Properties

Label 363.3.h.q.269.6
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.6
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.q.251.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.32956 - 1.08184i) q^{2} +(-0.440492 + 2.96748i) q^{3} +(6.67952 - 4.85296i) q^{4} +(7.51264 + 2.44100i) q^{5} +(1.74370 + 10.3570i) q^{6} +(-1.46803 + 1.06658i) q^{7} +(8.75863 - 12.0552i) q^{8} +(-8.61193 - 2.61430i) q^{9} +27.6545 q^{10} +(11.4588 + 21.9591i) q^{12} +(0.0219178 + 0.0674561i) q^{13} +(-3.73401 + 5.13943i) q^{14} +(-10.5529 + 21.2184i) q^{15} +(5.91516 - 18.2050i) q^{16} +(3.48121 + 1.13111i) q^{17} +(-31.5022 + 0.612250i) q^{18} +(-21.2992 - 15.4748i) q^{19} +(62.0269 - 20.1538i) q^{20} +(-2.51842 - 4.82617i) q^{21} -6.84236i q^{23} +(31.9156 + 31.3013i) q^{24} +(30.2558 + 21.9821i) q^{25} +(0.145953 + 0.200887i) q^{26} +(11.5514 - 24.4042i) q^{27} +(-4.62964 + 14.2486i) q^{28} +(-17.7569 - 24.4403i) q^{29} +(-12.1816 + 82.0644i) q^{30} +(13.0523 + 40.1709i) q^{31} -7.40958i q^{32} +12.8146 q^{34} +(-13.6323 + 4.42940i) q^{35} +(-70.2107 + 24.3311i) q^{36} +(-2.99344 + 2.17486i) q^{37} +(-87.6582 - 28.4819i) q^{38} +(-0.209829 + 0.0353269i) q^{39} +(95.2272 - 69.1866i) q^{40} +(41.7768 - 57.5009i) q^{41} +(-13.6064 - 13.3445i) q^{42} -13.8601 q^{43} +(-58.3168 - 40.6621i) q^{45} +(-7.40233 - 22.7820i) q^{46} +(16.0807 - 22.1332i) q^{47} +(51.4174 + 25.5723i) q^{48} +(-14.1243 + 43.4702i) q^{49} +(124.520 + 40.4589i) q^{50} +(-4.89001 + 9.83219i) q^{51} +(0.473762 + 0.344208i) q^{52} +(20.6619 - 6.71345i) q^{53} +(12.0596 - 93.7520i) q^{54} +27.0392i q^{56} +(55.3033 - 56.3886i) q^{57} +(-85.5633 - 62.1654i) q^{58} +(-46.9059 - 64.5605i) q^{59} +(32.4837 + 192.942i) q^{60} +(24.4640 - 75.2925i) q^{61} +(86.9169 + 119.631i) q^{62} +(15.4309 - 5.34749i) q^{63} +(15.6447 + 48.1493i) q^{64} +0.560274i q^{65} -101.689 q^{67} +(28.7421 - 9.33887i) q^{68} +(20.3046 + 3.01400i) q^{69} +(-40.5976 + 29.4959i) q^{70} +(44.1378 + 14.3412i) q^{71} +(-106.945 + 80.9210i) q^{72} +(-93.4412 + 67.8890i) q^{73} +(-7.61398 + 10.4797i) q^{74} +(-78.5590 + 80.1006i) q^{75} -217.367 q^{76} +(-0.660422 + 0.344625i) q^{78} +(19.4337 + 59.8107i) q^{79} +(88.8769 - 122.329i) q^{80} +(67.3308 + 45.0284i) q^{81} +(76.8918 - 236.649i) q^{82} +(-80.3644 - 26.1120i) q^{83} +(-40.2431 - 20.0147i) q^{84} +(23.3920 + 16.9953i) q^{85} +(-46.1481 + 14.9944i) q^{86} +(80.3481 - 41.9277i) q^{87} +45.3523i q^{89} +(-238.159 - 72.2974i) q^{90} +(-0.104124 - 0.0756502i) q^{91} +(-33.2057 - 45.7037i) q^{92} +(-124.956 + 21.0376i) q^{93} +(29.5971 - 91.0905i) q^{94} +(-122.239 - 168.248i) q^{95} +(21.9878 + 3.26386i) q^{96} +(-29.7481 - 91.5551i) q^{97} +160.017i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.32956 1.08184i 1.66478 0.540920i 0.682914 0.730498i \(-0.260712\pi\)
0.981866 + 0.189579i \(0.0607122\pi\)
\(3\) −0.440492 + 2.96748i −0.146831 + 0.989162i
\(4\) 6.67952 4.85296i 1.66988 1.21324i
\(5\) 7.51264 + 2.44100i 1.50253 + 0.488201i 0.940754 0.339090i \(-0.110119\pi\)
0.561773 + 0.827291i \(0.310119\pi\)
\(6\) 1.74370 + 10.3570i 0.290617 + 1.72616i
\(7\) −1.46803 + 1.06658i −0.209718 + 0.152369i −0.687686 0.726008i \(-0.741374\pi\)
0.477968 + 0.878377i \(0.341374\pi\)
\(8\) 8.75863 12.0552i 1.09483 1.50690i
\(9\) −8.61193 2.61430i −0.956882 0.290478i
\(10\) 27.6545 2.76545
\(11\) 0 0
\(12\) 11.4588 + 21.9591i 0.954901 + 1.82992i
\(13\) 0.0219178 + 0.0674561i 0.00168599 + 0.00518893i 0.951896 0.306421i \(-0.0991317\pi\)
−0.950210 + 0.311610i \(0.899132\pi\)
\(14\) −3.73401 + 5.13943i −0.266715 + 0.367102i
\(15\) −10.5529 + 21.2184i −0.703526 + 1.41456i
\(16\) 5.91516 18.2050i 0.369697 1.13781i
\(17\) 3.48121 + 1.13111i 0.204777 + 0.0665361i 0.409610 0.912261i \(-0.365665\pi\)
−0.204832 + 0.978797i \(0.565665\pi\)
\(18\) −31.5022 + 0.612250i −1.75012 + 0.0340139i
\(19\) −21.2992 15.4748i −1.12101 0.814462i −0.136649 0.990620i \(-0.543633\pi\)
−0.984362 + 0.176157i \(0.943633\pi\)
\(20\) 62.0269 20.1538i 3.10135 1.00769i
\(21\) −2.51842 4.82617i −0.119925 0.229818i
\(22\) 0 0
\(23\) 6.84236i 0.297494i −0.988875 0.148747i \(-0.952476\pi\)
0.988875 0.148747i \(-0.0475240\pi\)
\(24\) 31.9156 + 31.3013i 1.32982 + 1.30422i
\(25\) 30.2558 + 21.9821i 1.21023 + 0.879284i
\(26\) 0.145953 + 0.200887i 0.00561359 + 0.00772644i
\(27\) 11.5514 24.4042i 0.427829 0.903860i
\(28\) −4.62964 + 14.2486i −0.165344 + 0.508877i
\(29\) −17.7569 24.4403i −0.612308 0.842770i 0.384457 0.923143i \(-0.374389\pi\)
−0.996765 + 0.0803733i \(0.974389\pi\)
\(30\) −12.1816 + 82.0644i −0.406053 + 2.73548i
\(31\) 13.0523 + 40.1709i 0.421042 + 1.29583i 0.906733 + 0.421704i \(0.138568\pi\)
−0.485691 + 0.874131i \(0.661432\pi\)
\(32\) 7.40958i 0.231549i
\(33\) 0 0
\(34\) 12.8146 0.376899
\(35\) −13.6323 + 4.42940i −0.389494 + 0.126554i
\(36\) −70.2107 + 24.3311i −1.95030 + 0.675863i
\(37\) −2.99344 + 2.17486i −0.0809037 + 0.0587800i −0.627502 0.778615i \(-0.715923\pi\)
0.546598 + 0.837395i \(0.315923\pi\)
\(38\) −87.6582 28.4819i −2.30680 0.749523i
\(39\) −0.209829 + 0.0353269i −0.00538024 + 0.000905819i
\(40\) 95.2272 69.1866i 2.38068 1.72967i
\(41\) 41.7768 57.5009i 1.01895 1.40246i 0.106008 0.994365i \(-0.466193\pi\)
0.912939 0.408096i \(-0.133807\pi\)
\(42\) −13.6064 13.3445i −0.323961 0.317726i
\(43\) −13.8601 −0.322329 −0.161164 0.986928i \(-0.551525\pi\)
−0.161164 + 0.986928i \(0.551525\pi\)
\(44\) 0 0
\(45\) −58.3168 40.6621i −1.29593 0.903602i
\(46\) −7.40233 22.7820i −0.160920 0.495262i
\(47\) 16.0807 22.1332i 0.342143 0.470919i −0.602923 0.797799i \(-0.705997\pi\)
0.945066 + 0.326880i \(0.105997\pi\)
\(48\) 51.4174 + 25.5723i 1.07120 + 0.532756i
\(49\) −14.1243 + 43.4702i −0.288252 + 0.887147i
\(50\) 124.520 + 40.4589i 2.49039 + 0.809177i
\(51\) −4.89001 + 9.83219i −0.0958825 + 0.192788i
\(52\) 0.473762 + 0.344208i 0.00911081 + 0.00661939i
\(53\) 20.6619 6.71345i 0.389846 0.126669i −0.107534 0.994201i \(-0.534295\pi\)
0.497380 + 0.867533i \(0.334295\pi\)
\(54\) 12.0596 93.7520i 0.223326 1.73615i
\(55\) 0 0
\(56\) 27.0392i 0.482843i
\(57\) 55.3033 56.3886i 0.970233 0.989273i
\(58\) −85.5633 62.1654i −1.47523 1.07182i
\(59\) −46.9059 64.5605i −0.795016 1.09425i −0.993465 0.114134i \(-0.963591\pi\)
0.198450 0.980111i \(-0.436409\pi\)
\(60\) 32.4837 + 192.942i 0.541394 + 3.21569i
\(61\) 24.4640 75.2925i 0.401050 1.23430i −0.523100 0.852272i \(-0.675224\pi\)
0.924149 0.382032i \(-0.124776\pi\)
\(62\) 86.9169 + 119.631i 1.40189 + 1.92953i
\(63\) 15.4309 5.34749i 0.244936 0.0848807i
\(64\) 15.6447 + 48.1493i 0.244448 + 0.752333i
\(65\) 0.560274i 0.00861961i
\(66\) 0 0
\(67\) −101.689 −1.51775 −0.758874 0.651238i \(-0.774250\pi\)
−0.758874 + 0.651238i \(0.774250\pi\)
\(68\) 28.7421 9.33887i 0.422678 0.137336i
\(69\) 20.3046 + 3.01400i 0.294269 + 0.0436812i
\(70\) −40.5976 + 29.4959i −0.579966 + 0.421370i
\(71\) 44.1378 + 14.3412i 0.621659 + 0.201989i 0.602877 0.797834i \(-0.294021\pi\)
0.0187823 + 0.999824i \(0.494021\pi\)
\(72\) −106.945 + 80.9210i −1.48534 + 1.12390i
\(73\) −93.4412 + 67.8890i −1.28002 + 0.929987i −0.999554 0.0298780i \(-0.990488\pi\)
−0.280463 + 0.959865i \(0.590488\pi\)
\(74\) −7.61398 + 10.4797i −0.102892 + 0.141618i
\(75\) −78.5590 + 80.1006i −1.04745 + 1.06801i
\(76\) −217.367 −2.86009
\(77\) 0 0
