\pi\)
\(480\) 1814.94 0.172584
\(481\) −6053.78 −0.573864
\(482\) 269.894 0.0255049
\(483\) 845.411 0.0796429
\(484\) 0 0
\(485\) 1717.18 0.160770
\(486\) 924.348 0.0862742
\(487\) −5700.80 −0.530448 −0.265224 0.964187i \(-0.585446\pi\)
−0.265224 + 0.964187i \(0.585446\pi\)
\(488\) −747.713 −0.0693594
\(489\) 1729.54 0.159944
\(490\) −3344.28 −0.308325
\(491\) 17006.5 1.56312 0.781562 0.623827i \(-0.214423\pi\)
0.781562 + 0.623827i \(0.214423\pi\)
\(492\) −4870.42 −0.446292
\(493\) 5115.68 0.467340
\(494\) 2355.71 0.214552
\(495\) 0 0
\(496\) 14605.8 1.32222
\(497\) 155.754 0.0140574
\(498\) 13419.9 1.20755
\(499\) −8473.24 −0.760149 −0.380074 0.924956i \(-0.624102\pi\)
−0.380074 + 0.924956i \(0.624102\pi\)
\(500\) 4060.95 0.363223
\(501\) 2160.42 0.192655
\(502\) 15182.1 1.34982
\(503\) −10347.5 −0.917243 −0.458622 0.888632i \(-0.651657\pi\)
−0.458622 + 0.888632i \(0.651657\pi\)
\(504\) 76.9763 0.00680317
\(505\) 1140.36 0.100485
\(506\) 0 0
\(507\) 4667.29 0.408839
\(508\) −5663.78 −0.494664
\(509\) 1904.10 0.165811 0.0829057 0.996557i \(-0.473580\pi\)
0.0829057 + 0.996557i \(0.473580\pi\)
\(510\) −2091.49 −0.181594
\(511\) 1132.40 0.0980325
\(512\) −13891.2 −1.19904
\(513\) −660.310 −0.0568292
\(514\) 1869.73 0.160448
\(515\) −1088.43 −0.0931298
\(516\) 8447.14 0.720668
\(517\) 0 0
\(518\) −1336.11 −0.113331
\(519\) −12698.9 −1.07402
\(520\) 380.232 0.0320659
\(521\) 19351.2 1.62724 0.813619 0.581399i \(-0.197494\pi\)
0.813619 + 0.581399i \(0.197494\pi\)
\(522\) −2464.85 −0.206674
\(523\) 2872.65 0.240176 0.120088 0.992763i \(-0.461682\pi\)
0.120088 + 0.992763i \(0.461682\pi\)
\(524\) −8023.44 −0.668904
\(525\) 521.644 0.0433646
\(526\) −956.879 −0.0793193
\(527\) −14043.1 −1.16077
\(528\) 0 0
\(529\) 24620.4 2.02354
\(530\) −153.714 −0.0125980
\(531\) 543.042 0.0443805
\(532\) 232.468 0.0189450
\(533\) −6354.38 −0.516395
\(534\) 15241.2 1.23512
\(535\) −441.669 −0.0356917
\(536\) 5179.18 0.417363
\(537\) 9268.19 0.744790
\(538\) −67.6478 −0.00542101
\(539\) 0 0
\(540\) 450.574 0.0359067
\(541\) 13187.9 1.04804 0.524021 0.851705i \(-0.324431\pi\)
0.524021 + 0.851705i \(0.324431\pi\)
\(542\) 78.7056 0.00623744
\(543\) −7168.78 −0.566559
\(544\) 16664.9 1.31342
\(545\) 2729.21 0.214508
\(546\) −424.577 −0.0332788
\(547\) −3584.57 −0.280192 −0.140096 0.990138i \(-0.544741\pi\)
−0.140096 + 0.990138i \(0.544741\pi\)
\(548\) 1933.81 0.150745
