Properties

Label 363.3.h.q.269.5
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.5
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.q.251.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.73676 - 0.889226i) q^{2} +(-0.444035 - 2.96696i) q^{3} +(3.46304 - 2.51605i) q^{4} +(-4.70571 - 1.52898i) q^{5} +(-3.85351 - 7.72499i) q^{6} +(9.04489 - 6.57149i) q^{7} +(0.474528 - 0.653131i) q^{8} +(-8.60567 + 2.63486i) q^{9} -14.2380 q^{10} +(-9.00271 - 9.15748i) q^{12} +(-5.22225 - 16.0724i) q^{13} +(18.9101 - 26.0275i) q^{14} +(-2.44691 + 14.6406i) q^{15} +(-4.57317 + 14.0748i) q^{16} +(-0.0595216 - 0.0193397i) q^{17} +(-21.2086 + 14.8634i) q^{18} +(-4.35333 - 3.16288i) q^{19} +(-20.1430 + 6.54487i) q^{20} +(-23.5136 - 23.9178i) q^{21} -8.69537i q^{23} +(-2.14852 - 1.11789i) q^{24} +(-0.419501 - 0.304785i) q^{25} +(-28.5840 - 39.3425i) q^{26} +(11.6387 + 24.3627i) q^{27} +(14.7886 - 45.5147i) q^{28} +(29.3632 + 40.4149i) q^{29} +(6.32215 + 42.2435i) q^{30} +(-7.59453 - 23.3736i) q^{31} +45.8150i q^{32} -0.180094 q^{34} +(-52.6103 + 17.0941i) q^{35} +(-23.1723 + 30.7769i) q^{36} +(31.7618 - 23.0763i) q^{37} +(-14.7265 - 4.78493i) q^{38} +(-45.3673 + 22.6309i) q^{39} +(-3.23161 + 2.34790i) q^{40} +(25.8089 - 35.5228i) q^{41} +(-85.6193 - 44.5483i) q^{42} +0.201842 q^{43} +(44.5244 + 0.758975i) q^{45} +(-7.73215 - 23.7971i) q^{46} +(-8.76165 + 12.0594i) q^{47} +(43.7899 + 7.31871i) q^{48} +(23.4836 - 72.2751i) q^{49} +(-1.41909 - 0.461092i) q^{50} +(-0.0309505 + 0.185186i) q^{51} +(-58.5238 - 42.5200i) q^{52} +(93.1486 - 30.2658i) q^{53} +(53.5163 + 56.3252i) q^{54} -9.02585i q^{56} +(-7.45110 + 14.3206i) q^{57} +(116.298 + 84.4953i) q^{58} +(8.51816 + 11.7242i) q^{59} +(28.3625 + 56.8574i) q^{60} +(9.06134 - 27.8879i) q^{61} +(-41.5687 - 57.2145i) q^{62} +(-60.5223 + 80.3841i) q^{63} +(22.4472 + 69.0854i) q^{64} +83.6168i q^{65} +82.8515 q^{67} +(-0.254785 + 0.0827848i) q^{68} +(-25.7988 + 3.86104i) q^{69} +(-128.781 + 93.5648i) q^{70} +(25.3986 + 8.25251i) q^{71} +(-2.36272 + 6.87094i) q^{72} +(-11.3022 + 8.21153i) q^{73} +(66.4042 - 91.3976i) q^{74} +(-0.718012 + 1.37998i) q^{75} -23.0337 q^{76} +(-104.035 + 102.277i) q^{78} +(15.5088 + 47.7311i) q^{79} +(43.0400 - 59.2395i) q^{80} +(67.1150 - 45.3495i) q^{81} +(39.0447 - 120.167i) q^{82} +(-57.2933 - 18.6157i) q^{83} +(-141.607 - 23.6671i) q^{84} +(0.250521 + 0.182014i) q^{85} +(0.552394 - 0.179484i) q^{86} +(106.871 - 105.065i) q^{87} +40.3489i q^{89} +(122.527 - 37.5151i) q^{90} +(-152.854 - 111.055i) q^{91} +(-21.8779 - 30.1124i) q^{92} +(-65.9761 + 32.9113i) q^{93} +(-13.2550 + 40.7946i) q^{94} +(15.6495 + 21.5397i) q^{95} +(135.931 - 20.3435i) q^{96} +(-9.52170 - 29.3048i) q^{97} -218.681i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.73676 0.889226i 1.36838 0.444613i 0.469546 0.882908i \(-0.344417\pi\)
0.898831 + 0.438295i \(0.144417\pi\)
\(3\) −0.444035 2.96696i −0.148012 0.988986i
\(4\) 3.46304 2.51605i 0.865760 0.629011i
\(5\) −4.70571 1.52898i −0.941142 0.305796i −0.202031 0.979379i \(-0.564754\pi\)
−0.739111 + 0.673584i \(0.764754\pi\)
\(6\) −3.85351 7.72499i −0.642251 1.28750i
\(7\) 9.04489 6.57149i 1.29213 0.938785i 0.292280 0.956333i \(-0.405586\pi\)
0.999846 + 0.0175478i \(0.00558591\pi\)
\(8\) 0.474528 0.653131i 0.0593159 0.0816414i
\(9\) −8.60567 + 2.63486i −0.956185 + 0.292762i
\(10\) −14.2380 −1.42380
\(11\) 0 0
\(12\) −9.00271 9.15748i −0.750226 0.763123i
\(13\) −5.22225 16.0724i −0.401711 1.23634i −0.923610 0.383333i \(-0.874776\pi\)
0.521899 0.853007i \(-0.325224\pi\)
\(14\) 18.9101 26.0275i 1.35072 1.85911i
\(15\) −2.44691 + 14.6406i −0.163128 + 0.976037i
\(16\) −4.57317 + 14.0748i −0.285823 + 0.879673i
\(17\) −0.0595216 0.0193397i −0.00350127 0.00113763i 0.307266 0.951624i \(-0.400586\pi\)
−0.310767 + 0.950486i \(0.600586\pi\)
\(18\) −21.2086 + 14.8634i −1.17826 + 0.825742i
\(19\) −4.35333 3.16288i −0.229123 0.166467i 0.467301 0.884098i \(-0.345226\pi\)
−0.696424 + 0.717631i \(0.745226\pi\)
\(20\) −20.1430 + 6.54487i −1.00715 + 0.327243i
\(21\) −23.5136 23.9178i −1.11969 1.13894i
\(22\) 0 0
\(23\) 8.69537i 0.378060i −0.981971 0.189030i \(-0.939466\pi\)
0.981971 0.189030i \(-0.0605343\pi\)
\(24\) −2.14852 1.11789i −0.0895216 0.0465787i
\(25\) −0.419501 0.304785i −0.0167800 0.0121914i
\(26\) −28.5840 39.3425i −1.09939 1.51317i
\(27\) 11.6387 + 24.3627i 0.431064 + 0.902321i
\(28\) 14.7886 45.5147i 0.528165 1.62552i
\(29\) 29.3632 + 40.4149i 1.01252 + 1.39362i 0.917316 + 0.398160i \(0.130351\pi\)
0.0952067 + 0.995458i \(0.469649\pi\)
\(30\) 6.32215 + 42.2435i 0.210738 + 1.40812i
\(31\) −7.59453 23.3736i −0.244985 0.753986i −0.995639 0.0932904i \(-0.970261\pi\)
0.750654 0.660695i \(-0.229739\pi\)
\(32\) 45.8150i 1.43172i
\(33\) 0 0
\(34\) −0.180094 −0.00529687
\(35\) −52.6103 + 17.0941i −1.50315 + 0.488403i
\(36\) −23.1723 + 30.7769i −0.643676 + 0.854913i
\(37\) 31.7618 23.0763i 0.858427 0.623684i −0.0690298 0.997615i \(-0.521990\pi\)
0.927456 + 0.373931i \(0.121990\pi\)
\(38\) −14.7265 4.78493i −0.387540 0.125919i
\(39\) −45.3673 + 22.6309i −1.16326 + 0.580279i
\(40\) −3.23161 + 2.34790i −0.0807903 + 0.0586976i
\(41\) 25.8089 35.5228i 0.629484 0.866411i −0.368516 0.929621i \(-0.620134\pi\)
0.998000 + 0.0632106i \(0.0201340\pi\)
\(42\) −85.6193 44.5483i −2.03855 1.06067i
\(43\) 0.201842 0.00469401 0.00234701 0.999997i \(-0.499253\pi\)
0.00234701 + 0.999997i \(0.499253\pi\)
\(44\) 0 0
\(45\) 44.5244 + 0.758975i 0.989431 + 0.0168661i
\(46\) −7.73215 23.7971i −0.168090 0.517328i
\(47\) −8.76165 + 12.0594i −0.186418 + 0.256582i −0.891989 0.452057i \(-0.850691\pi\)
0.705571 + 0.708639i \(0.250691\pi\)
\(48\) 43.7899 + 7.31871i 0.912289 + 0.152473i
\(49\) 23.4836 72.2751i 0.479257 1.47500i
\(50\) −1.41909 0.461092i −0.0283819 0.00922183i
\(51\) −0.0309505 + 0.185186i −0.000606873 + 0.00363109i
\(52\) −58.5238 42.5200i −1.12546 0.817693i
\(53\) 93.1486 30.2658i 1.75752 0.571053i 0.760582 0.649242i \(-0.224914\pi\)
0.996939 + 0.0781891i \(0.0249138\pi\)
\(54\) 53.5163 + 56.3252i 0.991042 + 1.04306i
\(55\) 0 0
\(56\) 9.02585i 0.161176i
\(57\) −7.45110 + 14.3206i −0.130721 + 0.251238i
\(58\) 116.298 + 84.4953i 2.00513 + 1.45681i
\(59\) 8.51816 + 11.7242i 0.144376 + 0.198716i 0.875080 0.483978i \(-0.160808\pi\)
−0.730705 + 0.682694i \(0.760808\pi\)
\(60\) 28.3625 + 56.8574i 0.472709 + 0.947623i
\(61\) 9.06134 27.8879i 0.148547 0.457179i −0.848903 0.528548i \(-0.822737\pi\)
0.997450 + 0.0713686i \(0.0227366\pi\)
\(62\) −41.5687 57.2145i −0.670464 0.922814i
\(63\) −60.5223 + 80.3841i −0.960671 + 1.27594i
\(64\) 22.4472 + 69.0854i 0.350738 + 1.07946i
\(65\) 83.6168i 1.28641i
\(66\) 0 0
\(67\) 82.8515 1.23659 0.618294 0.785947i \(-0.287824\pi\)
0.618294 + 0.785947i \(0.287824\pi\)
\(68\) −0.254785 + 0.0827848i −0.00374684 + 0.00121742i
\(69\) −25.7988 + 3.86104i −0.373895 + 0.0559572i
\(70\) −128.781 + 93.5648i −1.83973 + 1.33664i
\(71\) 25.3986 + 8.25251i 0.357727 + 0.116232i 0.482366 0.875970i \(-0.339777\pi\)
−0.124640 + 0.992202i \(0.539777\pi\)
\(72\) −2.36272 + 6.87094i −0.0328155 + 0.0954298i
\(73\) −11.3022 + 8.21153i −0.154825 + 0.112487i −0.662501 0.749061i \(-0.730505\pi\)
0.507676 + 0.861548i \(0.330505\pi\)
\(74\) 66.4042 91.3976i 0.897354 1.23510i
\(75\) −0.718012 + 1.37998i −0.00957349 + 0.0183997i
\(76\) −23.0337 −0.303075
\(77\) 0 0