\(78\) −0.660422 + 0.344625i −0.00846695 + 0.00441827i
\(79\) 19.4337 + 59.8107i 0.245996 + 0.757098i 0.995471 + 0.0950654i \(0.0303060\pi\)
−0.749475 + 0.662033i \(0.769694\pi\)
\(80\) 88.8769 122.329i 1.11096 1.52911i
\(81\) 67.3308 + 45.0284i 0.831245 + 0.555907i
\(82\) 76.8918 236.649i 0.937705 2.88596i
\(83\) −80.3644 26.1120i −0.968246 0.314602i −0.218138 0.975918i \(-0.569998\pi\)
−0.750108 + 0.661316i \(0.769998\pi\)
\(84\) −40.2431 20.0147i −0.479084 0.238271i
\(85\) 23.3920 + 16.9953i 0.275200 + 0.199945i
\(86\) −46.1481 + 14.9944i −0.536606 + 0.174354i
\(87\) 80.3481 41.9277i 0.923541 0.481927i
\(88\) 0 0
\(89\) 45.3523i 0.509577i 0.966997 + 0.254788i \(0.0820058\pi\)
−0.966997 + 0.254788i \(0.917994\pi\)
\(90\) −238.159 72.2974i −2.64621 0.803304i
\(91\) −0.104124 0.0756502i −0.00114422 0.000831321i
\(92\) −33.2057 45.7037i −0.360931 0.496779i
\(93\) −124.956 + 21.0376i −1.34361 + 0.226211i
\(94\) 29.5971 91.0905i 0.314863 0.969048i
\(95\) −122.239 168.248i −1.28673 1.77103i
\(96\) 21.9878 + 3.26386i 0.229040 + 0.0339985i
\(97\) −29.7481 91.5551i −0.306681 0.943867i −0.979045 0.203646i \(-0.934721\pi\)
0.672363 0.740221i \(-0.265279\pi\)
\(98\) 160.017i 1.63283i
\(99\) 0 0
\(100\) 308.772 3.08772
\(101\) 52.9697 17.2109i 0.524452 0.170405i −0.0348128 0.999394i \(-0.511083\pi\)
0.559265 + 0.828989i \(0.311083\pi\)
\(102\) −5.64472 + 38.0271i −0.0553403 + 0.372815i
\(103\) −105.559 + 76.6932i −1.02485 + 0.744594i −0.967271 0.253747i \(-0.918337\pi\)
−0.0575756 + 0.998341i \(0.518337\pi\)
\(104\) 1.00517 + 0.326599i 0.00966507 + 0.00314037i
\(105\) −7.13927 42.4048i −0.0679931 0.403855i
\(106\) 61.5320 44.7056i 0.580491 0.421751i
\(107\) −34.1736 + 47.0359i −0.319379 + 0.439588i −0.938278 0.345883i \(-0.887579\pi\)
0.618898 + 0.785471i \(0.287579\pi\)
\(108\) −41.2748 219.067i −0.382174 2.02840i
\(109\) 49.0112 0.449644 0.224822 0.974400i \(-0.427820\pi\)
0.224822 + 0.974400i \(0.427820\pi\)
\(110\) 0 0
\(111\) −5.13528 9.84099i −0.0462638 0.0886575i
\(112\) 10.7335 + 33.0344i 0.0958352 + 0.294950i
\(113\) −30.6859 + 42.2355i −0.271557 + 0.373766i −0.922915 0.385005i \(-0.874200\pi\)
0.651358 + 0.758771i \(0.274200\pi\)
\(114\) 123.132 247.578i 1.08011 2.17174i
\(115\) 16.7022 51.4041i 0.145237 0.446993i
\(116\) −237.216 77.0761i −2.04496 0.664449i
\(117\) −0.0124040 0.638227i −0.000106017 0.00545493i
\(118\) −226.020 164.213i −1.91542 1.39164i
\(119\) −6.31694 + 2.05250i −0.0530836 + 0.0172479i
\(120\) 163.363 + 313.061i 1.36136 + 2.60884i
\(121\) 0 0
\(122\) 277.157i 2.27178i
\(123\) 152.231 + 149.301i 1.23765 + 1.21383i
\(124\) 282.131 + 204.980i 2.27525 + 1.65306i
\(125\) 57.5656 + 79.2323i 0.460525 + 0.633858i
\(126\) 45.5931 34.4986i 0.361850 0.273798i
\(127\) −18.0690 + 55.6105i −0.142275 + 0.437878i −0.996651 0.0817783i \(-0.973940\pi\)
0.854375 + 0.519656i \(0.173940\pi\)
\(128\) 121.601 + 167.369i 0.950005 + 1.30757i
\(129\) 6.10527 41.1297i 0.0473277 0.318835i
\(130\) 0.606127 + 1.86547i 0.00466252 + 0.0143497i
\(131\) 147.683i 1.12735i 0.825997 + 0.563675i \(0.190613\pi\)
−0.825997 + 0.563675i \(0.809387\pi\)
\(132\) 0 0
\(133\) 47.7730 0.359196
\(134\) −338.580 + 110.011i −2.52672 + 0.820980i
\(135\) 146.352 155.143i 1.08409 1.14921i
\(136\) 44.1264 32.0597i 0.324459 0.235733i
\(137\) 157.356 + 51.1281i 1.14858 + 0.373198i 0.820610 0.571489i \(-0.193634\pi\)
0.327974 + 0.944687i \(0.393634\pi\)
\(138\) 70.8660 11.9310i 0.513522 0.0864566i
\(139\) 42.1468 30.6214i 0.303214 0.220298i −0.425765 0.904834i \(-0.639995\pi\)
0.728979 + 0.684536i \(0.239995\pi\)
\(140\) −69.5615 + 95.7433i −0.496868 + 0.683880i
\(141\) 58.5965 + 57.4687i 0.415578 + 0.407580i
\(142\) 162.474 1.14419
\(143\) 0 0
\(144\) −98.5343 + 141.316i −0.684266 + 0.981362i
\(145\) −73.7425 226.956i −0.508569 1.56521i
\(146\) −237.673 + 327.129i −1.62790 + 2.24061i
\(147\) −122.776 61.0620i −0.835208 0.415388i
\(148\) −9.44023 + 29.0541i −0.0637854 + 0.196311i
\(149\) 29.0495 + 9.43876i 0.194963 + 0.0633474i 0.404871 0.914374i \(-0.367316\pi\)
−0.209908 + 0.977721i \(0.567316\pi\)
\(150\) −174.911 + 351.688i −1.16607 + 2.34459i
\(151\) 133.712 + 97.1472i 0.885508 + 0.643359i 0.934703 0.355430i \(-0.115666\pi\)
−0.0491952 + 0.998789i \(0.515666\pi\)
\(152\) −373.104 + 121.229i −2.45463 + 0.797557i
\(153\) −27.0229 18.8420i −0.176620 0.123150i
\(154\) 0 0
\(155\) 333.650i 2.15258i
\(156\) −1.23012 + 1.25426i −0.00788539 + 0.00804013i
\(157\) 170.804 + 124.096i 1.08792 + 0.790421i 0.979047 0.203634i \(-0.0652754\pi\)
0.108874 + 0.994056i \(0.465275\pi\)
\(158\) 129.411 + 178.119i 0.819059 + 1.12734i
\(159\) 10.8207 + 64.2710i 0.0680546 + 0.404220i
\(160\) 18.0868 55.6655i 0.113043 0.347909i
\(161\) 7.29795 + 10.0448i 0.0453289 + 0.0623899i
\(162\) 272.896 + 77.0837i 1.68454 + 0.475825i
\(163\) −27.0122 83.1350i −0.165719 0.510031i 0.833370 0.552716i \(-0.186409\pi\)
−0.999089 + 0.0426855i \(0.986409\pi\)
\(164\) 586.820i 3.57817i
\(165\) 0 0
\(166\) −295.827 −1.78209
\(167\) −39.3415 + 12.7828i −0.235578 + 0.0765439i −0.424427 0.905462i \(-0.639524\pi\)
0.188849 + 0.982006i \(0.439524\pi\)
\(168\) −80.2385 11.9105i −0.477610 0.0708961i
\(169\) 136.720 99.3328i 0.808993 0.587768i
\(170\) 96.2713 + 31.2804i 0.566302 + 0.184003i
\(171\) 142.972 + 188.950i 0.836091 + 1.10497i
\(172\) −92.5791 + 67.2626i −0.538250 + 0.391062i
\(173\) 121.574 167.332i 0.702740 0.967238i −0.297183 0.954820i \(-0.596047\pi\)
0.999923 0.0124175i \(-0.00395273\pi\)
\(174\) 222.165 226.524i 1.27681 1.30186i
\(175\) −67.8621 −0.387784
\(176\) 0 0
\(177\) 212.244 110.754i 1.19912 0.625730i
\(178\) 49.0639 + 151.003i 0.275640 + 0.848333i
\(179\) 81.2859 111.880i 0.454111 0.625030i −0.519164 0.854675i \(-0.673756\pi\)
0.973275 + 0.229645i \(0.0737564\pi\)
\(180\) −586.860 + 11.4057i −3.26033 + 0.0633650i
\(181\) −19.1377 + 58.8999i −0.105733 + 0.325414i −0.989902 0.141754i \(-0.954726\pi\)
0.884168 + 0.467168i \(0.154726\pi\)
\(182\) −0.428527 0.139237i −0.00235454 0.000765038i
\(183\) 212.653 + 105.762i 1.16204 + 0.577936i
\(184\) −82.4861 59.9297i −0.448294 0.325705i
\(185\) −27.7974 + 9.03194i −0.150256 + 0.0488213i
\(186\) −393.289 + 205.228i −2.11446 + 1.10338i
\(187\) 0 0
\(188\) 225.878i 1.20148i
\(189\) 9.07139 + 48.1466i 0.0479968 + 0.254744i
\(190\) −589.020 427.948i −3.10011 2.25236i
\(191\) 14.2774 + 19.6512i 0.0747508 + 0.102886i 0.844755 0.535153i \(-0.179746\pi\)
−0.770004 + 0.638039i \(0.779746\pi\)
\(192\) −149.774 + 25.2159i −0.780071 + 0.131333i
\(193\) 62.3636 191.935i 0.323127 0.994484i −0.649151 0.760659i \(-0.724876\pi\)
0.972279 0.233825i \(-0.0751241\pi\)
\(194\) −198.096 272.656i −1.02111 1.40544i
\(195\) −1.66261 0.246796i −0.00852618 0.00126562i
\(196\) 116.615 + 358.905i 0.594976 + 1.83115i
\(197\) 64.9088i 0.329486i 0.986337 + 0.164743i \(0.0526795\pi\)
−0.986337 + 0.164743i \(0.947320\pi\)
\(198\) 0 0
\(199\) 136.263 0.684741 0.342370 0.939565i \(-0.388770\pi\)
0.342370 + 0.939565i \(0.388770\pi\)
\(200\) 529.998 172.207i 2.64999 0.861034i
\(201\) 44.7932 301.761i 0.222852 1.50130i
\(202\) 157.746 114.609i 0.780922 0.567373i
\(203\) 52.1353 + 16.9398i 0.256824 + 0.0834473i
\(204\) 15.0523 + 89.4054i 0.0737858 + 0.438262i
\(205\) 454.214 330.006i 2.21568 1.60978i
\(206\) −268.496 + 369.553i −1.30338 + 1.79395i