\(549\) −1156.01 −0.0898672
\(550\) 0 0
\(551\) 1760.77 0.136137
\(552\) 3349.57 0.258274
\(553\) 1631.53 0.125461
\(554\) −30523.1 −2.34080
\(555\) 1849.95 0.141488
\(556\) −9466.92 −0.722099
\(557\) 3922.45 0.298383 0.149192 0.988808i \(-0.452333\pi\)
0.149192 + 0.988808i \(0.452333\pi\)
\(558\) 6766.26 0.513331
\(559\) 11020.9 0.833871
\(560\) 280.071 0.0211342
\(561\) 0 0
\(562\) 11130.0 0.835394
\(563\) −17585.3 −1.31640 −0.658200 0.752843i \(-0.728682\pi\)
−0.658200 + 0.752843i \(0.728682\pi\)
\(564\) −9639.98 −0.719710
\(565\) −401.401 −0.0298886
\(566\) 32972.0 2.44862
\(567\) 119.010 0.00881470
\(568\) 617.107 0.0455866
\(569\) 5757.89 0.424224 0.212112 0.977245i \(-0.431966\pi\)
0.212112 + 0.977245i \(0.431966\pi\)
\(570\) −719.873 −0.0528985
\(571\) −13983.0 −1.02482 −0.512408 0.858742i \(-0.671246\pi\)
−0.512408 + 0.858742i \(0.671246\pi\)
\(572\) 0 0
\(573\) 5414.74 0.394772
\(574\) −1402.46 −0.101982
\(575\) 22698.9 1.64628
\(576\) −2708.68 −0.195941
\(577\) −19913.3 −1.43674 −0.718370 0.695661i \(-0.755112\pi\)
−0.718370 + 0.695661i \(0.755112\pi\)
\(578\) −515.697 −0.0371110
\(579\) −3087.51 −0.221611
\(580\) −1201.49 −0.0860161
\(581\) 1727.80 0.123376
\(582\) −7597.06 −0.541079
\(583\) 0 0
\(584\) 4486.65 0.317909
\(585\) 587.859 0.0415470
\(586\) −19293.5 −1.36008
\(587\) 2361.42 0.166041 0.0830207 0.996548i \(-0.473543\pi\)
0.0830207 + 0.996548i \(0.473543\pi\)
\(588\) 6615.38 0.463969
\(589\) −4833.49 −0.338134
\(590\) 592.027 0.0413108
\(591\) −7449.94 −0.518527
\(592\) −17667.2 −1.22655
\(593\) 24598.2 1.70341 0.851707 0.524018i \(-0.175567\pi\)
0.851707 + 0.524018i \(0.175567\pi\)
\(594\) 0 0
\(595\) −269.279 −0.0185536
\(596\) 13510.7 0.928558
\(597\) −11808.1 −0.809500
\(598\) −18475.2 −1.26339
\(599\) −14590.6 −0.995252 −0.497626 0.867392i \(-0.665795\pi\)
−0.497626 + 0.867392i \(0.665795\pi\)
\(600\) 2066.78 0.140627
\(601\) −12232.5 −0.830243 −0.415121 0.909766i \(-0.636261\pi\)
−0.415121 + 0.909766i \(0.636261\pi\)
\(602\) 2432.39 0.164679
\(603\) 8007.29 0.540766
\(604\) 18232.8 1.22828
\(605\) 0 0
\(606\) −5045.10 −0.338190
\(607\) −8501.02 −0.568444 −0.284222 0.958758i \(-0.591735\pi\)
−0.284222 + 0.958758i \(0.591735\pi\)
\(608\) 5735.92 0.382602
\(609\) −317.349 −0.0211160
\(610\) −1260.28 −0.0836514
\(611\) −12577.2 −0.832763
\(612\) 4137.21 0.273263
\(613\) 18556.9 1.22268 0.611341 0.791367i \(-0.290630\pi\)
