Properties

Label 363.4
Level 363
Weight 4
Dimension 10570
Nonzero newspaces 8
Sturm bound 38720
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(38720\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(363))\).

Total New Old
Modular forms 14840 10850 3990
Cusp forms 14200 10570 3630
Eisenstein series 640 280 360

Trace form

\( 10570 q - 45 q^{3} - 90 q^{4} - 145 q^{6} - 130 q^{7} + 160 q^{8} + 115 q^{9} + 290 q^{10} + 100 q^{11} + 235 q^{12} - 10 q^{13} - 780 q^{14} - 665 q^{15} - 1610 q^{16} - 600 q^{17} - 325 q^{18} + 810 q^{19}+ \cdots - 4920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(363))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
363.4.a \(\chi_{363}(1, \cdot)\) 363.4.a.a 1 1
363.4.a.b 1
363.4.a.c 1
363.4.a.d 1
363.4.a.e 1
363.4.a.f 1
363.4.a.g 1
363.4.a.h 1
363.4.a.i 2
363.4.a.j 2
363.4.a.k 2
363.4.a.l 2
363.4.a.m 2
363.4.a.n 2
363.4.a.o 2
363.4.a.p 4
363.4.a.q 4
363.4.a.r 4
363.4.a.s 4
363.4.a.t 4
363.4.a.u 6
363.4.a.v 6
363.4.d \(\chi_{363}(362, \cdot)\) 363.4.d.a 4 1
363.4.d.b 4
363.4.d.c 12
363.4.d.d 40
363.4.d.e 40
363.4.e \(\chi_{363}(124, \cdot)\) n/a 216 4
363.4.f \(\chi_{363}(161, \cdot)\) n/a 400 4
363.4.i \(\chi_{363}(34, \cdot)\) n/a 660 10
363.4.j \(\chi_{363}(32, \cdot)\) n/a 1300 10
363.4.m \(\chi_{363}(4, \cdot)\) n/a 2640 40
363.4.p \(\chi_{363}(2, \cdot)\) n/a 5200 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(363))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(363)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)