\(207\) −17.8880 + 58.9259i −0.0864155 + 0.284666i
\(208\) 1.35768 0.00652733
\(209\) 0 0
\(210\) −69.6458 133.466i −0.331647 0.635550i
\(211\) −0.383783 1.18116i −0.00181888 0.00559793i 0.950143 0.311815i \(-0.100937\pi\)
−0.951962 + 0.306217i \(0.900937\pi\)
\(212\) 105.431 145.114i 0.497318 0.684499i
\(213\) −61.9997 + 124.661i −0.291079 + 0.585263i
\(214\) −62.8977 + 193.579i −0.293915 + 0.904576i
\(215\) −104.126 33.8326i −0.484307 0.157361i
\(216\) −193.024 353.002i −0.893628 1.63427i
\(217\) −62.0068 45.0506i −0.285746 0.207606i
\(218\) 163.186 53.0222i 0.748558 0.243221i
\(219\) −160.300 307.190i −0.731962 1.40269i
\(220\) 0 0
\(221\) 0.259620i 0.00117475i
\(222\) −27.7446 27.2106i −0.124976 0.122570i
\(223\) −100.528 73.0378i −0.450798 0.327524i 0.339113 0.940746i \(-0.389873\pi\)
−0.789911 + 0.613222i \(0.789873\pi\)
\(224\) 7.90294 + 10.8775i 0.0352810 + 0.0485601i
\(225\) −203.093 268.406i −0.902635 1.19292i
\(226\) −56.4785 + 173.823i −0.249905 + 0.769128i
\(227\) −28.0418 38.5962i −0.123532 0.170027i 0.742772 0.669545i \(-0.233511\pi\)
−0.866304 + 0.499517i \(0.833511\pi\)
\(228\) 95.7483 645.033i 0.419949 2.82909i
\(229\) −22.6223 69.6244i −0.0987874 0.304037i 0.889435 0.457062i \(-0.151098\pi\)
−0.988222 + 0.153026i \(0.951098\pi\)
\(230\) 189.222i 0.822706i
\(231\) 0 0
\(232\) −450.160 −1.94034
\(233\) 176.322 57.2904i 0.756745 0.245881i 0.0948641 0.995490i \(-0.469758\pi\)
0.661881 + 0.749609i \(0.269758\pi\)
\(234\) −0.731759 2.11160i −0.00312718 0.00902391i
\(235\) 174.836 127.026i 0.743981 0.540534i
\(236\) −626.618 203.601i −2.65516 0.862715i
\(237\) −186.048 + 31.3231i −0.785012 + 0.132165i
\(238\) −18.8122 + 13.6678i −0.0790427 + 0.0574279i
\(239\) −206.294 + 283.939i −0.863154 + 1.18803i 0.117655 + 0.993055i \(0.462462\pi\)
−0.980808 + 0.194975i \(0.937538\pi\)
\(240\) 323.859 + 317.625i 1.34941 + 1.32344i
\(241\) −175.508 −0.728248 −0.364124 0.931351i \(-0.618631\pi\)
−0.364124 + 0.931351i \(0.618631\pi\)
\(242\) 0 0
\(243\) −163.280 + 179.969i −0.671934 + 0.740611i
\(244\) −201.983 621.641i −0.827801 2.54771i
\(245\) −212.222 + 292.098i −0.866212 + 1.19224i
\(246\) 668.381 + 332.417i 2.71700 + 1.35129i
\(247\) 0.577036 1.77593i 0.00233618 0.00719002i
\(248\) 598.589 + 194.493i 2.41367 + 0.784247i
\(249\) 112.887 226.978i 0.453360 0.911558i
\(250\) 277.385 + 201.532i 1.10954 + 0.806128i
\(251\) 132.205 42.9562i 0.526715 0.171140i −0.0335755 0.999436i \(-0.510689\pi\)
0.560291 + 0.828296i \(0.310689\pi\)
\(252\) 77.1202 110.604i 0.306032 0.438906i
\(253\) 0 0
\(254\) 204.706i 0.805930i
\(255\) −60.7373 + 61.9292i −0.238185 + 0.242859i
\(256\) 422.110 + 306.681i 1.64887 + 1.19797i
\(257\) 251.203 + 345.752i 0.977445 + 1.34534i 0.938194 + 0.346109i \(0.112497\pi\)
0.0392507 + 0.999229i \(0.487503\pi\)
\(258\) −24.1679 143.549i −0.0936740 0.556391i
\(259\) 2.07478 6.38551i 0.00801072 0.0246545i
\(260\) 2.71899 + 3.74237i 0.0104576 + 0.0143937i
\(261\) 89.0271 + 256.900i 0.341100 + 0.984293i
\(262\) 159.769 + 491.719i 0.609806 + 1.87679i
\(263\) 201.638i 0.766686i 0.923606 + 0.383343i \(0.125227\pi\)
−0.923606 + 0.383343i \(0.874773\pi\)
\(264\) 0 0
\(265\) 171.613 0.647595
\(266\) 159.063 51.6827i 0.597981 0.194296i
\(267\) −134.582 19.9773i −0.504054 0.0748214i
\(268\) −679.235 + 493.493i −2.53446 + 1.84139i
\(269\) 326.260 + 106.008i 1.21286 + 0.394083i 0.844478 0.535590i \(-0.179911\pi\)
0.368385 + 0.929673i \(0.379911\pi\)
\(270\) 319.448 674.887i 1.18314 2.49958i
\(271\) −329.745 + 239.574i −1.21677 + 0.884035i −0.995828 0.0912517i \(-0.970913\pi\)
−0.220942 + 0.975287i \(0.570913\pi\)
\(272\) 41.1838 56.6847i 0.151411 0.208400i
\(273\) 0.270356 0.275662i 0.000990316 0.00100975i
\(274\) 579.239 2.11401
\(275\) 0 0
\(276\) 150.252 78.4053i 0.544391 0.284077i
\(277\) 153.580 + 472.671i 0.554441 + 1.70639i 0.697416 + 0.716667i \(0.254333\pi\)
−0.142975 + 0.989726i \(0.545667\pi\)
\(278\) 107.203 147.552i 0.385622 0.530763i
\(279\) −7.38675 380.072i −0.0264758 1.36226i
\(280\) −66.0028 + 203.136i −0.235724 + 0.725485i
\(281\) −368.065 119.591i −1.30984 0.425593i −0.430845 0.902426i \(-0.641785\pi\)
−0.878994 + 0.476833i \(0.841785\pi\)
\(282\) 257.272 + 127.954i 0.912314 + 0.453736i
\(283\) −179.404 130.344i −0.633935 0.460581i 0.223826 0.974629i \(-0.428145\pi\)
−0.857761 + 0.514048i \(0.828145\pi\)
\(284\) 364.417 118.406i 1.28316 0.416923i
\(285\) 553.118 288.631i 1.94077 1.01274i
\(286\) 0 0
\(287\) 128.971i 0.449378i
\(288\) −19.3709 + 63.8108i −0.0672600 + 0.221565i
\(289\) −222.967 161.995i −0.771510 0.560535i
\(290\) −491.060 675.886i −1.69331 2.33064i
\(291\) 284.792 47.9477i 0.978668 0.164769i
\(292\) −294.680 + 906.933i −1.00918 + 3.10593i
\(293\) 260.247 + 358.200i 0.888216 + 1.22252i 0.974077 + 0.226217i \(0.0726358\pi\)
−0.0858612 + 0.996307i \(0.527364\pi\)
\(294\) −474.848 70.4861i −1.61513 0.239749i
\(295\) −194.795 599.517i −0.660321 2.03226i
\(296\) 55.1353i 0.186268i
\(297\) 0 0
\(298\) 106.933 0.358837
\(299\) 0.461559 0.149969i 0.00154367 0.000501570i
\(300\) −136.012 + 916.278i −0.453372 + 3.05426i
\(301\) 20.3471 14.7830i 0.0675982 0.0491130i
\(302\) 550.299 + 178.803i 1.82218 + 0.592062i
\(303\) 27.7404 + 164.768i 0.0915523 + 0.543788i
\(304\) −407.706 + 296.216i −1.34114 + 0.974395i
\(305\) 367.579 505.929i 1.20518 1.65878i
\(306\) −110.358 33.5012i −0.360648 0.109481i
\(307\) −324.906 −1.05832 −0.529162 0.848521i \(-0.677494\pi\)
−0.529162 + 0.848521i \(0.677494\pi\)
\(308\) 0 0
\(309\) −181.088 347.028i −0.586046 1.12307i
\(310\) 360.956 + 1110.91i 1.16437 + 3.58357i
\(311\) −68.7732 + 94.6582i −0.221136 + 0.304367i −0.905142 0.425109i \(-0.860236\pi\)
0.684007 + 0.729476i \(0.260236\pi\)
\(312\) −1.41194 + 2.83896i −0.00452546 + 0.00909922i
\(313\) −45.1399 + 138.926i −0.144217 + 0.443854i −0.996909 0.0785593i \(-0.974968\pi\)
0.852693 + 0.522413i \(0.174968\pi\)
\(314\) 702.953 + 228.403i 2.23870 + 0.727399i
\(315\) 128.980 2.50675i 0.409461 0.00795793i
\(316\) 420.067 + 305.196i 1.32933 + 0.965811i
\(317\) 64.2560 20.8781i 0.202700 0.0658614i −0.205907 0.978572i \(-0.566014\pi\)
0.408608 + 0.912710i \(0.366014\pi\)
\(318\) 105.559 + 202.288i 0.331946 + 0.636125i
\(319\) 0 0
\(320\) 399.917i 1.24974i
\(321\) −124.525 122.129i −0.387929 0.380463i
\(322\) 35.1658 + 25.5495i 0.109211 + 0.0793461i
\(323\) −56.6433 77.9628i −0.175366 0.241371i
\(324\) 668.259 25.9852i 2.06253 0.0802013i
\(325\) −0.819687 + 2.52274i −0.00252211 + 0.00776226i
\(326\) −179.878 247.580i −0.551772 0.759448i
\(327\) −21.5890 + 145.440i −0.0660214 + 0.444770i
\(328\) −327.278 1007.26i −0.997799 3.07091i
\(329\) 49.6436i 0.150892i
\(330\) 0 0
\(331\) 303.465 0.916814 0.458407 0.888742i \(-0.348420\pi\)
0.458407 + 0.888742i \(0.348420\pi\)
\(332\) −663.516 + 215.589i −1.99854 + 0.649366i
\(333\) 31.4650 10.9040i 0.0944896 0.0327447i
\(334\) −117.161 + 85.1224i −0.350781 + 0.254857i
\(335\) −763.953 248.223i −2.28046 0.740966i
\(336\) −102.757 + 17.3002i −0.305825 + 0.0514888i
\(337\) −449.359 + 326.478i −1.33341 + 0.968779i −0.333751 + 0.942661i \(0.608314\pi\)
−0.999659 + 0.0261175i \(0.991686\pi\)
\(338\) 347.755 478.643i 1.02886 1.41610i
\(339\) −111.816 109.664i −0.329842 0.323494i
\(340\) 238.725 0.702132
\(341\) 0 0
\(342\) 680.447 + 474.449i 1.98961 + 1.38728i