0.611341 + 0.791367i \(0.290630\pi\)
\(614\) −11450.6 −0.752623
\(615\) 1941.81 0.127319
\(616\) 0 0
\(617\) −21751.6 −1.41926 −0.709632 0.704572i \(-0.751139\pi\)
−0.709632 + 0.704572i \(0.751139\pi\)
\(618\) 4815.36 0.313434
\(619\) 7389.61 0.479828 0.239914 0.970794i \(-0.422881\pi\)
0.239914 + 0.970794i \(0.422881\pi\)
\(620\) 3298.22 0.213645
\(621\) 5178.61 0.334639
\(622\) 10989.3 0.708410
\(623\) 1962.31 0.126193
\(624\) −5614.09 −0.360166
\(625\) 13174.2 0.843152
\(626\) −33386.4 −2.13161
\(627\) 0 0
\(628\) −194.437 −0.0123549
\(629\) 16986.4 1.07678
\(630\) 129.745 0.00820501
\(631\) 12663.5 0.798931 0.399466 0.916748i \(-0.369196\pi\)
0.399466 + 0.916748i \(0.369196\pi\)
\(632\) 6464.23 0.406856
\(633\) 2772.34 0.174077
\(634\) 10416.6 0.652516
\(635\) 2258.12 0.141119
\(636\) 304.065 0.0189575
\(637\) 8631.01 0.536849
\(638\) 0 0
\(639\) 954.081 0.0590655
\(640\) 1886.81 0.116536
\(641\) −10874.0 −0.670044 −0.335022 0.942210i \(-0.608744\pi\)
−0.335022 + 0.942210i \(0.608744\pi\)
\(642\) 1954.01 0.120122
\(643\) 8200.41 0.502944 0.251472 0.967865i \(-0.419085\pi\)
0.251472 + 0.967865i \(0.419085\pi\)
\(644\) −1823.17 −0.111558
\(645\) −3367.83 −0.205594
\(646\) −6609.94 −0.402577
\(647\) −22028.4 −1.33853 −0.669264 0.743025i \(-0.733390\pi\)
−0.669264 + 0.743025i \(0.733390\pi\)
\(648\) 471.523 0.0285851
\(649\) 0 0
\(650\) −11399.7 −0.687898
\(651\) 871.155 0.0524474
\(652\) −3729.85 −0.224037
\(653\) 20838.9 1.24884 0.624418 0.781091i \(-0.285336\pi\)
0.624418 + 0.781091i \(0.285336\pi\)
\(654\) −12074.4 −0.721938
\(655\) 3198.90 0.190826
\(656\) −18544.4 −1.10372
\(657\) 6936.60 0.411906
\(658\) −2775.88 −0.164460
\(659\) −8237.87 −0.486953 −0.243476 0.969907i \(-0.578288\pi\)
−0.243476 + 0.969907i \(0.578288\pi\)
\(660\) 0 0
\(661\) −19161.2 −1.12751 −0.563756 0.825941i \(-0.690644\pi\)
−0.563756 + 0.825941i \(0.690644\pi\)
\(662\) −14133.5 −0.829779
\(663\) 5397.78 0.316187
\(664\) 6845.66 0.400095
\(665\) −92.6835 −0.00540468
\(666\) −8184.44 −0.476187
\(667\) −13809.2 −0.801641
\(668\) −4659.06 −0.269857
\(669\) −18204.3 −1.05205
\(670\) 8729.58 0.503363
\(671\) 0 0
\(672\) −1033.80 −0.0593449
\(673\) −33012.1 −1.89082 −0.945411 0.325879i \(-0.894340\pi\)
−0.945411 + 0.325879i \(0.894340\pi\)
\(674\) −25501.7 −1.45740
\(675\) 3195.36 0.182207
\(676\) −10065.3 −0.572670
\(677\) 6411.69 0.363990 0.181995 0.983299i \(-0.441745\pi\)