\(78\) −104.035 + 102.277i −1.33379 + 1.31124i
\(79\) 15.5088 + 47.7311i 0.196314 + 0.604191i 0.999959 + 0.00908239i \(0.00289105\pi\)
−0.803645 + 0.595109i \(0.797109\pi\)
\(80\) 43.0400 59.2395i 0.538000 0.740493i
\(81\) 67.1150 45.3495i 0.828580 0.559870i
\(82\) 39.0447 120.167i 0.476155 1.46545i
\(83\) −57.2933 18.6157i −0.690281 0.224286i −0.0571899 0.998363i \(-0.518214\pi\)
−0.633091 + 0.774078i \(0.718214\pi\)
\(84\) −141.607 23.6671i −1.68579 0.281751i
\(85\) 0.250521 + 0.182014i 0.00294731 + 0.00214135i
\(86\) 0.552394 0.179484i 0.00642318 0.00208702i
\(87\) 106.871 105.065i 1.22840 1.20764i
\(88\) 0 0
\(89\) 40.3489i 0.453359i 0.973969 + 0.226679i \(0.0727869\pi\)
−0.973969 + 0.226679i \(0.927213\pi\)
\(90\) 122.527 37.5151i 1.36141 0.416835i
\(91\) −152.854 111.055i −1.67972 1.22039i
\(92\) −21.8779 30.1124i −0.237804 0.327309i
\(93\) −65.9761 + 32.9113i −0.709421 + 0.353885i
\(94\) −13.2550 + 40.7946i −0.141010 + 0.433986i
\(95\) 15.6495 + 21.5397i 0.164732 + 0.226734i
\(96\) 135.931 20.3435i 1.41595 0.211911i
\(97\) −9.52170 29.3048i −0.0981619 0.302111i 0.889903 0.456150i \(-0.150772\pi\)
−0.988065 + 0.154039i \(0.950772\pi\)
\(98\) 218.681i 2.23144i
\(99\) 0 0
\(100\) −2.21960 −0.0221960
\(101\) 49.3806 16.0447i 0.488917 0.158859i −0.0541757 0.998531i \(-0.517253\pi\)
0.543093 + 0.839673i \(0.317253\pi\)
\(102\) 0.0799677 + 0.534330i 0.000783997 + 0.00523853i
\(103\) 41.3843 30.0674i 0.401789 0.291917i −0.368480 0.929636i \(-0.620122\pi\)
0.770269 + 0.637719i \(0.220122\pi\)
\(104\) −12.9755 4.21599i −0.124764 0.0405384i
\(105\) 74.0783 + 148.502i 0.705507 + 1.41430i
\(106\) 228.012 165.660i 2.15105 1.56283i
\(107\) −40.2296 + 55.3713i −0.375978 + 0.517489i −0.954513 0.298168i \(-0.903624\pi\)
0.578536 + 0.815657i \(0.303624\pi\)
\(108\) 101.603 + 55.0853i 0.940768 + 0.510049i
\(109\) −125.737 −1.15355 −0.576773 0.816904i \(-0.695688\pi\)
−0.576773 + 0.816904i \(0.695688\pi\)
\(110\) 0 0
\(111\) −82.5697 83.9892i −0.743871 0.756659i
\(112\) 51.1284 + 157.357i 0.456504 + 1.40497i
\(113\) −58.0332 + 79.8758i −0.513568 + 0.706866i −0.984516 0.175295i \(-0.943912\pi\)
0.470948 + 0.882161i \(0.343912\pi\)
\(114\) −7.65761 + 45.8176i −0.0671720 + 0.401909i
\(115\) −13.2950 + 40.9179i −0.115609 + 0.355808i
\(116\) 203.372 + 66.0794i 1.75320 + 0.569650i
\(117\) 87.2895 + 124.554i 0.746064 + 1.06456i
\(118\) 33.7376 + 24.5118i 0.285912 + 0.207727i
\(119\) −0.665457 + 0.216220i −0.00559208 + 0.00181698i
\(120\) 8.40107 + 8.54550i 0.0700089 + 0.0712125i
\(121\) 0 0
\(122\) 84.3801i 0.691640i
\(123\) −116.855 60.8004i −0.950039 0.494312i
\(124\) −85.1091 61.8354i −0.686364 0.498672i
\(125\) 74.2152 + 102.149i 0.593722 + 0.817188i
\(126\) −94.1551 + 273.810i −0.747262 + 2.17309i
\(127\) −6.44270 + 19.8286i −0.0507299 + 0.156131i −0.973212 0.229909i \(-0.926157\pi\)
0.922482 + 0.386040i \(0.126157\pi\)
\(128\) 15.1475 + 20.8488i 0.118340 + 0.162881i
\(129\) −0.0896250 0.598858i −0.000694768 0.00464231i
\(130\) 74.3542 + 228.839i 0.571956 + 1.76030i
\(131\) 29.0290i 0.221595i −0.993843 0.110798i \(-0.964659\pi\)
0.993843 0.110798i \(-0.0353405\pi\)
\(132\) 0 0
\(133\) −60.1602 −0.452332
\(134\) 226.744 73.6736i 1.69212 0.549803i
\(135\) −17.5185 132.439i −0.129767 0.981030i
\(136\) −0.0408760 + 0.0296982i −0.000300559 + 0.000218369i
\(137\) −144.285 46.8811i −1.05318 0.342198i −0.269263 0.963067i \(-0.586780\pi\)
−0.783915 + 0.620869i \(0.786780\pi\)
\(138\) −67.1716 + 33.5077i −0.486751 + 0.242809i
\(139\) 15.5515 11.2988i 0.111881 0.0812863i −0.530438 0.847724i \(-0.677972\pi\)
0.642319 + 0.766437i \(0.277972\pi\)
\(140\) −139.182 + 191.567i −0.994156 + 1.36834i
\(141\) 39.6701 + 20.6407i 0.281348 + 0.146388i
\(142\) 76.8481 0.541184
\(143\) 0 0
\(144\) 2.27009 133.172i 0.0157645 0.924808i
\(145\) −76.3810 235.076i −0.526765 1.62122i
\(146\) −23.6295 + 32.5232i −0.161846 + 0.222761i
\(147\) −224.865 37.5822i −1.52969 0.255661i
\(148\) 51.9313 159.828i 0.350887 1.07992i
\(149\) 172.775 + 56.1381i 1.15957 + 0.376766i 0.824739 0.565514i \(-0.191322\pi\)
0.334827 + 0.942280i \(0.391322\pi\)
\(150\) −0.737912 + 4.41513i −0.00491941 + 0.0294342i
\(151\) −113.418 82.4026i −0.751109 0.545713i 0.145061 0.989423i \(-0.453662\pi\)
−0.896171 + 0.443710i \(0.853662\pi\)
\(152\) −4.13155 + 1.34242i −0.0271812 + 0.00883172i
\(153\) 0.563181 + 0.00960013i 0.00368092 + 6.27460e-5i
\(154\) 0 0
\(155\) 121.601i 0.784523i
\(156\) −100.168 + 192.518i −0.642106 + 1.23409i
\(157\) 145.309 + 105.573i 0.925536 + 0.672441i 0.944896 0.327371i \(-0.106163\pi\)
−0.0193599 + 0.999813i \(0.506163\pi\)
\(158\) 84.8875 + 116.838i 0.537262 + 0.739478i
\(159\) −131.159 262.929i −0.824896 1.65364i
\(160\) 70.0501 215.592i 0.437813 1.34745i
\(161\) −57.1416 78.6486i −0.354917 0.488501i
\(162\) 143.351 183.791i 0.884885 1.13451i
\(163\) 68.3722 + 210.428i 0.419461 + 1.29097i 0.908199 + 0.418538i \(0.137457\pi\)
−0.488738 + 0.872431i \(0.662543\pi\)
\(164\) 187.953i 1.14606i
\(165\) 0 0
\(166\) −173.351 −1.04428
\(167\) −175.393 + 56.9886i −1.05026 + 0.341249i −0.782769 0.622312i \(-0.786194\pi\)
−0.267488 + 0.963561i \(0.586194\pi\)
\(168\) −26.7793 + 4.00779i −0.159401 + 0.0238559i
\(169\) −94.3269 + 68.5325i −0.558148 + 0.405518i
\(170\) 0.847468 + 0.275359i 0.00498510 + 0.00161976i
\(171\) 45.7970 + 15.7483i 0.267819 + 0.0920951i
\(172\) 0.698988 0.507845i 0.00406389 0.00295259i
\(173\) −143.153 + 197.033i −0.827472 + 1.13892i 0.160916 + 0.986968i \(0.448555\pi\)
−0.988388 + 0.151950i \(0.951445\pi\)
\(174\) 199.054 382.569i 1.14399 2.19867i
\(175\) −5.79723 −0.0331270
\(176\) 0 0
\(177\) 31.0030 30.4790i 0.175158 0.172198i
\(178\) 35.8793 + 110.425i 0.201569 + 0.620366i
\(179\) −186.107 + 256.154i −1.03970 + 1.43103i −0.142295 + 0.989824i \(0.545448\pi\)
−0.897407 + 0.441203i \(0.854552\pi\)
\(180\) 156.099 109.397i 0.867219 0.607761i
\(181\) −9.54820 + 29.3863i −0.0527525 + 0.162355i −0.973962 0.226712i \(-0.927203\pi\)
0.921209 + 0.389067i \(0.127203\pi\)
\(182\) −517.078 168.009i −2.84109 0.923126i
\(183\) −86.7659 14.5014i −0.474131 0.0792427i
\(184\) −5.67922 4.12619i −0.0308653 0.0224250i
\(185\) −184.745 + 60.0272i −0.998621 + 0.324472i
\(186\) −151.295 + 148.738i −0.813413 + 0.799666i
\(187\) 0 0
\(188\) 63.8068i 0.339398i
\(189\) 265.370 + 143.874i 1.40408 + 0.761237i
\(190\) 61.9826 + 45.0330i 0.326224 + 0.237016i
\(191\) −173.938 239.405i −0.910669 1.25343i −0.966938 0.255013i \(-0.917920\pi\)
0.0562681 0.998416i \(-0.482080\pi\)
\(192\) 195.006 97.2763i 1.01566 0.506647i
\(193\) −24.5692 + 75.6161i −0.127301 + 0.391793i −0.994313 0.106494i \(-0.966038\pi\)
0.867012 + 0.498287i \(0.166038\pi\)
\(194\) −52.1171 71.7331i −0.268645 0.369758i
\(195\) 248.088 37.1288i 1.27224 0.190404i
\(196\) −100.523 309.377i −0.512871 1.57845i
\(197\) 360.331i 1.82909i 0.404485 + 0.914544i \(0.367451\pi\)
−0.404485 + 0.914544i \(0.632549\pi\)
\(198\) 0 0
\(199\) 369.874 1.85866 0.929332 0.369245i \(-0.120384\pi\)
0.929332 + 0.369245i \(0.120384\pi\)
\(200\) −0.398129 + 0.129360i −0.00199065 + 0.000646800i
\(201\) −36.7889 245.817i −0.183029 1.22297i
\(202\) 120.875 87.8211i 0.598393 0.434758i
\(203\) 531.173 + 172.588i 2.61661 + 0.850190i
\(204\) 0.358752 + 0.719178i 0.00175859 + 0.00352538i
\(205\) −175.763 + 127.699i −0.857379 + 0.622922i