\(343\) −53.1059 163.443i −0.154828 0.476510i
\(344\) −121.396 + 167.087i −0.352894 + 0.485718i
\(345\) 145.184 + 72.2067i 0.420823 + 0.209295i
\(346\) 223.761 688.666i 0.646708 1.99036i
\(347\) 368.981 + 119.889i 1.06335 + 0.345502i 0.787893 0.615812i \(-0.211172\pi\)
0.275454 + 0.961314i \(0.411172\pi\)
\(348\) 333.214 669.983i 0.957510 1.92524i
\(349\) 365.704 + 265.700i 1.04786 + 0.761317i 0.971805 0.235787i \(-0.0757667\pi\)
0.0760578 + 0.997103i \(0.475767\pi\)
\(350\) −225.951 + 73.4159i −0.645574 + 0.209760i
\(351\) 1.89939 + 0.244325i 0.00541138 + 0.000696082i
\(352\) 0 0
\(353\) 304.454i 0.862476i −0.902238 0.431238i \(-0.858077\pi\)
0.902238 0.431238i \(-0.141923\pi\)
\(354\) 586.860 598.377i 1.65780 1.69033i
\(355\) 296.584 + 215.481i 0.835448 + 0.606989i
\(356\) 220.093 + 302.932i 0.618239 + 0.850932i
\(357\) −3.30820 19.6495i −0.00926667 0.0550407i
\(358\) 149.610 460.451i 0.417904 1.28618i
\(359\) −178.166 245.224i −0.496284 0.683076i 0.485248 0.874377i \(-0.338730\pi\)
−0.981532 + 0.191301i \(0.938730\pi\)
\(360\) −1000.97 + 346.878i −2.78046 + 0.963549i
\(361\) 102.632 + 315.870i 0.284300 + 0.874986i
\(362\) 216.815i 0.598936i
\(363\) 0 0
\(364\) −1.06262 −0.00291929
\(365\) −867.707 + 281.935i −2.37728 + 0.772425i
\(366\) 822.459 + 122.085i 2.24716 + 0.333567i
\(367\) 339.757 246.848i 0.925770 0.672611i −0.0191838 0.999816i \(-0.506107\pi\)
0.944953 + 0.327205i \(0.106107\pi\)
\(368\) −124.565 40.4736i −0.338492 0.109983i
\(369\) −510.104 + 385.977i −1.38240 + 1.04601i
\(370\) −82.7822 + 60.1448i −0.223736 + 0.162553i
\(371\) −23.1717 + 31.8932i −0.0624575 + 0.0859654i
\(372\) −732.551 + 746.927i −1.96922 + 2.00787i
\(373\) 198.795 0.532963 0.266482 0.963840i \(-0.414139\pi\)
0.266482 + 0.963840i \(0.414139\pi\)
\(374\) 0 0
\(375\) −260.478 + 135.924i −0.694608 + 0.362464i
\(376\) −125.975 387.713i −0.335041 1.03115i
\(377\) 1.25945 1.73349i 0.00334073 0.00459812i
\(378\) 82.2906 + 150.493i 0.217700 + 0.398130i
\(379\) 22.3758 68.8656i 0.0590390 0.181703i −0.917188 0.398455i \(-0.869546\pi\)
0.976227 + 0.216752i \(0.0695463\pi\)
\(380\) −1633.00 530.594i −4.29737 1.39630i
\(381\) −157.064 78.1153i −0.412242 0.205027i
\(382\) 68.7969 + 49.9839i 0.180097 + 0.130848i
\(383\) 499.215 162.205i 1.30343 0.423511i 0.426659 0.904413i \(-0.359691\pi\)
0.876775 + 0.480901i \(0.159691\pi\)
\(384\) −550.229 + 287.123i −1.43289 + 0.747717i
\(385\) 0 0
\(386\) 706.528i 1.83038i
\(387\) 119.363 + 36.2346i 0.308430 + 0.0936294i
\(388\) −643.016 467.179i −1.65726 1.20407i
\(389\) −219.197 301.699i −0.563489 0.775576i 0.428276 0.903648i \(-0.359121\pi\)
−0.991765 + 0.128072i \(0.959121\pi\)
\(390\) −5.80274 + 0.976950i −0.0148788 + 0.00250500i
\(391\) 7.73949 23.8197i 0.0197941 0.0609199i
\(392\) 400.333 + 551.011i 1.02126 + 1.40564i
\(393\) −438.247 65.0530i −1.11513 0.165529i
\(394\) 70.2209 + 216.118i 0.178226 + 0.548522i
\(395\) 496.774i 1.25766i
\(396\) 0 0
\(397\) −184.584 −0.464947 −0.232474 0.972603i \(-0.574682\pi\)
−0.232474 + 0.972603i \(0.574682\pi\)
\(398\) 453.697 147.415i 1.13994 0.370390i
\(399\) −21.0436 + 141.766i −0.0527409 + 0.355302i
\(400\) 579.152 420.778i 1.44788 1.05195i
\(401\) 86.3473 + 28.0559i 0.215330 + 0.0699649i 0.414695 0.909960i \(-0.363888\pi\)
−0.199366 + 0.979925i \(0.563888\pi\)
\(402\) −177.315 1053.19i −0.441083 2.61988i
\(403\) −2.42369 + 1.76092i −0.00601412 + 0.00436952i
\(404\) 270.288 372.020i 0.669031 0.920842i
\(405\) 395.917 + 502.637i 0.977574 + 1.24108i
\(406\) 191.914 0.472694
\(407\) 0 0
\(408\) 75.6995 + 145.067i 0.185538 + 0.355555i
\(409\) −169.936 523.008i −0.415490 1.27875i −0.911812 0.410609i \(-0.865316\pi\)
0.496321 0.868139i \(-0.334684\pi\)
\(410\) 1155.32 1590.16i 2.81785 3.87844i
\(411\) −221.036 + 444.430i −0.537800 + 1.08134i
\(412\) −332.896 + 1024.55i −0.808000 + 2.48677i
\(413\) 137.718 + 44.7474i 0.333459 + 0.108347i
\(414\) 4.18923 + 215.549i 0.0101189 + 0.520651i
\(415\) −540.009 392.339i −1.30123 0.945396i
\(416\) 0.499821 0.162402i 0.00120149 0.000390389i
\(417\) 72.3034 + 138.558i 0.173389 + 0.332275i
\(418\) 0 0
\(419\) 298.402i 0.712176i −0.934452 0.356088i \(-0.884110\pi\)
0.934452 0.356088i \(-0.115890\pi\)
\(420\) −253.475 248.597i −0.603513 0.591897i
\(421\) 99.1856 + 72.0626i 0.235595 + 0.171170i 0.699319 0.714810i \(-0.253487\pi\)
−0.463723 + 0.885980i \(0.653487\pi\)
\(422\) −2.55566 3.51756i −0.00605606 0.00833545i
\(423\) −196.349 + 148.570i −0.464182 + 0.351229i
\(424\) 100.037 307.884i 0.235937 0.726141i
\(425\) 80.4625 + 110.747i 0.189323 + 0.260581i
\(426\) −71.5686 + 482.140i −0.168001 + 1.13178i
\(427\) 44.3920 + 136.624i 0.103962 + 0.319964i
\(428\) 480.021i 1.12154i
\(429\) 0 0
\(430\) −383.296 −0.891385
\(431\) 562.102 182.638i 1.30418 0.423754i 0.427147 0.904182i \(-0.359519\pi\)
0.877034 + 0.480428i \(0.159519\pi\)
\(432\) −375.950 354.648i −0.870254 0.820944i
\(433\) −519.659 + 377.554i −1.20014 + 0.871950i −0.994298 0.106636i \(-0.965992\pi\)
−0.205838 + 0.978586i \(0.565992\pi\)
\(434\) −255.193 82.9172i −0.588002 0.191053i
\(435\) 705.971 118.857i 1.62292 0.273236i
\(436\) 327.371 237.849i 0.750851 0.545526i
\(437\) −105.884 + 145.737i −0.242297 + 0.333494i
\(438\) −866.057 849.389i −1.97730 1.93924i
\(439\) −476.217 −1.08478 −0.542388 0.840128i \(-0.682480\pi\)
−0.542388 + 0.840128i \(0.682480\pi\)
\(440\) 0 0
\(441\) 235.282 337.437i 0.533520 0.765164i
\(442\) 0.280868 + 0.864421i 0.000635447 + 0.00195570i
\(443\) −63.3171 + 87.1485i −0.142928 + 0.196723i −0.874479 0.485063i \(-0.838797\pi\)
0.731551 + 0.681786i \(0.238797\pi\)
\(444\) −82.0591 40.8118i −0.184818 0.0919185i
\(445\) −110.705 + 340.716i −0.248776 + 0.765653i
\(446\) −413.729 134.429i −0.927643 0.301409i
\(447\) −40.8055 + 82.0463i −0.0912874 + 0.183549i
\(448\) −74.3221 53.9982i −0.165898 0.120532i
\(449\) −213.489 + 69.3667i −0.475476 + 0.154491i −0.536945 0.843618i \(-0.680422\pi\)
0.0614686 + 0.998109i \(0.480422\pi\)
\(450\) −966.582 673.961i −2.14796 1.49769i
\(451\) 0 0
\(452\) 431.031i 0.953608i
\(453\) −347.182 + 353.995i −0.766406 + 0.781445i
\(454\) −135.122 98.1716i −0.297625 0.216237i
\(455\) −0.597580 0.822498i −0.00131336 0.00180769i
\(456\) −195.395 1160.58i −0.428499 2.54513i
\(457\) −22.0293 + 67.7991i −0.0482041 + 0.148357i −0.972261 0.233897i \(-0.924852\pi\)
0.924057 + 0.382254i \(0.124852\pi\)
\(458\) −150.645 207.345i −0.328919 0.452718i
\(459\) 67.8168 71.8902i 0.147749 0.156624i
\(460\) −137.899 424.410i −0.299781 0.922631i
\(461\) 876.537i 1.90138i −0.310141 0.950691i \(-0.600376\pi\)
0.310141 0.950691i \(-0.399624\pi\)
\(462\) 0 0
\(463\) −824.691 −1.78119 −0.890595 0.454797i \(-0.849712\pi\)
−0.890595 + 0.454797i \(0.849712\pi\)
\(464\) −549.971 + 178.696i −1.18528 + 0.385121i
\(465\) −990.101 146.970i −2.12925 0.316064i
\(466\) 525.094 381.503i 1.12681 0.818677i
\(467\) 305.347 + 99.2132i 0.653847 + 0.212448i 0.617110 0.786877i \(-0.288303\pi\)
0.0367376 + 0.999325i \(0.488303\pi\)
\(468\) −3.18014 4.20286i −0.00679518 0.00898046i
\(469\) 149.282 108.460i 0.318299 0.231258i
\(470\) 444.704 612.083i 0.946180 1.30230i
\(471\) −443.491 + 452.194i −0.941594 + 0.960072i
\(472\) −1189.12 −2.51933
\(473\) 0 0
\(474\) −585.571 + 305.566i −1.23538 + 0.644654i
\(475\) −304.256 936.403i −0.640539 1.97138i