0.181995 + 0.983299i \(0.441745\pi\)
\(678\) 1775.85 0.100592
\(679\) −978.120 −0.0552825
\(680\) −1066.90 −0.0601672
\(681\) −12429.2 −0.699393
\(682\) 0 0
\(683\) 7840.57 0.439255 0.219627 0.975584i \(-0.429516\pi\)
0.219627 + 0.975584i \(0.429516\pi\)
\(684\) 1423.99 0.0796019
\(685\) −770.999 −0.0430049
\(686\) 3821.92 0.212714
\(687\) −16563.4 −0.919847
\(688\) 32163.0 1.78227
\(689\) 396.710 0.0219353
\(690\) 5645.75 0.311493
\(691\) −19507.9 −1.07397 −0.536986 0.843591i \(-0.680437\pi\)
−0.536986 + 0.843591i \(0.680437\pi\)
\(692\) 27385.8 1.50441
\(693\) 0 0
\(694\) −32513.0 −1.77835
\(695\) 3774.41 0.206002
\(696\) −1257.35 −0.0684769
\(697\) 17829.9 0.968944
\(698\) −13654.4 −0.740439
\(699\) −14471.7 −0.783077
\(700\) −1124.95 −0.0607417
\(701\) −8579.85 −0.462277 −0.231139 0.972921i \(-0.574245\pi\)
−0.231139 + 0.972921i \(0.574245\pi\)
\(702\) −2600.77 −0.139829
\(703\) 5846.57 0.313667
\(704\) 0 0
\(705\) 3843.41 0.205321
\(706\) 33553.0 1.78865
\(707\) −649.555 −0.0345531
\(708\) −1171.10 −0.0621647
\(709\) 3458.48 0.183196 0.0915979 0.995796i \(-0.470803\pi\)
0.0915979 + 0.995796i \(0.470803\pi\)
\(710\) 1040.14 0.0549801
\(711\) 9994.05 0.527153
\(712\) 7774.77 0.409230
\(713\) 37907.7 1.99110
\(714\) 1191.33 0.0624431
\(715\) 0 0
\(716\) −19987.3 −1.04324
\(717\) 843.272 0.0439227
\(718\) 49413.5 2.56838
\(719\) 29934.6 1.55267 0.776336 0.630319i \(-0.217076\pi\)
0.776336 + 0.630319i \(0.217076\pi\)
\(720\) 1715.59 0.0888002
\(721\) 619.976 0.0320237
\(722\) 23815.9 1.22761
\(723\) 212.856 0.0109491
\(724\) 15459.8 0.793592
\(725\) −8520.69 −0.436483
\(726\) 0 0
\(727\) −23967.3 −1.22269 −0.611347 0.791363i \(-0.709372\pi\)
−0.611347 + 0.791363i \(0.709372\pi\)
\(728\) −216.583 −0.0110262
\(729\) 729.000 0.0370370
\(730\) 7562.31 0.383416
\(731\) −30923.7 −1.56464
\(732\) 2492.99 0.125879
\(733\) −22000.9 −1.10862 −0.554312 0.832309i \(-0.687019\pi\)
−0.554312 + 0.832309i \(0.687019\pi\)
\(734\) 29128.6 1.46479
\(735\) −2637.51 −0.132362
\(736\) −44985.1 −2.25295
\(737\) 0 0
\(738\) −8590.84 −0.428500
\(739\) −24018.7 −1.19559 −0.597795 0.801649i \(-0.703956\pi\)
−0.597795 + 0.801649i \(0.703956\pi\)
\(740\) −3989.51 −0.198186
\(741\) 1857.87 0.0921059
\(742\) 87.5569 0.00433196
\(743\) 21187.3 1.04614 0.523072 0.852288i \(-0.324786\pi\)
0.523072 + 0.852288i \(0.324786\pi\)
\(744\) 3451.57 0.170081
\(745\) −5386.65 −0.264901