\(206\) 86.5219 119.087i 0.420009 0.578093i
\(207\) 22.9111 + 74.8294i 0.110682 + 0.361495i
\(208\) 250.098 1.20239
\(209\) 0 0
\(210\) 334.786 + 340.541i 1.59422 + 1.62163i
\(211\) −47.8204 147.176i −0.226637 0.697517i −0.998121 0.0612686i \(-0.980485\pi\)
0.771484 0.636248i \(-0.219515\pi\)
\(212\) 246.427 339.178i 1.16239 1.59989i
\(213\) 13.2070 79.0209i 0.0620046 0.370990i
\(214\) −60.8610 + 187.311i −0.284397 + 0.875285i
\(215\) −0.949812 0.308613i −0.00441773 0.00143541i
\(216\) 21.4349 + 3.95914i 0.0992357 + 0.0183293i
\(217\) −222.291 161.504i −1.02438 0.744257i
\(218\) −344.110 + 111.808i −1.57849 + 0.512882i
\(219\) 29.3818 + 29.8870i 0.134164 + 0.136470i
\(220\) 0 0
\(221\) 1.05765i 0.00478576i
\(222\) −300.658 156.435i −1.35432 0.704661i
\(223\) 289.076 + 210.026i 1.29631 + 0.941821i 0.999912 0.0132452i \(-0.00421621\pi\)
0.296393 + 0.955066i \(0.404216\pi\)
\(224\) 301.073 + 414.392i 1.34408 + 1.84996i
\(225\) 4.41315 + 1.51755i 0.0196140 + 0.00674468i
\(226\) −87.7950 + 270.205i −0.388473 + 1.19560i
\(227\) −60.2830 82.9725i −0.265564 0.365517i 0.655322 0.755350i \(-0.272533\pi\)
−0.920886 + 0.389832i \(0.872533\pi\)
\(228\) 10.2278 + 68.3400i 0.0448586 + 0.299737i
\(229\) −114.140 351.286i −0.498426 1.53400i −0.811548 0.584285i \(-0.801375\pi\)
0.313122 0.949713i \(-0.398625\pi\)
\(230\) 123.804i 0.538280i
\(231\) 0 0
\(232\) 40.3299 0.173836
\(233\) 16.4775 5.35387i 0.0707190 0.0229780i −0.273444 0.961888i \(-0.588163\pi\)
0.344163 + 0.938910i \(0.388163\pi\)
\(234\) 349.647 + 263.254i 1.49422 + 1.12502i
\(235\) 59.6683 43.3516i 0.253908 0.184475i
\(236\) 58.9975 + 19.1694i 0.249989 + 0.0812264i
\(237\) 134.730 67.2081i 0.568480 0.283579i
\(238\) −1.62893 + 1.18348i −0.00684422 + 0.00497262i
\(239\) 128.623 177.035i 0.538172 0.740730i −0.450176 0.892940i \(-0.648639\pi\)
0.988348 + 0.152209i \(0.0486388\pi\)
\(240\) −194.872 101.393i −0.811968 0.422473i
\(241\) 118.033 0.489765 0.244883 0.969553i \(-0.421251\pi\)
0.244883 + 0.969553i \(0.421251\pi\)
\(242\) 0 0
\(243\) −164.351 178.991i −0.676343 0.736587i
\(244\) −38.7876 119.376i −0.158965 0.489245i
\(245\) −221.014 + 304.199i −0.902097 + 1.24163i
\(246\) −373.868 62.4855i −1.51979 0.254006i
\(247\) −28.1010 + 86.4859i −0.113769 + 0.350145i
\(248\) −18.8698 6.13117i −0.0760880 0.0247225i
\(249\) −29.7918 + 178.253i −0.119646 + 0.715875i
\(250\) 293.942 + 213.561i 1.17577 + 0.854246i
\(251\) 152.702 49.6160i 0.608376 0.197673i 0.0114036 0.999935i \(-0.496370\pi\)
0.596973 + 0.802262i \(0.296370\pi\)
\(252\) −7.34098 + 430.650i −0.0291309 + 1.70893i
\(253\) 0 0
\(254\) 59.9950i 0.236201i
\(255\) 0.428789 0.824107i 0.00168153 0.00323179i
\(256\) −175.076 127.200i −0.683891 0.496876i
\(257\) 15.3895 + 21.1818i 0.0598811 + 0.0824193i 0.837907 0.545813i \(-0.183779\pi\)
−0.778026 + 0.628232i \(0.783779\pi\)
\(258\) −0.777802 1.55923i −0.00301474 0.00604353i
\(259\) 135.636 417.445i 0.523691 1.61176i
\(260\) 210.384 + 289.568i 0.809168 + 1.11372i
\(261\) −359.177 270.429i −1.37616 1.03613i
\(262\) −25.8133 79.4451i −0.0985240 0.303226i
\(263\) 221.020i 0.840378i −0.907437 0.420189i \(-0.861964\pi\)
0.907437 0.420189i \(-0.138036\pi\)
\(264\) 0 0
\(265\) −484.606 −1.82870
\(266\) −164.644 + 53.4960i −0.618961 + 0.201113i
\(267\) 119.713 17.9163i 0.448365 0.0671023i
\(268\) 286.918 208.458i 1.07059 0.777828i
\(269\) −119.300 38.7629i −0.443494 0.144100i 0.0787531 0.996894i \(-0.474906\pi\)
−0.522247 + 0.852794i \(0.674906\pi\)
\(270\) −165.712 346.875i −0.613748 1.28472i
\(271\) −323.549 + 235.072i −1.19391 + 0.867425i −0.993672 0.112323i \(-0.964171\pi\)
−0.200236 + 0.979748i \(0.564171\pi\)
\(272\) 0.544405 0.749309i 0.00200149 0.00275481i
\(273\) −261.623 + 502.825i −0.958328 + 1.84185i
\(274\) −436.561 −1.59329
\(275\) 0 0
\(276\) −79.6276 + 78.2819i −0.288506 + 0.283630i
\(277\) 22.7480 + 70.0112i 0.0821228 + 0.252748i 0.983684 0.179903i \(-0.0575783\pi\)
−0.901562 + 0.432651i \(0.857578\pi\)
\(278\) 32.5134 44.7508i 0.116955 0.160974i
\(279\) 126.942 + 181.135i 0.454990 + 0.649228i
\(280\) −13.8003 + 42.4730i −0.0492869 + 0.151689i
\(281\) −398.855 129.596i −1.41941 0.461195i −0.503996 0.863706i \(-0.668137\pi\)
−0.915415 + 0.402511i \(0.868137\pi\)
\(282\) 126.922 + 21.2127i 0.450077 + 0.0752225i
\(283\) 214.669 + 155.966i 0.758548 + 0.551117i 0.898465 0.439046i \(-0.144683\pi\)
−0.139917 + 0.990163i \(0.544683\pi\)
\(284\) 108.720 35.3253i 0.382817 0.124385i
\(285\) 56.9585 55.9959i 0.199854 0.196477i
\(286\) 0 0
\(287\) 490.903i 1.71046i
\(288\) −120.716 394.269i −0.419154 1.36899i
\(289\) −233.803 169.868i −0.809006 0.587777i
\(290\) −418.072 575.427i −1.44163 1.98423i
\(291\) −82.7181 + 41.2628i −0.284255 + 0.141797i
\(292\) −18.4794 + 56.8737i −0.0632856 + 0.194773i
\(293\) −111.987 154.137i −0.382209 0.526065i 0.573959 0.818884i \(-0.305407\pi\)
−0.956168 + 0.292819i \(0.905407\pi\)
\(294\) −648.818 + 97.1021i −2.20686 + 0.330279i
\(295\) −22.1579 68.1950i −0.0751115 0.231169i
\(296\) 31.6949i 0.107078i
\(297\) 0 0
\(298\) 522.763 1.75424
\(299\) −139.756 + 45.4094i −0.467410 + 0.151871i
\(300\) 0.985580 + 6.58546i 0.00328527 + 0.0219515i
\(301\) 1.82564 1.32641i 0.00606526 0.00440667i
\(302\) −383.671 124.662i −1.27043 0.412788i
\(303\) −69.5308 139.386i −0.229474 0.460019i
\(304\) 64.4253 46.8077i 0.211925 0.153973i
\(305\) −85.2801 + 117.378i −0.279607 + 0.384846i
\(306\) 1.54982 0.474522i 0.00506479 0.00155072i
\(307\) −285.254 −0.929166 −0.464583 0.885530i \(-0.653796\pi\)
−0.464583 + 0.885530i \(0.653796\pi\)
\(308\) 0 0
\(309\) −107.585 109.434i −0.348171 0.354156i
\(310\) 108.131 + 332.792i 0.348809 + 1.07352i
\(311\) 296.766 408.463i 0.954230 1.31339i 0.00460774 0.999989i \(-0.498533\pi\)
0.949623 0.313396i \(-0.101467\pi\)
\(312\) −6.74711 + 40.3698i −0.0216253 + 0.129390i
\(313\) 24.7740 76.2465i 0.0791501 0.243599i −0.903650 0.428272i \(-0.859123\pi\)
0.982800 + 0.184673i \(0.0591225\pi\)
\(314\) 491.554 + 159.716i 1.56546 + 0.508648i
\(315\) 407.706 285.727i 1.29430 0.907070i
\(316\) 173.801 + 126.274i 0.550004 + 0.399601i
\(317\) −8.23294 + 2.67505i −0.0259714 + 0.00843863i −0.321974 0.946749i \(-0.604346\pi\)
0.296002 + 0.955187i \(0.404346\pi\)
\(318\) −592.752 602.942i −1.86400 1.89604i
\(319\) 0 0
\(320\) 359.417i 1.12318i
\(321\) 182.148 + 94.7728i 0.567438 + 0.295242i
\(322\) −226.319 164.430i −0.702854 0.510653i
\(323\) 0.197948 + 0.272452i 0.000612842 + 0.000843504i
\(324\) 118.320 325.911i 0.365187 1.00590i
\(325\) −2.70790 + 8.33406i −0.00833200 + 0.0256433i
\(326\) 374.236 + 515.091i 1.14796 + 1.58003i
\(327\) 55.8314 + 373.055i 0.170738 + 1.14084i
\(328\) −10.9541 33.7131i −0.0333965 0.102784i
\(329\) 166.653i 0.506544i
\(330\) 0 0
\(331\) 28.2554 0.0853638 0.0426819 0.999089i \(-0.486410\pi\)
0.0426819 + 0.999089i \(0.486410\pi\)
\(332\) −245.247 + 79.6856i −0.738696 + 0.240017i
\(333\) −212.529 + 282.275i −0.638224 + 0.847672i
\(334\) −429.332 + 311.928i −1.28542 + 0.933916i
\(335\) −389.875 126.678i −1.16381 0.378143i
\(336\) 444.169 221.568i 1.32193 0.659428i
\(337\) 233.420 169.589i 0.692640 0.503232i −0.184887 0.982760i \(-0.559192\pi\)
0.877527 + 0.479527i \(0.159192\pi\)
\(338\) −197.209 + 271.435i −0.583458 + 0.803061i
\(339\) 262.757 + 136.714i 0.775094 + 0.403287i
\(340\) 1.32552 0.00389859
\(341\) 0 0
\(342\) 139.339 + 2.37521i 0.407424 + 0.00694506i