\(476\) −32.2335 + 44.3656i −0.0677174 + 0.0932050i
\(477\) −195.490 + 3.79937i −0.409831 + 0.00796513i
\(478\) −379.691 + 1168.57i −0.794332 + 2.44470i
\(479\) 412.015 + 133.872i 0.860157 + 0.279482i 0.705694 0.708517i \(-0.250635\pi\)
0.154463 + 0.987999i \(0.450635\pi\)
\(480\) 157.219 + 78.1925i 0.327540 + 0.162901i
\(481\) −0.212317 0.154257i −0.000441408 0.000320701i
\(482\) −584.363 + 189.871i −1.21237 + 0.393924i
\(483\) −33.0224 + 17.2319i −0.0683694 + 0.0356769i
\(484\) 0 0
\(485\) 760.436i 1.56791i
\(486\) −348.953 + 775.859i −0.718010 + 1.59642i
\(487\) 285.224 + 207.228i 0.585676 + 0.425519i 0.840766 0.541399i \(-0.182105\pi\)
−0.255090 + 0.966917i \(0.582105\pi\)
\(488\) −693.396 954.378i −1.42089 1.95569i
\(489\) 258.601 43.5380i 0.528836 0.0890349i
\(490\) −390.602 + 1202.15i −0.797147 + 2.45337i
\(491\) 262.378 + 361.133i 0.534375 + 0.735505i 0.987789 0.155795i \(-0.0497941\pi\)
−0.453414 + 0.891300i \(0.649794\pi\)
\(492\) 1741.38 + 258.489i 3.53939 + 0.525385i
\(493\) −34.1708 105.167i −0.0693120 0.213321i
\(494\) 6.53734i 0.0132335i
\(495\) 0 0
\(496\) 808.517 1.63007
\(497\) −80.0917 + 26.0234i −0.161150 + 0.0523609i
\(498\) 130.309 877.862i 0.261665 1.76278i
\(499\) −72.6250 + 52.7651i −0.145541 + 0.105742i −0.658173 0.752867i \(-0.728671\pi\)
0.512632 + 0.858608i \(0.328671\pi\)
\(500\) 769.022 + 249.870i 1.53804 + 0.499741i
\(501\) −20.6033 122.376i −0.0411243 0.244264i
\(502\) 393.714 286.050i 0.784292 0.569821i
\(503\) −573.691 + 789.618i −1.14054 + 1.56982i −0.374242 + 0.927331i \(0.622097\pi\)
−0.766297 + 0.642487i \(0.777903\pi\)
\(504\) 70.6887 232.860i 0.140255 0.462024i
\(505\) 439.954 0.871195
\(506\) 0 0
\(507\) 234.545 + 449.469i 0.462612 + 0.886527i
\(508\) 149.184 + 459.140i 0.293668 + 0.903818i
\(509\) −189.070 + 260.232i −0.371454 + 0.511262i −0.953295 0.302040i \(-0.902332\pi\)
0.581842 + 0.813302i \(0.302332\pi\)
\(510\) −135.231 + 271.905i −0.265159 + 0.533147i
\(511\) 64.7649 199.326i 0.126742 0.390070i
\(512\) 950.204 + 308.740i 1.85587 + 0.603007i
\(513\) −623.685 + 341.035i −1.21576 + 0.664786i
\(514\) 1210.44 + 879.440i 2.35495 + 1.71097i
\(515\) −980.236 + 318.498i −1.90337 + 0.618443i
\(516\) −158.821 304.356i −0.307792 0.589836i
\(517\) 0 0
\(518\) 23.5055i 0.0453774i
\(519\) 443.003 + 434.477i 0.853571 + 0.837143i
\(520\) 6.75423 + 4.90723i 0.0129889 + 0.00943699i
\(521\) −180.087 247.868i −0.345656 0.475755i 0.600426 0.799680i \(-0.294998\pi\)
−0.946083 + 0.323925i \(0.894998\pi\)
\(522\) 574.346 + 759.052i 1.10028 + 1.45412i
\(523\) 207.538 638.736i 0.396822 1.22129i −0.530711 0.847553i \(-0.678075\pi\)
0.927533 0.373740i \(-0.121925\pi\)
\(524\) 716.699 + 986.451i 1.36775 + 1.88254i
\(525\) 29.8927 201.380i 0.0569385 0.383581i
\(526\) 218.140 + 671.367i 0.414715 + 1.27636i
\(527\) 154.607i 0.293372i
\(528\) 0 0
\(529\) 482.182 0.911497
\(530\) 571.394 185.657i 1.07810 0.350297i
\(531\) 235.170 + 678.617i 0.442881 + 1.27800i
\(532\) 319.101 231.840i 0.599814 0.435790i
\(533\) 4.79444 + 1.55781i 0.00899520 + 0.00292272i
\(534\) −469.712 + 79.0808i −0.879611 + 0.148091i
\(535\) −371.549 + 269.946i −0.694484 + 0.504572i
\(536\) −890.657 + 1225.88i −1.66167 + 2.28710i
\(537\) 296.198 + 290.497i 0.551579 + 0.540963i
\(538\) 1200.99 2.23232
\(539\) 0 0
\(540\) 224.661 1746.52i 0.416038 3.23430i
\(541\) −56.8905 175.091i −0.105158 0.323643i 0.884610 0.466332i \(-0.154425\pi\)
−0.989767 + 0.142690i \(0.954425\pi\)
\(542\) −838.725 + 1154.41i −1.54746 + 2.12990i
\(543\) −166.355 82.7359i −0.306362 0.152368i
\(544\) 8.38108 25.7943i 0.0154064 0.0474160i
\(545\) 368.203 + 119.636i 0.675602 + 0.219516i
\(546\) 0.601946 1.21031i 0.00110246 0.00221669i
\(547\) −491.170 356.856i −0.897934 0.652387i 0.0400006 0.999200i \(-0.487264\pi\)
−0.937934 + 0.346812i \(0.887264\pi\)
\(548\) 1299.19 422.131i 2.37078 0.770312i
\(549\) −407.520 + 584.458i −0.742295 + 1.06459i
\(550\) 0 0
\(551\) 795.344i 1.44346i
\(552\) 214.175 218.378i 0.387998 0.395612i
\(553\) −92.3224 67.0762i −0.166948 0.121295i
\(554\) 1022.71 + 1407.64i 1.84604 + 2.54086i
\(555\) −14.5576 86.4670i −0.0262299 0.155796i
\(556\) 132.916 409.073i 0.239057 0.735743i
\(557\) −238.714 328.561i −0.428570 0.589876i 0.539054 0.842271i \(-0.318782\pi\)
−0.967624 + 0.252395i \(0.918782\pi\)
\(558\) −435.771 1257.48i −0.780952 2.25355i
\(559\) −0.303784 0.934950i −0.000543441 0.00167254i
\(560\) 274.376i 0.489958i
\(561\) 0 0
\(562\) −1354.87 −2.41081
\(563\) −306.504 + 99.5891i −0.544412 + 0.176890i −0.568295 0.822825i \(-0.692397\pi\)
0.0238835 + 0.999715i \(0.492397\pi\)
\(564\) 670.290 + 99.4974i 1.18846 + 0.176414i
\(565\) −333.629 + 242.396i −0.590494 + 0.429019i
\(566\) −738.347 239.903i −1.30450 0.423857i
\(567\) −146.870 + 5.71104i −0.259030 + 0.0100724i
\(568\) 559.473 406.481i 0.984988 0.715636i
\(569\) 256.283 352.744i 0.450410 0.619936i −0.522075 0.852899i \(-0.674842\pi\)
0.972486 + 0.232963i \(0.0748421\pi\)
\(570\) 1529.39 1559.40i 2.68314 2.73579i
\(571\) 155.637 0.272569 0.136284 0.990670i \(-0.456484\pi\)
0.136284 + 0.990670i \(0.456484\pi\)
\(572\) 0 0
\(573\) −64.6036 + 33.7118i −0.112746 + 0.0588339i
\(574\) 139.526 + 429.418i 0.243077 + 0.748115i
\(575\) 150.409 207.021i 0.261582 0.360036i
\(576\) −8.85384 455.559i −0.0153713 0.790900i
\(577\) 259.039 797.241i 0.448942 1.38170i −0.429161 0.903228i \(-0.641191\pi\)
0.878103 0.478472i \(-0.158809\pi\)
\(578\) −917.633 298.157i −1.58760 0.515842i
\(579\) 542.095 + 269.609i 0.936260 + 0.465646i
\(580\) −1593.97 1158.09i −2.74823 1.99670i
\(581\) 145.828 47.3823i 0.250994 0.0815531i
\(582\) 896.361 467.744i 1.54014 0.803684i
\(583\) 0 0
\(584\) 1721.07i 2.94704i
\(585\) 1.46473 4.82505i 0.00250381 0.00824794i
\(586\) 1254.02 + 911.101i 2.13997 + 1.55478i
\(587\) −358.686 493.689i −0.611050 0.841038i 0.385613 0.922660i \(-0.373990\pi\)
−0.996663 + 0.0816225i \(0.973990\pi\)
\(588\) −1116.41 + 187.960i −1.89866 + 0.319659i
\(589\) 343.632 1057.59i 0.583416 1.79557i
\(590\) −1297.16 1785.39i −2.19858 3.02609i
\(591\) −192.616 28.5918i −0.325915 0.0483786i
\(592\) 21.8866 + 67.3601i 0.0369707 + 0.113784i
\(593\) 626.517i 1.05652i −0.849083 0.528260i \(-0.822845\pi\)
0.849083 0.528260i \(-0.177155\pi\)
\(594\) 0 0
\(595\) −52.4671 −0.0881799
\(596\) 239.843 77.9297i 0.402421 0.130755i
\(597\) −60.0229 + 404.359i −0.100541 + 0.677319i
\(598\) 1.37454 0.998665i 0.00229857 0.00167001i
\(599\) −1090.50 354.326i −1.82054 0.591529i −0.999795 0.0202344i \(-0.993559\pi\)
−0.820745 0.571295i \(-0.806441\pi\)
\(600\) 277.562 + 1648.62i 0.462603 + 2.74770i
\(601\) −494.787 + 359.484i −0.823273 + 0.598143i −0.917648 0.397394i \(-0.869915\pi\)
0.0943748 + 0.995537i \(0.469915\pi\)
\(602\) 51.7539 71.2331i 0.0859699 0.118327i
\(603\) 875.740 + 265.846i 1.45231 + 0.440873i
\(604\) 1364.58 2.25924
\(605\) 0 0
\(606\) 270.616 + 518.594i 0.446560 + 0.855766i
\(607\) −34.4711 106.091i −0.0567893 0.174780i 0.918638 0.395099i \(-0.129290\pi\)
−0.975428 + 0.220320i \(0.929290\pi\)
\(608\) −114.662 + 157.818i −0.188588 + 0.259569i
\(609\) −73.2338 + 147.249i −0.120253 + 0.241788i
\(610\) 676.541 2082.18i 1.10908 3.41341i
\(611\) 1.84547 + 0.599630i 0.00302041 + 0.000981391i
\(612\) −271.940 + 5.28518i −0.444346 + 0.00863592i
\(613\) 585.747 + 425.570i 0.955542 + 0.694242i 0.952111 0.305752i \(-0.0989080\pi\)