\(746\) −38997.8 −1.91396
\(747\) 10583.8 0.518393
\(748\) 0 0
\(749\) 251.578 0.0122730
\(750\) 7163.03 0.348743
\(751\) 6625.32 0.321919 0.160960 0.986961i \(-0.448541\pi\)
0.160960 + 0.986961i \(0.448541\pi\)
\(752\) −36704.8 −1.77990
\(753\) 11973.6 0.579470
\(754\) 6935.18 0.334966
\(755\) −7269.30 −0.350407
\(756\) −256.651 −0.0123469
\(757\) 31645.0 1.51936 0.759682 0.650295i \(-0.225355\pi\)
0.759682 + 0.650295i \(0.225355\pi\)
\(758\) 1983.53 0.0950463
\(759\) 0 0
\(760\) −367.217 −0.0175268
\(761\) 28599.5 1.36233 0.681164 0.732131i \(-0.261474\pi\)
0.681164 + 0.732131i \(0.261474\pi\)
\(762\) −9990.22 −0.474944
\(763\) −1554.58 −0.0737609
\(764\) −11677.2 −0.552965
\(765\) −1649.48 −0.0779571
\(766\) 7952.24 0.375100
\(767\) −1527.92 −0.0719296
\(768\) −15570.7 −0.731587
\(769\) 26098.1 1.22382 0.611912 0.790926i \(-0.290400\pi\)
0.611912 + 0.790926i \(0.290400\pi\)
\(770\) 0 0
\(771\) 1474.59 0.0688794
\(772\) 6658.38 0.310415
\(773\) −6276.05 −0.292023 −0.146011 0.989283i \(-0.546644\pi\)
−0.146011 + 0.989283i \(0.546644\pi\)
\(774\) 14899.7 0.691939
\(775\) 23390.2 1.08413
\(776\) −3875.37 −0.179275
\(777\) −1053.75 −0.0486524
\(778\) −9441.36 −0.435076
\(779\) 6136.88 0.282255
\(780\) −1267.75 −0.0581958
\(781\) 0 0
\(782\) 51839.8 2.37057
\(783\) −1943.94 −0.0887238
\(784\) 25188.4 1.14743
\(785\) 77.5211 0.00352464
\(786\) −14152.4 −0.642238
\(787\) 22287.2 1.00947 0.504736 0.863274i \(-0.331590\pi\)
0.504736 + 0.863274i \(0.331590\pi\)
\(788\) 16066.2 0.726313
\(789\) −754.657 −0.0340513
\(790\) 10895.6 0.490692
\(791\) 228.641 0.0102775
\(792\) 0 0
\(793\) 3252.57 0.145652
\(794\) −7890.63 −0.352680
\(795\) −121.229 −0.00540824
\(796\) 25464.7 1.13388
\(797\) −39299.1 −1.74661 −0.873304 0.487175i \(-0.838027\pi\)
−0.873304 + 0.487175i \(0.838027\pi\)
\(798\) 410.045 0.0181898
\(799\) 35290.5 1.56256
\(800\) −27757.1 −1.22670
\(801\) 12020.2 0.530229
\(802\) 39448.6 1.73688
\(803\) 0 0
\(804\) −17268.1 −0.757463
\(805\) 726.889 0.0318254
\(806\) −19037.8 −0.831981
\(807\) −53.3514 −0.00232721
\(808\) −2573.57 −0.112052
\(809\) 15023.1 0.652885 0.326443 0.945217i \(-0.394150\pi\)
0.326443 + 0.945217i \(0.394150\pi\)
\(810\) 794.759 0.0344753
\(811\) −20100.0 −0.870290 −0.435145 0.900360i \(-0.643303\pi\)
−0.435145 + 0.900360i \(0.643303\pi\)
\(812\) 684.380 0.0295776
\(813\) 62.0723 0.00267770
\(814\) 0 0
\(815\) 1487.07 0.0639139