\(343\) −93.2616 287.030i −0.271900 0.836821i
\(344\) 0.0957798 0.131830i 0.000278430 0.000383226i
\(345\) 127.305 + 21.2768i 0.369000 + 0.0616719i
\(346\) −216.567 + 666.526i −0.625917 + 1.92637i
\(347\) 250.710 + 81.4606i 0.722507 + 0.234757i 0.647110 0.762397i \(-0.275977\pi\)
0.0753975 + 0.997154i \(0.475977\pi\)
\(348\) 105.751 632.736i 0.303882 1.81821i
\(349\) 394.738 + 286.794i 1.13106 + 0.821760i 0.985848 0.167641i \(-0.0536150\pi\)
0.145207 + 0.989401i \(0.453615\pi\)
\(350\) −15.8656 + 5.15505i −0.0453303 + 0.0147287i
\(351\) 330.787 314.291i 0.942412 0.895415i
\(352\) 0 0
\(353\) 437.345i 1.23894i 0.785021 + 0.619469i \(0.212652\pi\)
−0.785021 + 0.619469i \(0.787348\pi\)
\(354\) 57.7448 110.982i 0.163121 0.313509i
\(355\) −106.901 77.6678i −0.301128 0.218782i
\(356\) 101.520 + 139.730i 0.285168 + 0.392500i
\(357\) 0.937002 + 1.87837i 0.00262466 + 0.00526155i
\(358\) −281.550 + 866.521i −0.786452 + 2.42045i
\(359\) −144.007 198.208i −0.401132 0.552111i 0.559895 0.828563i \(-0.310841\pi\)
−0.961028 + 0.276452i \(0.910841\pi\)
\(360\) 21.6238 28.7201i 0.0600660 0.0797781i
\(361\) −102.607 315.793i −0.284231 0.874774i
\(362\) 88.9137i 0.245618i
\(363\) 0 0
\(364\) −808.761 −2.22187
\(365\) 65.7402 21.3603i 0.180110 0.0585213i
\(366\) −250.352 + 37.4677i −0.684022 + 0.102371i
\(367\) −182.111 + 132.311i −0.496216 + 0.360522i −0.807570 0.589772i \(-0.799217\pi\)
0.311354 + 0.950294i \(0.399217\pi\)
\(368\) 122.385 + 39.7654i 0.332569 + 0.108058i
\(369\) −128.505 + 373.701i −0.348251 + 1.01274i
\(370\) −452.224 + 328.560i −1.22223 + 0.887999i
\(371\) 643.627 885.876i 1.73484 2.38781i
\(372\) −145.672 + 279.972i −0.391590 + 0.752613i
\(373\) −283.156 −0.759131 −0.379566 0.925165i \(-0.623927\pi\)
−0.379566 + 0.925165i \(0.623927\pi\)
\(374\) 0 0
\(375\) 270.116 265.551i 0.720310 0.708136i
\(376\) 3.71871 + 11.4450i 0.00989019 + 0.0304389i
\(377\) 496.224 682.994i 1.31624 1.81165i
\(378\) 854.189 + 157.773i 2.25976 + 0.417389i
\(379\) −141.092 + 434.237i −0.372275 + 1.14574i 0.573024 + 0.819538i \(0.305770\pi\)
−0.945299 + 0.326205i \(0.894230\pi\)
\(380\) 108.390 + 35.2180i 0.285236 + 0.0926789i
\(381\) 61.6914 + 10.3106i 0.161920 + 0.0270620i
\(382\) −688.910 500.523i −1.80343 1.31027i
\(383\) 305.540 99.2761i 0.797755 0.259206i 0.118352 0.992972i \(-0.462239\pi\)
0.679403 + 0.733765i \(0.262239\pi\)
\(384\) 55.1314 54.1997i 0.143571 0.141145i
\(385\) 0 0
\(386\) 228.790i 0.592721i
\(387\) −1.73699 + 0.531827i −0.00448834 + 0.00137423i
\(388\) −106.706 77.5266i −0.275016 0.199811i
\(389\) −185.407 255.190i −0.476624 0.656017i 0.501228 0.865315i \(-0.332882\pi\)
−0.977852 + 0.209299i \(0.932882\pi\)
\(390\) 645.939 322.218i 1.65625 0.826200i
\(391\) −0.168166 + 0.517562i −0.000430093 + 0.00132369i
\(392\) −36.0615 49.6344i −0.0919936 0.126618i
\(393\) −86.1276 + 12.8899i −0.219154 + 0.0327986i
\(394\) 320.415 + 986.136i 0.813236 + 2.50288i
\(395\) 248.321i 0.628661i
\(396\) 0 0
\(397\) −338.199 −0.851885 −0.425943 0.904750i \(-0.640057\pi\)
−0.425943 + 0.904750i \(0.640057\pi\)
\(398\) 1012.25 328.902i 2.54335 0.826386i
\(399\) 26.7132 + 178.493i 0.0669504 + 0.447350i
\(400\) 6.20823 4.51054i 0.0155206 0.0112764i
\(401\) 343.284 + 111.540i 0.856070 + 0.278154i 0.703986 0.710214i \(-0.251402\pi\)
0.152084 + 0.988368i \(0.451402\pi\)
\(402\) −319.269 640.027i −0.794201 1.59211i
\(403\) −336.009 + 244.125i −0.833770 + 0.605769i
\(404\) 130.638 179.807i 0.323361 0.445068i
\(405\) −385.162 + 110.784i −0.951017 + 0.273541i
\(406\) 1607.16 3.95852
\(407\) 0 0
\(408\) 0.106264 + 0.108090i 0.000260450 + 0.000264928i
\(409\) 136.320 + 419.551i 0.333302 + 1.02580i 0.967553 + 0.252670i \(0.0813087\pi\)
−0.634251 + 0.773127i \(0.718691\pi\)
\(410\) −367.466 + 505.774i −0.896259 + 1.23359i
\(411\) −75.0267 + 448.905i −0.182547 + 1.09223i
\(412\) 67.6643 208.249i 0.164234 0.505460i
\(413\) 154.092 + 50.0674i 0.373103 + 0.121229i
\(414\) 129.242 + 184.417i 0.312180 + 0.445451i
\(415\) 241.143 + 175.200i 0.581066 + 0.422169i
\(416\) 736.358 239.257i 1.77009 0.575138i
\(417\) −40.4284 41.1235i −0.0969507 0.0986174i
\(418\) 0 0
\(419\) 393.180i 0.938377i 0.883098 + 0.469188i \(0.155453\pi\)
−0.883098 + 0.469188i \(0.844547\pi\)
\(420\) 630.174 + 327.884i 1.50041 + 0.780676i
\(421\) 569.050 + 413.439i 1.35166 + 0.982041i 0.998927 + 0.0463181i \(0.0147488\pi\)
0.352737 + 0.935723i \(0.385251\pi\)
\(422\) −261.745 360.262i −0.620250 0.853701i
\(423\) 43.6250 126.865i 0.103132 0.299917i
\(424\) 24.4340 75.2002i 0.0576274 0.177359i
\(425\) 0.0190749 + 0.0262544i 4.48821e−5 + 6.17749e-5i
\(426\) −34.1232 228.005i −0.0801014 0.535223i
\(427\) −101.307 311.790i −0.237252 0.730187i
\(428\) 292.973i 0.684515i
\(429\) 0 0
\(430\) −2.87383 −0.00668332
\(431\) 143.851 46.7401i 0.333762 0.108446i −0.137342 0.990524i \(-0.543856\pi\)
0.471103 + 0.882078i \(0.343856\pi\)
\(432\) −396.125 + 52.3979i −0.916956 + 0.121291i
\(433\) 381.538 277.204i 0.881150 0.640193i −0.0524055 0.998626i \(-0.516689\pi\)
0.933555 + 0.358433i \(0.116689\pi\)
\(434\) −751.969 244.330i −1.73265 0.562971i
\(435\) −663.546 + 331.001i −1.52539 + 0.760922i
\(436\) −435.431 + 316.359i −0.998695 + 0.725594i
\(437\) −27.5024 + 37.8538i −0.0629345 + 0.0866220i
\(438\) 106.987 + 55.6662i 0.244263 + 0.127092i
\(439\) 506.417 1.15357 0.576784 0.816897i \(-0.304307\pi\)
0.576784 + 0.816897i \(0.304307\pi\)
\(440\) 0 0
\(441\) −11.6571 + 683.851i −0.0264334 + 1.55068i
\(442\) 0.940493 + 2.89454i 0.00212781 + 0.00654873i
\(443\) −375.325 + 516.591i −0.847235 + 1.16612i 0.137230 + 0.990539i \(0.456180\pi\)
−0.984465 + 0.175580i \(0.943820\pi\)
\(444\) −497.263 83.1088i −1.11996 0.187182i
\(445\) 61.6926 189.870i 0.138635 0.426675i
\(446\) 977.891 + 317.736i 2.19258 + 0.712413i
\(447\) 89.8411 537.544i 0.200987 1.20256i
\(448\) 657.027 + 477.358i 1.46658 + 1.06553i
\(449\) 315.250 102.431i 0.702116 0.228131i 0.0638637 0.997959i \(-0.479658\pi\)
0.638252 + 0.769827i \(0.279658\pi\)
\(450\) 13.4272 + 0.228883i 0.0298381 + 0.000508629i
\(451\) 0 0
\(452\) 422.627i 0.935016i
\(453\) −194.124 + 373.094i −0.428529 + 0.823608i
\(454\) −238.761 173.470i −0.525906 0.382093i
\(455\) 549.487 + 756.305i 1.20766 + 1.66221i
\(456\) 5.81746 + 11.6620i 0.0127576 + 0.0255747i
\(457\) −26.5560 + 81.7309i −0.0581094 + 0.178842i −0.975898 0.218227i \(-0.929973\pi\)
0.917789 + 0.397069i \(0.129973\pi\)
\(458\) −624.744 859.887i −1.36407 1.87748i
\(459\) −0.221589 1.67520i −0.000482764 0.00364966i
\(460\) 56.9100 + 175.151i 0.123717 + 0.380763i
\(461\) 65.3245i 0.141702i 0.997487 + 0.0708508i \(0.0225714\pi\)
−0.997487 + 0.0708508i \(0.977429\pi\)
\(462\) 0 0
\(463\) 535.374 1.15632 0.578158 0.815925i \(-0.303772\pi\)
0.578158 + 0.815925i \(0.303772\pi\)
\(464\) −703.113 + 228.455i −1.51533 + 0.492361i
\(465\) 360.785 53.9951i 0.775882 0.116118i
\(466\) 40.3341 29.3045i 0.0865539 0.0628851i
\(467\) 473.636 + 153.894i 1.01421 + 0.329537i 0.768530 0.639814i \(-0.220989\pi\)
0.245681 + 0.969351i \(0.420989\pi\)
\(468\) 615.670 + 211.711i 1.31554 + 0.452374i
\(469\) 749.382 544.458i 1.59783 1.16089i
\(470\) 124.748 171.701i 0.265422 0.365322i
\(471\) 248.709 478.004i 0.528045 1.01487i
\(472\) 11.6996 0.0247872
\(473\) 0 0
\(474\) 308.959 303.737i 0.651812 0.640796i
