Defining parameters
Level: | \( N \) | = | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(38720\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(363))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14840 | 10850 | 3990 |
Cusp forms | 14200 | 10570 | 3630 |
Eisenstein series | 640 | 280 | 360 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(363))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
363.4.a | \(\chi_{363}(1, \cdot)\) | 363.4.a.a | 1 | 1 |
363.4.a.b | 1 | |||
363.4.a.c | 1 | |||
363.4.a.d | 1 | |||
363.4.a.e | 1 | |||
363.4.a.f | 1 | |||
363.4.a.g | 1 | |||
363.4.a.h | 1 | |||
363.4.a.i | 2 | |||
363.4.a.j | 2 | |||
363.4.a.k | 2 | |||
363.4.a.l | 2 | |||
363.4.a.m | 2 | |||
363.4.a.n | 2 | |||
363.4.a.o | 2 | |||
363.4.a.p | 4 | |||
363.4.a.q | 4 | |||
363.4.a.r | 4 | |||
363.4.a.s | 4 | |||
363.4.a.t | 4 | |||
363.4.a.u | 6 | |||
363.4.a.v | 6 | |||
363.4.d | \(\chi_{363}(362, \cdot)\) | 363.4.d.a | 4 | 1 |
363.4.d.b | 4 | |||
363.4.d.c | 12 | |||
363.4.d.d | 40 | |||
363.4.d.e | 40 | |||
363.4.e | \(\chi_{363}(124, \cdot)\) | n/a | 216 | 4 |
363.4.f | \(\chi_{363}(161, \cdot)\) | n/a | 400 | 4 |
363.4.i | \(\chi_{363}(34, \cdot)\) | n/a | 660 | 10 |
363.4.j | \(\chi_{363}(32, \cdot)\) | n/a | 1300 | 10 |
363.4.m | \(\chi_{363}(4, \cdot)\) | n/a | 2640 | 40 |
363.4.p | \(\chi_{363}(2, \cdot)\) | n/a | 5200 | 40 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(363))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(363)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)