\(816\) 15752.7 0.675802
\(817\) −10643.7 −0.455783
\(818\) 12990.9 0.555277
\(819\) −334.849 −0.0142864
\(820\) −4187.61 −0.178339
\(821\) 6017.68 0.255808 0.127904 0.991787i \(-0.459175\pi\)
0.127904 + 0.991787i \(0.459175\pi\)
\(822\) 3411.01 0.144735
\(823\) −20919.9 −0.886052 −0.443026 0.896509i \(-0.646095\pi\)
−0.443026 + 0.896509i \(0.646095\pi\)
\(824\) 2456.38 0.103850
\(825\) 0 0
\(826\) −337.223 −0.0142052
\(827\) 17107.5 0.719331 0.359665 0.933081i \(-0.382891\pi\)
0.359665 + 0.933081i \(0.382891\pi\)
\(828\) −11167.9 −0.468736
\(829\) −1185.27 −0.0496576 −0.0248288 0.999692i \(-0.507904\pi\)
−0.0248288 + 0.999692i \(0.507904\pi\)
\(830\) 11538.5 0.482537
\(831\) −24072.5 −1.00489
\(832\) 7621.23 0.317570
\(833\) −24217.9 −1.00732
\(834\) −16698.5 −0.693312
\(835\) 1857.54 0.0769854
\(836\) 0 0
\(837\) 5336.31 0.220370
\(838\) 29090.4 1.19918
\(839\) 10636.8 0.437692 0.218846 0.975759i \(-0.429771\pi\)
0.218846 + 0.975759i \(0.429771\pi\)
\(840\) 66.1846 0.00271856
\(841\) −19205.3 −0.787458
\(842\) 28963.1 1.18543
\(843\) 8777.85 0.358630
\(844\) −5978.70 −0.243833
\(845\) 4012.96 0.163373
\(846\) −17003.8 −0.691019
\(847\) 0 0
\(848\) 1157.75 0.0468834
\(849\) 26003.8 1.05118
\(850\) 31986.7 1.29075
\(851\) −45852.9 −1.84702
\(852\) −2057.52 −0.0827343
\(853\) 8100.14 0.325139 0.162569 0.986697i \(-0.448022\pi\)
0.162569 + 0.986697i \(0.448022\pi\)
\(854\) 717.866 0.0287645
\(855\) −567.738 −0.0227090
\(856\) 996.767 0.0398000
\(857\) −17919.7 −0.714266 −0.357133 0.934054i \(-0.616246\pi\)
−0.357133 + 0.934054i \(0.616246\pi\)
\(858\) 0 0
\(859\) 8475.92 0.336665 0.168332 0.985730i \(-0.446162\pi\)
0.168332 + 0.985730i \(0.446162\pi\)
\(860\) 7262.90 0.287980
\(861\) −1106.07 −0.0437802
\(862\) −24696.7 −0.975840
\(863\) 38487.1 1.51810 0.759048 0.651035i \(-0.225665\pi\)
0.759048 + 0.651035i \(0.225665\pi\)
\(864\) −6332.61 −0.249352
\(865\) −10918.6 −0.429181
\(866\) 6991.42 0.274340
\(867\) −406.711 −0.0159315
\(868\) −1878.69 −0.0734643
\(869\) 0 0
\(870\) −2119.29 −0.0825870
\(871\) −22529.5 −0.876446
\(872\) −6159.33 −0.239199
\(873\) −5991.53 −0.232282
\(874\) 17842.8 0.690551
\(875\) 922.239 0.0356313
\(876\) −14959.1 −0.576966
\(877\) 35473.2 1.36584 0.682922 0.730492i \(-0.260709\pi\)
0.682922 + 0.730492i \(0.260709\pi\)
\(878\) 63932.7 2.45743
\(879\) −15216.1 −0.583875
\(880\) 0 0