\(475\) 0.862227 + 2.65366i 0.00181521 + 0.00558665i
\(476\) −1.76048 + 2.42310i −0.00369850 + 0.00509055i
\(477\) −721.859 + 505.891i −1.51333 + 1.06057i
\(478\) 194.586 598.875i 0.407084 1.25288i
\(479\) −826.166 268.438i −1.72477 0.560412i −0.732094 0.681204i \(-0.761457\pi\)
−0.992678 + 0.120791i \(0.961457\pi\)
\(480\) −670.757 112.105i −1.39741 0.233553i
\(481\) −536.760 389.979i −1.11592 0.810767i
\(482\) 323.029 104.958i 0.670184 0.217756i
\(483\) −207.974 + 204.459i −0.430588 + 0.423311i
\(484\) 0 0
\(485\) 152.458i 0.314347i
\(486\) −608.953 343.708i −1.25299 0.707218i
\(487\) −195.067 141.725i −0.400549 0.291016i 0.369216 0.929344i \(-0.379626\pi\)
−0.769764 + 0.638328i \(0.779626\pi\)
\(488\) −13.9146 19.1518i −0.0285136 0.0392456i
\(489\) 593.971 296.295i 1.21466 0.605919i
\(490\) −334.359 + 1029.05i −0.682365 + 2.10010i
\(491\) 293.922 + 404.549i 0.598619 + 0.823928i 0.995581 0.0939071i \(-0.0299357\pi\)
−0.396962 + 0.917835i \(0.629936\pi\)
\(492\) −557.649 + 83.4577i −1.13343 + 0.169630i
\(493\) −0.966128 2.97344i −0.00195969 0.00603131i
\(494\) 261.679i 0.529714i
\(495\) 0 0
\(496\) 363.708 0.733283
\(497\) 283.959 92.2638i 0.571346 0.185641i
\(498\) 76.9740 + 514.326i 0.154566 + 1.03278i
\(499\) 448.855 326.112i 0.899509 0.653531i −0.0388311 0.999246i \(-0.512363\pi\)
0.938340 + 0.345715i \(0.112363\pi\)
\(500\) 514.021 + 167.015i 1.02804 + 0.334031i
\(501\) 246.963 + 495.078i 0.492941 + 0.988181i
\(502\) 373.789 271.574i 0.744600 0.540984i
\(503\) −395.277 + 544.051i −0.785838 + 1.08161i 0.208776 + 0.977964i \(0.433052\pi\)
−0.994614 + 0.103650i \(0.966948\pi\)
\(504\) 23.7819 + 77.6735i 0.0471863 + 0.154114i
\(505\) −256.903 −0.508719
\(506\) 0 0
\(507\) 245.217 + 249.433i 0.483664 + 0.491979i
\(508\) 27.5783 + 84.8773i 0.0542880 + 0.167081i
\(509\) 378.324 520.719i 0.743270 1.02302i −0.255154 0.966900i \(-0.582126\pi\)
0.998424 0.0561224i \(-0.0178737\pi\)
\(510\) 0.440673 2.63667i 0.000864065 0.00516994i
\(511\) −48.2651 + 148.545i −0.0944523 + 0.290694i
\(512\) −690.287 224.288i −1.34822 0.438062i
\(513\) 26.3889 142.871i 0.0514404 0.278500i
\(514\) 60.9525 + 44.2846i 0.118585 + 0.0861568i
\(515\) −240.715 + 78.2130i −0.467407 + 0.151870i
\(516\) −1.81713 1.84837i −0.00352157 0.00358211i
\(517\) 0 0
\(518\) 1263.06i 2.43833i
\(519\) 648.152 + 337.239i 1.24885 + 0.649785i
\(520\) 54.6127 + 39.6785i 0.105025 + 0.0763048i
\(521\) −313.882 432.022i −0.602462 0.829217i 0.393469 0.919338i \(-0.371275\pi\)
−0.995931 + 0.0901206i \(0.971275\pi\)
\(522\) −1223.45 420.709i −2.34378 0.805957i
\(523\) 307.507 946.409i 0.587967 1.80958i 0.000954046 1.00000i \(-0.499696\pi\)
0.587013 0.809577i \(-0.300304\pi\)
\(524\) −73.0382 100.528i −0.139386 0.191848i
\(525\) 2.57417 + 17.2001i 0.00490318 + 0.0327622i
\(526\) −196.536 604.876i −0.373643 1.14996i
\(527\) 1.53811i 0.00291861i
\(528\) 0 0
\(529\) 453.391 0.857071
\(530\) −1326.25 + 430.924i −2.50235 + 0.813064i
\(531\) −104.196 78.4508i −0.196226 0.147742i
\(532\) −208.337 + 151.366i −0.391611 + 0.284522i
\(533\) −705.718 229.302i −1.32405 0.430210i
\(534\) 311.695 155.485i 0.583698 0.291170i
\(535\) 273.970 199.051i 0.512094 0.372058i
\(536\) 39.3153 54.1129i 0.0733494 0.100957i
\(537\) 842.635 + 438.429i 1.56915 + 0.816442i
\(538\) −360.964 −0.670936
\(539\) 0 0
\(540\) −393.890 414.564i −0.729426 0.767711i
\(541\) 213.440 + 656.899i 0.394528 + 1.21423i 0.929329 + 0.369254i \(0.120387\pi\)
−0.534801 + 0.844978i \(0.679613\pi\)
\(542\) −676.442 + 931.043i −1.24805 + 1.71779i
\(543\) 91.4277 + 15.2805i 0.168375 + 0.0281410i
\(544\) 0.886051 2.72698i 0.00162877 0.00501284i
\(545\) 591.680 + 192.248i 1.08565 + 0.352749i
\(546\) −268.875 + 1608.75i −0.492444 + 2.94643i
\(547\) −70.3505 51.1127i −0.128612 0.0934418i 0.521620 0.853178i \(-0.325328\pi\)
−0.650231 + 0.759736i \(0.725328\pi\)
\(548\) −617.621 + 200.677i −1.12705 + 0.366199i
\(549\) −4.49800 + 263.870i −0.00819307 + 0.480637i
\(550\) 0 0
\(551\) 268.812i 0.487861i
\(552\) −9.72047 + 18.6822i −0.0176095 + 0.0338445i
\(553\) 453.940 + 329.807i 0.820868 + 0.596395i
\(554\) 124.511 + 171.375i 0.224750 + 0.309342i
\(555\) 260.131 + 521.476i 0.468705 + 0.939596i
\(556\) 25.4270 78.2564i 0.0457321 0.140749i
\(557\) 432.298 + 595.007i 0.776118 + 1.06824i 0.995700 + 0.0926409i \(0.0295308\pi\)
−0.219581 + 0.975594i \(0.570469\pi\)
\(558\) 508.479 + 382.841i 0.911253 + 0.686094i
\(559\) −1.05407 3.24410i −0.00188564 0.00580339i
\(560\) 818.651i 1.46188i
\(561\) 0 0
\(562\) −1206.81 −2.14734
\(563\) 542.073 176.130i 0.962829 0.312842i 0.214911 0.976634i \(-0.431054\pi\)
0.747918 + 0.663792i \(0.231054\pi\)
\(564\) 189.312 28.3324i 0.335660 0.0502348i
\(565\) 395.216 287.141i 0.699497 0.508214i
\(566\) 726.186 + 235.952i 1.28301 + 0.416876i
\(567\) 309.034 851.227i 0.545033 1.50128i
\(568\) 17.4423 12.6726i 0.0307083 0.0223109i
\(569\) −333.772 + 459.398i −0.586594 + 0.807378i −0.994399 0.105691i \(-0.966294\pi\)
0.407805 + 0.913069i \(0.366294\pi\)
\(570\) 106.089 203.896i 0.186120 0.357712i
\(571\) 229.442 0.401825 0.200912 0.979609i \(-0.435609\pi\)
0.200912 + 0.979609i \(0.435609\pi\)
\(572\) 0 0
\(573\) −633.070 + 622.370i −1.10483 + 1.08616i
\(574\) −436.523 1343.48i −0.760494 2.34056i
\(575\) −2.65022 + 3.64771i −0.00460908 + 0.00634385i
\(576\) −375.204 535.381i −0.651396 0.929481i
\(577\) −222.195 + 683.846i −0.385087 + 1.18518i 0.551331 + 0.834287i \(0.314120\pi\)
−0.936417 + 0.350888i \(0.885880\pi\)
\(578\) −790.912 256.983i −1.36836 0.444607i
\(579\) 235.259 + 39.3195i 0.406320 + 0.0679093i
\(580\) −855.973 621.901i −1.47582 1.07224i
\(581\) −640.544 + 208.125i −1.10249 + 0.358219i
\(582\) −189.687 + 186.481i −0.325923 + 0.320415i
\(583\) 0 0
\(584\) 11.2784i 0.0193124i
\(585\) −220.319 719.579i −0.376613 1.23005i
\(586\) −443.544 322.254i −0.756902 0.549921i
\(587\) 300.738 + 413.930i 0.512331 + 0.705162i 0.984310 0.176447i \(-0.0564604\pi\)
−0.471980 + 0.881609i \(0.656460\pi\)
\(588\) −873.273 + 435.621i −1.48516 + 0.740852i
\(589\) −40.8662 + 125.773i −0.0693824 + 0.213537i
\(590\) −121.281 166.930i −0.205562 0.282931i
\(591\) 1069.09 159.999i 1.80894 0.270726i
\(592\) 179.541 + 552.571i 0.303279 + 0.933398i
\(593\) 241.775i 0.407715i −0.979001 0.203858i \(-0.934652\pi\)
0.979001 0.203858i \(-0.0653480\pi\)
\(594\) 0 0
\(595\) 3.46204 0.00581856
\(596\) 739.573 240.302i 1.24089 0.403191i
\(597\) −164.237 1097.40i −0.275104 1.83819i
\(598\) −342.098 + 248.549i −0.572070 + 0.415633i
\(599\) −460.604 149.659i −0.768955 0.249849i −0.101837 0.994801i \(-0.532472\pi\)
−0.667118 + 0.744952i \(0.732472\pi\)
\(600\) 0.560589 + 1.12379i 0.000934315 + 0.00187299i
\(601\) −391.082 + 284.138i −0.650719 + 0.472775i −0.863516 0.504321i \(-0.831743\pi\)
0.212797 + 0.977096i \(0.431743\pi\)
\(602\) 3.81686 5.25346i 0.00634030 0.00872668i
\(603\) −712.992 + 218.302i −1.18241 + 0.362027i
\(604\) −600.098 −0.993540
\(605\) 0 0
\(606\) −314.234 319.636i −0.518538 0.527453i
\(607\) −153.768 473.248i −0.253324 0.779651i −0.994155 0.107960i \(-0.965568\pi\)
0.740831 0.671691i \(-0.234432\pi\)
\(608\) 144.907 199.448i 0.238334 0.328039i
\(609\) 276.204 1652.60i 0.453536 2.71363i
\(610\) −129.015 + 397.068i −0.211500 + 0.650931i
\(611\) 239.579 + 77.8439i 0.392109 + 0.127404i
\(612\) 1.97447 1.38374i 0.00322626 0.00226102i
