Properties

Label 363.3.h.q.269.4
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-4,18,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.4
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.q.251.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.647210 - 0.210291i) q^{2} +(-2.63284 + 1.43811i) q^{3} +(-2.86141 + 2.07894i) q^{4} +(-6.17237 - 2.00553i) q^{5} +(-1.40158 + 1.48442i) q^{6} +(-7.57686 + 5.50491i) q^{7} +(-3.01474 + 4.14944i) q^{8} +(4.86369 - 7.57261i) q^{9} -4.41657 q^{10} +(4.54390 - 9.58852i) q^{12} +(-1.28903 - 3.96722i) q^{13} +(-3.74618 + 5.15618i) q^{14} +(19.1350 - 3.59631i) q^{15} +(3.29326 - 10.1356i) q^{16} +(28.4618 + 9.24781i) q^{17} +(1.55538 - 5.92386i) q^{18} +(-8.32617 - 6.04932i) q^{19} +(21.8311 - 7.09334i) q^{20} +(12.0320 - 25.3899i) q^{21} +27.8850i q^{23} +(1.97000 - 15.2603i) q^{24} +(13.8506 + 10.0631i) q^{25} +(-1.66854 - 2.29655i) q^{26} +(-1.91509 + 26.9320i) q^{27} +(10.2361 - 31.5036i) q^{28} +(-9.49235 - 13.0651i) q^{29} +(11.6281 - 6.35150i) q^{30} +(-5.45778 - 16.7973i) q^{31} -27.7684i q^{32} +20.3655 q^{34} +(57.8074 - 18.7828i) q^{35} +(1.82596 + 31.7797i) q^{36} +(-11.7790 + 8.55794i) q^{37} +(-6.66090 - 2.16426i) q^{38} +(9.09910 + 8.59130i) q^{39} +(26.9299 - 19.5657i) q^{40} +(20.5756 - 28.3199i) q^{41} +(2.44796 - 18.9628i) q^{42} -64.3417 q^{43} +(-45.2076 + 36.9867i) q^{45} +(5.86397 + 18.0474i) q^{46} +(6.14617 - 8.45948i) q^{47} +(5.90548 + 31.4216i) q^{48} +(11.9629 - 36.8181i) q^{49} +(11.0804 + 3.60026i) q^{50} +(-88.2348 + 16.5832i) q^{51} +(11.9360 + 8.67204i) q^{52} +(57.4452 - 18.6651i) q^{53} +(4.42410 + 17.8334i) q^{54} -48.0356i q^{56} +(30.6211 + 3.95296i) q^{57} +(-8.89102 - 6.45971i) q^{58} +(23.9032 + 32.8999i) q^{59} +(-47.2767 + 50.0710i) q^{60} +(7.26488 - 22.3590i) q^{61} +(-7.06466 - 9.72367i) q^{62} +(4.83505 + 84.1508i) q^{63} +(7.33362 + 22.5705i) q^{64} +27.0724i q^{65} +30.8376 q^{67} +(-100.667 + 32.7086i) q^{68} +(-40.1016 - 73.4167i) q^{69} +(33.4637 - 24.3128i) q^{70} +(0.946935 + 0.307678i) q^{71} +(16.7593 + 43.0111i) q^{72} +(75.6188 - 54.9403i) q^{73} +(-5.82382 + 8.01580i) q^{74} +(-50.9383 - 6.57576i) q^{75} +36.4007 q^{76} +(7.69570 + 3.64691i) q^{78} +(-34.9425 - 107.542i) q^{79} +(-40.6545 + 55.9561i) q^{80} +(-33.6890 - 73.6617i) q^{81} +(7.36131 - 22.6558i) q^{82} +(-98.9769 - 32.1595i) q^{83} +(18.3555 + 97.6646i) q^{84} +(-157.130 - 114.162i) q^{85} +(-41.6426 + 13.5305i) q^{86} +(43.7809 + 20.7473i) q^{87} -20.3993i q^{89} +(-21.4808 + 33.4449i) q^{90} +(31.6060 + 22.9631i) q^{91} +(-57.9711 - 79.7904i) q^{92} +(38.5258 + 36.3758i) q^{93} +(2.19891 - 6.76754i) q^{94} +(39.2602 + 54.0370i) q^{95} +(39.9339 + 73.1096i) q^{96} +(58.7378 + 180.776i) q^{97} -26.3447i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.647210 0.210291i 0.323605 0.105146i −0.142710 0.989765i \(-0.545582\pi\)
0.466315 + 0.884619i \(0.345582\pi\)
\(3\) −2.63284 + 1.43811i −0.877613 + 0.479369i
\(4\) −2.86141 + 2.07894i −0.715352 + 0.519734i
\(5\) −6.17237 2.00553i −1.23447 0.401105i −0.382141 0.924104i \(-0.624813\pi\)
−0.852333 + 0.522999i \(0.824813\pi\)
\(6\) −1.40158 + 1.48442i −0.233596 + 0.247403i
\(7\) −7.57686 + 5.50491i −1.08241 + 0.786416i −0.978101 0.208130i \(-0.933262\pi\)
−0.104307 + 0.994545i \(0.533262\pi\)
\(8\) −3.01474 + 4.14944i −0.376843 + 0.518679i
\(9\) 4.86369 7.57261i 0.540410 0.841402i
\(10\) −4.41657 −0.441657
\(11\) 0 0
\(12\) 4.54390 9.58852i 0.378658 0.799043i
\(13\) −1.28903 3.96722i −0.0991561 0.305171i 0.889158 0.457599i \(-0.151291\pi\)
−0.988315 + 0.152428i \(0.951291\pi\)
\(14\) −3.74618 + 5.15618i −0.267584 + 0.368298i
\(15\) 19.1350 3.59631i 1.27567 0.239754i
\(16\) 3.29326 10.1356i 0.205829 0.633477i
\(17\) 28.4618 + 9.24781i 1.67423 + 0.543989i 0.983777 0.179393i \(-0.0574135\pi\)
0.690448 + 0.723382i \(0.257413\pi\)
\(18\) 1.55538 5.92386i 0.0864097 0.329103i
\(19\) −8.32617 6.04932i −0.438220 0.318385i 0.346707 0.937973i \(-0.387300\pi\)
−0.784927 + 0.619588i \(0.787300\pi\)
\(20\) 21.8311 7.09334i 1.09155 0.354667i
\(21\) 12.0320 25.3899i 0.572952 1.20904i
\(22\) 0 0
\(23\) 27.8850i 1.21239i 0.795316 + 0.606195i \(0.207305\pi\)
−0.795316 + 0.606195i \(0.792695\pi\)
\(24\) 1.97000 15.2603i 0.0820832 0.635847i
\(25\) 13.8506 + 10.0631i 0.554026 + 0.402523i
\(26\) −1.66854 2.29655i −0.0641748 0.0883290i
\(27\) −1.91509 + 26.9320i −0.0709292 + 0.997481i
\(28\) 10.2361 31.5036i 0.365576 1.12513i
\(29\) −9.49235 13.0651i −0.327323 0.450521i 0.613363 0.789801i \(-0.289816\pi\)
−0.940685 + 0.339281i \(0.889816\pi\)
\(30\) 11.6281 6.35150i 0.387604 0.211717i
\(31\) −5.45778 16.7973i −0.176057 0.541849i 0.823623 0.567138i \(-0.191949\pi\)
−0.999680 + 0.0252890i \(0.991949\pi\)
\(32\) 27.7684i 0.867761i
\(33\) 0 0
\(34\) 20.3655 0.598986
\(35\) 57.8074 18.7828i 1.65164 0.536651i
\(36\) 1.82596 + 31.7797i 0.0507212 + 0.882768i
\(37\) −11.7790 + 8.55794i −0.318351 + 0.231296i −0.735472 0.677556i \(-0.763039\pi\)
0.417120 + 0.908851i \(0.363039\pi\)
\(38\) −6.66090 2.16426i −0.175287 0.0569542i
\(39\) 9.09910 + 8.59130i 0.233310 + 0.220290i
\(40\) 26.9299 19.5657i 0.673248 0.489143i
\(41\) 20.5756 28.3199i 0.501844 0.690729i −0.480673 0.876900i \(-0.659608\pi\)
0.982517 + 0.186171i \(0.0596077\pi\)
\(42\) 2.44796 18.9628i 0.0582848 0.451495i
\(43\) −64.3417 −1.49632 −0.748159 0.663519i \(-0.769062\pi\)
−0.748159 + 0.663519i \(0.769062\pi\)
\(44\) 0 0
\(45\) −45.2076 + 36.9867i −1.00461 + 0.821928i
\(46\) 5.86397 + 18.0474i 0.127478 + 0.392336i
\(47\) 6.14617 8.45948i 0.130770 0.179989i −0.738611 0.674132i \(-0.764518\pi\)
0.869381 + 0.494143i \(0.164518\pi\)
\(48\) 5.90548 + 31.4216i 0.123031 + 0.654616i
\(49\) 11.9629 36.8181i 0.244141 0.751389i
\(50\) 11.0804 + 3.60026i 0.221609 + 0.0720051i
\(51\) −88.2348 + 16.5832i −1.73009 + 0.325160i
\(52\) 11.9360 + 8.67204i 0.229539 + 0.166770i
\(53\) 57.4452 18.6651i 1.08387 0.352171i 0.287997 0.957631i \(-0.407011\pi\)
0.795876 + 0.605460i \(0.207011\pi\)
\(54\) 4.42410 + 17.8334i 0.0819277 + 0.330248i
\(55\) 0 0
\(56\) 48.0356i 0.857778i
\(57\) 30.6211 + 3.95296i 0.537212 + 0.0693501i
\(58\) −8.89102 6.45971i −0.153293 0.111374i
\(59\) 23.9032 + 32.8999i 0.405139 + 0.557625i 0.962024 0.272964i \(-0.0880039\pi\)
−0.556886 + 0.830589i \(0.688004\pi\)
\(60\) −47.2767 + 50.0710i −0.787945 + 0.834517i
\(61\) 7.26488 22.3590i 0.119096 0.366541i −0.873683 0.486496i \(-0.838275\pi\)
0.992779 + 0.119955i \(0.0382749\pi\)
\(62\) −7.06466 9.72367i −0.113946 0.156833i
\(63\) 4.83505 + 84.1508i 0.0767468 + 1.33573i
\(64\) 7.33362 + 22.5705i 0.114588 + 0.352665i
\(65\) 27.0724i 0.416498i
\(66\) 0 0
\(67\) 30.8376 0.460263 0.230132 0.973159i \(-0.426084\pi\)
0.230132 + 0.973159i \(0.426084\pi\)
\(68\) −100.667 + 32.7086i −1.48039 + 0.481008i
\(69\) −40.1016 73.4167i −0.581183 1.06401i
\(70\) 33.4637 24.3128i 0.478053 0.347326i
\(71\) 0.946935 + 0.307678i 0.0133371 + 0.00433349i 0.315678 0.948866i \(-0.397768\pi\)
−0.302341 + 0.953200i \(0.597768\pi\)
\(72\) 16.7593 + 43.0111i 0.232768 + 0.597376i
\(73\) 75.6188 54.9403i 1.03587 0.752607i 0.0663985 0.997793i \(-0.478849\pi\)
