Properties

Label 363.4.a.u.1.1
Level $363$
Weight $4$
Character 363.1
Self dual yes
Analytic conductor $21.418$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,4,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.4176933321\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 30x^{4} + 3x^{3} + 211x^{2} + 208x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 11 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.12458\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.12458 q^{2} -3.00000 q^{3} +18.2613 q^{4} +14.9367 q^{5} +15.3737 q^{6} +12.3403 q^{7} -52.5849 q^{8} +9.00000 q^{9} -76.5442 q^{10} -54.7839 q^{12} -30.5222 q^{13} -63.2387 q^{14} -44.8100 q^{15} +123.385 q^{16} -132.065 q^{17} -46.1212 q^{18} +22.3068 q^{19} +272.763 q^{20} -37.0208 q^{21} -158.801 q^{23} +157.755 q^{24} +98.1044 q^{25} +156.413 q^{26} -27.0000 q^{27} +225.349 q^{28} +47.7165 q^{29} +229.633 q^{30} +68.0343 q^{31} -211.617 q^{32} +676.778 q^{34} +184.323 q^{35} +164.352 q^{36} +158.409 q^{37} -114.313 q^{38} +91.5666 q^{39} -785.444 q^{40} -286.159 q^{41} +189.716 q^{42} -103.549 q^{43} +134.430 q^{45} +813.790 q^{46} -464.238 q^{47} -370.155 q^{48} -190.718 q^{49} -502.744 q^{50} +396.195 q^{51} -557.375 q^{52} -6.04835 q^{53} +138.364 q^{54} -648.912 q^{56} -66.9205 q^{57} -244.527 q^{58} -221.619 q^{59} -818.290 q^{60} +274.338 q^{61} -348.647 q^{62} +111.062 q^{63} +97.3683 q^{64} -455.900 q^{65} +187.178 q^{67} -2411.68 q^{68} +476.404 q^{69} -944.576 q^{70} -457.714 q^{71} -473.264 q^{72} +270.332 q^{73} -811.780 q^{74} -294.313 q^{75} +407.352 q^{76} -469.240 q^{78} -493.647 q^{79} +1842.96 q^{80} +81.0000 q^{81} +1466.45 q^{82} +271.033 q^{83} -676.048 q^{84} -1972.61 q^{85} +530.646 q^{86} -143.150 q^{87} -77.4891 q^{89} -688.898 q^{90} -376.652 q^{91} -2899.92 q^{92} -204.103 q^{93} +2379.02 q^{94} +333.190 q^{95} +634.851 q^{96} -1269.39 q^{97} +977.348 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 5 q^{2} - 18 q^{3} + 17 q^{4} + 9 q^{5} + 15 q^{6} - q^{7} - 24 q^{8} + 54 q^{9} - 50 q^{10} - 51 q^{12} - 66 q^{13} - 42 q^{14} - 27 q^{15} - 71 q^{16} - 80 q^{17} - 45 q^{18} + 90 q^{19} + 455 q^{20}+ \cdots - 1405 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.12458 −1.81181 −0.905906 0.423478i \(-0.860809\pi\)
−0.905906 + 0.423478i \(0.860809\pi\)
\(3\) −3.00000 −0.577350
\(4\) 18.2613 2.28266
\(5\) 14.9367 1.33598 0.667989 0.744172i \(-0.267155\pi\)
0.667989 + 0.744172i \(0.267155\pi\)
\(6\) 15.3737 1.04605
\(7\) 12.3403 0.666312 0.333156 0.942872i \(-0.391886\pi\)
0.333156 + 0.942872i \(0.391886\pi\)
\(8\) −52.5849 −2.32395
\(9\) 9.00000 0.333333
\(10\) −76.5442 −2.42054
\(11\) 0 0
\(12\) −54.7839 −1.31790
\(13\) −30.5222 −0.651179 −0.325590 0.945511i \(-0.605563\pi\)
−0.325590 + 0.945511i \(0.605563\pi\)
\(14\) −63.2387 −1.20723
\(15\) −44.8100 −0.771327
\(16\) 123.385 1.92789
\(17\) −132.065 −1.88415 −0.942073 0.335409i \(-0.891126\pi\)
−0.942073 + 0.335409i \(0.891126\pi\)
\(18\) −46.1212 −0.603937
\(19\) 22.3068 0.269344 0.134672 0.990890i \(-0.457002\pi\)
0.134672 + 0.990890i \(0.457002\pi\)
\(20\) 272.763 3.04959
\(21\) −37.0208 −0.384695
\(22\) 0 0
\(23\) −158.801 −1.43967 −0.719834 0.694147i \(-0.755782\pi\)
−0.719834 + 0.694147i \(0.755782\pi\)
\(24\) 157.755 1.34173
\(25\) 98.1044 0.784835
\(26\) 156.413 1.17982
\(27\) −27.0000 −0.192450
\(28\) 225.349 1.52097
\(29\) 47.7165 0.305543 0.152771 0.988262i \(-0.451180\pi\)
0.152771 + 0.988262i \(0.451180\pi\)
\(30\) 229.633 1.39750
\(31\) 68.0343 0.394172 0.197086 0.980386i \(-0.436852\pi\)
0.197086 + 0.980386i \(0.436852\pi\)
\(32\) −211.617 −1.16903
\(33\) 0 0
\(34\) 676.778 3.41372
\(35\) 184.323 0.890177
\(36\) 164.352 0.760888
\(37\) 158.409 0.703846 0.351923 0.936029i \(-0.385528\pi\)
0.351923 + 0.936029i \(0.385528\pi\)
\(38\) −114.313 −0.488001
\(39\) 91.5666 0.375959
\(40\) −785.444 −3.10474
\(41\) −286.159 −1.09001 −0.545007 0.838432i \(-0.683473\pi\)
−0.545007 + 0.838432i \(0.683473\pi\)
\(42\) 189.716 0.696996
\(43\) −103.549 −0.367235 −0.183617 0.982998i \(-0.558781\pi\)
−0.183617 + 0.982998i \(0.558781\pi\)
\(44\) 0 0
\(45\) 134.430 0.445326
\(46\) 813.790 2.60841
\(47\) −464.238 −1.44077 −0.720383 0.693576i \(-0.756034\pi\)
−0.720383 + 0.693576i \(0.756034\pi\)
\(48\) −370.155 −1.11307
\(49\) −190.718 −0.556029
\(50\) −502.744 −1.42197
\(51\) 396.195 1.08781
\(52\) −557.375 −1.48642
\(53\) −6.04835 −0.0156756 −0.00783778 0.999969i \(-0.502495\pi\)
−0.00783778 + 0.999969i \(0.502495\pi\)
\(54\) 138.364 0.348683
\(55\) 0 0
\(56\) −648.912 −1.54847
\(57\) −66.9205 −0.155506
\(58\) −244.527 −0.553586
\(59\) −221.619 −0.489023 −0.244511 0.969646i \(-0.578628\pi\)
−0.244511 + 0.969646i \(0.578628\pi\)
\(60\) −818.290 −1.76068
\(61\) 274.338 0.575825 0.287913 0.957657i \(-0.407039\pi\)
0.287913 + 0.957657i \(0.407039\pi\)
\(62\) −348.647 −0.714165
\(63\) 111.062 0.222104
\(64\) 97.3683 0.190172
\(65\) −455.900 −0.869961
\(66\) 0 0