\(881\) 26126.3 0.999112 0.499556 0.866282i \(-0.333496\pi\)
0.499556 + 0.866282i \(0.333496\pi\)
\(882\) 11668.7 0.445473
\(883\) 19009.3 0.724477 0.362239 0.932085i \(-0.382013\pi\)
0.362239 + 0.932085i \(0.382013\pi\)
\(884\) −11640.6 −0.442891
\(885\) 466.910 0.0177345
\(886\) −46045.3 −1.74596
\(887\) 40183.1 1.52110 0.760551 0.649279i \(-0.224929\pi\)
0.760551 + 0.649279i \(0.224929\pi\)
\(888\) −4175.00 −0.157775
\(889\) −1286.24 −0.0485254
\(890\) 13104.5 0.493555
\(891\) 0 0
\(892\) 39258.5 1.47362
\(893\) 12146.7 0.455177
\(894\) 23831.3 0.891541
\(895\) 7968.84 0.297619
\(896\) −1074.74 −0.0400722
\(897\) −14570.7 −0.542365
\(898\) −25618.1 −0.951992
\(899\) −14229.7 −0.527906
\(900\) −6890.96 −0.255221
\(901\) −1113.14 −0.0411586
\(902\) 0 0
\(903\) 1918.34 0.0706959
\(904\) 905.888 0.0333290
\(905\) −6163.75 −0.226398
\(906\) 32160.4 1.17931
\(907\) 5208.17 0.190666 0.0953332 0.995445i \(-0.469608\pi\)
0.0953332 + 0.995445i \(0.469608\pi\)
\(908\) 26804.1 0.979655
\(909\) −3978.89 −0.145183
\(910\) −365.054 −0.0132983
\(911\) −13167.6 −0.478881 −0.239441 0.970911i \(-0.576964\pi\)
−0.239441 + 0.970911i \(0.576964\pi\)
\(912\) 5421.93 0.196862
\(913\) 0 0
\(914\) 22634.4 0.819125
\(915\) −993.939 −0.0359111
\(916\) 35719.9 1.28845
\(917\) −1822.12 −0.0656179
\(918\) 7297.55 0.262369
\(919\) −27692.5 −0.994004 −0.497002 0.867749i \(-0.665566\pi\)
−0.497002 + 0.867749i \(0.665566\pi\)
\(920\) 2879.97 0.103206
\(921\) −9030.71 −0.323097
\(922\) −11097.2 −0.396384
\(923\) −2684.43 −0.0957303
\(924\) 0 0
\(925\) −28292.6 −1.00568
\(926\) 2043.10 0.0725057
\(927\) 3797.70 0.134555
\(928\) 16886.4 0.597332
\(929\) −8856.73 −0.312788 −0.156394 0.987695i \(-0.549987\pi\)
−0.156394 + 0.987695i \(0.549987\pi\)
\(930\) 5817.67 0.205128
\(931\) −8335.59 −0.293435
\(932\) 31209.0 1.09687
\(933\) 8666.88 0.304117
\(934\) −46121.3 −1.61578
\(935\) 0 0
\(936\) −1326.69 −0.0463293
\(937\) 7266.73 0.253355 0.126677 0.991944i \(-0.459569\pi\)
0.126677 + 0.991944i \(0.459569\pi\)
\(938\) −4972.44 −0.173087
\(939\) −26330.6 −0.915088
\(940\) −8288.51 −0.287597
\(941\) −31760.8 −1.10029 −0.550144 0.835070i \(-0.685427\pi\)
−0.550144 + 0.835070i \(0.685427\pi\)
\(942\) −342.964 −0.0118624
\(943\) −48129.7 −1.66206
\(944\) −4459.03 −0.153738
\(945\) 102.325 0.00352237
\(946\) 0 0
\(947\) 22691.1 0.778630 0.389315 0.921105i \(-0.372712\pi\)
0.389315 + 0.921105i \(0.372712\pi\)