0.969476 + 0.245186i \(0.0788491\pi\)
\(74\) −5.82382 + 8.01580i −0.0787003 + 0.108322i
\(75\) −50.9383 6.57576i −0.679177 0.0876769i
\(76\) 36.4007 0.478957
\(77\) 0 0
\(78\) 7.69570 + 3.64691i 0.0986629 + 0.0467553i
\(79\) −34.9425 107.542i −0.442310 1.36129i −0.885407 0.464816i \(-0.846121\pi\)
0.443098 0.896473i \(-0.353879\pi\)
\(80\) −40.6545 + 55.9561i −0.508182 + 0.699452i
\(81\) −33.6890 73.6617i −0.415913 0.909404i
\(82\) 7.36131 22.6558i 0.0897721 0.276290i
\(83\) −98.9769 32.1595i −1.19249 0.387464i −0.355499 0.934677i \(-0.615689\pi\)
−0.836994 + 0.547212i \(0.815689\pi\)
\(84\) 18.3555 + 97.6646i 0.218517 + 1.16267i
\(85\) −157.130 114.162i −1.84859 1.34308i
\(86\) −41.6426 + 13.5305i −0.484216 + 0.157331i
\(87\) 43.7809 + 20.7473i 0.503228 + 0.238475i
\(88\) 0 0
\(89\) 20.3993i 0.229206i −0.993411 0.114603i \(-0.963440\pi\)
0.993411 0.114603i \(-0.0365595\pi\)
\(90\) −21.4808 + 33.4449i −0.238676 + 0.371611i
\(91\) 31.6060 + 22.9631i 0.347319 + 0.252342i
\(92\) −57.9711 79.7904i −0.630121 0.867287i
\(93\) 38.5258 + 36.3758i 0.414256 + 0.391137i
\(94\) 2.19891 6.76754i 0.0233926 0.0719951i
\(95\) 39.2602 + 54.0370i 0.413265 + 0.568811i
\(96\) 39.9339 + 73.1096i 0.415978 + 0.761559i
\(97\) 58.7378 + 180.776i 0.605545 + 1.86368i 0.493002 + 0.870028i \(0.335900\pi\)
0.112543 + 0.993647i \(0.464100\pi\)
\(98\) 26.3447i 0.268824i
\(99\) 0 0
\(100\) −60.5528 −0.605528
\(101\) −45.2739 + 14.7104i −0.448256 + 0.145647i −0.524442 0.851446i \(-0.675726\pi\)
0.0761854 + 0.997094i \(0.475726\pi\)
\(102\) −53.6191 + 29.2878i −0.525678 + 0.287135i
\(103\) −42.6153 + 30.9619i −0.413741 + 0.300601i −0.775115 0.631821i \(-0.782308\pi\)
0.361374 + 0.932421i \(0.382308\pi\)
\(104\) 20.3478 + 6.61141i 0.195652 + 0.0635713i
\(105\) −125.186 + 132.585i −1.19225 + 1.26272i
\(106\) 33.2540 24.1605i 0.313717 0.227929i
\(107\) 40.1565 55.2706i 0.375294 0.516548i −0.579036 0.815302i \(-0.696571\pi\)
0.954330 + 0.298754i \(0.0965710\pi\)
\(108\) −50.5100 81.0448i −0.467686 0.750415i
\(109\) 37.7254 0.346105 0.173053 0.984913i \(-0.444637\pi\)
0.173053 + 0.984913i \(0.444637\pi\)
\(110\) 0 0
\(111\) 18.7050 39.4711i 0.168513 0.355596i
\(112\) 30.8431 + 94.9253i 0.275385 + 0.847548i
\(113\) 100.089 137.760i 0.885739 1.21912i −0.0890591 0.996026i \(-0.528386\pi\)
0.974798 0.223089i \(-0.0716140\pi\)
\(114\) 20.6495 3.88095i 0.181136 0.0340434i
\(115\) 55.9241 172.117i 0.486296 1.49667i
\(116\) 54.3230 + 17.6506i 0.468302 + 0.152161i
\(117\) −36.3117 9.53404i −0.310356 0.0814875i
\(118\) 22.3889 + 16.2665i 0.189737 + 0.137852i
\(119\) −266.560 + 86.6105i −2.24000 + 0.727819i
\(120\) −42.7645 + 90.2415i −0.356371 + 0.752013i
\(121\) 0 0
\(122\) 15.9987i 0.131137i
\(123\) −13.4452 + 104.152i −0.109311 + 0.846762i
\(124\) 50.5375 + 36.7176i 0.407560 + 0.296110i
\(125\) 30.0589 + 41.3725i 0.240471 + 0.330980i
\(126\) 20.8255 + 53.4465i 0.165282 + 0.424178i
\(127\) 44.9068 138.209i 0.353597 1.08826i −0.603222 0.797573i \(-0.706117\pi\)
0.956819 0.290685i \(-0.0938833\pi\)
\(128\) 74.7801 + 102.926i 0.584220 + 0.804109i
\(129\) 169.401 92.5303i 1.31319 0.717289i
\(130\) 5.69308 + 17.5215i 0.0437929 + 0.134781i
\(131\) 174.147i 1.32936i 0.747126 + 0.664682i \(0.231433\pi\)
−0.747126 + 0.664682i \(0.768567\pi\)
\(132\) 0 0
\(133\) 96.3872 0.724716
\(134\) 19.9584 6.48489i 0.148944 0.0483947i
\(135\) 65.8335 162.394i 0.487655 1.20292i
\(136\) −124.178 + 90.2208i −0.913075 + 0.663388i
\(137\) 77.3163 + 25.1216i 0.564353 + 0.183369i 0.577279 0.816547i \(-0.304115\pi\)
−0.0129260 + 0.999916i \(0.504115\pi\)
\(138\) −41.3931 39.0830i −0.299950 0.283210i
\(139\) 0.550962 0.400297i 0.00396375 0.00287984i −0.585802 0.810454i \(-0.699220\pi\)
0.589765 + 0.807575i \(0.299220\pi\)
\(140\) −126.363 + 173.923i −0.902590 + 1.24231i
\(141\) −4.01624 + 31.1113i −0.0284840 + 0.220648i
\(142\) 0.677567 0.00477160
\(143\) 0 0
\(144\) −60.7358 74.2352i −0.421776 0.515522i
\(145\) 32.3880 + 99.6799i 0.223365 + 0.687447i
\(146\) 37.3878 51.4599i 0.256081 0.352465i
\(147\) 21.4519 + 114.140i 0.145931 + 0.776463i
\(148\) 15.9131 48.9755i 0.107521 0.330916i
\(149\) −188.245 61.1645i −1.26339 0.410500i −0.400688 0.916214i \(-0.631229\pi\)
−0.862701 + 0.505715i \(0.831229\pi\)
\(150\) −34.3506 + 6.45598i −0.229004 + 0.0430399i
\(151\) 71.9338 + 52.2630i 0.476383 + 0.346112i 0.799924 0.600102i \(-0.204873\pi\)
−0.323541 + 0.946214i \(0.604873\pi\)
\(152\) 50.2025 16.3118i 0.330280 0.107314i
\(153\) 208.460 170.552i 1.36248 1.11472i
\(154\) 0 0
\(155\) 114.625i 0.739516i
\(156\) −43.8970 5.66679i −0.281391 0.0363256i
\(157\) −53.9913 39.2270i −0.343893 0.249853i 0.402409 0.915460i \(-0.368173\pi\)
−0.746303 + 0.665607i \(0.768173\pi\)
\(158\) −45.2302 62.2541i −0.286267 0.394013i
\(159\) −124.402 + 131.755i −0.782401 + 0.828645i
\(160\) −55.6902 + 171.397i −0.348064 + 1.07123i
\(161\) −153.504 211.281i −0.953443 1.31230i
\(162\) −37.2943 40.5901i −0.230212 0.250556i
\(163\) −43.2141 132.999i −0.265117 0.815946i −0.991666 0.128832i \(-0.958877\pi\)
0.726549 0.687114i \(-0.241123\pi\)
\(164\) 123.810i 0.754940i
\(165\) 0 0
\(166\) −70.8217 −0.426637
\(167\) 130.674 42.4586i 0.782480 0.254243i 0.109581 0.993978i \(-0.465049\pi\)
0.672899 + 0.739735i \(0.265049\pi\)
\(168\) 69.0803 + 126.470i 0.411192 + 0.752797i
\(169\) 122.647 89.1080i 0.725720 0.527266i
\(170\) −125.704 40.8436i −0.739433 0.240256i
\(171\) −86.3051 + 33.6289i −0.504708 + 0.196660i
\(172\) 184.108 133.762i 1.07040 0.777688i
\(173\) 0.622044 0.856170i 0.00359563 0.00494896i −0.807215 0.590257i \(-0.799026\pi\)
0.810811 + 0.585308i \(0.199026\pi\)
\(174\) 32.6984 + 4.22112i 0.187922 + 0.0242593i
\(175\) −160.341 −0.916232
\(176\) 0 0
\(177\) −110.247 52.2448i −0.622863 0.295168i
\(178\) −4.28980 13.2026i −0.0241000 0.0741721i
\(179\) −50.9881 + 70.1791i −0.284850 + 0.392062i −0.927333 0.374238i \(-0.877904\pi\)
0.642483 + 0.766300i \(0.277904\pi\)
\(180\) 52.4644 199.818i 0.291469 1.11010i
\(181\) −33.4265 + 102.876i −0.184677 + 0.568376i −0.999943 0.0107104i \(-0.996591\pi\)
0.815266 + 0.579087i \(0.196591\pi\)
\(182\) 25.2847 + 8.21548i 0.138927 + 0.0451400i
\(183\) 13.0274 + 69.3153i 0.0711879 + 0.378772i
\(184\) −115.707 84.0660i −0.628842 0.456881i
\(185\) 89.8675 29.1997i 0.485770 0.157836i
\(186\) 32.5838 + 15.4411i 0.175182 + 0.0830168i
\(187\) 0 0
\(188\) 36.9835i 0.196721i
\(189\) −133.748 214.602i −0.707661 1.13546i
\(190\) 36.7731 + 26.7172i 0.193543 + 0.140617i
\(191\) −16.8407 23.1793i −0.0881714 0.121358i 0.762653 0.646808i \(-0.223897\pi\)
−0.850824 + 0.525451i \(0.823897\pi\)
\(192\) −51.7671 48.8781i −0.269620 0.254574i
\(193\) 3.92289 12.0734i 0.0203258 0.0625565i −0.940379 0.340128i \(-0.889530\pi\)
0.960705 + 0.277572i \(0.0895296\pi\)
\(194\) 76.0314 + 104.648i 0.391915 + 0.539424i
\(195\) −38.9330 71.2772i −0.199656 0.365524i
\(196\) 42.3116 + 130.222i 0.215875 + 0.664396i
\(197\) 336.692i 1.70910i −0.519370 0.854549i \(-0.673834\pi\)
0.519370 0.854549i \(-0.326166\pi\)
\(198\) 0 0
\(199\) 183.863 0.923932 0.461966 0.886898i \(-0.347144\pi\)
0.461966 + 0.886898i \(0.347144\pi\)
\(200\) −83.5122 + 27.1348i −0.417561 + 0.135674i