\(67\) 187.178 0.341304 0.170652 0.985331i \(-0.445413\pi\)
0.170652 + 0.985331i \(0.445413\pi\)
\(68\) −2411.68 −4.30087
\(69\) 476.404 0.831192
\(70\) −944.576 −1.61283
\(71\) −457.714 −0.765080 −0.382540 0.923939i \(-0.624951\pi\)
−0.382540 + 0.923939i \(0.624951\pi\)
\(72\) −473.264 −0.774649
\(73\) 270.332 0.433424 0.216712 0.976236i \(-0.430467\pi\)
0.216712 + 0.976236i \(0.430467\pi\)
\(74\) −811.780 −1.27524
\(75\) −294.313 −0.453125
\(76\) 407.352 0.614822
\(77\) 0 0
\(78\) −469.240 −0.681167
\(79\) −493.647 −0.703033 −0.351517 0.936182i \(-0.614334\pi\)
−0.351517 + 0.936182i \(0.614334\pi\)
\(80\) 1842.96 2.57562
\(81\) 81.0000 0.111111
\(82\) 1466.45 1.97490
\(83\) 271.033 0.358431 0.179216 0.983810i \(-0.442644\pi\)
0.179216 + 0.983810i \(0.442644\pi\)
\(84\) −676.048 −0.878130
\(85\) −1972.61 −2.51718
\(86\) 530.646 0.665361
\(87\) −143.150 −0.176405
\(88\) 0 0
\(89\) −77.4891 −0.0922902 −0.0461451 0.998935i \(-0.514694\pi\)
−0.0461451 + 0.998935i \(0.514694\pi\)
\(90\) −688.898 −0.806847
\(91\) −376.652 −0.433889
\(92\) −2899.92 −3.28628
\(93\) −204.103 −0.227575
\(94\) 2379.02 2.61040
\(95\) 333.190 0.359837
\(96\) 634.851 0.674940
\(97\) −1269.39 −1.32873 −0.664364 0.747409i \(-0.731298\pi\)
−0.664364 + 0.747409i \(0.731298\pi\)
\(98\) 977.348 1.00742
\(99\) 0 0
\(100\) 1791.51 1.79151
\(101\) 1238.06 1.21972 0.609859 0.792510i \(-0.291226\pi\)
0.609859 + 0.792510i \(0.291226\pi\)
\(102\) −2030.33 −1.97091
\(103\) 911.965 0.872413 0.436206 0.899847i \(-0.356322\pi\)
0.436206 + 0.899847i \(0.356322\pi\)
\(104\) 1605.01 1.51331
\(105\) −552.968 −0.513944
\(106\) 30.9953 0.0284012
\(107\) 1583.34 1.43054 0.715269 0.698849i \(-0.246304\pi\)
0.715269 + 0.698849i \(0.246304\pi\)
\(108\) −493.055 −0.439299
\(109\) −296.898 −0.260896 −0.130448 0.991455i \(-0.541642\pi\)
−0.130448 + 0.991455i \(0.541642\pi\)
\(110\) 0 0
\(111\) −475.228 −0.406366
\(112\) 1522.60 1.28458
\(113\) −109.404 −0.0910787 −0.0455393 0.998963i \(-0.514501\pi\)
−0.0455393 + 0.998963i \(0.514501\pi\)
\(114\) 342.939 0.281747
\(115\) −2371.96 −1.92336
\(116\) 871.367 0.697451
\(117\) −274.700 −0.217060
\(118\) 1135.70 0.886017
\(119\) −1629.72 −1.25543
\(120\) 2356.33 1.79252
\(121\) 0 0
\(122\) −1405.86 −1.04329
\(123\) 858.478 0.629320
\(124\) 1242.40 0.899761
\(125\) −401.731 −0.287455
\(126\) −569.148 −0.402411
\(127\) −1387.37 −0.969366 −0.484683 0.874690i \(-0.661065\pi\)
−0.484683 + 0.874690i \(0.661065\pi\)
\(128\) 1193.97 0.824474
\(129\) 310.647 0.212023
\(130\) 2336.30 1.57621
\(131\) −1515.23 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(132\) 0 0
\(133\) 275.272 0.179467
\(134\) −959.207 −0.618379
\(135\) −403.290 −0.257109
\(136\) 6944.63 4.37865
\(137\) −2970.09 −1.85220 −0.926101 0.377275i \(-0.876861\pi\)
−0.926101 + 0.377275i \(0.876861\pi\)
\(138\) −2441.37 −1.50596
\(139\) 2152.08 1.31322 0.656608 0.754232i \(-0.271990\pi\)
0.656608 + 0.754232i \(0.271990\pi\)
\(140\) 3365.97 2.03198
\(141\) 1392.71 0.831827
\(142\) 2345.59 1.38618
\(143\) 0 0
\(144\) 1110.47 0.642630
\(145\) 712.727 0.408198
\(146\) −1385.34 −0.785283
\(147\) 572.153 0.321023
\(148\) 2892.76 1.60664
\(149\) 132.876 0.0730579 0.0365290 0.999333i \(-0.488370\pi\)
0.0365290 + 0.999333i \(0.488370\pi\)
\(150\) 1508.23 0.820977
\(151\) −212.982 −0.114783 −0.0573915 0.998352i \(-0.518278\pi\)
−0.0573915 + 0.998352i \(0.518278\pi\)
\(152\) −1173.00 −0.625941
\(153\) −1188.59 −0.628049
\(154\) 0 0
\(155\) 1016.21 0.526604
\(156\) 1672.13 0.858187
\(157\) −2925.09 −1.48693 −0.743464 0.668776i \(-0.766818\pi\)
−0.743464 + 0.668776i \(0.766818\pi\)
\(158\) 2529.73 1.27376
\(159\) 18.1451 0.00905029
\(160\) −3160.86 −1.56180
\(161\) −1959.65 −0.959267
\(162\) −415.091 −0.201312
\(163\) −633.267 −0.304302 −0.152151 0.988357i \(-0.548620\pi\)
−0.152151 + 0.988357i \(0.548620\pi\)
\(164\) −5225.64 −2.48813
\(165\) 0 0
\(166\) −1388.93 −0.649410
\(167\) 1533.33 0.710496 0.355248 0.934772i \(-0.384396\pi\)
0.355248 + 0.934772i \(0.384396\pi\)
\(168\) 1946.74 0.894011
\(169\) −1265.40 −0.575965
\(170\) 10108.8 4.56065
\(171\) 200.761 0.0897813
\(172\) −1890.94 −0.838274
\(173\) −3326.68 −1.46198 −0.730991 0.682388i \(-0.760942\pi\)
−0.730991 + 0.682388i \(0.760942\pi\)
\(174\) 733.582 0.319613
\(175\) 1210.63 0.522945
\(176\) 0 0
\(177\) 664.857 0.282337
\(178\) 397.099 0.167212
\(179\) 4261.40 1.77940 0.889698 0.456549i \(-0.150915\pi\)
0.889698 + 0.456549i \(0.150915\pi\)
\(180\) 2454.87 1.01653
\(181\) 741.930 0.304681 0.152340 0.988328i \(-0.451319\pi\)
0.152340 + 0.988328i \(0.451319\pi\)
\(182\) 1930.18 0.786125
\(183\) −823.013 −0.332453
\(184\) 8350.55 3.34571
\(185\) 2366.11 0.940323
\(186\) 1045.94 0.412323
\(187\) 0 0
\(188\) −8477.59 −3.28879
\(189\) −333.187 −0.128232
\(190\) −1707.46 −0.651958
\(191\) 4132.16 1.56541 0.782704 0.622394i \(-0.213840\pi\)
0.782704 + 0.622394i \(0.213840\pi\)
\(192\) −292.105 −0.109796
\(193\) −3081.78 −1.14938 −0.574692 0.818370i \(-0.694878\pi\)