0.00343063 + 0.999994i \(0.498908\pi\)
\(614\) −1081.79 + 351.496i −1.76188 + 0.572469i
\(615\) 779.210 + 1493.24i 1.26701 + 2.42803i
\(616\) 0 0
\(617\) 305.723i 0.495499i −0.968824 0.247749i \(-0.920309\pi\)
0.968824 0.247749i \(-0.0796910\pi\)
\(618\) −978.372 959.542i −1.58313 1.55266i
\(619\) −801.760 582.513i −1.29525 0.941054i −0.295353 0.955388i \(-0.595437\pi\)
−0.999897 + 0.0143342i \(0.995437\pi\)
\(620\) 1619.19 + 2228.62i 2.61160 + 3.59455i
\(621\) −166.982 79.0388i −0.268893 0.127277i
\(622\) −126.579 + 389.572i −0.203504 + 0.626321i
\(623\) −48.3721 66.5785i −0.0776438 0.106868i
\(624\) −0.598048 + 4.02891i −0.000958411 + 0.00645658i
\(625\) −49.8536 153.434i −0.0797658 0.245494i
\(626\) 511.397i 0.816928i
\(627\) 0 0
\(628\) 1743.12 2.77567
\(629\) −12.8808 + 4.18523i −0.0204782 + 0.00665378i
\(630\) 426.736 147.882i 0.677358 0.234734i
\(631\) 437.234 317.669i 0.692922 0.503437i −0.184698 0.982795i \(-0.559131\pi\)
0.877619 + 0.479358i \(0.159131\pi\)
\(632\) 891.244 + 289.583i 1.41020 + 0.458200i
\(633\) 3.67413 0.618578i 0.00580432 0.000977216i
\(634\) 191.358 139.029i 0.301826 0.219289i
\(635\) −271.491 + 373.675i −0.427545 + 0.588465i
\(636\) 384.181 + 376.787i 0.604059 + 0.592433i
\(637\) −3.24190 −0.00508933
\(638\) 0 0
\(639\) −342.619 238.895i −0.536181 0.373858i
\(640\) 504.993 + 1554.21i 0.789052 + 2.42845i
\(641\) 167.415 230.427i 0.261178 0.359481i −0.658209 0.752835i \(-0.728686\pi\)
0.919387 + 0.393355i \(0.128686\pi\)
\(642\) −546.738 271.918i −0.851616 0.423548i
\(643\) 50.1585 154.372i 0.0780071 0.240081i −0.904447 0.426586i \(-0.859716\pi\)
0.982454 + 0.186505i \(0.0597161\pi\)
\(644\) 97.4937 + 31.6776i 0.151388 + 0.0491889i
\(645\) 146.264 294.090i 0.226767 0.455953i
\(646\) −272.940 198.303i −0.422509 0.306970i
\(647\) 264.676 85.9983i 0.409081 0.132919i −0.0972452 0.995260i \(-0.531003\pi\)
0.506326 + 0.862342i \(0.331003\pi\)
\(648\) 1132.55 417.300i 1.74777 0.643982i
\(649\) 0 0
\(650\) 9.28637i 0.0142867i
\(651\) 161.000 164.160i 0.247312 0.252166i
\(652\) −583.879 424.213i −0.895521 0.650634i
\(653\) −351.286 483.504i −0.537957 0.740435i 0.450360 0.892847i \(-0.351296\pi\)
−0.988317 + 0.152412i \(0.951296\pi\)
\(654\) 85.4608 + 507.607i 0.130674 + 0.776157i
\(655\) −360.494 + 1109.49i −0.550373 + 1.69387i
\(656\) −799.686 1100.67i −1.21903 1.67786i
\(657\) 982.192 340.372i 1.49497 0.518070i
\(658\) 53.7064 + 165.291i 0.0816206 + 0.251202i
\(659\) 187.267i 0.284169i −0.989855 0.142085i \(-0.954620\pi\)
0.989855 0.142085i \(-0.0453805\pi\)
\(660\) 0 0
\(661\) 218.982 0.331289 0.165645 0.986186i \(-0.447030\pi\)
0.165645 + 0.986186i \(0.447030\pi\)
\(662\) 1010.41 328.301i 1.52629 0.495923i
\(663\) −0.770419 0.114361i −0.00116202 0.000172490i
\(664\) −1018.67 + 740.105i −1.53414 + 1.11462i
\(665\) 358.901 + 116.614i 0.539701 + 0.175360i
\(666\) 92.9683 70.3456i 0.139592 0.105624i
\(667\) −167.229 + 121.499i −0.250719 + 0.182158i
\(668\) −200.748 + 276.306i −0.300521 + 0.413632i
\(669\) 261.020 266.142i 0.390165 0.397821i
\(670\) −2812.17 −4.19726
\(671\) 0 0
\(672\) −35.7599 + 18.6604i −0.0532141 + 0.0277685i
\(673\) 189.780 + 584.082i 0.281991 + 0.867878i 0.987285 + 0.158963i \(0.0508151\pi\)
−0.705294 + 0.708915i \(0.749185\pi\)
\(674\) −1142.97 + 1573.16i −1.69580 + 2.33407i
\(675\) 885.952 484.444i 1.31252 0.717695i
\(676\) 431.165 1326.99i 0.637819 1.96300i
\(677\) −775.510 251.979i −1.14551 0.372199i −0.326060 0.945349i \(-0.605721\pi\)
−0.819450 + 0.573150i \(0.805721\pi\)
\(678\) −490.939 244.167i −0.724098 0.360128i
\(679\) 141.322 + 102.677i 0.208133 + 0.151217i
\(680\) 409.764 133.140i 0.602594 0.195795i
\(681\) 126.886 66.2122i 0.186323 0.0972279i
\(682\) 0 0
\(683\) 95.9038i 0.140416i −0.997532 0.0702078i \(-0.977634\pi\)
0.997532 0.0702078i \(-0.0223662\pi\)
\(684\) 1871.95 + 568.264i 2.73677 + 0.830795i
\(685\) 1057.35 + 768.213i 1.54358 + 1.12148i
\(686\) −353.638 486.741i −0.515508 0.709535i
\(687\) 216.574 36.4625i 0.315246 0.0530749i
\(688\) −81.9849 + 252.323i −0.119164 + 0.366749i
\(689\) 0.905725 + 1.24662i 0.00131455 + 0.00180932i
\(690\) 561.514 + 83.3508i 0.813789 + 0.120798i
\(691\) 91.5341 + 281.713i 0.132466 + 0.407689i 0.995187 0.0979912i \(-0.0312417\pi\)
−0.862721 + 0.505680i \(0.831242\pi\)
\(692\) 1707.69i 2.46776i
\(693\) 0 0
\(694\) 1358.25 1.95713
\(695\) 391.381 127.167i 0.563138 0.182974i
\(696\) 198.292 1335.84i 0.284902 1.91931i
\(697\) 210.474 152.918i 0.301971 0.219395i
\(698\) 1505.08 + 489.029i 2.15627 + 0.700615i
\(699\) 92.3401 + 548.468i 0.132103 + 0.784646i
\(700\) −453.287 + 329.332i −0.647552 + 0.470474i
\(701\) −437.413 + 602.048i −0.623985 + 0.858841i −0.997635 0.0687283i \(-0.978106\pi\)
0.373651 + 0.927569i \(0.378106\pi\)
\(702\) 6.58846 1.24134i 0.00938528 0.00176830i
\(703\) 97.4133 0.138568
\(704\) 0 0
\(705\) 299.933 + 574.776i 0.425436 + 0.815285i
\(706\) −329.371 1013.70i −0.466530 1.43583i
\(707\) −59.4041 + 81.7627i −0.0840227 + 0.115647i
\(708\) 880.202 1769.80i 1.24322 2.49971i
\(709\) −243.404 + 749.120i −0.343306 + 1.05659i 0.619179 + 0.785250i \(0.287466\pi\)
−0.962484 + 0.271337i \(0.912534\pi\)
\(710\) 1220.61 + 396.600i 1.71917 + 0.558592i
\(711\) −10.9982 565.892i −0.0154686 0.795910i
\(712\) 546.732 + 397.224i 0.767882 + 0.557899i
\(713\) 274.864 89.3086i 0.385503 0.125257i
\(714\) −32.2725 61.8454i −0.0451996 0.0866182i
\(715\) 0 0
\(716\) 1141.78i 1.59467i
\(717\) −751.714 737.246i −1.04842 1.02824i
\(718\) −858.508 623.742i −1.19569 0.868722i
\(719\) 287.294 + 395.426i 0.399574 + 0.549967i 0.960637 0.277806i \(-0.0896074\pi\)
−0.561063 + 0.827773i \(0.689607\pi\)
\(720\) −1085.21 + 821.134i −1.50723 + 1.14046i
\(721\) 73.1640 225.176i 0.101476 0.312310i
\(722\) 683.441 + 940.676i 0.946594 + 1.30288i
\(723\) 77.3096 520.816i 0.106929 0.720355i
\(724\) 158.008 + 486.298i 0.218243 + 0.671683i
\(725\) 1129.80i 1.55834i
\(726\) 0 0
\(727\) 270.772 0.372452 0.186226 0.982507i \(-0.440374\pi\)
0.186226 + 0.982507i \(0.440374\pi\)
\(728\) −1.82396 + 0.592640i −0.00250544 + 0.000814066i
\(729\) −462.131 563.805i −0.633924 0.773395i
\(730\) −2584.07 + 1877.44i −3.53983 + 2.57184i
\(731\) −48.2500 15.6774i −0.0660055 0.0214465i
\(732\) 1933.68 325.555i 2.64164 0.444747i
\(733\) 328.669 238.792i 0.448388 0.325773i −0.340571 0.940219i \(-0.610620\pi\)
0.788959 + 0.614446i \(0.210620\pi\)
\(734\) 864.192 1189.46i 1.17737 1.62052i
\(735\) −773.316 758.432i −1.05213 1.03188i
\(736\) −50.6990 −0.0688845
\(737\) 0 0
\(738\) −1280.86 + 1836.98i −1.73558 + 2.48914i
\(739\) 287.094 + 883.586i 0.388490 + 1.19565i 0.933916 + 0.357492i \(0.116368\pi\)
−0.545426 + 0.838159i \(0.683632\pi\)
\(740\) −141.842 + 195.229i −0.191678 + 0.263823i
\(741\) 5.01588 + 2.49463i 0.00676907 + 0.00336657i
\(742\) −42.6484 + 131.258i −0.0574776 + 0.176898i
\(743\) 690.050 + 224.211i 0.928734 + 0.301764i 0.734045 0.679101i \(-0.237630\pi\)
0.194689 + 0.980865i \(0.437630\pi\)
\(744\) −840.829 + 1690.63i −1.13015 + 2.27235i
\(745\) 195.198 + 141.820i 0.262011 + 0.190362i
\(746\) 661.901 215.065i 0.887267 0.288290i
\(747\) 623.828 + 434.972i 0.835111 + 0.582291i
\(748\) 0 0
\(749\) 105.499i 0.140853i
\(750\) −720.229 + 734.362i −0.960305 + 0.979150i