\(201\) −81.1906 + 44.3479i −0.403933 + 0.220636i
\(202\) −26.2082 + 19.0414i −0.129744 + 0.0942644i
\(203\) 143.844 + 46.7379i 0.708593 + 0.230236i
\(204\) 218.001 230.886i 1.06863 1.13179i
\(205\) −183.797 + 133.536i −0.896569 + 0.651395i
\(206\) −21.0701 + 29.0004i −0.102282 + 0.140779i
\(207\) 211.162 + 135.624i 1.02011 + 0.655189i
\(208\) −44.4554 −0.213728
\(209\) 0 0
\(210\) −53.1401 + 112.136i −0.253048 + 0.533981i
\(211\) −55.6255 171.198i −0.263628 0.811364i −0.992006 0.126188i \(-0.959726\pi\)
0.728378 0.685175i \(-0.240274\pi\)
\(212\) −125.571 + 172.833i −0.592315 + 0.815252i
\(213\) −2.93560 + 0.551728i −0.0137822 + 0.00259027i
\(214\) 14.3667 44.2162i 0.0671342 0.206618i
\(215\) 397.141 + 129.039i 1.84717 + 0.600181i
\(216\) −105.979 89.1395i −0.490644 0.412683i
\(217\) 133.821 + 97.2263i 0.616684 + 0.448048i
\(218\) 24.4163 7.93333i 0.112001 0.0363914i
\(219\) −120.082 + 253.397i −0.548321 + 1.15706i
\(220\) 0 0
\(221\) 124.835i 0.564865i
\(222\) 3.80560 29.4796i 0.0171424 0.132791i
\(223\) −212.819 154.622i −0.954344 0.693372i −0.00251375 0.999997i \(-0.500800\pi\)
−0.951830 + 0.306625i \(0.900800\pi\)
\(224\) 152.862 + 210.397i 0.682421 + 0.939272i
\(225\) 143.569 55.9418i 0.638085 0.248630i
\(226\) 35.8085 110.207i 0.158445 0.487643i
\(227\) 5.30714 + 7.30465i 0.0233795 + 0.0321791i 0.820547 0.571579i \(-0.193669\pi\)
−0.797167 + 0.603759i \(0.793669\pi\)
\(228\) −95.8373 + 52.3482i −0.420339 + 0.229597i
\(229\) −108.907 335.180i −0.475575 1.46367i −0.845181 0.534480i \(-0.820508\pi\)
0.369607 0.929188i \(-0.379492\pi\)
\(230\) 123.156i 0.535460i
\(231\) 0 0
\(232\) 82.8298 0.357025
\(233\) 33.6696 10.9399i 0.144505 0.0469525i −0.235872 0.971784i \(-0.575794\pi\)
0.380376 + 0.924832i \(0.375794\pi\)
\(234\) −25.5062 + 1.46551i −0.109001 + 0.00626286i
\(235\) −54.9021 + 39.8887i −0.233626 + 0.169739i
\(236\) −136.794 44.4469i −0.579634 0.188334i
\(237\) 246.655 + 232.889i 1.04074 + 0.982656i
\(238\) −154.307 + 112.110i −0.648347 + 0.471052i
\(239\) 76.8818 105.819i 0.321681 0.442756i −0.617298 0.786729i \(-0.711773\pi\)
0.938980 + 0.343973i \(0.111773\pi\)
\(240\) 26.5659 205.789i 0.110691 0.857455i
\(241\) −134.526 −0.558198 −0.279099 0.960262i \(-0.590036\pi\)
−0.279099 + 0.960262i \(0.590036\pi\)
\(242\) 0 0
\(243\) 194.631 + 145.491i 0.800952 + 0.598729i
\(244\) 25.6951 + 79.0815i 0.105308 + 0.324104i
\(245\) −147.679 + 203.263i −0.602772 + 0.829644i
\(246\) 13.2003 + 70.2354i 0.0536598 + 0.285510i
\(247\) −13.2663 + 40.8295i −0.0537098 + 0.165302i
\(248\) 86.1532 + 27.9929i 0.347392 + 0.112874i
\(249\) 306.839 57.6685i 1.23229 0.231600i
\(250\) 28.1547 + 20.4556i 0.112619 + 0.0818222i
\(251\) 384.764 125.017i 1.53292 0.498077i 0.583511 0.812105i \(-0.301679\pi\)
0.949414 + 0.314028i \(0.101679\pi\)
\(252\) −188.779 230.738i −0.749124 0.915628i
\(253\) 0 0
\(254\) 98.8936i 0.389345i
\(255\) 577.876 + 74.5996i 2.26618 + 0.292547i
\(256\) −6.75577 4.90836i −0.0263897 0.0191733i
\(257\) 80.7301 + 111.115i 0.314125 + 0.432356i 0.936662 0.350234i \(-0.113898\pi\)
−0.622537 + 0.782590i \(0.713898\pi\)
\(258\) 90.1800 95.5102i 0.349535 0.370194i
\(259\) 42.1371 129.685i 0.162691 0.500713i
\(260\) −56.2817 77.4651i −0.216468 0.297943i
\(261\) −145.105 + 8.33729i −0.555957 + 0.0319436i
\(262\) 36.6215 + 112.710i 0.139777 + 0.430189i
\(263\) 138.001i 0.524720i −0.964970 0.262360i \(-0.915499\pi\)
0.964970 0.262360i \(-0.0845008\pi\)
\(264\) 0 0
\(265\) −392.007 −1.47927
\(266\) 62.3827 20.2694i 0.234522 0.0762007i
\(267\) 29.3364 + 53.7081i 0.109874 + 0.201154i
\(268\) −88.2391 + 64.1095i −0.329251 + 0.239215i
\(269\) −29.3816 9.54665i −0.109225 0.0354894i 0.253895 0.967232i \(-0.418288\pi\)
−0.363120 + 0.931743i \(0.618288\pi\)
\(270\) 8.45812 118.947i 0.0313264 0.440544i
\(271\) −162.195 + 117.842i −0.598507 + 0.434841i −0.845349 0.534215i \(-0.820607\pi\)
0.246842 + 0.969056i \(0.420607\pi\)
\(272\) 187.465 258.023i 0.689208 0.948614i
\(273\) −116.237 15.0053i −0.425776 0.0549646i
\(274\) 55.3227 0.201908
\(275\) 0 0
\(276\) 267.376 + 126.707i 0.968753 + 0.459082i
\(277\) −49.3221 151.798i −0.178058 0.548007i 0.821702 0.569918i \(-0.193025\pi\)
−0.999760 + 0.0219109i \(0.993025\pi\)
\(278\) 0.272409 0.374939i 0.000979888 0.00134870i
\(279\) −153.745 40.3673i −0.551056 0.144686i
\(280\) −96.3366 + 296.493i −0.344059 + 1.05891i
\(281\) −377.786 122.750i −1.34444 0.436834i −0.453619 0.891196i \(-0.649867\pi\)
−0.890817 + 0.454362i \(0.849867\pi\)
\(282\) 3.94308 + 20.9801i 0.0139826 + 0.0743976i
\(283\) −54.6819 39.7287i −0.193222 0.140384i 0.486968 0.873420i \(-0.338103\pi\)
−0.680190 + 0.733036i \(0.738103\pi\)
\(284\) −3.34921 + 1.08822i −0.0117930 + 0.00383178i
\(285\) −181.077 85.8104i −0.635357 0.301089i
\(286\) 0 0
\(287\) 327.843i 1.14231i
\(288\) −210.279 135.057i −0.730136 0.468947i
\(289\) 490.748 + 356.549i 1.69809 + 1.23373i
\(290\) 41.9236 + 57.7029i 0.144564 + 0.198975i
\(291\) −414.623 391.484i −1.42482 1.34531i
\(292\) −102.159 + 314.413i −0.349860 + 1.07676i
\(293\) −214.903 295.788i −0.733457 1.00952i −0.998968 0.0454093i \(-0.985541\pi\)
0.265511 0.964108i \(-0.414459\pi\)
\(294\) 37.8865 + 69.3614i 0.128866 + 0.235923i
\(295\) −81.5577 251.009i −0.276467 0.850878i
\(296\) 74.6761i 0.252284i
\(297\) 0 0
\(298\) −134.696 −0.452001
\(299\) 110.626 35.9446i 0.369987 0.120216i
\(300\) 159.426 87.0815i 0.531420 0.290272i
\(301\) 487.508 354.195i 1.61963 1.17673i
\(302\) 57.5467 + 18.6981i 0.190552 + 0.0619141i
\(303\) 98.0438 103.839i 0.323577 0.342702i
\(304\) −88.7339 + 64.4690i −0.291888 + 0.212069i
\(305\) −89.6831 + 123.438i −0.294043 + 0.404715i
\(306\) 99.0516 154.220i 0.323698 0.503987i
\(307\) 484.160 1.57707 0.788534 0.614992i \(-0.210841\pi\)
0.788534 + 0.614992i \(0.210841\pi\)
\(308\) 0 0
\(309\) 67.6729 142.803i 0.219006 0.462146i
\(310\) 24.1046 + 74.1865i 0.0777569 + 0.239311i
\(311\) 197.585 271.953i 0.635323 0.874447i −0.363033 0.931776i \(-0.618259\pi\)
0.998355 + 0.0573298i \(0.0182586\pi\)
\(312\) −63.0805 + 11.8556i −0.202181 + 0.0379987i
\(313\) −151.139 + 465.157i −0.482871 + 1.48612i 0.352170 + 0.935936i \(0.385444\pi\)
−0.835041 + 0.550188i \(0.814556\pi\)
\(314\) −43.1928 14.0342i −0.137557 0.0446948i
\(315\) 138.923 529.107i 0.441025 1.67971i
\(316\) 323.557 + 235.078i 1.02392 + 0.743918i
\(317\) 148.670 48.3059i 0.468992 0.152385i −0.0649808 0.997887i \(-0.520699\pi\)
0.533972 + 0.845502i \(0.320699\pi\)
\(318\) −52.8072 + 111.433i −0.166060 + 0.350420i
\(319\) 0 0
\(320\) 154.022i 0.481318i
\(321\) −26.2404 + 203.268i −0.0817458 + 0.633234i
\(322\) −143.780 104.462i −0.446522 0.324417i
\(323\) −181.035 249.174i −0.560481 0.771435i
\(324\) 249.536 + 140.739i 0.770173 + 0.434380i
\(325\) 22.0686 67.9202i 0.0679034 0.208985i
\(326\) −55.9371 76.9909i −0.171586 0.236168i
\(327\) −99.3251 + 54.2533i −0.303746 + 0.165912i
\(328\) 55.4814 + 170.754i 0.169151 + 0.520592i
\(329\) 97.9303i 0.297661i
\(330\) 0 0
\(331\) 40.2792 0.121689 0.0608447 0.998147i \(-0.480621\pi\)
0.0608447 + 0.998147i \(0.480621\pi\)
\(332\) 350.071 113.745i 1.05443 0.342605i