−0.574692 + 0.818370i \(0.694878\pi\)
\(194\) 6505.07 2.40741
\(195\) 1367.70 0.502272
\(196\) −3482.76 −1.26923
\(197\) −3059.84 −1.10662 −0.553310 0.832975i \(-0.686636\pi\)
−0.553310 + 0.832975i \(0.686636\pi\)
\(198\) 0 0
\(199\) −971.928 −0.346222 −0.173111 0.984902i \(-0.555382\pi\)
−0.173111 + 0.984902i \(0.555382\pi\)
\(200\) −5158.81 −1.82391
\(201\) −561.533 −0.197052
\(202\) −6344.54 −2.20990
\(203\) 588.835 0.203587
\(204\) 7235.04 2.48311
\(205\) −4274.27 −1.45623
\(206\) −4673.43 −1.58065
\(207\) −1429.21 −0.479889
\(208\) −3765.98 −1.25540
\(209\) 0 0
\(210\) 2833.73 0.931170
\(211\) −3327.16 −1.08555 −0.542775 0.839878i \(-0.682626\pi\)
−0.542775 + 0.839878i \(0.682626\pi\)
\(212\) −110.451 −0.0357821
\(213\) 1373.14 0.441719
\(214\) −8113.97 −2.59187
\(215\) −1546.68 −0.490617
\(216\) 1419.79 0.447244
\(217\) 839.562 0.262641
\(218\) 1521.48 0.472694
\(219\) −810.996 −0.250237
\(220\) 0 0
\(221\) 4030.91 1.22692
\(222\) 2435.34 0.736259
\(223\) 4915.02 1.47594 0.737969 0.674834i \(-0.235785\pi\)
0.737969 + 0.674834i \(0.235785\pi\)
\(224\) −2611.41 −0.778939
\(225\) 882.939 0.261612
\(226\) 560.651 0.165017
\(227\) 1062.64 0.310706 0.155353 0.987859i \(-0.450349\pi\)
0.155353 + 0.987859i \(0.450349\pi\)
\(228\) −1222.06 −0.354968
\(229\) −4312.88 −1.24456 −0.622278 0.782796i \(-0.713793\pi\)
−0.622278 + 0.782796i \(0.713793\pi\)
\(230\) 12155.3 3.48477
\(231\) 0 0
\(232\) −2509.17 −0.710065
\(233\) −5154.61 −1.44931 −0.724655 0.689111i \(-0.758001\pi\)
−0.724655 + 0.689111i \(0.758001\pi\)
\(234\) 1407.72 0.393272
\(235\) −6934.17 −1.92483
\(236\) −4047.05 −1.11627
\(237\) 1480.94 0.405896
\(238\) 8351.62 2.27460
\(239\) 124.293 0.0336395 0.0168197 0.999859i \(-0.494646\pi\)
0.0168197 + 0.999859i \(0.494646\pi\)
\(240\) −5528.89 −1.48703
\(241\) 445.539 0.119086 0.0595429 0.998226i \(-0.481036\pi\)
0.0595429 + 0.998226i \(0.481036\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 5009.76 1.31442
\(245\) −2848.69 −0.742841
\(246\) −4399.34 −1.14021
\(247\) −680.853 −0.175391
\(248\) −3577.58 −0.916034
\(249\) −813.100 −0.206940
\(250\) 2058.70 0.520815
\(251\) 1471.10 0.369940 0.184970 0.982744i \(-0.440781\pi\)
0.184970 + 0.982744i \(0.440781\pi\)
\(252\) 2028.15 0.506989
\(253\) 0 0
\(254\) 7109.70 1.75631
\(255\) 5917.84 1.45329
\(256\) −6897.52 −1.68396
\(257\) 1463.01 0.355097 0.177549 0.984112i \(-0.443183\pi\)
0.177549 + 0.984112i \(0.443183\pi\)
\(258\) −1591.94 −0.384146
\(259\) 1954.81 0.468981
\(260\) −8325.34 −1.98583
\(261\) 429.449 0.101848
\(262\) 7764.91 1.83098
\(263\) 734.717 0.172261 0.0861304 0.996284i \(-0.472550\pi\)
0.0861304 + 0.996284i \(0.472550\pi\)
\(264\) 0 0
\(265\) −90.3423 −0.0209422
\(266\) −1410.65 −0.325161
\(267\) 232.467 0.0532838
\(268\) 3418.11 0.779083
\(269\) 3427.29 0.776823 0.388411 0.921486i \(-0.373024\pi\)
0.388411 + 0.921486i \(0.373024\pi\)
\(270\) 2066.69 0.465833
\(271\) −1719.34 −0.385398 −0.192699 0.981258i \(-0.561724\pi\)
−0.192699 + 0.981258i \(0.561724\pi\)
\(272\) −16294.8 −3.63243
\(273\) 1129.96 0.250506
\(274\) 15220.5 3.35584
\(275\) 0 0
\(276\) 8699.76 1.89733
\(277\) −5156.07 −1.11841 −0.559203 0.829031i \(-0.688893\pi\)
−0.559203 + 0.829031i \(0.688893\pi\)
\(278\) −11028.5 −2.37930
\(279\) 612.309 0.131391
\(280\) −9692.59 −2.06872
\(281\) −5020.69 −1.06587 −0.532934 0.846157i \(-0.678911\pi\)
−0.532934 + 0.846157i \(0.678911\pi\)
\(282\) −7137.07 −1.50711
\(283\) 1878.02 0.394477 0.197238 0.980356i \(-0.436803\pi\)
0.197238 + 0.980356i \(0.436803\pi\)
\(284\) −8358.46 −1.74642
\(285\) −999.569 −0.207752
\(286\) 0 0
\(287\) −3531.28 −0.726289
\(288\) −1904.55 −0.389677
\(289\) 12528.2 2.55000
\(290\) −3652.42 −0.739578
\(291\) 3808.16 0.767142
\(292\) 4936.61 0.989361
\(293\) −4811.63 −0.959379 −0.479690 0.877438i \(-0.659251\pi\)
−0.479690 + 0.877438i \(0.659251\pi\)
\(294\) −2932.05 −0.581634
\(295\) −3310.25 −0.653323
\(296\) −8329.93 −1.63570
\(297\) 0 0
\(298\) −680.934 −0.132367
\(299\) 4846.96 0.937482
\(300\) −5374.54 −1.03433
\(301\) −1277.82 −0.244693
\(302\) 1091.44 0.207965
\(303\) −3714.18 −0.704205
\(304\) 2752.33 0.519266
\(305\) 4097.69 0.769289
\(306\) 6091.00 1.13791
\(307\) 598.905 0.111340 0.0556699 0.998449i \(-0.482271\pi\)
0.0556699 + 0.998449i \(0.482271\pi\)
\(308\) 0 0
\(309\) −2735.89 −0.503688
\(310\) −5207.63 −0.954108
\(311\) 5131.15 0.935566 0.467783 0.883843i \(-0.345053\pi\)
0.467783 + 0.883843i \(0.345053\pi\)
\(312\) −4815.02 −0.873708
\(313\) −9541.45 −1.72305 −0.861525 0.507716i \(-0.830490\pi\)
−0.861525 + 0.507716i \(0.830490\pi\)
\(314\) 14989.9 2.69403
\(315\) 1658.90 0.296726
\(316\) −9014.64 −1.60479
\(317\) 6603.42 1.16998 0.584992 0.811039i \(-0.301098\pi\)
0.584992 + 0.811039i \(0.301098\pi\)
\(318\) −92.9858 −0.0163974
\(319\) 0 0
\(320\) 1454.36 0.254066
\(321\) −4750.03 −0.825922
\(322\) 10042.4 1.73801
\(323\) −2945.95 −0.507483
\(324\) 1479.17 0.253629
\(325\) −2994.36 −0.511068