\(751\) −890.002 646.624i −1.18509 0.861018i −0.192352 0.981326i \(-0.561612\pi\)
−0.992737 + 0.120308i \(0.961612\pi\)
\(752\) −307.814 423.670i −0.409328 0.563391i
\(753\) 69.2364 + 411.240i 0.0919474 + 0.546135i
\(754\) 2.31807 7.13429i 0.00307437 0.00946192i
\(755\) 767.390 + 1056.22i 1.01641 + 1.39897i
\(756\) 294.246 + 277.573i 0.389214 + 0.367160i
\(757\) −389.757 1199.55i −0.514871 1.58461i −0.783517 0.621370i \(-0.786576\pi\)
0.268646 0.963239i \(-0.413424\pi\)
\(758\) 253.499i 0.334431i
\(759\) 0 0
\(760\) −3098.91 −4.07752
\(761\) −110.930 + 36.0434i −0.145769 + 0.0473632i −0.380993 0.924578i \(-0.624418\pi\)
0.235224 + 0.971941i \(0.424418\pi\)
\(762\) −607.463 90.1714i −0.797195 0.118335i
\(763\) −71.9498 + 52.2746i −0.0942985 + 0.0685119i
\(764\) 190.733 + 61.9728i 0.249650 + 0.0811162i
\(765\) −157.020 207.516i −0.205254 0.271263i
\(766\) 1486.69 1080.14i 1.94084 1.41011i
\(767\) 3.32692 4.57911i 0.00433758 0.00597016i
\(768\) −1096.01 + 1117.51i −1.42709 + 1.45510i
\(769\) −1252.94 −1.62930 −0.814652 0.579949i \(-0.803072\pi\)
−0.814652 + 0.579949i \(0.803072\pi\)
\(770\) 0 0
\(771\) −1136.67 + 593.142i −1.47428 + 0.769315i
\(772\) −514.895 1584.68i −0.666963 2.05270i
\(773\) 686.689 945.147i 0.888343 1.22270i −0.0856964 0.996321i \(-0.527311\pi\)
0.974039 0.226378i \(-0.0726885\pi\)
\(774\) 436.625 8.48586i 0.564115 0.0109636i
\(775\) −488.133 + 1502.32i −0.629849 + 1.93848i
\(776\) −1364.27 443.278i −1.75808 0.571234i
\(777\) 18.0350 + 8.96963i 0.0232110 + 0.0115439i
\(778\) −1056.22 767.389i −1.35761 0.986361i
\(779\) −1779.63 + 578.236i −2.28450 + 0.742280i
\(780\) −12.3031 + 6.42008i −0.0157732 + 0.00823087i
\(781\) 0 0
\(782\) 87.6820i 0.112125i
\(783\) −801.564 + 151.024i −1.02371 + 0.192879i
\(784\) 707.827 + 514.266i 0.902841 + 0.655952i
\(785\) 980.267 + 1349.22i 1.24875 + 1.71875i
\(786\) −1529.55 + 257.515i −1.94599 + 0.327627i
\(787\) −342.029 + 1052.66i −0.434598 + 1.33756i 0.458899 + 0.888488i \(0.348244\pi\)
−0.893498 + 0.449068i \(0.851756\pi\)
\(788\) 315.000 + 433.560i 0.399746 + 0.550203i
\(789\) −598.359 88.8200i −0.758376 0.112573i
\(790\) 537.430 + 1654.04i 0.680291 + 2.09372i
\(791\) 94.7321i 0.119762i
\(792\) 0 0
\(793\) 5.61513 0.00708088
\(794\) −614.584 + 199.690i −0.774035 + 0.251499i
\(795\) −75.5939 + 509.258i −0.0950867 + 0.640576i
\(796\) 910.174 661.280i 1.14344 0.830754i
\(797\) −61.7682 20.0697i −0.0775009 0.0251816i 0.270010 0.962858i \(-0.412973\pi\)
−0.347511 + 0.937676i \(0.612973\pi\)
\(798\) 83.3018 + 494.783i 0.104388 + 0.620029i
\(799\) 81.0155 58.8612i 0.101396 0.0736686i
\(800\) 162.878 224.183i 0.203598 0.280228i
\(801\) 118.565 390.571i 0.148021 0.487605i
\(802\) 317.851 0.396322
\(803\) 0 0
\(804\) −1165.24 2233.00i −1.44930 2.77736i
\(805\) 30.3076 + 93.2771i 0.0376491 + 0.115872i
\(806\) −6.16480 + 8.48512i −0.00764863 + 0.0105274i
\(807\) −458.293 + 921.477i −0.567897 + 1.14185i
\(808\) 256.461 789.304i 0.317402 0.976862i
\(809\) −610.865 198.482i −0.755087 0.245343i −0.0939183 0.995580i \(-0.529939\pi\)
−0.661169 + 0.750237i \(0.729939\pi\)
\(810\) 1862.00 + 1245.24i 2.29877 + 1.53733i
\(811\) 73.8187 + 53.6324i 0.0910218 + 0.0661312i 0.632365 0.774670i \(-0.282084\pi\)
−0.541344 + 0.840802i \(0.682084\pi\)
\(812\) 430.447 139.861i 0.530108 0.172242i
\(813\) −565.681 1084.04i −0.695795 1.33339i
\(814\) 0 0
\(815\) 690.500i 0.847239i
\(816\) 150.070 + 147.181i 0.183909 + 0.180369i
\(817\) 295.210 + 214.482i 0.361334 + 0.262524i
\(818\) −1131.62 1557.54i −1.38340 1.90409i
\(819\) 0.698933 + 0.923705i 0.000853398 + 0.00112785i
\(820\) 1432.43 4408.56i 1.74687 5.37630i
\(821\) −532.043 732.295i −0.648043 0.891955i 0.350969 0.936387i \(-0.385852\pi\)
−0.999012 + 0.0444321i \(0.985852\pi\)
\(822\) −255.150 + 1718.88i −0.310401 + 2.09110i
\(823\) 193.305 + 594.932i 0.234879 + 0.722883i 0.997137 + 0.0756101i \(0.0240904\pi\)
−0.762259 + 0.647273i \(0.775910\pi\)
\(824\) 1944.27i 2.35955i
\(825\) 0 0
\(826\) 506.951 0.613742
\(827\) 864.024 280.738i 1.04477 0.339466i 0.264156 0.964480i \(-0.414907\pi\)
0.780613 + 0.625014i \(0.214907\pi\)
\(828\) 166.482 + 480.407i 0.201065 + 0.580202i
\(829\) 474.666 344.865i 0.572577 0.416001i −0.263464 0.964669i \(-0.584865\pi\)
0.836040 + 0.548668i \(0.184865\pi\)
\(830\) −2222.44 722.115i −2.67764 0.870018i
\(831\) −1470.29 + 247.539i −1.76931 + 0.297881i
\(832\) −2.90507 + 2.11065i −0.00349167 + 0.00253684i
\(833\) −98.3395 + 135.353i −0.118055 + 0.162488i
\(834\) 390.636 + 383.118i 0.468389 + 0.459374i
\(835\) −326.761 −0.391331
\(836\) 0 0
\(837\) 1131.11 + 145.498i 1.35139 + 0.173833i
\(838\) −322.823 993.547i −0.385230 1.18562i
\(839\) 601.835 828.355i 0.717325 0.987313i −0.282284 0.959331i \(-0.591092\pi\)
0.999608 0.0279817i \(-0.00890801\pi\)
\(840\) −573.729 285.342i −0.683010 0.339693i
\(841\) −22.1373 + 68.1317i −0.0263226 + 0.0810127i
\(842\) 408.204 + 132.634i 0.484803 + 0.157522i
\(843\) 517.015 1039.55i 0.613304 1.23315i
\(844\) −8.29562 6.02712i −0.00982893 0.00714114i
\(845\) 1269.60 412.517i 1.50248 0.488186i
\(846\) −493.027 + 707.090i −0.582774 + 0.835803i
\(847\) 0 0
\(848\) 415.860i 0.490401i
\(849\) 465.821 474.962i 0.548670 0.559437i
\(850\) 387.715 + 281.692i 0.456136 + 0.331402i
\(851\) 14.8812 + 20.4822i 0.0174867 + 0.0240684i
\(852\) 190.846 + 1133.56i 0.223998 + 1.33047i
\(853\) 121.995 375.463i 0.143019 0.440168i −0.853732 0.520713i \(-0.825666\pi\)
0.996751 + 0.0805454i \(0.0256662\pi\)
\(854\) 295.612 + 406.874i 0.346149 + 0.476434i
\(855\) 612.865 + 1768.51i 0.716801 + 2.06843i
\(856\) 267.714 + 823.940i 0.312750 + 0.962547i
\(857\) 1.34510i 0.00156955i 1.00000 0.000784774i \(0.000249801\pi\)
−1.00000 0.000784774i \(0.999750\pi\)
\(858\) 0 0
\(859\) 847.638 0.986772 0.493386 0.869810i \(-0.335759\pi\)
0.493386 + 0.869810i \(0.335759\pi\)
\(860\) −859.701 + 279.334i −0.999652 + 0.324807i
\(861\) −382.721 56.8108i −0.444507 0.0659824i
\(862\) 1673.97 1216.21i 1.94196 1.41091i
\(863\) 442.630 + 143.819i 0.512897 + 0.166650i 0.554019 0.832504i \(-0.313093\pi\)
−0.0411222 + 0.999154i \(0.513093\pi\)
\(864\) −180.825 85.5909i −0.209288 0.0990636i
\(865\) 1321.80 960.343i 1.52809 1.11022i
\(866\) −1321.78 + 1819.28i −1.52631 + 2.10078i
\(867\) 578.932 590.292i 0.667741 0.680845i
\(868\) −632.804 −0.729037
\(869\) 0 0
\(870\) 2221.99 1159.49i 2.55401 1.33275i
\(871\) −2.22880 6.85955i −0.00255890 0.00787549i
\(872\) 429.271 590.840i 0.492283 0.677569i
\(873\) 16.8354 + 866.237i 0.0192846 + 0.992254i
\(874\) −194.883 + 599.789i −0.222979 + 0.686257i
\(875\) −169.016 54.9166i −0.193161 0.0627618i
\(876\) −2561.51 1273.96i −2.92409 1.45429i
\(877\) −421.449 306.200i −0.480557 0.349145i 0.320984 0.947085i \(-0.395986\pi\)
−0.801541 + 0.597939i \(0.795986\pi\)
\(878\) −1585.59 + 515.190i −1.80591 + 0.586777i
\(879\) −1177.59 + 614.496i −1.33969 + 0.699085i
\(880\) 0 0
\(881\) 606.759i 0.688717i −0.938838 0.344358i \(-0.888096\pi\)
0.938838 0.344358i \(-0.111904\pi\)
\(882\) 418.333 1378.06i 0.474300 1.56242i
\(883\) 90.4194 + 65.6935i 0.102400 + 0.0743981i 0.637807 0.770196i \(-0.279842\pi\)
−0.535407 + 0.844594i \(0.679842\pi\)
\(884\) 1.25993 + 1.73414i 0.00142526 + 0.00196170i
\(885\) 1864.86 313.969i 2.10719 0.354767i
\(886\) −116.537 + 358.665i −0.131532 + 0.404814i