\(333\) 7.51658 + 130.821i 0.0225723 + 0.392856i
\(334\) 75.6449 54.9592i 0.226482 0.164549i
\(335\) −190.341 61.8457i −0.568184 0.184614i
\(336\) −217.718 205.567i −0.647970 0.611808i
\(337\) 9.64009 7.00393i 0.0286056 0.0207832i −0.573391 0.819282i \(-0.694372\pi\)
0.601996 + 0.798499i \(0.294372\pi\)
\(338\) 60.6395 83.4631i 0.179407 0.246932i
\(339\) −65.4033 + 506.638i −0.192930 + 1.49451i
\(340\) 686.950 2.02044
\(341\) 0 0
\(342\) −48.7857 + 39.9142i −0.142648 + 0.116708i
\(343\) −29.7722 91.6294i −0.0867994 0.267141i
\(344\) 193.974 266.982i 0.563877 0.776110i
\(345\) 100.283 + 533.580i 0.290676 + 1.54661i
\(346\) 0.222548 0.684932i 0.000643202 0.00197957i
\(347\) 571.856 + 185.807i 1.64800 + 0.535468i 0.978305 0.207168i \(-0.0664247\pi\)
0.669695 + 0.742636i \(0.266425\pi\)
\(348\) −168.407 + 31.6511i −0.483929 + 0.0909514i
\(349\) −107.566 78.1511i −0.308211 0.223929i 0.422917 0.906168i \(-0.361006\pi\)
−0.731129 + 0.682240i \(0.761006\pi\)
\(350\) −103.774 + 33.7182i −0.296497 + 0.0963378i
\(351\) 109.314 27.1185i 0.311435 0.0772608i
\(352\) 0 0
\(353\) 172.864i 0.489699i −0.969561 0.244850i \(-0.921261\pi\)
0.969561 0.244850i \(-0.0787386\pi\)
\(354\) −82.3395 10.6294i −0.232597 0.0300266i
\(355\) −5.22778 3.79820i −0.0147261 0.0106992i
\(356\) 42.4089 + 58.3708i 0.119126 + 0.163963i
\(357\) 577.254 611.373i 1.61696 1.71253i
\(358\) −18.2420 + 56.1430i −0.0509552 + 0.156824i
\(359\) 354.287 + 487.634i 0.986871 + 1.35831i 0.933045 + 0.359761i \(0.117142\pi\)
0.0538262 + 0.998550i \(0.482858\pi\)
\(360\) −17.1849 299.092i −0.0477358 0.830810i
\(361\) −78.8242 242.596i −0.218350 0.672011i
\(362\) 73.6117i 0.203347i
\(363\) 0 0
\(364\) −138.177 −0.379606
\(365\) −576.932 + 187.457i −1.58064 + 0.513580i
\(366\) 23.0079 + 42.1220i 0.0628630 + 0.115088i
\(367\) −201.333 + 146.277i −0.548592 + 0.398575i −0.827266 0.561810i \(-0.810105\pi\)
0.278674 + 0.960386i \(0.410105\pi\)
\(368\) 282.632 + 91.8327i 0.768021 + 0.249545i
\(369\) −114.382 293.550i −0.309979 0.795529i
\(370\) 52.0227 37.7967i 0.140602 0.102153i
\(371\) −332.505 + 457.654i −0.896239 + 1.23357i
\(372\) −185.861 23.9933i −0.499626 0.0644981i
\(373\) −677.639 −1.81673 −0.908364 0.418181i \(-0.862668\pi\)
−0.908364 + 0.418181i \(0.862668\pi\)
\(374\) 0 0
\(375\) −138.638 65.6992i −0.369702 0.175198i
\(376\) 16.5729 + 51.0063i 0.0440770 + 0.135655i
\(377\) −39.5963 + 54.4996i −0.105030 + 0.144561i
\(378\) −131.692 110.767i −0.348391 0.293034i
\(379\) −35.1742 + 108.255i −0.0928079 + 0.285633i −0.986676 0.162696i \(-0.947981\pi\)
0.893868 + 0.448330i \(0.147981\pi\)
\(380\) −224.679 73.0026i −0.591261 0.192112i
\(381\) 80.5268 + 428.463i 0.211357 + 1.12457i
\(382\) −15.7739 11.4604i −0.0412929 0.0300011i
\(383\) −573.154 + 186.229i −1.49649 + 0.486238i −0.938991 0.343942i \(-0.888238\pi\)
−0.557496 + 0.830180i \(0.688238\pi\)
\(384\) −344.903 163.446i −0.898184 0.425640i
\(385\) 0 0
\(386\) 8.63898i 0.0223808i
\(387\) −312.938 + 487.235i −0.808626 + 1.25901i
\(388\) −543.896 395.163i −1.40179 1.01846i
\(389\) −267.543 368.242i −0.687772 0.946637i 0.312222 0.950009i \(-0.398927\pi\)
−0.999994 + 0.00337225i \(0.998927\pi\)
\(390\) −40.1868 37.9441i −0.103043 0.0972924i
\(391\) −257.875 + 793.658i −0.659527 + 2.02982i
\(392\) 116.709 + 160.636i 0.297727 + 0.409786i
\(393\) −250.442 458.501i −0.637257 1.16667i
\(394\) −70.8035 217.911i −0.179704 0.553073i
\(395\) 733.867i 1.85789i
\(396\) 0 0
\(397\) 327.783 0.825649 0.412824 0.910811i \(-0.364542\pi\)
0.412824 + 0.910811i \(0.364542\pi\)
\(398\) 118.998 38.6647i 0.298989 0.0971474i
\(399\) −253.772 + 138.615i −0.636020 + 0.347406i
\(400\) 147.609 107.245i 0.369024 0.268111i
\(401\) −239.706 77.8852i −0.597770 0.194227i −0.00552464 0.999985i \(-0.501759\pi\)
−0.592246 + 0.805757i \(0.701759\pi\)
\(402\) −43.2214 + 45.7760i −0.107516 + 0.113871i
\(403\) −59.6035 + 43.3045i −0.147899 + 0.107455i
\(404\) 98.9652 136.214i 0.244963 0.337163i
\(405\) 60.2105 + 522.232i 0.148668 + 1.28946i
\(406\) 102.926 0.253513
\(407\) 0 0
\(408\) 197.194 416.119i 0.483319 1.01990i
\(409\) 140.226 + 431.571i 0.342851 + 1.05519i 0.962724 + 0.270485i \(0.0871840\pi\)
−0.619873 + 0.784702i \(0.712816\pi\)
\(410\) −90.8735 + 125.077i −0.221643 + 0.305065i
\(411\) −239.689 + 45.0481i −0.583185 + 0.109606i
\(412\) 57.5722 177.189i 0.139738 0.430071i
\(413\) −362.222 117.693i −0.877051 0.284971i
\(414\) 165.187 + 43.3716i 0.399002 + 0.104762i
\(415\) 546.426 + 397.001i 1.31669 + 0.956630i
\(416\) −110.163 + 35.7942i −0.264816 + 0.0860438i
\(417\) −0.874924 + 1.84626i −0.00209814 + 0.00442748i
\(418\) 0 0
\(419\) 295.753i 0.705855i 0.935651 + 0.352927i \(0.114814\pi\)
−0.935651 + 0.352927i \(0.885186\pi\)
\(420\) 82.5722 639.635i 0.196600 1.52294i
\(421\) −185.253 134.594i −0.440030 0.319701i 0.345617 0.938376i \(-0.387670\pi\)
−0.785647 + 0.618675i \(0.787670\pi\)
\(422\) −72.0028 99.1033i −0.170623 0.234842i
\(423\) −34.1673 87.6869i −0.0807737 0.207298i
\(424\) −95.7329 + 294.636i −0.225785 + 0.694896i
\(425\) 301.153 + 414.502i 0.708596 + 0.975298i
\(426\) −1.78393 + 0.974415i −0.00418762 + 0.00228736i
\(427\) 68.0393 + 209.403i 0.159343 + 0.490406i
\(428\) 241.635i 0.564567i
\(429\) 0 0
\(430\) 284.169 0.660859
\(431\) −531.608 + 172.730i −1.23343 + 0.400766i −0.851956 0.523614i \(-0.824583\pi\)
−0.381474 + 0.924380i \(0.624583\pi\)
\(432\) 266.666 + 108.105i 0.617282 + 0.250243i
\(433\) −233.218 + 169.443i −0.538609 + 0.391322i −0.823568 0.567217i \(-0.808020\pi\)
0.284959 + 0.958540i \(0.408020\pi\)
\(434\) 107.056 + 34.7845i 0.246672 + 0.0801487i
\(435\) −228.623 215.864i −0.525569 0.496239i
\(436\) −107.948 + 78.4288i −0.247587 + 0.179883i
\(437\) 168.685 232.175i 0.386007 0.531294i
\(438\) −24.4312 + 189.253i −0.0557791 + 0.432085i
\(439\) 179.800 0.409567 0.204784 0.978807i \(-0.434351\pi\)
0.204784 + 0.978807i \(0.434351\pi\)
\(440\) 0 0
\(441\) −220.625 269.662i −0.500284 0.611479i
\(442\) −26.2517 80.7945i −0.0593931 0.182793i
\(443\) −165.331 + 227.558i −0.373207 + 0.513676i −0.953769 0.300541i \(-0.902833\pi\)
0.580562 + 0.814216i \(0.302833\pi\)
\(444\) 28.5354 + 151.830i 0.0642689 + 0.341958i
\(445\) −40.9113 + 125.912i −0.0919356 + 0.282949i
\(446\) −170.254 55.3189i −0.381735 0.124033i
\(447\) 583.580 109.680i 1.30555 0.245370i
\(448\) −179.815 130.643i −0.401372 0.291614i
\(449\) −264.108 + 85.8140i −0.588214 + 0.191122i −0.587977 0.808878i \(-0.700075\pi\)
−0.000237150 1.00000i \(0.500075\pi\)
\(450\) 81.1552 66.3974i 0.180345 0.147550i
\(451\) 0 0
\(452\) 602.265i 1.33245i
\(453\) −264.550 34.1515i −0.583995 0.0753896i
\(454\) 4.97093 + 3.61160i 0.0109492 + 0.00795506i
\(455\) −149.031 205.123i −0.327541 0.450821i
\(456\) −108.717 + 115.143i −0.238415 + 0.252506i
\(457\) 106.989 329.280i 0.234113 0.720524i −0.763125 0.646251i \(-0.776336\pi\)
0.997238 0.0742739i \(-0.0236639\pi\)
\(458\) −140.971 194.030i −0.307797 0.423646i
\(459\) −303.569 + 748.824i −0.661370 + 1.63142i
\(460\) 197.798 + 608.759i 0.429995 + 1.32339i
\(461\) 67.1487i 0.145659i 0.997344 + 0.0728294i \(0.0232029\pi\)
−0.997344 + 0.0728294i \(0.976797\pi\)
\(462\) 0 0