\(613\) 847.792 + 615.957i 1.38302 + 1.00482i 0.996591 + 0.0825060i \(0.0262924\pi\)
0.386431 + 0.922318i \(0.373708\pi\)
\(614\) −780.670 + 253.655i −1.27145 + 0.413119i
\(615\) 456.922 + 464.777i 0.742963 + 0.755735i
\(616\) 0 0
\(617\) 322.739i 0.523078i 0.965193 + 0.261539i \(0.0842301\pi\)
−0.965193 + 0.261539i \(0.915770\pi\)
\(618\) −391.745 203.828i −0.633892 0.329819i
\(619\) −435.469 316.387i −0.703504 0.511126i 0.177567 0.984109i \(-0.443177\pi\)
−0.881072 + 0.472983i \(0.843177\pi\)
\(620\) 305.954 + 421.109i 0.493474 + 0.679208i
\(621\) 211.842 101.203i 0.341131 0.162968i
\(622\) 448.959 1381.75i 0.721799 2.22147i
\(623\) 265.153 + 364.951i 0.425606 + 0.585797i
\(624\) −111.052 742.029i −0.177968 1.18915i
\(625\) −189.047 581.826i −0.302475 0.930921i
\(626\) 230.698i 0.368527i
\(627\) 0 0
\(628\) 768.838 1.22426
\(629\) −2.33680 + 0.759273i −0.00371511 + 0.00120711i
\(630\) 861.715 1144.51i 1.36780 1.81668i
\(631\) −714.632 + 519.211i −1.13254 + 0.822838i −0.986062 0.166376i \(-0.946793\pi\)
−0.146477 + 0.989214i \(0.546793\pi\)
\(632\) 38.5340 + 12.5205i 0.0609715 + 0.0198109i
\(633\) −415.431 + 207.232i −0.656289 + 0.327381i
\(634\) −20.1528 + 14.6419i −0.0317868 + 0.0230945i
\(635\) 60.6349 83.4568i 0.0954881 0.131428i
\(636\) −1115.75 580.532i −1.75432 0.912786i
\(637\) −1284.27 −2.01613
\(638\) 0 0
\(639\) −240.316 4.09649i −0.376082 0.00641079i
\(640\) −39.4025 121.269i −0.0615665 0.189482i
\(641\) 173.396 238.659i 0.270509 0.372323i −0.652053 0.758174i \(-0.726092\pi\)
0.922561 + 0.385850i \(0.126092\pi\)
\(642\) 582.768 + 97.3995i 0.907738 + 0.151713i
\(643\) 258.185 794.613i 0.401532 1.23579i −0.522224 0.852809i \(-0.674897\pi\)
0.923756 0.382981i \(-0.125103\pi\)
\(644\) −395.767 128.592i −0.614545 0.199678i
\(645\) −0.493891 + 2.95509i −0.000765723 + 0.00458153i
\(646\) 0.784006 + 0.569614i 0.00121363 + 0.000881755i
\(647\) −777.637 + 252.670i −1.20191 + 0.390525i −0.840464 0.541867i \(-0.817718\pi\)
−0.361448 + 0.932392i \(0.617718\pi\)
\(648\) 2.22875 65.3545i 0.00343943 0.100856i
\(649\) 0 0
\(650\) 25.2162i 0.0387942i
\(651\) −380.470 + 731.241i −0.584439 + 1.12326i
\(652\) 766.222 + 556.693i 1.17519 + 0.853823i
\(653\) 162.445 + 223.586i 0.248767 + 0.342399i 0.915079 0.403275i \(-0.132128\pi\)
−0.666312 + 0.745673i \(0.732128\pi\)
\(654\) 484.527 + 971.314i 0.740867 + 1.48519i
\(655\) −44.3846 + 136.602i −0.0677628 + 0.208552i
\(656\) 381.947 + 525.706i 0.582237 + 0.801380i
\(657\) 75.6268 100.445i 0.115109 0.152885i
\(658\) 148.192 + 456.088i 0.225216 + 0.693143i
\(659\) 881.372i 1.33744i −0.743515 0.668719i \(-0.766843\pi\)
0.743515 0.668719i \(-0.233157\pi\)
\(660\) 0 0
\(661\) −501.036 −0.757997 −0.378999 0.925397i \(-0.623731\pi\)
−0.378999 + 0.925397i \(0.623731\pi\)
\(662\) 77.3282 25.1255i 0.116810 0.0379539i
\(663\) 3.13801 0.469635i 0.00473305 0.000708348i
\(664\) −39.3458 + 28.5864i −0.0592557 + 0.0430518i
\(665\) 283.096 + 91.9836i 0.425709 + 0.138321i
\(666\) −330.633 + 961.503i −0.496445 + 1.44370i
\(667\) 351.423 255.323i 0.526870 0.382794i
\(668\) −464.007 + 638.650i −0.694621 + 0.956064i
\(669\) 494.779 950.935i 0.739579 1.42143i
\(670\) −1179.64 −1.76065
\(671\) 0 0
\(672\) 1095.80 1077.28i 1.63065 1.60309i
\(673\) −1.37662 4.23681i −0.00204550 0.00629541i 0.950029 0.312163i \(-0.101054\pi\)
−0.952074 + 0.305868i \(0.901054\pi\)
\(674\) 488.009 671.687i 0.724049 0.996568i
\(675\) 2.54292 13.7675i 0.00376729 0.0203963i
\(676\) −154.227 + 474.662i −0.228146 + 0.702162i
\(677\) 16.4345 + 5.33989i 0.0242755 + 0.00788758i 0.321130 0.947035i \(-0.395938\pi\)
−0.296854 + 0.954923i \(0.595938\pi\)
\(678\) 840.671 + 140.504i 1.23993 + 0.207232i
\(679\) −278.699 202.487i −0.410455 0.298213i
\(680\) 0.237759 0.0772525i 0.000349645 0.000113607i
\(681\) −219.408 + 215.700i −0.322185 + 0.316740i
\(682\) 0 0
\(683\) 1085.69i 1.58958i −0.606882 0.794792i \(-0.707580\pi\)
0.606882 0.794792i \(-0.292420\pi\)
\(684\) 198.220 60.6906i 0.289796 0.0887290i
\(685\) 607.284 + 441.218i 0.886547 + 0.644114i
\(686\) −510.468 702.600i −0.744123 1.02420i
\(687\) −991.567 + 494.630i −1.44333 + 0.719986i
\(688\) −0.923060 + 2.84089i −0.00134166 + 0.00412919i
\(689\) −972.890 1339.07i −1.41203 1.94349i
\(690\) 367.323 54.9735i 0.532352 0.0796717i
\(691\) −62.2864 191.698i −0.0901395 0.277421i 0.895817 0.444423i \(-0.146591\pi\)
−0.985957 + 0.167002i \(0.946591\pi\)
\(692\) 1042.51i 1.50652i
\(693\) 0 0
\(694\) 758.569 1.09304
\(695\) −90.4563 + 29.3910i −0.130153 + 0.0422892i
\(696\) −17.9079 119.657i −0.0257297 0.171921i
\(697\) −2.22319 + 1.61524i −0.00318965 + 0.00231742i
\(698\) 1335.33 + 433.874i 1.91308 + 0.621596i
\(699\) −23.2013 46.5108i −0.0331921 0.0665390i
\(700\) −20.0760 + 14.5861i −0.0286801 + 0.0208373i
\(701\) −252.573 + 347.637i −0.360304 + 0.495916i −0.950233 0.311539i \(-0.899155\pi\)
0.589930 + 0.807455i \(0.299155\pi\)
\(702\) 625.807 1154.28i 0.891463 1.64427i
\(703\) −211.257 −0.300508
\(704\) 0 0
\(705\) −155.117 157.784i −0.220024 0.223807i
\(706\) 388.899 + 1196.91i 0.550848 + 1.69534i
\(707\) 341.204 469.627i 0.482609 0.664254i
\(708\) 30.6780 183.555i 0.0433305 0.259258i
\(709\) 231.622 712.859i 0.326688 1.00544i −0.643985 0.765038i \(-0.722720\pi\)
0.970673 0.240404i \(-0.0772801\pi\)
\(710\) −361.625 117.499i −0.509331 0.165492i
\(711\) −259.228 369.894i −0.364597 0.520245i
\(712\) 26.3531 + 19.1467i 0.0370128 + 0.0268914i
\(713\) −203.242 + 66.0372i −0.285052 + 0.0926189i
\(714\) 4.23464 + 4.30744i 0.00593087 + 0.00603283i
\(715\) 0 0
\(716\) 1355.32i 1.89291i
\(717\) −582.367 303.010i −0.812227 0.422608i
\(718\) −570.362 414.392i −0.794376 0.577148i
\(719\) 265.207 + 365.026i 0.368855 + 0.507685i 0.952589 0.304260i \(-0.0984090\pi\)
−0.583734 + 0.811945i \(0.698409\pi\)
\(720\) −214.300 + 623.200i −0.297639 + 0.865555i
\(721\) 176.728 543.913i 0.245115 0.754387i
\(722\) −561.623 773.008i −0.777871 1.07065i
\(723\) −52.4109 350.200i −0.0724909 0.484371i
\(724\) 40.8716 + 125.790i 0.0564524 + 0.173743i
\(725\) 25.9035i 0.0357290i
\(726\) 0 0
\(727\) 300.631 0.413523 0.206761 0.978391i \(-0.433708\pi\)
0.206761 + 0.978391i \(0.433708\pi\)
\(728\) −145.067 + 47.1352i −0.199268 + 0.0647462i
\(729\) −458.080 + 567.101i −0.628367 + 0.777917i
\(730\) 160.921 116.916i 0.220439 0.160158i
\(731\) −0.0120140 0.00390358i −1.64350e−5 5.34006e-6i
\(732\) −336.960 + 168.088i −0.460328 + 0.229628i
\(733\) −1078.72 + 783.739i −1.47166 + 1.06922i −0.491526 + 0.870863i \(0.663561\pi\)
−0.980130 + 0.198357i \(0.936439\pi\)
\(734\) −380.739 + 524.042i −0.518718 + 0.713954i
\(735\) 1000.68 + 520.664i 1.36148 + 0.708386i
\(736\) 398.379 0.541275
\(737\) 0 0
\(738\) −19.3815 + 1137.00i −0.0262623 + 1.54065i
\(739\) −326.316 1004.30i −0.441565 1.35900i −0.886207 0.463289i \(-0.846669\pi\)
0.444643 0.895708i \(-0.353331\pi\)
\(740\) −488.747 + 672.703i −0.660469 + 0.909058i
\(741\) 269.078 + 44.9716i 0.363128 + 0.0606905i
\(742\) 973.705 2996.76i 1.31227 4.03875i
\(743\) −959.620 311.799i −1.29155 0.419649i −0.418914 0.908026i \(-0.637589\pi\)
−0.872633 + 0.488377i \(0.837589\pi\)
\(744\) −9.81208 + 58.7084i −0.0131883 + 0.0789091i
\(745\) −727.196 528.339i −0.976102 0.709180i
\(746\) −774.928 + 251.789i −1.03878 + 0.337519i
\(747\) 542.097 + 9.24073i 0.725699 + 0.0123705i
\(748\) 0 0
\(749\) 765.196i 1.02162i