\(326\) 3245.23 0.551339
\(327\) 890.693 0.150628
\(328\) 15047.7 2.53313
\(329\) −5728.82 −0.960000
\(330\) 0 0
\(331\) −6549.79 −1.08764 −0.543820 0.839202i \(-0.683023\pi\)
−0.543820 + 0.839202i \(0.683023\pi\)
\(332\) 4949.43 0.818178
\(333\) 1425.68 0.234615
\(334\) −7857.69 −1.28729
\(335\) 2795.81 0.455975
\(336\) −4567.81 −0.741651
\(337\) 2690.38 0.434879 0.217439 0.976074i \(-0.430230\pi\)
0.217439 + 0.976074i \(0.430230\pi\)
\(338\) 6484.62 1.04354
\(339\) 328.213 0.0525843
\(340\) −36022.5 −5.74587
\(341\) 0 0
\(342\) −1028.82 −0.162667
\(343\) −6586.22 −1.03680
\(344\) 5445.12 0.853434
\(345\) 7115.89 1.11045
\(346\) 17047.8 2.64884
\(347\) 778.334 0.120413 0.0602063 0.998186i \(-0.480824\pi\)
0.0602063 + 0.998186i \(0.480824\pi\)
\(348\) −2614.10 −0.402674
\(349\) 5416.06 0.830702 0.415351 0.909661i \(-0.363659\pi\)
0.415351 + 0.909661i \(0.363659\pi\)
\(350\) −6203.99 −0.947478
\(351\) 824.099 0.125320
\(352\) 0 0
\(353\) −4504.51 −0.679181 −0.339591 0.940573i \(-0.610289\pi\)
−0.339591 + 0.940573i \(0.610289\pi\)
\(354\) −3407.11 −0.511542
\(355\) −6836.73 −1.02213
\(356\) −1415.05 −0.210667
\(357\) 4889.15 0.724822
\(358\) −21837.9 −3.22393
\(359\) −8588.42 −1.26262 −0.631308 0.775532i \(-0.717482\pi\)
−0.631308 + 0.775532i \(0.717482\pi\)
\(360\) −7068.99 −1.03491
\(361\) −6361.41 −0.927454
\(362\) −3802.08 −0.552025
\(363\) 0 0
\(364\) −6878.16 −0.990422
\(365\) 4037.86 0.579045
\(366\) 4217.59 0.602342
\(367\) 2178.08 0.309795 0.154897 0.987931i \(-0.450495\pi\)
0.154897 + 0.987931i \(0.450495\pi\)
\(368\) −19593.7 −2.77552
\(369\) −2575.43 −0.363338
\(370\) −12125.3 −1.70369
\(371\) −74.6383 −0.0104448
\(372\) −3727.19 −0.519478
\(373\) 12814.7 1.77888 0.889440 0.457052i \(-0.151095\pi\)
0.889440 + 0.457052i \(0.151095\pi\)
\(374\) 0 0
\(375\) 1205.19 0.165963
\(376\) 24411.9 3.34826
\(377\) −1456.41 −0.198963
\(378\) 1707.44 0.232332
\(379\) 7302.82 0.989764 0.494882 0.868960i \(-0.335211\pi\)
0.494882 + 0.868960i \(0.335211\pi\)
\(380\) 6084.48 0.821388
\(381\) 4162.12 0.559663
\(382\) −21175.6 −2.83622
\(383\) 11314.0 1.50945 0.754726 0.656040i \(-0.227770\pi\)
0.754726 + 0.656040i \(0.227770\pi\)
\(384\) −3581.90 −0.476010
\(385\) 0 0
\(386\) 15792.8 2.08247
\(387\) −931.942 −0.122412
\(388\) −23180.7 −3.03304
\(389\) −2955.81 −0.385259 −0.192629 0.981272i \(-0.561701\pi\)
−0.192629 + 0.981272i \(0.561701\pi\)
\(390\) −7008.89 −0.910023
\(391\) 20972.1 2.71254
\(392\) 10028.9 1.29218
\(393\) 4545.69 0.583460
\(394\) 15680.4 2.00499
\(395\) −7373.45 −0.939236
\(396\) 0 0
\(397\) 12391.9 1.56658 0.783288 0.621659i \(-0.213541\pi\)
0.783288 + 0.621659i \(0.213541\pi\)
\(398\) 4980.72 0.627289
\(399\) −825.816 −0.103615
\(400\) 12104.6 1.51308
\(401\) 7592.65 0.945533 0.472766 0.881188i \(-0.343255\pi\)
0.472766 + 0.881188i \(0.343255\pi\)
\(402\) 2877.62 0.357022
\(403\) −2076.56 −0.256677
\(404\) 22608.6 2.78421
\(405\) 1209.87 0.148442
\(406\) −3017.53 −0.368861
\(407\) 0 0
\(408\) −20833.9 −2.52802
\(409\) 7275.77 0.879618 0.439809 0.898091i \(-0.355046\pi\)
0.439809 + 0.898091i \(0.355046\pi\)
\(410\) 21903.8 2.63842
\(411\) 8910.26 1.06937
\(412\) 16653.7 1.99143
\(413\) −2734.84 −0.325842
\(414\) 7324.11 0.869469
\(415\) 4048.34 0.478856
\(416\) 6459.02 0.761248
\(417\) −6456.24 −0.758186
\(418\) 0 0
\(419\) 11095.7 1.29370 0.646851 0.762616i \(-0.276085\pi\)
0.646851 + 0.762616i \(0.276085\pi\)
\(420\) −10097.9 −1.17316
\(421\) −5103.54 −0.590811 −0.295406 0.955372i \(-0.595455\pi\)
−0.295406 + 0.955372i \(0.595455\pi\)
\(422\) 17050.3 1.96681
\(423\) −4178.14 −0.480255
\(424\) 318.052 0.0364292
\(425\) −12956.2 −1.47874
\(426\) −7036.78 −0.800312
\(427\) 3385.40 0.383679
\(428\) 28913.9 3.26544
\(429\) 0 0
\(430\) 7926.09 0.888906
\(431\) 14437.7 1.61355 0.806774 0.590861i \(-0.201212\pi\)
0.806774 + 0.590861i \(0.201212\pi\)
\(432\) −3331.40 −0.371023
\(433\) 4236.83 0.470229 0.235114 0.971968i \(-0.424454\pi\)
0.235114 + 0.971968i \(0.424454\pi\)
\(434\) −4302.40 −0.475857
\(435\) −2138.18 −0.235673
\(436\) −5421.74 −0.595538
\(437\) −3542.35 −0.387766
\(438\) 4156.01 0.453383
\(439\) −1809.83 −0.196761 −0.0983807 0.995149i \(-0.531366\pi\)
−0.0983807 + 0.995149i \(0.531366\pi\)
\(440\) 0 0
\(441\) −1716.46 −0.185343
\(442\) −20656.7 −2.22294
\(443\) 4797.37 0.514514 0.257257 0.966343i \(-0.417181\pi\)
0.257257 + 0.966343i \(0.417181\pi\)
\(444\) −8678.28 −0.927597
\(445\) −1157.43 −0.123298
\(446\) −25187.4 −2.67412
\(447\) −398.628 −0.0421800
\(448\) 1201.55 0.126714
\(449\) −9177.20 −0.964585 −0.482293 0.876010i \(-0.660196\pi\)
−0.482293 + 0.876010i \(0.660196\pi\)
\(450\) −4524.69 −0.473991
\(451\) 0 0
\(452\) −1997.87 −0.207902
\(453\) 638.946 0.0662700
\(454\) −5445.61 −0.562940
\(455\) −5625.93 −0.579665
\(456\) 3519.01 0.361387
\(457\) −6179.47 −0.632524 −0.316262 0.948672i \(-0.602428\pi\)
−0.316262 + 0.948672i \(0.602428\pi\)
\(458\) 22101.7 2.25490
\(459\) 3565.76 0.362604