\(463\) −754.683 −1.62999 −0.814993 0.579471i \(-0.803259\pi\)
−0.814993 + 0.579471i \(0.803259\pi\)
\(464\) −163.684 + 53.1841i −0.352767 + 0.114621i
\(465\) −164.843 301.789i −0.354501 0.649009i
\(466\) 19.4907 14.1609i 0.0418256 0.0303881i
\(467\) 275.211 + 89.4216i 0.589317 + 0.191481i 0.588470 0.808519i \(-0.299730\pi\)
0.000847110 1.00000i \(0.499730\pi\)
\(468\) 123.723 48.2089i 0.264366 0.103010i
\(469\) −233.652 + 169.758i −0.498193 + 0.361958i
\(470\) −27.1450 + 37.3618i −0.0577552 + 0.0794933i
\(471\) 198.563 + 25.6330i 0.421577 + 0.0544226i
\(472\) −208.578 −0.441902
\(473\) 0 0
\(474\) 208.612 + 98.8590i 0.440110 + 0.208563i
\(475\) −54.4481 167.574i −0.114627 0.352787i
\(476\) 582.679 801.988i 1.22411 1.68485i
\(477\) 138.052 525.792i 0.289418 1.10229i
\(478\) 27.5059 84.6545i 0.0575437 0.177101i
\(479\) 158.005 + 51.3391i 0.329865 + 0.107180i 0.469267 0.883056i \(-0.344518\pi\)
−0.139402 + 0.990236i \(0.544518\pi\)
\(480\) −99.8636 531.349i −0.208049 1.10698i
\(481\) 49.1347 + 35.6985i 0.102151 + 0.0742172i
\(482\) −87.0664 + 28.2896i −0.180636 + 0.0586921i
\(483\) 707.997 + 335.512i 1.46583 + 0.694642i
\(484\) 0 0
\(485\) 1233.62i 2.54355i
\(486\) 156.563 + 53.2341i 0.322146 + 0.109535i
\(487\) 16.6332 + 12.0847i 0.0341545 + 0.0248147i 0.604732 0.796429i \(-0.293280\pi\)
−0.570577 + 0.821244i \(0.693280\pi\)
\(488\) 70.8755 + 97.5517i 0.145237 + 0.199901i
\(489\) 305.043 + 288.019i 0.623810 + 0.588996i
\(490\) −52.8350 + 162.609i −0.107827 + 0.331856i
\(491\) −281.310 387.190i −0.572933 0.788574i 0.419966 0.907540i \(-0.362042\pi\)
−0.992898 + 0.118966i \(0.962042\pi\)
\(492\) −178.052 325.972i −0.361895 0.662545i
\(493\) −149.346 459.640i −0.302933 0.932333i
\(494\) 29.2151i 0.0591398i
\(495\) 0 0
\(496\) −188.225 −0.379486
\(497\) −8.86853 + 2.88156i −0.0178441 + 0.00579791i
\(498\) 186.462 101.849i 0.374422 0.204517i
\(499\) 206.262 149.858i 0.413352 0.300317i −0.361606 0.932331i \(-0.617771\pi\)
0.774957 + 0.632014i \(0.217771\pi\)
\(500\) −172.021 55.8932i −0.344043 0.111786i
\(501\) −282.984 + 299.710i −0.564838 + 0.598224i
\(502\) 222.733 161.825i 0.443691 0.322361i
\(503\) −150.204 + 206.738i −0.298616 + 0.411010i −0.931789 0.363001i \(-0.881752\pi\)
0.633173 + 0.774011i \(0.281752\pi\)
\(504\) −363.755 233.630i −0.721736 0.463552i
\(505\) 308.949 0.611781
\(506\) 0 0
\(507\) −194.762 + 410.986i −0.384146 + 0.810623i
\(508\) 158.831 + 488.830i 0.312659 + 0.962265i
\(509\) −31.1173 + 42.8293i −0.0611342 + 0.0841440i −0.838489 0.544918i \(-0.816561\pi\)
0.777355 + 0.629062i \(0.216561\pi\)
\(510\) 389.695 73.2407i 0.764107 0.143609i
\(511\) −270.512 + 832.550i −0.529377 + 1.62926i
\(512\) −489.392 159.013i −0.955843 0.310572i
\(513\) 178.866 212.656i 0.348666 0.414533i
\(514\) 75.6160 + 54.9382i 0.147113 + 0.106884i
\(515\) 325.133 105.642i 0.631325 0.205130i
\(516\) −292.362 + 616.942i −0.566594 + 1.19562i
\(517\) 0 0
\(518\) 92.7942i 0.179139i
\(519\) −0.406478 + 3.14873i −0.000783194 + 0.00606691i
\(520\) −112.335 81.6162i −0.216029 0.156954i
\(521\) 512.433 + 705.303i 0.983557 + 1.35375i 0.934891 + 0.354934i \(0.115497\pi\)
0.0486653 + 0.998815i \(0.484503\pi\)
\(522\) −92.1601 + 35.9103i −0.176552 + 0.0687936i
\(523\) 219.180 674.565i 0.419081 1.28980i −0.489467 0.872022i \(-0.662809\pi\)
0.908549 0.417779i \(-0.137191\pi\)
\(524\) −362.040 498.305i −0.690916 0.950964i
\(525\) 422.151 230.587i 0.804098 0.439214i
\(526\) −29.0205 89.3158i −0.0551720 0.169802i
\(527\) 528.555i 1.00295i
\(528\) 0 0
\(529\) −248.573 −0.469892
\(530\) −253.711 + 82.4356i −0.478699 + 0.155539i
\(531\) 365.396 20.9945i 0.688128 0.0395377i
\(532\) −275.803 + 200.383i −0.518427 + 0.376659i
\(533\) −138.874 45.1229i −0.260551 0.0846583i
\(534\) 30.2812 + 28.5912i 0.0567063 + 0.0535416i
\(535\) −358.707 + 260.616i −0.670481 + 0.487133i
\(536\) −92.9675 + 127.959i −0.173447 + 0.238729i
\(537\) 33.3184 258.097i 0.0620455 0.480627i
\(538\) −21.0236 −0.0390774
\(539\) 0 0
\(540\) 149.229 + 601.538i 0.276351 + 1.11396i
\(541\) −52.7194 162.254i −0.0974480 0.299914i 0.890436 0.455109i \(-0.150400\pi\)
−0.987884 + 0.155195i \(0.950400\pi\)
\(542\) −80.1933 + 110.377i −0.147958 + 0.203647i
\(543\) −59.9404 318.927i −0.110387 0.587343i
\(544\) 256.797 790.338i 0.472052 1.45283i
\(545\) −232.856 75.6594i −0.427258 0.138825i
\(546\) −78.3852 + 14.7320i −0.143563 + 0.0269817i
\(547\) 85.8184 + 62.3507i 0.156889 + 0.113987i 0.663460 0.748212i \(-0.269087\pi\)
−0.506571 + 0.862198i \(0.669087\pi\)
\(548\) −273.460 + 88.8525i −0.499014 + 0.162140i
\(549\) −133.982 163.761i −0.244047 0.298290i
\(550\) 0 0
\(551\) 166.205i 0.301642i
\(552\) 425.534 + 54.9333i 0.770895 + 0.0995169i
\(553\) 856.762 + 622.474i 1.54930 + 1.12563i
\(554\) −63.8435 87.8731i −0.115241 0.158616i
\(555\) −194.614 + 206.117i −0.350657 + 0.371383i
\(556\) −0.744335 + 2.29083i −0.00133873 + 0.00412019i
\(557\) 431.366 + 593.724i 0.774445 + 1.06593i 0.995873 + 0.0907553i \(0.0289281\pi\)
−0.221428 + 0.975177i \(0.571072\pi\)
\(558\) −107.994 + 6.20500i −0.193537 + 0.0111201i
\(559\) 82.9383 + 255.258i 0.148369 + 0.456633i
\(560\) 647.771i 1.15673i
\(561\) 0 0
\(562\) −270.320 −0.480997
\(563\) 944.916 307.022i 1.67836 0.545332i 0.693767 0.720200i \(-0.255950\pi\)
0.984592 + 0.174868i \(0.0559497\pi\)
\(564\) −53.1863 97.3717i −0.0943019 0.172645i
\(565\) −894.065 + 649.576i −1.58242 + 1.14969i
\(566\) −43.7452 14.2137i −0.0772884 0.0251125i
\(567\) 660.758 + 372.670i 1.16536 + 0.657266i
\(568\) −4.13145 + 3.00168i −0.00727368 + 0.00528464i
\(569\) 626.713 862.596i 1.10143 1.51599i 0.267950 0.963433i \(-0.413654\pi\)
0.833478 0.552553i \(-0.186346\pi\)
\(570\) −135.240 17.4585i −0.237263 0.0306289i
\(571\) −409.079 −0.716425 −0.358213 0.933640i \(-0.616614\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(572\) 0 0
\(573\) 77.6733 + 36.8086i 0.135556 + 0.0642384i
\(574\) 68.9424 + 212.183i 0.120109 + 0.369657i
\(575\) −280.609 + 386.225i −0.488015 + 0.671696i
\(576\) 206.587 + 54.2416i 0.358657 + 0.0941694i
\(577\) 142.077 437.267i 0.246233 0.757828i −0.749198 0.662346i \(-0.769561\pi\)
0.995431 0.0954818i \(-0.0304392\pi\)
\(578\) 392.596 + 127.562i 0.679232 + 0.220696i
\(579\) 7.03452 + 37.4289i 0.0121494 + 0.0646440i
\(580\) −299.903 217.892i −0.517075 0.375677i
\(581\) 926.969 301.191i 1.59547 0.518400i
\(582\) −350.674 166.181i −0.602533 0.285534i
\(583\) 0 0
\(584\) 479.406i 0.820901i
\(585\) 205.009 + 131.672i 0.350442 + 0.225080i
\(586\) −201.289 146.245i −0.343497 0.249565i
\(587\) 34.6014 + 47.6247i 0.0589461 + 0.0811324i 0.837472 0.546480i \(-0.184032\pi\)
−0.778526 + 0.627612i \(0.784032\pi\)
\(588\) −298.672 282.004i −0.507946 0.479599i
\(589\) −56.1699 + 172.873i −0.0953649 + 0.293503i
\(590\) −105.570 145.305i −0.178932 0.246279i
\(591\) 484.200 + 886.457i 0.819289 + 1.49993i
\(592\) 47.9487 + 147.571i 0.0809945 + 0.249275i
\(593\) 149.728i 0.252493i −0.991999 0.126247i \(-0.959707\pi\)
0.991999 0.126247i \(-0.0402931\pi\)
\(594\) 0 0
\(595\) 1819.01 3.05715
\(596\) 665.803 216.333i 1.11712 0.362974i
\(597\) −484.081 + 264.414i −0.810855 + 0.442905i
\(598\) 64.0394 46.5274i 0.107089 0.0778049i