\(750\) 503.107 966.942i 0.670809 1.28926i
\(751\) 40.6835 + 29.5583i 0.0541725 + 0.0393586i 0.614542 0.788884i \(-0.289341\pi\)
−0.560369 + 0.828243i \(0.689341\pi\)
\(752\) −129.664 178.468i −0.172426 0.237324i
\(753\) −215.014 431.030i −0.285543 0.572418i
\(754\) 750.708 2310.44i 0.995634 3.06425i
\(755\) 407.718 + 561.176i 0.540024 + 0.743279i
\(756\) 1280.98 169.443i 1.69442 0.224131i
\(757\) 97.8844 + 301.257i 0.129306 + 0.397962i 0.994661 0.103197i \(-0.0329072\pi\)
−0.865355 + 0.501159i \(0.832907\pi\)
\(758\) 1313.86i 1.73333i
\(759\) 0 0
\(760\) 21.4944 0.0282821
\(761\) −67.8819 + 22.0562i −0.0892009 + 0.0289831i −0.353277 0.935519i \(-0.614933\pi\)
0.264077 + 0.964502i \(0.414933\pi\)
\(762\) 178.003 26.6399i 0.233599 0.0349604i
\(763\) −1137.27 + 826.277i −1.49053 + 1.08293i
\(764\) −1204.71 391.433i −1.57684 0.512347i
\(765\) −2.63549 0.906266i −0.00344508 0.00118466i
\(766\) 747.910 543.389i 0.976384 0.709384i
\(767\) 143.953 198.134i 0.187683 0.258324i
\(768\) −299.658 + 575.924i −0.390179 + 0.749901i
\(769\) 634.282 0.824814 0.412407 0.911000i \(-0.364688\pi\)
0.412407 + 0.911000i \(0.364688\pi\)
\(770\) 0 0
\(771\) 56.0119 55.0653i 0.0726484 0.0714206i
\(772\) 105.170 + 323.679i 0.136230 + 0.419273i
\(773\) −507.637 + 698.702i −0.656710 + 0.903884i −0.999367 0.0355767i \(-0.988673\pi\)
0.342657 + 0.939461i \(0.388673\pi\)
\(774\) −4.28080 + 3.00006i −0.00553075 + 0.00387604i
\(775\) −3.93800 + 12.1199i −0.00508130 + 0.0156386i
\(776\) −23.6582 7.68701i −0.0304873 0.00990594i
\(777\) −1298.77 217.066i −1.67152 0.279365i
\(778\) −734.335 533.525i −0.943875 0.685765i
\(779\) −224.709 + 73.0123i −0.288458 + 0.0937257i
\(780\) 765.719 752.778i 0.981691 0.965100i
\(781\) 0 0
\(782\) 1.56598i 0.00200253i
\(783\) −642.865 + 1185.74i −0.821029 + 1.51436i
\(784\) 909.860 + 661.052i 1.16054 + 0.843179i
\(785\) −522.363 718.971i −0.665431 0.915887i
\(786\) −224.248 + 111.863i −0.285303 + 0.142320i
\(787\) −371.943 + 1144.72i −0.472609 + 1.45454i 0.376546 + 0.926398i \(0.377112\pi\)
−0.849155 + 0.528143i \(0.822888\pi\)
\(788\) 906.608 + 1247.84i 1.15052 + 1.58355i
\(789\) −655.755 + 98.1403i −0.831122 + 0.124386i
\(790\) −220.814 679.595i −0.279511 0.860246i
\(791\) 1103.83i 1.39549i
\(792\) 0 0
\(793\) −495.547 −0.624902
\(794\) −925.567 + 300.735i −1.16570 + 0.378759i
\(795\) 215.182 + 1437.80i 0.270669 + 1.80856i
\(796\) 1280.89 930.620i 1.60916 1.16912i
\(797\) −595.973 193.643i −0.747770 0.242965i −0.0897487 0.995964i \(-0.528606\pi\)
−0.658021 + 0.752999i \(0.728606\pi\)
\(798\) 231.828 + 464.737i 0.290511 + 0.582377i
\(799\) 0.754733 0.548346i 0.000944597 0.000686290i
\(800\) 13.9637 19.2194i 0.0174547 0.0240243i
\(801\) −106.314 347.229i −0.132726 0.433495i
\(802\) 1038.67 1.29510
\(803\) 0 0
\(804\) −745.887 758.710i −0.927721 0.943670i
\(805\) 148.640 + 457.466i 0.184645 + 0.568280i
\(806\) −702.493 + 966.898i −0.871579 + 1.19963i
\(807\) −62.0345 + 371.170i −0.0768706 + 0.459938i
\(808\) 12.9532 39.8657i 0.0160311 0.0493387i
\(809\) 382.449 + 124.265i 0.472743 + 0.153604i 0.535692 0.844413i \(-0.320051\pi\)
−0.0629493 + 0.998017i \(0.520051\pi\)
\(810\) −955.582 + 645.685i −1.17973 + 0.797142i
\(811\) 448.052 + 325.529i 0.552469 + 0.401392i 0.828695 0.559701i \(-0.189084\pi\)
−0.276226 + 0.961093i \(0.589084\pi\)
\(812\) 2273.71 738.774i 2.80014 0.909820i
\(813\) 841.116 + 855.576i 1.03458 + 1.05237i
\(814\) 0 0
\(815\) 1094.75i 1.34325i
\(816\) −2.46490 1.28251i −0.00302071 0.00157170i
\(817\) −0.878687 0.638403i −0.00107550 0.000781399i
\(818\) 746.151 + 1026.99i 0.912165 + 1.25549i
\(819\) 1608.03 + 552.954i 1.96341 + 0.675157i
\(820\) −287.376 + 884.453i −0.350459 + 1.07860i
\(821\) 129.901 + 178.794i 0.158223 + 0.217776i 0.880767 0.473549i \(-0.157027\pi\)
−0.722544 + 0.691325i \(0.757027\pi\)
\(822\) 193.848 + 1295.26i 0.235825 + 1.57574i
\(823\) 222.107 + 683.574i 0.269875 + 0.830589i 0.990530 + 0.137295i \(0.0438409\pi\)
−0.720656 + 0.693293i \(0.756159\pi\)
\(824\) 41.2972i 0.0501179i
\(825\) 0 0
\(826\) 466.232 0.564446
\(827\) 610.949 198.509i 0.738753 0.240035i 0.0846182 0.996413i \(-0.473033\pi\)
0.654135 + 0.756378i \(0.273033\pi\)
\(828\) 267.616 + 201.492i 0.323208 + 0.243348i
\(829\) −664.227 + 482.589i −0.801239 + 0.582134i −0.911277 0.411793i \(-0.864903\pi\)
0.110038 + 0.993927i \(0.464903\pi\)
\(830\) 815.741 + 265.050i 0.982820 + 0.319338i
\(831\) 197.619 98.5797i 0.237809 0.118628i
\(832\) 993.145 721.562i 1.19368 0.867262i
\(833\) −2.79556 + 3.84776i −0.00335602 + 0.00461916i
\(834\) −147.211 76.5949i −0.176512 0.0918404i
\(835\) 912.483 1.09279
\(836\) 0 0
\(837\) 481.052 457.062i 0.574733 0.546071i
\(838\) 349.626 + 1076.04i 0.417214 + 1.28405i
\(839\) −202.110 + 278.180i −0.240894 + 0.331562i −0.912296 0.409531i \(-0.865692\pi\)
0.671402 + 0.741093i \(0.265692\pi\)
\(840\) 132.143 + 22.0855i 0.157314 + 0.0262922i
\(841\) −511.287 + 1573.58i −0.607952 + 1.87108i
\(842\) 1924.99 + 625.468i 2.28621 + 0.742836i
\(843\) −207.400 + 1240.93i −0.246026 + 1.47204i
\(844\) −535.906 389.358i −0.634959 0.461325i
\(845\) 548.660 178.270i 0.649302 0.210971i
\(846\) 6.57969 385.990i 0.00777741 0.456253i
\(847\) 0 0
\(848\) 1449.45i 1.70926i
\(849\) 367.424 706.168i 0.432773 0.831765i
\(850\) 0.0755494 + 0.0548898i 8.88816e−5 + 6.45763e-5i
\(851\) −200.657 276.180i −0.235789 0.324536i
\(852\) −153.084 306.882i −0.179676 0.360190i
\(853\) −105.689 + 325.277i −0.123903 + 0.381333i −0.993700 0.112077i \(-0.964250\pi\)
0.869797 + 0.493410i \(0.164250\pi\)
\(854\) −554.503 763.208i −0.649301 0.893686i
\(855\) −191.429 144.129i −0.223893 0.168572i
\(856\) 17.0747 + 52.5504i 0.0199470 + 0.0613907i
\(857\) 1404.79i 1.63920i −0.572937 0.819600i \(-0.694196\pi\)
0.572937 0.819600i \(-0.305804\pi\)
\(858\) 0 0
\(859\) 759.128 0.883735 0.441867 0.897080i \(-0.354316\pi\)
0.441867 + 0.897080i \(0.354316\pi\)
\(860\) −4.06572 + 1.32103i −0.00472758 + 0.00153608i
\(861\) −1456.49 + 217.978i −1.69162 + 0.253168i
\(862\) 352.123 255.832i 0.408496 0.296789i
\(863\) 376.240 + 122.248i 0.435968 + 0.141655i 0.518775 0.854911i \(-0.326388\pi\)
−0.0828067 + 0.996566i \(0.526388\pi\)
\(864\) −1116.18 + 533.229i −1.29187 + 0.617163i
\(865\) 974.894 708.302i 1.12704 0.818846i
\(866\) 797.679 1097.91i 0.921108 1.26780i
\(867\) −400.173 + 769.110i −0.461561 + 0.887093i
\(868\) −1176.15 −1.35501
\(869\) 0 0
\(870\) −1521.63 + 1495.91i −1.74900 + 1.71944i
\(871\) −432.671 1331.62i −0.496752 1.52884i
\(872\) −59.6655 + 82.1225i −0.0684237 + 0.0941772i
\(873\) 159.155 + 227.099i 0.182308 + 0.260136i
\(874\) −41.6068 + 128.052i −0.0476050 + 0.146513i
\(875\) 1342.54 + 436.217i 1.53433 + 0.498533i
\(876\) 176.947 + 29.5737i 0.201995 + 0.0337599i
\(877\) −917.111 666.320i −1.04574 0.759772i −0.0743391 0.997233i \(-0.523685\pi\)
−0.971397 + 0.237461i \(0.923685\pi\)
\(878\) 1385.94 450.319i 1.57852 0.512891i
\(879\) −407.592 + 400.703i −0.463700 + 0.455863i
\(880\) 0 0
\(881\) 894.628i 1.01547i −0.861514 0.507735i \(-0.830483\pi\)
0.861514 0.507735i \(-0.169517\pi\)
\(882\) 576.195 + 1881.90i 0.653283 + 2.13367i
\(883\) −25.6769 18.6553i −0.0290791 0.0211272i 0.573151 0.819450i \(-0.305721\pi\)
−0.602230 + 0.798323i \(0.705721\pi\)
\(884\) 2.66110 + 3.66270i 0.00301030 + 0.00414332i
\(885\) −192.493 + 96.0224i −0.217506 + 0.108500i