\(460\) −43315.2 −4.39039
\(461\) 16827.2 1.70004 0.850022 0.526747i \(-0.176589\pi\)
0.850022 + 0.526747i \(0.176589\pi\)
\(462\) 0 0
\(463\) −818.694 −0.0821770 −0.0410885 0.999156i \(-0.513083\pi\)
−0.0410885 + 0.999156i \(0.513083\pi\)
\(464\) 5887.51 0.589053
\(465\) −3048.62 −0.304035
\(466\) 26415.2 2.62588
\(467\) −16789.7 −1.66367 −0.831836 0.555021i \(-0.812710\pi\)
−0.831836 + 0.555021i \(0.812710\pi\)
\(468\) −5016.38 −0.495475
\(469\) 2309.82 0.227415
\(470\) 35534.7 3.48743
\(471\) 8775.27 0.858478
\(472\) 11653.8 1.13646
\(473\) 0 0
\(474\) −7589.20 −0.735408
\(475\) 2188.40 0.211391
\(476\) −29760.8 −2.86572
\(477\) −54.4352 −0.00522519
\(478\) −636.949 −0.0609485
\(479\) 4656.56 0.444183 0.222092 0.975026i \(-0.428712\pi\)
0.222092 + 0.975026i \(0.428712\pi\)
\(480\) 9482.57 0.901704
\(481\) −4835.00 −0.458330
\(482\) −2283.20 −0.215761
\(483\) 5878.95 0.553833
\(484\) 0 0
\(485\) −18960.4 −1.77515
\(486\) 1245.27 0.116228
\(487\) 17627.2 1.64018 0.820089 0.572236i \(-0.193924\pi\)
0.820089 + 0.572236i \(0.193924\pi\)
\(488\) −14426.0 −1.33819
\(489\) 1899.80 0.175689
\(490\) 14598.3 1.34589
\(491\) 14954.8 1.37454 0.687269 0.726403i \(-0.258809\pi\)
0.687269 + 0.726403i \(0.258809\pi\)
\(492\) 15676.9 1.43653
\(493\) −6301.69 −0.575687
\(494\) 3489.09 0.317776
\(495\) 0 0
\(496\) 8394.41 0.759920
\(497\) −5648.32 −0.509782
\(498\) 4166.80 0.374937
\(499\) −21474.7 −1.92653 −0.963265 0.268554i \(-0.913454\pi\)
−0.963265 + 0.268554i \(0.913454\pi\)
\(500\) −7336.14 −0.656164
\(501\) −4600.00 −0.410205
\(502\) −7538.77 −0.670263
\(503\) −11832.4 −1.04887 −0.524435 0.851450i \(-0.675723\pi\)
−0.524435 + 0.851450i \(0.675723\pi\)
\(504\) −5840.21 −0.516158
\(505\) 18492.5 1.62952
\(506\) 0 0
\(507\) 3796.19 0.332534
\(508\) −25335.2 −2.21274
\(509\) −13571.6 −1.18183 −0.590914 0.806735i \(-0.701233\pi\)
−0.590914 + 0.806735i \(0.701233\pi\)
\(510\) −30326.4 −2.63309
\(511\) 3335.97 0.288796
\(512\) 25795.1 2.22655
\(513\) −602.284 −0.0518353
\(514\) −7497.31 −0.643370
\(515\) 13621.7 1.16552
\(516\) 5672.83 0.483977
\(517\) 0 0
\(518\) −10017.6 −0.849706
\(519\) 9980.04 0.844075
\(520\) 23973.5 2.02174
\(521\) −2124.44 −0.178644 −0.0893221 0.996003i \(-0.528470\pi\)
−0.0893221 + 0.996003i \(0.528470\pi\)
\(522\) −2200.75 −0.184529
\(523\) 5558.58 0.464741 0.232371 0.972627i \(-0.425352\pi\)
0.232371 + 0.972627i \(0.425352\pi\)
\(524\) −27670.1 −2.30682
\(525\) −3631.90 −0.301922
\(526\) −3765.11 −0.312104
\(527\) −8984.95 −0.742677
\(528\) 0 0
\(529\) 13050.8 1.07264
\(530\) 462.966 0.0379433
\(531\) −1994.57 −0.163008
\(532\) 5026.83 0.409663
\(533\) 8734.21 0.709794
\(534\) −1191.30 −0.0965402
\(535\) 23649.9 1.91117
\(536\) −9842.72 −0.793173
\(537\) −12784.2 −1.02733
\(538\) −17563.4 −1.40746
\(539\) 0 0
\(540\) −7364.61 −0.586893
\(541\) −13186.0 −1.04789 −0.523946 0.851751i \(-0.675541\pi\)
−0.523946 + 0.851751i \(0.675541\pi\)
\(542\) 8810.92 0.698268
\(543\) −2225.79 −0.175908
\(544\) 27947.2 2.20262
\(545\) −4434.67 −0.348551
\(546\) −5790.55 −0.453869
\(547\) −20380.7 −1.59308 −0.796539 0.604587i \(-0.793338\pi\)
−0.796539 + 0.604587i \(0.793338\pi\)
\(548\) −54237.7 −4.22796
\(549\) 2469.04 0.191942
\(550\) 0 0
\(551\) 1064.40 0.0822961
\(552\) −25051.6 −1.93165
\(553\) −6091.74 −0.468439
\(554\) 26422.7 2.02634
\(555\) −7098.32 −0.542895
\(556\) 39299.8 2.99763
\(557\) 8523.55 0.648392 0.324196 0.945990i \(-0.394906\pi\)
0.324196 + 0.945990i \(0.394906\pi\)
\(558\) −3137.82 −0.238055
\(559\) 3160.55 0.239136
\(560\) 22742.7 1.71616
\(561\) 0 0
\(562\) 25728.9 1.93115
\(563\) −24660.1 −1.84600 −0.923000 0.384801i \(-0.874270\pi\)
−0.923000 + 0.384801i \(0.874270\pi\)
\(564\) 25432.8 1.89878
\(565\) −1634.14 −0.121679
\(566\) −9624.08 −0.714718
\(567\) 999.562 0.0740346
\(568\) 24068.9 1.77801
\(569\) −6276.91 −0.462464 −0.231232 0.972899i \(-0.574276\pi\)
−0.231232 + 0.972899i \(0.574276\pi\)
\(570\) 5122.37 0.376408
\(571\) −13032.1 −0.955127 −0.477563 0.878597i \(-0.658480\pi\)
−0.477563 + 0.878597i \(0.658480\pi\)
\(572\) 0 0
\(573\) −12396.5 −0.903789
\(574\) 18096.3 1.31590
\(575\) −15579.1 −1.12990
\(576\) 876.314 0.0633908
\(577\) 7724.04 0.557289 0.278645 0.960394i \(-0.410115\pi\)
0.278645 + 0.960394i \(0.410115\pi\)
\(578\) −64201.6 −4.62013
\(579\) 9245.33 0.663597
\(580\) 13015.3 0.931779
\(581\) 3344.63 0.238827
\(582\) −19515.2 −1.38992
\(583\) 0 0
\(584\) −14215.4 −1.00725
\(585\) −4103.10 −0.289987
\(586\) 24657.6 1.73822
\(587\) 3858.98 0.271341 0.135670 0.990754i \(-0.456681\pi\)
0.135670 + 0.990754i \(0.456681\pi\)
\(588\) 10448.3 0.732788
\(589\) 1517.63 0.106168
\(590\) 16963.7 1.18370
\(591\) 9179.51 0.638908
\(592\) 19545.3 1.35694
\(593\) −26982.6 −1.86854 −0.934270 0.356567i \(-0.883947\pi\)
−0.934270 + 0.356567i \(0.883947\pi\)
\(594\) 0 0
\(595\) −24342.6 −1.67722
\(596\) 2426.49 0.166767
\(597\) 2915.78 0.199891
\(598\) −24838.6 −1.69854
\(599\) −22912.4 −1.56289 −0.781447 0.623971i \(-0.785518\pi\)