\(948\) −21552.7 −0.738395
\(949\) −19517.0 −0.667597
\(950\) 11009.5 0.375996
\(951\) 8215.18 0.280122
\(952\) 607.714 0.0206892
\(953\) −8492.60 −0.288670 −0.144335 0.989529i \(-0.546104\pi\)
−0.144335 + 0.989529i \(0.546104\pi\)
\(954\) 536.334 0.0182017
\(955\) 4655.62 0.157751
\(956\) −1818.56 −0.0615235
\(957\) 0 0
\(958\) 14661.5 0.494459
\(959\) 439.167 0.0147877
\(960\) −2328.94 −0.0782981
\(961\) 9271.02 0.311202
\(962\) 23028.0 0.771780
\(963\) 1541.06 0.0515679
\(964\) −459.035 −0.0153367
\(965\) −2654.66 −0.0885559
\(966\) −3215.86 −0.107110
\(967\) −27202.5 −0.904627 −0.452313 0.891859i \(-0.649401\pi\)
−0.452313 + 0.891859i \(0.649401\pi\)
\(968\) 0 0
\(969\) −5213.02 −0.172824
\(970\) −6531.99 −0.216216
\(971\) 31503.2 1.04118 0.520589 0.853807i \(-0.325712\pi\)
0.520589 + 0.853807i \(0.325712\pi\)
\(972\) −1572.13 −0.0518786
\(973\) −2149.93 −0.0708362
\(974\) 21685.3 0.713389
\(975\) −8990.55 −0.295311
\(976\) 9492.19 0.311309
\(977\) 1930.23 0.0632073 0.0316036 0.999500i \(-0.489939\pi\)
0.0316036 + 0.999500i \(0.489939\pi\)
\(978\) −6579.01 −0.215106
\(979\) 0 0
\(980\) 5687.94 0.185403
\(981\) −9522.67 −0.309924
\(982\) −64691.1 −2.10222
\(983\) −27211.8 −0.882930 −0.441465 0.897278i \(-0.645541\pi\)
−0.441465 + 0.897278i \(0.645541\pi\)
\(984\) −4382.31 −0.141974
\(985\) −6405.50 −0.207204
\(986\) −19459.5 −0.628517
\(987\) −2189.23 −0.0706019
\(988\) −4006.59 −0.129015
\(989\) 83475.1 2.68388
\(990\) 0 0
\(991\) −37496.9 −1.20195 −0.600974 0.799269i \(-0.705220\pi\)
−0.600974 + 0.799269i \(0.705220\pi\)
\(992\) −46355.0 −1.48364
\(993\) −11146.6 −0.356220
\(994\) −592.473 −0.0189055
\(995\) −10152.6 −0.323477
\(996\) −22824.4 −0.726125
\(997\) −13984.8 −0.444235 −0.222118 0.975020i \(-0.571297\pi\)
−0.222118 + 0.975020i \(0.571297\pi\)
\(998\) 32231.4 1.02231
\(999\) −6454.78 −0.204425
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.4.a.v.1.1 6
3.2 odd 2 1089.4.a.bi.1.6 6
11.5 even 5 33.4.e.c.25.3 yes 12
11.9 even 5 33.4.e.c.4.3 12
11.10 odd 2 363.4.a.u.1.6 6
33.5 odd 10 99.4.f.d.91.1 12
33.20 odd 10 99.4.f.d.37.1 12
33.32 even 2 1089.4.a.bk.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.4.3 12 11.9 even 5
33.4.e.c.25.3 yes 12 11.5 even 5
99.4.f.d.37.1 12 33.20 odd 10
99.4.f.d.91.1 12 33.5 odd 10
363.4.a.u.1.6 6 11.10 odd 2
363.4.a.v.1.1 6 1.1 even 1 trivial
1089.4.a.bi.1.6 6 3.2 odd 2
1089.4.a.bk.1.1 6 33.32 even 2