\(599\) 421.867 + 137.073i 0.704286 + 0.228836i 0.639197 0.769043i \(-0.279267\pi\)
0.0650891 + 0.997879i \(0.479267\pi\)
\(600\) 180.852 191.541i 0.301419 0.319235i
\(601\) 334.929 243.340i 0.557286 0.404892i −0.273178 0.961963i \(-0.588075\pi\)
0.830465 + 0.557071i \(0.188075\pi\)
\(602\) 241.036 331.757i 0.400392 0.551092i
\(603\) 149.985 233.522i 0.248731 0.387266i
\(604\) −314.483 −0.520668
\(605\) 0 0
\(606\) 41.6185 87.8232i 0.0686774 0.144923i
\(607\) −117.688 362.207i −0.193885 0.596716i −0.999988 0.00494086i \(-0.998427\pi\)
0.806103 0.591775i \(-0.201573\pi\)
\(608\) −167.980 + 231.204i −0.276282 + 0.380270i
\(609\) −445.933 + 83.8104i −0.732239 + 0.137620i
\(610\) −32.0858 + 98.7500i −0.0525997 + 0.161885i
\(611\) −41.4832 13.4787i −0.0678940 0.0220601i
\(612\) −241.922 + 921.393i −0.395297 + 1.50554i
\(613\) −91.3802 66.3916i −0.149071 0.108306i 0.510750 0.859729i \(-0.329368\pi\)
−0.659821 + 0.751423i \(0.729368\pi\)
\(614\) 313.353 101.815i 0.510347 0.165822i
\(615\) 291.868 615.898i 0.474582 1.00146i
\(616\) 0 0
\(617\) 378.251i 0.613049i −0.951863 0.306524i \(-0.900834\pi\)
0.951863 0.306524i \(-0.0991661\pi\)
\(618\) 13.7683 106.655i 0.0222788 0.172580i
\(619\) 23.7034 + 17.2215i 0.0382931 + 0.0278216i 0.606767 0.794880i \(-0.292466\pi\)
−0.568474 + 0.822701i \(0.692466\pi\)
\(620\) −238.298 327.989i −0.384352 0.529015i
\(621\) −750.998 53.4022i −1.20934 0.0859939i
\(622\) 70.6899 217.561i 0.113649 0.349777i
\(623\) 112.296 + 154.563i 0.180251 + 0.248094i
\(624\) 117.044 63.9317i 0.187570 0.102455i
\(625\) −234.823 722.710i −0.375716 1.15634i
\(626\) 332.837i 0.531689i
\(627\) 0 0
\(628\) 236.041 0.375862
\(629\) −414.394 + 134.645i −0.658814 + 0.214062i
\(630\) −21.3543 371.658i −0.0338957 0.589933i
\(631\) 787.079 571.847i 1.24735 0.906254i 0.249287 0.968430i \(-0.419804\pi\)
0.998065 + 0.0621752i \(0.0198037\pi\)
\(632\) 551.580 + 179.219i 0.872754 + 0.283575i
\(633\) 392.654 + 370.741i 0.620306 + 0.585688i
\(634\) 86.0626 62.5281i 0.135745 0.0986248i
\(635\) −554.363 + 763.015i −0.873012 + 1.20160i
\(636\) 82.0548 635.627i 0.129017 0.999414i
\(637\) −161.486 −0.253510
\(638\) 0 0
\(639\) 6.93552 5.67432i 0.0108537 0.00888000i
\(640\) −255.150 785.271i −0.398672 1.22699i
\(641\) −513.946 + 707.386i −0.801788 + 1.10357i 0.190751 + 0.981639i \(0.438908\pi\)
−0.992539 + 0.121928i \(0.961092\pi\)
\(642\) 25.7624 + 137.075i 0.0401284 + 0.213513i
\(643\) 225.637 694.441i 0.350914 1.08000i −0.607428 0.794375i \(-0.707798\pi\)
0.958341 0.285626i \(-0.0922015\pi\)
\(644\) 878.478 + 285.435i 1.36410 + 0.443222i
\(645\) −1231.18 + 231.393i −1.90881 + 0.358748i
\(646\) −169.567 123.197i −0.262487 0.190708i
\(647\) −706.330 + 229.501i −1.09170 + 0.354715i −0.798903 0.601459i \(-0.794586\pi\)
−0.292798 + 0.956174i \(0.594586\pi\)
\(648\) 407.218 + 82.2808i 0.628423 + 0.126977i
\(649\) 0 0
\(650\) 48.5994i 0.0747684i
\(651\) −492.150 63.5330i −0.755991 0.0975929i
\(652\) 400.150 + 290.726i 0.613727 + 0.445899i
\(653\) 653.864 + 899.967i 1.00132 + 1.37820i 0.924510 + 0.381158i \(0.124475\pi\)
0.0768135 + 0.997045i \(0.475525\pi\)
\(654\) −52.8752 + 56.0004i −0.0808489 + 0.0856276i
\(655\) 349.256 1074.90i 0.533215 1.64107i
\(656\) −219.279 301.812i −0.334267 0.460079i
\(657\) −48.2549 839.845i −0.0734474 1.27830i
\(658\) 20.5939 + 63.3815i 0.0312977 + 0.0963244i
\(659\) 829.020i 1.25800i −0.777407 0.628998i \(-0.783465\pi\)
0.777407 0.628998i \(-0.216535\pi\)
\(660\) 0 0
\(661\) −1040.95 −1.57480 −0.787402 0.616439i \(-0.788575\pi\)
−0.787402 + 0.616439i \(0.788575\pi\)
\(662\) 26.0691 8.47037i 0.0393793 0.0127951i
\(663\) 179.526 + 328.671i 0.270779 + 0.495733i
\(664\) 431.834 313.746i 0.650352 0.472508i
\(665\) −594.938 193.307i −0.894643 0.290687i
\(666\) 32.3753 + 83.0879i 0.0486116 + 0.124757i
\(667\) 364.320 264.694i 0.546207 0.396843i
\(668\) −285.643 + 393.154i −0.427610 + 0.588555i
\(669\) 782.681 + 101.038i 1.16993 + 0.151029i
\(670\) −136.196 −0.203278
\(671\) 0 0
\(672\) −705.035 334.109i −1.04916 0.497186i
\(673\) 78.5875 + 241.868i 0.116772 + 0.359387i 0.992312 0.123758i \(-0.0394945\pi\)
−0.875541 + 0.483145i \(0.839495\pi\)
\(674\) 4.76629 6.56024i 0.00707165 0.00973330i
\(675\) −297.544 + 353.754i −0.440806 + 0.524080i
\(676\) −165.692 + 509.949i −0.245107 + 0.754362i
\(677\) 964.286 + 313.315i 1.42435 + 0.462800i 0.916982 0.398929i \(-0.130618\pi\)
0.507369 + 0.861729i \(0.330618\pi\)
\(678\) 64.2119 + 341.655i 0.0947078 + 0.503916i
\(679\) −1440.21 1046.37i −2.12107 1.54105i
\(680\) 947.415 307.834i 1.39326 0.452697i
\(681\) −24.4777 11.5997i −0.0359438 0.0170334i
\(682\) 0 0
\(683\) 561.211i 0.821685i 0.911706 + 0.410842i \(0.134765\pi\)
−0.911706 + 0.410842i \(0.865235\pi\)
\(684\) 177.042 275.649i 0.258833 0.402995i
\(685\) −426.843 310.120i −0.623129 0.452730i
\(686\) −38.5377 53.0426i −0.0561775 0.0773216i
\(687\) 768.758 + 725.856i 1.11901 + 1.05656i
\(688\) −211.894 + 652.144i −0.307986 + 0.947883i
\(689\) −148.097 203.838i −0.214945 0.295847i
\(690\) 177.111 + 324.250i 0.256683 + 0.469927i
\(691\) 176.558 + 543.389i 0.255510 + 0.786380i 0.993729 + 0.111818i \(0.0356674\pi\)
−0.738218 + 0.674562i \(0.764333\pi\)
\(692\) 3.74304i 0.00540902i
\(693\) 0 0
\(694\) 409.185 0.589603
\(695\) −4.20355 + 1.36582i −0.00604827 + 0.00196520i
\(696\) −218.078 + 119.118i −0.313330 + 0.171147i
\(697\) 847.516 615.757i 1.21595 0.883438i
\(698\) −86.0521 27.9600i −0.123284 0.0400573i
\(699\) −72.9140 + 77.2236i −0.104312 + 0.110477i
\(700\) 458.800 333.338i 0.655429 0.476197i
\(701\) −415.641 + 572.080i −0.592925 + 0.816092i −0.995038 0.0994987i \(-0.968276\pi\)
0.402112 + 0.915590i \(0.368276\pi\)
\(702\) 65.0462 40.5391i 0.0926584 0.0577481i
\(703\) 149.844 0.213149
\(704\) 0 0
\(705\) 87.1843 183.976i 0.123666 0.260959i
\(706\) −36.3517 111.879i −0.0514897 0.158469i
\(707\) 262.054 360.687i 0.370657 0.510166i
\(708\) 424.075 79.7022i 0.598976 0.112574i
\(709\) 282.481 869.387i 0.398422 1.22622i −0.527843 0.849342i \(-0.676999\pi\)
0.926265 0.376874i \(-0.123001\pi\)
\(710\) −4.18220 1.35888i −0.00589042 0.00191391i
\(711\) −984.322 258.445i −1.38442 0.363495i
\(712\) 84.6456 + 61.4986i 0.118884 + 0.0863745i
\(713\) 468.393 152.190i 0.656933 0.213450i
\(714\) 245.038 517.078i 0.343190 0.724199i
\(715\) 0 0
\(716\) 306.812i 0.428509i
\(717\) −50.2388 + 389.168i −0.0700680 + 0.542773i
\(718\) 331.843 + 241.098i 0.462177 + 0.335791i
\(719\) −495.361 681.806i −0.688958 0.948270i 0.311039 0.950397i \(-0.399323\pi\)
−0.999998 + 0.00212717i \(0.999323\pi\)
\(720\) 226.003 + 580.015i 0.313893 + 0.805576i
\(721\) 152.448 469.187i 0.211440 0.650745i
\(722\) −102.032 140.434i −0.141318 0.194508i
\(723\) 354.185 193.463i 0.489882 0.267583i
\(724\) −118.226 363.862i −0.163296 0.502572i
\(725\) 276.482i 0.381355i
\(726\) 0 0
\(727\) 958.596 1.31856 0.659282 0.751895i \(-0.270860\pi\)
0.659282 + 0.751895i \(0.270860\pi\)
\(728\) −190.568 + 61.9192i −0.261769 + 0.0850539i
\(729\) −721.665 103.154i −0.989938 0.141501i
\(730\) −333.976 + 242.647i −0.457501 + 0.332394i
\(731\) −1831.28 595.020i −2.50518 0.813981i