−0.781447 + 0.623971i \(0.785518\pi\)
\(600\) 15476.4 1.05304
\(601\) −3091.89 −0.209851 −0.104926 0.994480i \(-0.533460\pi\)
−0.104926 + 0.994480i \(0.533460\pi\)
\(602\) 6548.31 0.443338
\(603\) 1684.60 0.113768
\(604\) −3889.33 −0.262011
\(605\) 0 0
\(606\) 19033.6 1.27589
\(607\) 13059.0 0.873225 0.436612 0.899650i \(-0.356178\pi\)
0.436612 + 0.899650i \(0.356178\pi\)
\(608\) −4720.50 −0.314871
\(609\) −1766.50 −0.117541
\(610\) −20999.0 −1.39381
\(611\) 14169.5 0.938197
\(612\) −21705.1 −1.43362
\(613\) 27025.2 1.78065 0.890325 0.455326i \(-0.150477\pi\)
0.890325 + 0.455326i \(0.150477\pi\)
\(614\) −3069.13 −0.201727
\(615\) 12822.8 0.840757
\(616\) 0 0
\(617\) 23885.0 1.55847 0.779235 0.626732i \(-0.215608\pi\)
0.779235 + 0.626732i \(0.215608\pi\)
\(618\) 14020.3 0.912588
\(619\) −14347.6 −0.931631 −0.465815 0.884882i \(-0.654239\pi\)
−0.465815 + 0.884882i \(0.654239\pi\)
\(620\) 18557.3 1.20206
\(621\) 4287.63 0.277064
\(622\) −26295.0 −1.69507
\(623\) −956.236 −0.0614940
\(624\) 11297.9 0.724807
\(625\) −18263.6 −1.16887
\(626\) 48895.9 3.12184
\(627\) 0 0
\(628\) −53416.0 −3.39415
\(629\) −20920.3 −1.32615
\(630\) −8501.18 −0.537611
\(631\) 4672.42 0.294780 0.147390 0.989078i \(-0.452913\pi\)
0.147390 + 0.989078i \(0.452913\pi\)
\(632\) 25958.4 1.63381
\(633\) 9981.48 0.626743
\(634\) −33839.7 −2.11979
\(635\) −20722.7 −1.29505
\(636\) 331.353 0.0206588
\(637\) 5821.13 0.362074
\(638\) 0 0
\(639\) −4119.43 −0.255027
\(640\) 17833.9 1.10148
\(641\) 1007.49 0.0620802 0.0310401 0.999518i \(-0.490118\pi\)
0.0310401 + 0.999518i \(0.490118\pi\)
\(642\) 24341.9 1.49642
\(643\) −238.620 −0.0146349 −0.00731747 0.999973i \(-0.502329\pi\)
−0.00731747 + 0.999973i \(0.502329\pi\)
\(644\) −35785.8 −2.18969
\(645\) 4640.04 0.283258
\(646\) 15096.8 0.919464
\(647\) 8030.33 0.487952 0.243976 0.969781i \(-0.421548\pi\)
0.243976 + 0.969781i \(0.421548\pi\)
\(648\) −4259.38 −0.258216
\(649\) 0 0
\(650\) 15344.8 0.925960
\(651\) −2518.68 −0.151636
\(652\) −11564.3 −0.694620
\(653\) 292.050 0.0175020 0.00875101 0.999962i \(-0.497214\pi\)
0.00875101 + 0.999962i \(0.497214\pi\)
\(654\) −4564.43 −0.272910
\(655\) −22632.5 −1.35011
\(656\) −35307.8 −2.10143
\(657\) 2432.99 0.144475
\(658\) 29357.8 1.73934
\(659\) 9034.21 0.534025 0.267013 0.963693i \(-0.413963\pi\)
0.267013 + 0.963693i \(0.413963\pi\)
\(660\) 0 0
\(661\) 11884.6 0.699332 0.349666 0.936874i \(-0.386295\pi\)
0.349666 + 0.936874i \(0.386295\pi\)
\(662\) 33564.9 1.97060
\(663\) −12092.7 −0.708361
\(664\) −14252.3 −0.832975
\(665\) 4111.65 0.239764
\(666\) −7306.02 −0.425079
\(667\) −7577.45 −0.439880
\(668\) 28000.7 1.62182
\(669\) −14745.1 −0.852133
\(670\) −14327.4 −0.826141
\(671\) 0 0
\(672\) 7834.23 0.449720
\(673\) 7483.49 0.428629 0.214314 0.976765i \(-0.431248\pi\)
0.214314 + 0.976765i \(0.431248\pi\)
\(674\) −13787.0 −0.787919
\(675\) −2648.82 −0.151042
\(676\) −23107.8 −1.31474
\(677\) 31698.6 1.79952 0.899761 0.436384i \(-0.143741\pi\)
0.899761 + 0.436384i \(0.143741\pi\)
\(678\) −1681.95 −0.0952729
\(679\) −15664.6 −0.885347
\(680\) 103730. 5.84978
\(681\) −3187.93 −0.179386
\(682\) 0 0
\(683\) −7905.89 −0.442914 −0.221457 0.975170i \(-0.571081\pi\)
−0.221457 + 0.975170i \(0.571081\pi\)
\(684\) 3666.17 0.204941
\(685\) −44363.3 −2.47450
\(686\) 33751.6 1.87849
\(687\) 12938.6 0.718545
\(688\) −12776.4 −0.707989
\(689\) 184.609 0.0102076
\(690\) −36465.9 −2.01193
\(691\) −6903.03 −0.380034 −0.190017 0.981781i \(-0.560854\pi\)
−0.190017 + 0.981781i \(0.560854\pi\)
\(692\) −60749.5 −3.33721
\(693\) 0 0
\(694\) −3988.64 −0.218165
\(695\) 32144.9 1.75443
\(696\) 7527.51 0.409956
\(697\) 37791.6 2.05374
\(698\) −27755.0 −1.50508
\(699\) 15463.8 0.836760
\(700\) 22107.8 1.19371
\(701\) −20702.1 −1.11542 −0.557709 0.830036i \(-0.688320\pi\)
−0.557709 + 0.830036i \(0.688320\pi\)
\(702\) −4223.16 −0.227056
\(703\) 3533.61 0.189577
\(704\) 0 0
\(705\) 20802.5 1.11130
\(706\) 23083.7 1.23055
\(707\) 15278.0 0.812713
\(708\) 12141.2 0.644481
\(709\) −6302.17 −0.333826 −0.166913 0.985972i \(-0.553380\pi\)
−0.166913 + 0.985972i \(0.553380\pi\)
\(710\) 35035.4 1.85191
\(711\) −4442.82 −0.234344
\(712\) 4074.76 0.214477
\(713\) −10803.9 −0.567476
\(714\) −25054.9 −1.31324
\(715\) 0 0
\(716\) 77818.7 4.06176
\(717\) −372.879 −0.0194218
\(718\) 44012.0 2.28762
\(719\) 1385.72 0.0718756 0.0359378 0.999354i \(-0.488558\pi\)
0.0359378 + 0.999354i \(0.488558\pi\)
\(720\) 16586.7 0.858539
\(721\) 11253.9 0.581299
\(722\) 32599.5 1.68037
\(723\) −1336.62 −0.0687542
\(724\) 13548.6 0.695484
\(725\) 4681.20 0.239801
\(726\) 0 0
\(727\) −11818.1 −0.602900 −0.301450 0.953482i \(-0.597471\pi\)
−0.301450 + 0.953482i \(0.597471\pi\)
\(728\) 19806.2 1.00833
\(729\) 729.000 0.0370370
\(730\) −20692.3 −1.04912
\(731\) 13675.2 0.691924
\(732\) −15029.3 −0.758878
\(733\) 9537.65 0.480602 0.240301 0.970698i \(-0.422754\pi\)
0.240301 + 0.970698i \(0.422754\pi\)
\(734\) −11161.7 −0.561290