\(886\) −567.807 + 1747.53i −0.640866 + 1.97238i
\(887\) −796.758 1096.64i −0.898262 1.23635i −0.971019 0.239002i \(-0.923180\pi\)
0.0727570 0.997350i \(-0.476820\pi\)
\(888\) −94.0375 + 14.0736i −0.105898 + 0.0158487i
\(889\) 72.0300 + 221.686i 0.0810236 + 0.249365i
\(890\) 574.487i 0.645491i
\(891\) 0 0
\(892\) 1529.52 1.71470
\(893\) 76.2847 24.7864i 0.0854252 0.0277563i
\(894\) −232.125 1551.02i −0.259647 1.73492i
\(895\) 1267.42 920.833i 1.41611 1.02886i
\(896\) 274.015 + 89.0330i 0.305821 + 0.0993672i
\(897\) 196.784 + 394.486i 0.219380 + 0.439783i
\(898\) 771.678 560.657i 0.859330 0.624339i
\(899\) 721.641 993.254i 0.802715 1.10484i
\(900\) 19.1011 5.84834i 0.0212235 0.00649816i
\(901\) −6.12969 −0.00680321
\(902\) 0 0
\(903\) −4.74604 4.82763i −0.00525586 0.00534621i
\(904\) 24.6310 + 75.8066i 0.0272467 + 0.0838568i
\(905\) 89.8621 123.685i 0.0992951 0.136668i
\(906\) −199.504 + 1193.69i −0.220203 + 1.31754i
\(907\) 278.095 855.889i 0.306610 0.943648i −0.672462 0.740132i \(-0.734763\pi\)
0.979072 0.203516i \(-0.0652370\pi\)
\(908\) −417.525 135.662i −0.459829 0.149408i
\(909\) −382.678 + 268.187i −0.420987 + 0.295035i
\(910\) 2176.34 + 1581.20i 2.39158 + 1.73758i
\(911\) 304.231 98.8506i 0.333953 0.108508i −0.137241 0.990538i \(-0.543823\pi\)
0.471193 + 0.882030i \(0.343823\pi\)
\(912\) −167.483 170.363i −0.183644 0.186801i
\(913\) 0 0
\(914\) 247.292i 0.270560i
\(915\) 386.123 + 200.902i 0.421992 + 0.219566i
\(916\) −1279.12 929.335i −1.39642 1.01456i
\(917\) −190.764 262.564i −0.208030 0.286329i
\(918\) −2.09606 4.38756i −0.00228329 0.00477948i
\(919\) −138.542 + 426.387i −0.150752 + 0.463968i −0.997706 0.0676988i \(-0.978434\pi\)
0.846953 + 0.531667i \(0.178434\pi\)
\(920\) 20.4159 + 28.1001i 0.0221912 + 0.0305435i
\(921\) 126.663 + 846.336i 0.137527 + 0.918932i
\(922\) 58.0882 + 178.777i 0.0630024 + 0.193901i
\(923\) 451.314i 0.488964i
\(924\) 0 0
\(925\) −20.3574 −0.0220080
\(926\) 1465.19 476.069i 1.58228 0.514113i
\(927\) −276.916 + 367.792i −0.298722 + 0.396755i
\(928\) −1851.61 + 1345.27i −1.99527 + 1.44965i
\(929\) −278.538 90.5026i −0.299826 0.0974193i 0.155241 0.987877i \(-0.450385\pi\)
−0.455067 + 0.890457i \(0.650385\pi\)
\(930\) 939.367 468.591i 1.01007 0.503861i
\(931\) −330.829 + 240.361i −0.355348 + 0.258175i
\(932\) 43.5917 59.9988i 0.0467722 0.0643764i
\(933\) −1343.67 699.119i −1.44016 0.749324i
\(934\) 1433.07 1.53434
\(935\) 0 0
\(936\) 122.771 + 2.09279i 0.131166 + 0.00223589i
\(937\) 45.6193 + 140.402i 0.0486865 + 0.149842i 0.972444 0.233136i \(-0.0748987\pi\)
−0.923758 + 0.382978i \(0.874899\pi\)
\(938\) 1566.73 2156.42i 1.67029 2.29895i
\(939\) −237.221 39.6473i −0.252631 0.0422229i
\(940\) 97.5592 300.256i 0.103786 0.319422i
\(941\) 33.1918 + 10.7847i 0.0352729 + 0.0114609i 0.326600 0.945163i \(-0.394097\pi\)
−0.291327 + 0.956623i \(0.594097\pi\)
\(942\) 255.602 1529.34i 0.271340 1.62350i
\(943\) −308.884 224.418i −0.327555 0.237983i
\(944\) −203.971 + 66.2742i −0.216071 + 0.0702057i
\(945\) −1028.78 1082.77i −1.08865 1.14579i
\(946\) 0 0
\(947\) 867.513i 0.916064i −0.888936 0.458032i \(-0.848554\pi\)
0.888936 0.458032i \(-0.151446\pi\)
\(948\) 297.476 571.730i 0.313793 0.603091i
\(949\) 191.002 + 138.771i 0.201267 + 0.146229i
\(950\) 4.71941 + 6.49571i 0.00496780 + 0.00683758i
\(951\) 11.5925 + 23.2390i 0.0121898 + 0.0244364i
\(952\) −0.174558 + 0.537233i −0.000183359 + 0.000564321i
\(953\) 764.359 + 1052.05i 0.802056 + 1.10394i 0.992501 + 0.122237i \(0.0390069\pi\)
−0.190445 + 0.981698i \(0.560993\pi\)
\(954\) −1525.70 + 2026.40i −1.59927 + 2.12411i
\(955\) 452.456 + 1392.52i 0.473776 + 1.45813i
\(956\) 936.699i 0.979811i
\(957\) 0 0
\(958\) −2499.72 −2.60931
\(959\) −1613.12 + 524.135i −1.68209 + 0.546544i
\(960\) −1066.38 + 159.594i −1.11081 + 0.166243i
\(961\) 288.819 209.839i 0.300540 0.218355i
\(962\) −1815.76 589.976i −1.88748 0.613280i
\(963\) 200.307 582.507i 0.208003 0.604887i
\(964\) 408.754 296.977i 0.424019 0.308068i
\(965\) 231.231 318.262i 0.239617 0.329805i
\(966\) −387.364 + 744.491i −0.400998 + 0.770695i
\(967\) −1422.62 −1.47117 −0.735585 0.677433i \(-0.763093\pi\)
−0.735585 + 0.677433i \(0.763093\pi\)
\(968\) 0 0
\(969\) 0.720457 0.708281i 0.000743506 0.000730940i
\(970\) 135.570 + 417.241i 0.139763 + 0.430145i
\(971\) 204.126 280.955i 0.210222 0.289346i −0.690865 0.722984i \(-0.742770\pi\)
0.901087 + 0.433638i \(0.142770\pi\)
\(972\) −1019.50 206.336i −1.04887 0.212280i
\(973\) 66.4112 204.393i 0.0682541 0.210064i
\(974\) −659.877 214.407i −0.677491 0.220130i
\(975\) 25.9292 + 4.33361i 0.0265940 + 0.00444473i
\(976\) 351.077 + 255.073i 0.359710 + 0.261345i
\(977\) 443.757 144.185i 0.454204 0.147580i −0.0729757 0.997334i \(-0.523250\pi\)
0.527180 + 0.849754i \(0.323250\pi\)
\(978\) 1362.08 1339.06i 1.39272 1.36918i
\(979\) 0 0
\(980\) 1609.54i 1.64238i
\(981\) 1082.05 331.299i 1.10300 0.337715i
\(982\) 1164.13 + 845.788i 1.18547 + 0.861291i
\(983\) −595.696 819.905i −0.605998 0.834084i 0.390243 0.920712i \(-0.372391\pi\)
−0.996241 + 0.0866277i \(0.972391\pi\)
\(984\) −95.1614 + 47.4700i −0.0967088 + 0.0482419i
\(985\) 550.937 1695.61i 0.559327 1.72143i
\(986\) −5.28811 7.27846i −0.00536320 0.00738181i
\(987\) 494.452 73.9996i 0.500964 0.0749743i
\(988\) 120.288 + 370.207i 0.121749 + 0.374704i
\(989\) 1.75510i 0.00177462i
\(990\) 0 0
\(991\) −1208.63 −1.21960 −0.609802 0.792554i \(-0.708751\pi\)
−0.609802 + 0.792554i \(0.708751\pi\)
\(992\) 1070.86 347.944i 1.07950 0.350750i
\(993\) −12.5464 83.8327i −0.0126348 0.0844236i
\(994\) 695.082 505.007i 0.699278 0.508055i
\(995\) −1740.52 565.529i −1.74927 0.568371i
\(996\) 345.322 + 692.254i 0.346709 + 0.695034i
\(997\) −116.802 + 84.8616i −0.117153 + 0.0851170i −0.644819 0.764335i \(-0.723067\pi\)
0.527666 + 0.849452i \(0.323067\pi\)
\(998\) 938.418 1291.62i 0.940299 1.29421i
\(999\) 931.867 + 505.223i 0.932800 + 0.505729i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.269.5 24
3.2 odd 2 inner 363.3.h.q.269.2 24
11.2 odd 10 363.3.h.p.251.5 24
11.3 even 5 363.3.b.j.122.2 6
11.4 even 5 inner 363.3.h.q.245.5 24
11.5 even 5 inner 363.3.h.q.323.2 24
11.6 odd 10 363.3.h.p.323.5 24
11.7 odd 10 363.3.h.p.245.2 24
11.8 odd 10 363.3.b.k.122.5 yes 6
11.9 even 5 inner 363.3.h.q.251.2 24
11.10 odd 2 363.3.h.p.269.2 24
33.2 even 10 363.3.h.p.251.2 24
33.5 odd 10 inner 363.3.h.q.323.5 24
33.8 even 10 363.3.b.k.122.2 yes 6
33.14 odd 10 363.3.b.j.122.5 yes 6
33.17 even 10 363.3.h.p.323.2 24
33.20 odd 10 inner 363.3.h.q.251.5 24
33.26 odd 10 inner 363.3.h.q.245.2 24
33.29 even 10 363.3.h.p.245.5 24
33.32 even 2 363.3.h.p.269.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.2 6 11.3 even 5
363.3.b.j.122.5 yes 6 33.14 odd 10
363.3.b.k.122.2 yes 6 33.8 even 10
363.3.b.k.122.5 yes 6 11.8 odd 10
363.3.h.p.245.2 24 11.7 odd 10
363.3.h.p.245.5 24 33.29 even 10
363.3.h.p.251.2 24 33.2 even 10
363.3.h.p.251.5 24 11.2 odd 10
363.3.h.p.269.2 24 11.10 odd 2
363.3.h.p.269.5 24 33.32 even 2
363.3.h.p.323.2 24 33.17 even 10
363.3.h.p.323.5 24 11.6 odd 10
363.3.h.q.245.2 24 33.26 odd 10 inner
363.3.h.q.245.5 24 11.4 even 5 inner
363.3.h.q.251.2 24 11.9 even 5 inner
363.3.h.q.251.5 24 33.20 odd 10 inner
363.3.h.q.269.2 24 3.2 odd 2 inner
363.3.h.q.269.5 24 1.1 even 1 trivial
363.3.h.q.323.2 24 11.5 even 5 inner
363.3.h.q.323.5 24 33.5 odd 10 inner