\(732\) −181.379 171.256i −0.247785 0.233957i
\(733\) 815.585 592.557i 1.11267 0.808400i 0.129586 0.991568i \(-0.458635\pi\)
0.983082 + 0.183168i \(0.0586352\pi\)
\(734\) −99.5441 + 137.011i −0.135619 + 0.186663i
\(735\) 96.5016 747.537i 0.131295 1.01706i
\(736\) 774.320 1.05207
\(737\) 0 0
\(738\) −135.760 165.935i −0.183957 0.224844i
\(739\) −350.139 1077.62i −0.473802 1.45821i −0.847567 0.530688i \(-0.821933\pi\)
0.373765 0.927523i \(-0.378067\pi\)
\(740\) −196.443 + 270.381i −0.265464 + 0.365380i
\(741\) −23.7892 126.576i −0.0321041 0.170818i
\(742\) −118.960 + 366.121i −0.160323 + 0.493424i
\(743\) −12.0434 3.91313i −0.0162091 0.00526666i 0.300901 0.953655i \(-0.402713\pi\)
−0.317110 + 0.948389i \(0.602713\pi\)
\(744\) −267.084 + 50.1968i −0.358984 + 0.0674688i
\(745\) 1039.25 + 755.060i 1.39497 + 1.01350i
\(746\) −438.575 + 142.502i −0.587902 + 0.191021i
\(747\) −724.925 + 593.100i −0.970449 + 0.793976i
\(748\) 0 0
\(749\) 639.835i 0.854253i
\(750\) −103.544 13.3668i −0.138059 0.0178224i
\(751\) 155.182 + 112.746i 0.206633 + 0.150128i 0.686289 0.727329i \(-0.259238\pi\)
−0.479656 + 0.877457i \(0.659238\pi\)
\(752\) −65.5011 90.1546i −0.0871026 0.119886i
\(753\) −833.234 + 882.483i −1.10655 + 1.17196i
\(754\) −14.1663 + 43.5994i −0.0187882 + 0.0578242i
\(755\) −339.188 466.852i −0.449255 0.618346i
\(756\) 828.852 + 336.012i 1.09636 + 0.444460i
\(757\) 159.304 + 490.289i 0.210442 + 0.647673i 0.999446 + 0.0332854i \(0.0105970\pi\)
−0.789004 + 0.614388i \(0.789403\pi\)
\(758\) 77.4605i 0.102191i
\(759\) 0 0
\(760\) −342.582 −0.450766
\(761\) 979.307 318.196i 1.28687 0.418129i 0.415874 0.909422i \(-0.363476\pi\)
0.870994 + 0.491294i \(0.163476\pi\)
\(762\) 142.220 + 260.371i 0.186640 + 0.341694i
\(763\) −285.840 + 207.675i −0.374627 + 0.272182i
\(764\) 96.3766 + 31.3146i 0.126147 + 0.0409877i
\(765\) −1628.74 + 634.639i −2.12907 + 0.829594i
\(766\) −331.789 + 241.059i −0.433145 + 0.314698i
\(767\) 99.7094 137.238i 0.129999 0.178928i
\(768\) 24.8456 + 3.20739i 0.0323511 + 0.00417629i
\(769\) −1094.35 −1.42308 −0.711539 0.702647i \(-0.752001\pi\)
−0.711539 + 0.702647i \(0.752001\pi\)
\(770\) 0 0
\(771\) −372.346 176.451i −0.482938 0.228860i
\(772\) 13.8749 + 42.7024i 0.0179726 + 0.0553140i
\(773\) 303.368 417.550i 0.392455 0.540168i −0.566376 0.824147i \(-0.691655\pi\)
0.958830 + 0.283980i \(0.0916548\pi\)
\(774\) −100.076 + 381.151i −0.129297 + 0.492444i
\(775\) 93.4390 287.576i 0.120566 0.371065i
\(776\) −927.200 301.265i −1.19485 0.388229i
\(777\) 75.5602 + 402.036i 0.0972461 + 0.517421i
\(778\) −250.595 182.068i −0.322101 0.234020i
\(779\) −342.632 + 111.328i −0.439836 + 0.142911i
\(780\) 259.584 + 123.014i 0.332800 + 0.157710i
\(781\) 0 0
\(782\) 567.892i 0.726205i
\(783\) 370.048 230.627i 0.472603 0.294543i
\(784\) −333.777 242.503i −0.425736 0.309315i
\(785\) 254.584 + 350.404i 0.324310 + 0.446375i
\(786\) −258.507 244.080i −0.328889 0.310535i
\(787\) 224.489 690.907i 0.285247 0.877900i −0.701078 0.713085i \(-0.747297\pi\)
0.986325 0.164815i \(-0.0527026\pi\)
\(788\) 699.962 + 963.415i 0.888277 + 1.22261i
\(789\) 198.461 + 363.335i 0.251535 + 0.460501i
\(790\) 154.326 + 474.966i 0.195349 + 0.601222i
\(791\) 1594.77i 2.01614i
\(792\) 0 0
\(793\) −98.0678 −0.123667
\(794\) 212.144 68.9298i 0.267184 0.0868134i
\(795\) 1032.09 563.748i 1.29823 0.709117i
\(796\) −526.106 + 382.238i −0.660937 + 0.480199i
\(797\) 1395.59 + 453.455i 1.75105 + 0.568952i 0.996212 0.0869550i \(-0.0277136\pi\)
0.754842 + 0.655907i \(0.227714\pi\)
\(798\) −135.094 + 143.079i −0.169291 + 0.179297i
\(799\) 253.163 183.934i 0.316850 0.230205i
\(800\) 279.435 384.610i 0.349294 0.480762i
\(801\) −154.476 99.2160i −0.192854 0.123865i
\(802\) −171.519 −0.213864
\(803\) 0 0
\(804\) 140.123 295.687i 0.174283 0.367770i
\(805\) 523.757 + 1611.96i 0.650630 + 2.00243i
\(806\) −29.4694 + 40.5612i −0.0365625 + 0.0503240i
\(807\) 91.0861 17.1191i 0.112870 0.0212132i
\(808\) 75.4493 232.209i 0.0933778 0.287387i
\(809\) 24.4139 + 7.93257i 0.0301779 + 0.00980540i 0.324067 0.946034i \(-0.394950\pi\)
−0.293889 + 0.955840i \(0.594950\pi\)
\(810\) 148.790 + 325.332i 0.183691 + 0.401644i
\(811\) −531.579 386.215i −0.655461 0.476221i 0.209666 0.977773i \(-0.432762\pi\)
−0.865127 + 0.501553i \(0.832762\pi\)
\(812\) −508.763 + 165.307i −0.626555 + 0.203580i
\(813\) 257.565 543.513i 0.316808 0.668528i
\(814\) 0 0
\(815\) 907.588i 1.11360i
\(816\) −122.500 + 948.928i −0.150122 + 1.16290i
\(817\) 535.720 + 389.224i 0.655716 + 0.476406i
\(818\) 181.511 + 249.829i 0.221897 + 0.305414i
\(819\) 327.613 127.655i 0.400015 0.155866i
\(820\) 248.304 764.203i 0.302810 0.931954i
\(821\) −553.696 762.098i −0.674417 0.928255i 0.325433 0.945565i \(-0.394490\pi\)
−0.999850 + 0.0173098i \(0.994490\pi\)
\(822\) −145.656 + 79.5601i −0.177197 + 0.0967884i
\(823\) −63.1327 194.302i −0.0767104 0.236090i 0.905347 0.424673i \(-0.139611\pi\)
−0.982057 + 0.188582i \(0.939611\pi\)
\(824\) 270.172i 0.327878i
\(825\) 0 0
\(826\) −259.183 −0.313781
\(827\) −110.504 + 35.9050i −0.133620 + 0.0434159i −0.375064 0.926999i \(-0.622379\pi\)
0.241443 + 0.970415i \(0.422379\pi\)
\(828\) −886.175 + 50.9170i −1.07026 + 0.0614939i
\(829\) −1225.41 + 890.312i −1.47818 + 1.07396i −0.500040 + 0.866002i \(0.666681\pi\)
−0.978138 + 0.207957i \(0.933319\pi\)
\(830\) 437.138 + 142.035i 0.526672 + 0.171126i
\(831\) 348.159 + 328.729i 0.418964 + 0.395583i
\(832\) 80.0892 58.1882i 0.0962610 0.0699377i
\(833\) 680.973 937.279i 0.817494 1.12518i
\(834\) −0.178007 + 1.37891i −0.000213437 + 0.00165337i
\(835\) −891.721 −1.06793
\(836\) 0 0
\(837\) 462.837 114.821i 0.552972 0.137181i
\(838\) 62.1943 + 191.414i 0.0742175 + 0.228418i
\(839\) 494.807 681.043i 0.589758 0.811732i −0.404965 0.914332i \(-0.632716\pi\)
0.994723 + 0.102600i \(0.0327163\pi\)
\(840\) −172.751 919.162i −0.205656 1.09424i
\(841\) 179.291 551.801i 0.213188 0.656125i
\(842\) −148.201 48.1535i −0.176011 0.0571894i
\(843\) 1171.18 220.116i 1.38930 0.261110i
\(844\) 515.077 + 374.225i 0.610280 + 0.443395i
\(845\) −935.729 + 304.037i −1.10737 + 0.359807i
\(846\) −40.5532 49.5667i −0.0479352 0.0585895i
\(847\) 0 0
\(848\) 643.713i 0.759095i
\(849\) 201.103 + 25.9609i 0.236870 + 0.0305782i
\(850\) 282.075 + 204.940i 0.331853 + 0.241106i
\(851\) −238.638 328.457i −0.280421 0.385966i
\(852\) 7.25295 7.68165i 0.00851285 0.00901602i
\(853\) −111.793 + 344.062i −0.131058 + 0.403356i −0.994956 0.100311i \(-0.968016\pi\)
0.863898 + 0.503667i \(0.168016\pi\)
\(854\) 88.0714 + 121.220i 0.103128 + 0.141944i
\(855\) 600.151 34.4829i 0.701931 0.0403308i
\(856\) 108.281 + 333.253i 0.126496 + 0.389315i
\(857\) 519.778i 0.606509i 0.952910 + 0.303254i \(0.0980732\pi\)
−0.952910 + 0.303254i \(0.901927\pi\)
\(858\) 0 0
\(859\) −1258.77 −1.46538 −0.732692 0.680560i \(-0.761737\pi\)
−0.732692 + 0.680560i \(0.761737\pi\)
\(860\) −1404.65 + 456.398i −1.63331 + 0.530695i
\(861\) −471.473 863.157i −0.547588 1.00251i
\(862\) −307.738 + 223.585i −0.357005 + 0.259379i
\(863\) 1079.28 + 350.678i 1.25061 + 0.406348i 0.858139 0.513417i \(-0.171620\pi\)
0.392471 + 0.919765i \(0.371620\pi\)
\(864\) 747.857 + 53.1789i 0.865576 + 0.0615496i