\(735\) 8546.07 0.428880
\(736\) 33605.1 1.68301
\(737\) 0 0
\(738\) 13198.0 0.658300
\(739\) 3411.51 0.169817 0.0849084 0.996389i \(-0.472940\pi\)
0.0849084 + 0.996389i \(0.472940\pi\)
\(740\) 43208.2 2.14644
\(741\) 2042.56 0.101262
\(742\) 382.490 0.0189240
\(743\) 2452.91 0.121115 0.0605576 0.998165i \(-0.480712\pi\)
0.0605576 + 0.998165i \(0.480712\pi\)
\(744\) 10732.7 0.528872
\(745\) 1984.73 0.0976037
\(746\) −65670.2 −3.22300
\(747\) 2439.30 0.119477
\(748\) 0 0
\(749\) 19538.9 0.953185
\(750\) −6176.11 −0.300693
\(751\) −11556.1 −0.561500 −0.280750 0.959781i \(-0.590583\pi\)
−0.280750 + 0.959781i \(0.590583\pi\)
\(752\) −57280.0 −2.77764
\(753\) −4413.30 −0.213585
\(754\) 7463.51 0.360484
\(755\) −3181.24 −0.153347
\(756\) −6084.44 −0.292710
\(757\) 25642.8 1.23118 0.615589 0.788067i \(-0.288918\pi\)
0.615589 + 0.788067i \(0.288918\pi\)
\(758\) −37423.9 −1.79327
\(759\) 0 0
\(760\) −17520.8 −0.836243
\(761\) 6054.02 0.288381 0.144191 0.989550i \(-0.453942\pi\)
0.144191 + 0.989550i \(0.453942\pi\)
\(762\) −21329.1 −1.01401
\(763\) −3663.80 −0.173838
\(764\) 75458.7 3.57330
\(765\) −17753.5 −0.839058
\(766\) −57979.7 −2.73484
\(767\) 6764.30 0.318442
\(768\) 20692.5 0.972237
\(769\) −23509.7 −1.10245 −0.551224 0.834357i \(-0.685839\pi\)
−0.551224 + 0.834357i \(0.685839\pi\)
\(770\) 0 0
\(771\) −4389.03 −0.205015
\(772\) −56277.3 −2.62366
\(773\) 4985.36 0.231967 0.115984 0.993251i \(-0.462998\pi\)
0.115984 + 0.993251i \(0.462998\pi\)
\(774\) 4775.81 0.221787
\(775\) 6674.46 0.309360
\(776\) 66750.6 3.08789
\(777\) −5864.44 −0.270766
\(778\) 15147.3 0.698016
\(779\) −6383.30 −0.293589
\(780\) 24976.0 1.14652
\(781\) 0 0
\(782\) −107473. −4.91462
\(783\) −1288.35 −0.0588017
\(784\) −23531.7 −1.07196
\(785\) −43691.1 −1.98650
\(786\) −23294.7 −1.05712
\(787\) −23093.6 −1.04599 −0.522996 0.852335i \(-0.675186\pi\)
−0.522996 + 0.852335i \(0.675186\pi\)
\(788\) −55876.6 −2.52604
\(789\) −2204.15 −0.0994548
\(790\) 37785.8 1.70172
\(791\) −1350.08 −0.0606868
\(792\) 0 0
\(793\) −8373.39 −0.374965
\(794\) −63503.2 −2.83834
\(795\) 271.027 0.0120910
\(796\) −17748.7 −0.790308
\(797\) 17376.5 0.772281 0.386141 0.922440i \(-0.373808\pi\)
0.386141 + 0.922440i \(0.373808\pi\)
\(798\) 4231.96 0.187732
\(799\) 61309.6 2.71461
\(800\) −20760.6 −0.917496
\(801\) −697.402 −0.0307634
\(802\) −38909.1 −1.71313
\(803\) 0 0
\(804\) −10254.3 −0.449804
\(805\) −29270.7 −1.28156
\(806\) 10641.5 0.465050
\(807\) −10281.9 −0.448499
\(808\) −65103.3 −2.83456
\(809\) −3335.36 −0.144951 −0.0724753 0.997370i \(-0.523090\pi\)
−0.0724753 + 0.997370i \(0.523090\pi\)
\(810\) −6200.08 −0.268949
\(811\) −4873.73 −0.211023 −0.105512 0.994418i \(-0.533648\pi\)
−0.105512 + 0.994418i \(0.533648\pi\)
\(812\) 10752.9 0.464720
\(813\) 5158.03 0.222509
\(814\) 0 0
\(815\) −9458.91 −0.406541
\(816\) 48884.5 2.09718
\(817\) −2309.85 −0.0989125
\(818\) −37285.3 −1.59370
\(819\) −3389.87 −0.144630
\(820\) −78053.7 −3.32409
\(821\) −18640.4 −0.792392 −0.396196 0.918166i \(-0.629670\pi\)
−0.396196 + 0.918166i \(0.629670\pi\)
\(822\) −45661.4 −1.93750
\(823\) 18819.8 0.797106 0.398553 0.917145i \(-0.369512\pi\)
0.398553 + 0.917145i \(0.369512\pi\)
\(824\) −47955.6 −2.02744
\(825\) 0 0
\(826\) 14014.9 0.590364
\(827\) 34989.3 1.47122 0.735610 0.677406i \(-0.236896\pi\)
0.735610 + 0.677406i \(0.236896\pi\)
\(828\) −26099.3 −1.09543
\(829\) 14231.8 0.596250 0.298125 0.954527i \(-0.403639\pi\)
0.298125 + 0.954527i \(0.403639\pi\)
\(830\) −20746.0 −0.867597
\(831\) 15468.2 0.645712
\(832\) −2971.89 −0.123836
\(833\) 25187.2 1.04764
\(834\) 33085.5 1.37369
\(835\) 22902.9 0.949207
\(836\) 0 0
\(837\) −1836.93 −0.0758584
\(838\) −56860.9 −2.34395
\(839\) −25354.5 −1.04331 −0.521654 0.853157i \(-0.674685\pi\)
−0.521654 + 0.853157i \(0.674685\pi\)
\(840\) 29077.8 1.19438
\(841\) −22112.1 −0.906644
\(842\) 26153.5 1.07044
\(843\) 15062.1 0.615380
\(844\) −60758.3 −2.47795
\(845\) −18900.8 −0.769476
\(846\) 21411.2 0.870133
\(847\) 0 0
\(848\) −746.276 −0.0302208
\(849\) −5634.07 −0.227751
\(850\) 66394.9 2.67921
\(851\) −25155.6 −1.01330
\(852\) 25075.4 1.00830
\(853\) 9664.40 0.387928 0.193964 0.981009i \(-0.437865\pi\)
0.193964 + 0.981009i \(0.437865\pi\)
\(854\) −17348.7 −0.695154
\(855\) 2998.71 0.119946
\(856\) −83260.0 −3.32449
\(857\) 38619.7 1.53935 0.769676 0.638435i \(-0.220418\pi\)
0.769676 + 0.638435i \(0.220418\pi\)
\(858\) 0 0
\(859\) −30501.9 −1.21154 −0.605769 0.795641i \(-0.707134\pi\)
−0.605769 + 0.795641i \(0.707134\pi\)
\(860\) −28244.4 −1.11991
\(861\) 10593.8 0.419323
\(862\) −73987.1 −2.92344
\(863\) −29563.6 −1.16611 −0.583056 0.812432i \(-0.698143\pi\)
−0.583056 + 0.812432i \(0.698143\pi\)
\(864\) 5713.66 0.224980
\(865\) −49689.5 −1.95317
\(866\) −21712.0 −0.851966
\(867\) −37584.5 −1.47225
\(868\) 15331.5 0.599522
\(869\) 0 0
\(870\) 10957.3 0.426996
\(871\) −5713.07 −0.222250
\(872\) 15612.3 0.606308
\(873\) −11424.5 −0.442909
\(874\) 18153.1 0.702559