\(887\) 6.70027 + 9.22213i 0.00755386 + 0.0103970i 0.812777 0.582575i \(-0.197955\pi\)
−0.805223 + 0.592972i \(0.797955\pi\)
\(888\) −163.613 24.2866i −0.184249 0.0273498i
\(889\) −32.7876 100.910i −0.0368814 0.113509i
\(890\) 1254.20i 1.40921i
\(891\) 0 0
\(892\) −1025.93 −1.15014
\(893\) −685.012 + 222.574i −0.767091 + 0.249243i
\(894\) −47.1032 + 317.323i −0.0526882 + 0.354948i
\(895\) 883.772 642.098i 0.987454 0.717428i
\(896\) −357.026 116.005i −0.398467 0.129470i
\(897\) 0.241720 + 1.43573i 0.000269475 + 0.00160059i
\(898\) −635.780 + 461.921i −0.707995 + 0.514389i
\(899\) 750.020 1032.31i 0.834283 1.14829i
\(900\) −2659.13 807.225i −2.95459 0.896917i
\(901\) 79.5220 0.0882597
\(902\) 0 0
\(903\) 34.9056 + 66.8914i 0.0386552 + 0.0740768i
\(904\) 240.392 + 739.851i 0.265920 + 0.818419i
\(905\) −287.550 + 395.778i −0.317735 + 0.437324i
\(906\) −772.997 + 1554.24i −0.853197 + 1.71550i
\(907\) 492.982 1517.24i 0.543531 1.67282i −0.180927 0.983496i \(-0.557910\pi\)
0.724458 0.689319i \(-0.242090\pi\)
\(908\) −374.611 121.719i −0.412567 0.134051i
\(909\) −501.166 + 9.74022i −0.551337 + 0.0107153i
\(910\) −2.87949 2.09207i −0.00316427 0.00229898i
\(911\) 575.802 187.089i 0.632055 0.205367i 0.0245695 0.999698i \(-0.492178\pi\)
0.607485 + 0.794331i \(0.292178\pi\)
\(912\) −699.425 1340.34i −0.766914 1.46967i
\(913\) 0 0
\(914\) 249.573i 0.273056i
\(915\) 1339.42 + 1313.64i 1.46385 + 1.43567i
\(916\) −488.990 355.272i −0.533832 0.387852i
\(917\) −157.516 216.803i −0.171773 0.236426i
\(918\) 148.026 312.730i 0.161249 0.340664i
\(919\) −113.582 + 349.570i −0.123593 + 0.380381i −0.993642 0.112585i \(-0.964087\pi\)
0.870049 + 0.492965i \(0.164087\pi\)
\(920\) −473.400 651.579i −0.514565 0.708238i
\(921\) 143.118 964.153i 0.155394 1.04685i
\(922\) −948.272 2918.48i −1.02849 3.16538i
\(923\) 3.29169i 0.00356630i
\(924\) 0 0
\(925\) −138.377 −0.149597
\(926\) −2745.86 + 892.183i −2.96529 + 0.963481i
\(927\) 1109.57 384.513i 1.19695 0.414793i
\(928\) −181.092 + 131.571i −0.195143 + 0.141780i
\(929\) −1589.96 516.611i −1.71148 0.556093i −0.720900 0.693039i \(-0.756271\pi\)
−0.990579 + 0.136946i \(0.956271\pi\)
\(930\) −3455.60 + 581.785i −3.71570 + 0.625576i
\(931\) 973.529 707.310i 1.04568 0.759732i
\(932\) 899.717 1238.35i 0.965361 1.32871i
\(933\) −250.603 245.780i −0.268599 0.263429i
\(934\) 1124.00 1.20343
\(935\) 0 0
\(936\) −7.80261 5.44046i −0.00833612 0.00581246i
\(937\) 309.287 + 951.889i 0.330083 + 1.01589i 0.969094 + 0.246692i \(0.0793437\pi\)
−0.639011 + 0.769197i \(0.720656\pi\)
\(938\) 379.708 522.624i 0.404806 0.557168i
\(939\) −392.378 195.148i −0.417868 0.207825i
\(940\) 551.369 1696.94i 0.586563 1.80526i
\(941\) 335.079 + 108.874i 0.356088 + 0.115700i 0.481598 0.876392i \(-0.340057\pi\)
−0.125510 + 0.992092i \(0.540057\pi\)
\(942\) −987.428 + 1985.39i −1.04823 + 2.10764i
\(943\) −393.442 285.852i −0.417223 0.303131i
\(944\) −1452.78 + 472.036i −1.53896 + 0.500038i
\(945\) −49.3760 + 383.851i −0.0522497 + 0.406192i
\(946\) 0 0
\(947\) 1536.20i 1.62217i 0.584927 + 0.811086i \(0.301123\pi\)
−0.584927 + 0.811086i \(0.698877\pi\)
\(948\) −1090.70 + 1112.11i −1.15053 + 1.17311i
\(949\) −6.62755 4.81520i −0.00698372 0.00507397i
\(950\) −2026.08 2788.65i −2.13271 2.93543i
\(951\) 33.6511 + 199.875i 0.0353849 + 0.210174i
\(952\) −30.5844 + 94.1292i −0.0321265 + 0.0988752i
\(953\) 527.449 + 725.972i 0.553462 + 0.761775i 0.990477 0.137679i \(-0.0439643\pi\)
−0.437015 + 0.899454i \(0.643964\pi\)
\(954\) −646.784 + 224.139i −0.677971 + 0.234946i
\(955\) 59.2924 + 182.483i 0.0620863 + 0.191082i
\(956\) 2897.71i 3.03108i
\(957\) 0 0
\(958\) 1516.66 1.58315
\(959\) −285.535 + 92.7761i −0.297743 + 0.0967425i
\(960\) −1186.75 176.160i −1.23620 0.183500i
\(961\) −665.871 + 483.784i −0.692894 + 0.503417i
\(962\) −0.873804 0.283916i −0.000908320 0.000295131i
\(963\) 417.267 315.730i 0.433299 0.327861i
\(964\) −1172.31 + 851.731i −1.21609 + 0.883539i
\(965\) 937.030 1289.71i 0.971015 1.33649i
\(966\) −91.3079 + 93.0997i −0.0945216 + 0.0963765i
\(967\) 1717.58 1.77620 0.888099 0.459652i \(-0.152026\pi\)
0.888099 + 0.459652i \(0.152026\pi\)
\(968\) 0 0
\(969\) 256.304 133.746i 0.264504 0.138025i
\(970\) −822.669 2531.92i −0.848113 2.61022i
\(971\) 880.936 1212.50i 0.907246 1.24872i −0.0608528 0.998147i \(-0.519382\pi\)
0.968099 0.250570i \(-0.0806180\pi\)
\(972\) −217.252 + 1994.49i −0.223510 + 2.05195i
\(973\) −29.2123 + 89.9063i −0.0300229 + 0.0924011i
\(974\) 1173.86 + 381.410i 1.20519 + 0.391591i
\(975\) −7.12512 3.54365i −0.00730781 0.00363451i
\(976\) −1225.99 890.734i −1.25614 0.912638i
\(977\) −53.6767 + 17.4406i −0.0549404 + 0.0178512i −0.336358 0.941734i \(-0.609195\pi\)
0.281418 + 0.959585i \(0.409195\pi\)
\(978\) 813.925 424.727i 0.832234 0.434281i
\(979\) 0 0
\(980\) 2980.98i 3.04182i
\(981\) −422.081 128.130i −0.430256 0.130612i
\(982\) 1264.29 + 918.562i 1.28747 + 0.935399i
\(983\) 27.9524 + 38.4732i 0.0284358 + 0.0391385i 0.822998 0.568044i \(-0.192300\pi\)
−0.794562 + 0.607183i \(0.792300\pi\)
\(984\) 3133.19 527.504i 3.18413 0.536081i
\(985\) −158.443 + 487.636i −0.160855 + 0.495062i
\(986\) −227.548 313.192i −0.230779 0.317639i
\(987\) −147.317 21.8676i −0.149257 0.0221556i
\(988\) −4.76421 14.6627i −0.00482207 0.0148408i
\(989\) 94.8360i 0.0958908i
\(990\) 0 0
\(991\) −218.685 −0.220671 −0.110336 0.993894i \(-0.535193\pi\)
−0.110336 + 0.993894i \(0.535193\pi\)
\(992\) 297.649 96.7121i 0.300050 0.0974921i
\(993\) −133.674 + 900.529i −0.134616 + 0.906877i
\(994\) −238.517 + 173.293i −0.239957 + 0.174339i
\(995\) 1023.70 + 332.619i 1.02884 + 0.334291i
\(996\) −347.485 2063.94i −0.348881 2.07223i
\(997\) −532.052 + 386.558i −0.533653 + 0.387721i −0.821722 0.569888i \(-0.806987\pi\)
0.288070 + 0.957609i \(0.406987\pi\)
\(998\) −184.726 + 254.253i −0.185096 + 0.254763i
\(999\) 18.4974 + 98.1751i 0.0185159 + 0.0982734i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.269.6 24
3.2 odd 2 inner 363.3.h.q.269.1 24
11.2 odd 10 363.3.h.p.251.6 24
11.3 even 5 363.3.b.j.122.1 6
11.4 even 5 inner 363.3.h.q.245.6 24
11.5 even 5 inner 363.3.h.q.323.1 24
11.6 odd 10 363.3.h.p.323.6 24
11.7 odd 10 363.3.h.p.245.1 24
11.8 odd 10 363.3.b.k.122.6 yes 6
11.9 even 5 inner 363.3.h.q.251.1 24
11.10 odd 2 363.3.h.p.269.1 24
33.2 even 10 363.3.h.p.251.1 24
33.5 odd 10 inner 363.3.h.q.323.6 24
33.8 even 10 363.3.b.k.122.1 yes 6
33.14 odd 10 363.3.b.j.122.6 yes 6
33.17 even 10 363.3.h.p.323.1 24
33.20 odd 10 inner 363.3.h.q.251.6 24
33.26 odd 10 inner 363.3.h.q.245.1 24
33.29 even 10 363.3.h.p.245.6 24
33.32 even 2 363.3.h.p.269.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.1 6 11.3 even 5
363.3.b.j.122.6 yes 6 33.14 odd 10
363.3.b.k.122.1 yes 6 33.8 even 10
363.3.b.k.122.6 yes 6 11.8 odd 10
363.3.h.p.245.1 24 11.7 odd 10
363.3.h.p.245.6 24 33.29 even 10
363.3.h.p.251.1 24 33.2 even 10
363.3.h.p.251.6 24 11.2 odd 10
363.3.h.p.269.1 24 11.10 odd 2
363.3.h.p.269.6 24 33.32 even 2
363.3.h.p.323.1 24 33.17 even 10
363.3.h.p.323.6 24 11.6 odd 10
363.3.h.q.245.1 24 33.26 odd 10 inner
363.3.h.q.245.6 24 11.4 even 5 inner
363.3.h.q.251.1 24 11.9 even 5 inner
363.3.h.q.251.6 24 33.20 odd 10 inner
363.3.h.q.269.1 24 3.2 odd 2 inner
363.3.h.q.269.6 24 1.1 even 1 trivial
363.3.h.q.323.1 24 11.5 even 5 inner
363.3.h.q.323.6 24 33.5 odd 10 inner