\(875\) −4957.47 −0.191535
\(876\) −14809.8 −0.571208
\(877\) 23007.5 0.885872 0.442936 0.896553i \(-0.353937\pi\)
0.442936 + 0.896553i \(0.353937\pi\)
\(878\) 9274.60 0.356495
\(879\) 14434.9 0.553898
\(880\) 0 0
\(881\) 34057.4 1.30241 0.651205 0.758902i \(-0.274264\pi\)
0.651205 + 0.758902i \(0.274264\pi\)
\(882\) 8796.14 0.335806
\(883\) 34653.7 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(884\) 73609.8 2.80064
\(885\) 9930.76 0.377196
\(886\) −24584.5 −0.932203
\(887\) 5147.89 0.194870 0.0974348 0.995242i \(-0.468936\pi\)
0.0974348 + 0.995242i \(0.468936\pi\)
\(888\) 24989.8 0.944372
\(889\) −17120.6 −0.645900
\(890\) 5931.34 0.223392
\(891\) 0 0
\(892\) 89754.8 3.36907
\(893\) −10355.7 −0.388062
\(894\) 2042.80 0.0764223
\(895\) 63651.2 2.37723
\(896\) 14733.8 0.549356
\(897\) −14540.9 −0.541255
\(898\) 47029.3 1.74765
\(899\) 3246.36 0.120436
\(900\) 16123.6 0.597172
\(901\) 798.776 0.0295351
\(902\) 0 0
\(903\) 3833.47 0.141273
\(904\) 5753.02 0.211662
\(905\) 11082.0 0.407047
\(906\) −3274.33 −0.120069
\(907\) 40684.2 1.48941 0.744706 0.667392i \(-0.232589\pi\)
0.744706 + 0.667392i \(0.232589\pi\)
\(908\) 19405.3 0.709237
\(909\) 11142.5 0.406573
\(910\) 28830.5 1.05024
\(911\) 25223.0 0.917315 0.458657 0.888613i \(-0.348331\pi\)
0.458657 + 0.888613i \(0.348331\pi\)
\(912\) −8256.98 −0.299798
\(913\) 0 0
\(914\) 31667.2 1.14601
\(915\) −12293.1 −0.444149
\(916\) −78758.9 −2.84090
\(917\) −18698.3 −0.673363
\(918\) −18273.0 −0.656970
\(919\) 9198.23 0.330165 0.165083 0.986280i \(-0.447211\pi\)
0.165083 + 0.986280i \(0.447211\pi\)
\(920\) 124729. 4.46979
\(921\) −1796.71 −0.0642820
\(922\) −86232.2 −3.08016
\(923\) 13970.4 0.498205
\(924\) 0 0
\(925\) 15540.6 0.552403
\(926\) 4195.46 0.148889
\(927\) 8207.68 0.290804
\(928\) −10097.6 −0.357189
\(929\) −33459.9 −1.18168 −0.590841 0.806788i \(-0.701204\pi\)
−0.590841 + 0.806788i \(0.701204\pi\)
\(930\) 15622.9 0.550855
\(931\) −4254.31 −0.149763
\(932\) −94129.9 −3.30829
\(933\) −15393.5 −0.540149
\(934\) 86040.2 3.01426
\(935\) 0 0
\(936\) 14445.1 0.504435
\(937\) 31048.7 1.08252 0.541258 0.840857i \(-0.317948\pi\)
0.541258 + 0.840857i \(0.317948\pi\)
\(938\) −11836.9 −0.412034
\(939\) 28624.3 0.994803
\(940\) −126627. −4.39374
\(941\) −21640.9 −0.749704 −0.374852 0.927085i \(-0.622307\pi\)
−0.374852 + 0.927085i \(0.622307\pi\)
\(942\) −44969.6 −1.55540
\(943\) 45442.4 1.56926
\(944\) −27344.5 −0.942783
\(945\) −4976.71 −0.171315
\(946\) 0 0
\(947\) −31725.1 −1.08862 −0.544311 0.838883i \(-0.683209\pi\)
−0.544311 + 0.838883i \(0.683209\pi\)
\(948\) 27043.9 0.926525
\(949\) −8251.12 −0.282237
\(950\) −11214.6 −0.383000
\(951\) −19810.3 −0.675490
\(952\) 85698.6 2.91755
\(953\) −52072.7 −1.76999 −0.884995 0.465601i \(-0.845838\pi\)
−0.884995 + 0.465601i \(0.845838\pi\)
\(954\) 278.957 0.00946706
\(955\) 61720.8 2.09135
\(956\) 2269.75 0.0767877
\(957\) 0 0
\(958\) −23862.9 −0.804777
\(959\) −36651.7 −1.23414
\(960\) −4363.08 −0.146685
\(961\) −25162.3 −0.844629
\(962\) 24777.3 0.830408
\(963\) 14250.1 0.476846
\(964\) 8136.13 0.271833
\(965\) −46031.5 −1.53555
\(966\) −30127.1 −1.00344
\(967\) 4519.31 0.150291 0.0751454 0.997173i \(-0.476058\pi\)
0.0751454 + 0.997173i \(0.476058\pi\)
\(968\) 0 0
\(969\) 8837.85 0.292996
\(970\) 97164.2 3.21624
\(971\) 24955.7 0.824785 0.412392 0.911006i \(-0.364693\pi\)
0.412392 + 0.911006i \(0.364693\pi\)
\(972\) −4437.50 −0.146433
\(973\) 26557.3 0.875012
\(974\) −90332.2 −2.97169
\(975\) 8983.08 0.295066
\(976\) 33849.2 1.11013
\(977\) 56789.9 1.85964 0.929820 0.368014i \(-0.119962\pi\)
0.929820 + 0.368014i \(0.119962\pi\)
\(978\) −9735.68 −0.318316
\(979\) 0 0
\(980\) −52020.8 −1.69566
\(981\) −2672.08 −0.0869653
\(982\) −76636.8 −2.49041
\(983\) −31484.6 −1.02157 −0.510784 0.859709i \(-0.670645\pi\)
−0.510784 + 0.859709i \(0.670645\pi\)
\(984\) −45143.0 −1.46251
\(985\) −45703.8 −1.47842
\(986\) 32293.5 1.04304
\(987\) 17186.4 0.554256
\(988\) −12433.3 −0.400359
\(989\) 16443.7 0.528696
\(990\) 0 0
\(991\) 9490.27 0.304206 0.152103 0.988365i \(-0.451395\pi\)
0.152103 + 0.988365i \(0.451395\pi\)
\(992\) −14397.2 −0.460799
\(993\) 19649.4 0.627950
\(994\) 28945.2 0.923629
\(995\) −14517.4 −0.462545
\(996\) −14848.3 −0.472375
\(997\) −40887.6 −1.29882 −0.649409 0.760439i \(-0.724984\pi\)
−0.649409 + 0.760439i \(0.724984\pi\)
\(998\) 110049. 3.49051
\(999\) −4277.05 −0.135455
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.4.a.u.1.1 6
3.2 odd 2 1089.4.a.bk.1.6 6
11.7 odd 10 33.4.e.c.16.3 12
11.8 odd 10 33.4.e.c.31.3 yes 12
11.10 odd 2 363.4.a.v.1.6 6
33.8 even 10 99.4.f.d.64.1 12
33.29 even 10 99.4.f.d.82.1 12
33.32 even 2 1089.4.a.bi.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.16.3 12 11.7 odd 10
33.4.e.c.31.3 yes 12 11.8 odd 10
99.4.f.d.64.1 12 33.8 even 10
99.4.f.d.82.1 12 33.29 even 10
363.4.a.u.1.1 6 1.1 even 1 trivial
363.4.a.v.1.6 6 11.10 odd 2
1089.4.a.bi.1.1 6 33.32 even 2
1089.4.a.bk.1.6 6 3.2 odd 2