\(865\) −5.55656 + 4.03708i −0.00642377 + 0.00466714i
\(866\) −115.309 + 158.709i −0.133151 + 0.183266i
\(867\) −1804.82 232.989i −2.08168 0.268730i
\(868\) −585.043 −0.674012
\(869\) 0 0
\(870\) −193.361 91.6318i −0.222254 0.105324i
\(871\) −39.7506 122.340i −0.0456379 0.140459i
\(872\) −113.732 + 156.539i −0.130427 + 0.179518i
\(873\) 1654.63 + 434.442i 1.89534 + 0.497643i
\(874\) 60.3503 185.739i 0.0690507 0.212516i
\(875\) −455.503 148.002i −0.520575 0.169145i
\(876\) −183.192 974.716i −0.209123 1.11269i
\(877\) −1183.15 859.606i −1.34908 0.980167i −0.999057 0.0434275i \(-0.986172\pi\)
−0.350028 0.936739i \(-0.613828\pi\)
\(878\) 116.368 37.8104i 0.132538 0.0430642i
\(879\) 991.181 + 469.710i 1.12762 + 0.534369i
\(880\) 0 0
\(881\) 1493.59i 1.69534i −0.530526 0.847668i \(-0.678006\pi\)
0.530526 0.847668i \(-0.321994\pi\)
\(882\) −199.498 128.133i −0.226189 0.145275i
\(883\) −1074.40 780.594i −1.21676 0.884025i −0.220930 0.975290i \(-0.570909\pi\)
−0.995827 + 0.0912647i \(0.970909\pi\)
\(884\) 259.524 + 357.205i 0.293579 + 0.404078i
\(885\) 575.706 + 543.577i 0.650516 + 0.614212i
\(886\) −59.1502 + 182.046i −0.0667609 + 0.205469i
\(887\) 489.520 + 673.766i 0.551882 + 0.759601i 0.990266 0.139187i \(-0.0444489\pi\)
−0.438384 + 0.898788i \(0.644449\pi\)
\(888\) 107.392 + 196.610i 0.120937 + 0.221408i
\(889\) 420.575 + 1294.40i 0.473088 + 1.45601i
\(890\) 90.0949i 0.101230i
\(891\) 0 0
\(892\) 930.411 1.04306
\(893\) −102.348 + 33.2549i −0.114612 + 0.0372396i
\(894\) 354.634 193.708i 0.396682 0.216675i
\(895\) 455.464 330.914i 0.508898 0.369736i
\(896\) −1133.20 368.198i −1.26473 0.410935i
\(897\) −239.568 + 253.728i −0.267077 + 0.282863i
\(898\) −152.888 + 111.079i −0.170253 + 0.123696i
\(899\) −167.652 + 230.753i −0.186487 + 0.256677i
\(900\) −294.510 + 458.543i −0.327234 + 0.509493i
\(901\) 1807.61 2.00622
\(902\) 0 0
\(903\) −774.160 + 1633.63i −0.857320 + 1.80911i
\(904\) 269.885 + 830.622i 0.298546 + 0.918829i
\(905\) 412.641 567.952i 0.455957 0.627571i
\(906\) −178.401 + 33.5294i −0.196911 + 0.0370081i
\(907\) 168.952 519.981i 0.186276 0.573298i −0.813692 0.581296i \(-0.802546\pi\)
0.999968 + 0.00799786i \(0.00254583\pi\)
\(908\) −30.3718 9.86839i −0.0334491 0.0108683i
\(909\) −108.802 + 414.388i −0.119694 + 0.455873i
\(910\) −139.590 101.418i −0.153396 0.111448i
\(911\) 53.0058 17.2226i 0.0581842 0.0189052i −0.279780 0.960064i \(-0.590262\pi\)
0.337964 + 0.941159i \(0.390262\pi\)
\(912\) 140.909 297.345i 0.154505 0.326037i
\(913\) 0 0
\(914\) 235.612i 0.257781i
\(915\) 58.6038 453.967i 0.0640479 0.496139i
\(916\) 1008.44 + 732.677i 1.10092 + 0.799866i
\(917\) −958.662 1319.49i −1.04543 1.43892i
\(918\) −39.0018 + 548.484i −0.0424856 + 0.597477i
\(919\) −330.064 + 1015.83i −0.359156 + 1.10537i 0.594404 + 0.804166i \(0.297388\pi\)
−0.953560 + 0.301202i \(0.902612\pi\)
\(920\) 545.590 + 750.940i 0.593033 + 0.816239i
\(921\) −1274.71 + 696.274i −1.38406 + 0.755997i
\(922\) 14.1208 + 43.4593i 0.0153154 + 0.0471359i
\(923\) 4.15331i 0.00449979i
\(924\) 0 0
\(925\) −249.266 −0.269477
\(926\) −488.438 + 158.703i −0.527471 + 0.171386i
\(927\) 27.1943 + 473.298i 0.0293358 + 0.510570i
\(928\) −362.797 + 263.587i −0.390945 + 0.284038i
\(929\) 800.150 + 259.984i 0.861302 + 0.279854i 0.706172 0.708040i \(-0.250420\pi\)
0.155130 + 0.987894i \(0.450420\pi\)
\(930\) −170.152 160.656i −0.182959 0.172748i
\(931\) −322.330 + 234.186i −0.346219 + 0.251543i
\(932\) −73.5992 + 101.301i −0.0789691 + 0.108692i
\(933\) −129.113 + 1000.16i −0.138385 + 1.07198i
\(934\) 196.924 0.210839
\(935\) 0 0
\(936\) 149.031 121.930i 0.159221 0.130268i
\(937\) −387.353 1192.15i −0.413397 1.27231i −0.913676 0.406442i \(-0.866769\pi\)
0.500279 0.865864i \(-0.333231\pi\)
\(938\) −115.523 + 159.004i −0.123159 + 0.169514i
\(939\) −271.022 1442.04i −0.288628 1.53572i
\(940\) 74.1714 228.276i 0.0789057 0.242847i
\(941\) −1298.15 421.795i −1.37954 0.448241i −0.477025 0.878890i \(-0.658285\pi\)
−0.902520 + 0.430649i \(0.858285\pi\)
\(942\) 133.902 25.1661i 0.142147 0.0267156i
\(943\) 789.700 + 573.751i 0.837434 + 0.608431i
\(944\) 412.181 133.926i 0.436632 0.141870i
\(945\) 395.151 + 1592.84i 0.418149 + 1.68555i
\(946\) 0 0
\(947\) 1289.80i 1.36199i −0.732289 0.680994i \(-0.761548\pi\)
0.732289 0.680994i \(-0.238452\pi\)
\(948\) −1189.94 153.613i −1.25521 0.162039i
\(949\) −315.435 229.177i −0.332387 0.241493i
\(950\) −70.4786 97.0055i −0.0741880 0.102111i
\(951\) −321.956 + 340.986i −0.338545 + 0.358555i
\(952\) 444.224 1367.18i 0.466622 1.43611i
\(953\) 389.907 + 536.661i 0.409137 + 0.563128i 0.963008 0.269474i \(-0.0868499\pi\)
−0.553871 + 0.832602i \(0.686850\pi\)
\(954\) −21.2205 369.329i −0.0222437 0.387137i
\(955\) 57.4607 + 176.846i 0.0601683 + 0.185179i
\(956\) 462.623i 0.483915i
\(957\) 0 0
\(958\) 113.059 0.118015
\(959\) −724.107 + 235.277i −0.755065 + 0.245335i
\(960\) 221.500 + 405.514i 0.230729 + 0.422411i
\(961\) 525.103 381.510i 0.546413 0.396992i
\(962\) 39.3076 + 12.7718i 0.0408602 + 0.0132763i
\(963\) −223.234 572.909i −0.231811 0.594921i
\(964\) 384.933 279.670i 0.399308 0.290115i
\(965\) −48.4271 + 66.6541i −0.0501835 + 0.0690716i
\(966\) 528.778 + 68.2614i 0.547389 + 0.0706639i
\(967\) 101.038 0.104486 0.0522428 0.998634i \(-0.483363\pi\)
0.0522428 + 0.998634i \(0.483363\pi\)
\(968\) 0 0
\(969\) 834.975 + 395.686i 0.861687 + 0.408345i
\(970\) −259.420 798.411i −0.267443 0.823104i
\(971\) 378.084 520.388i 0.389376 0.535930i −0.568662 0.822571i \(-0.692539\pi\)
0.958038 + 0.286641i \(0.0925387\pi\)
\(972\) −859.387 11.6841i −0.884143 0.0120206i
\(973\) −1.97096 + 6.06599i −0.00202565 + 0.00623432i
\(974\) 13.3065 + 4.32354i 0.0136617 + 0.00443896i
\(975\) 39.5734 + 210.560i 0.0405881 + 0.215959i
\(976\) −202.697 147.268i −0.207682 0.150890i
\(977\) −1428.41 + 464.118i −1.46204 + 0.475044i −0.928691 0.370854i \(-0.879065\pi\)
−0.533345 + 0.845898i \(0.679065\pi\)
\(978\) 257.995 + 122.261i 0.263798 + 0.125011i
\(979\) 0 0
\(980\) 888.634i 0.906769i
\(981\) 183.485 285.680i 0.187039 0.291213i
\(982\) −263.489 191.436i −0.268319 0.194945i
\(983\) −428.555 589.856i −0.435967 0.600057i 0.533343 0.845899i \(-0.320935\pi\)
−0.969310 + 0.245842i \(0.920935\pi\)
\(984\) −391.637 369.780i −0.398005 0.375793i
\(985\) −675.245 + 2078.19i −0.685528 + 2.10984i
\(986\) −193.317 266.078i −0.196062 0.269856i
\(987\) −140.834 257.835i −0.142689 0.261231i
\(988\) −46.9216 144.410i −0.0474915 0.146164i
\(989\) 1794.17i 1.81412i
\(990\) 0 0
\(991\) 1823.31 1.83987 0.919936 0.392069i \(-0.128241\pi\)
0.919936 + 0.392069i \(0.128241\pi\)
\(992\) −466.434 + 151.554i −0.470196 + 0.152776i
\(993\) −106.049 + 57.9259i −0.106796 + 0.0583342i
\(994\) −5.13383 + 3.72995i −0.00516482 + 0.00375246i
\(995\) −1134.87 368.741i −1.14057 0.370594i
\(996\) −758.104 + 802.912i −0.761148 + 0.806137i
\(997\) −8.87703 + 6.44954i −0.00890374 + 0.00646895i −0.592228 0.805770i \(-0.701752\pi\)
0.583324 + 0.812239i \(0.301752\pi\)
\(998\) 101.981 140.365i 0.102186 0.140646i
\(999\) −207.925 333.621i −0.208133 0.333955i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.269.4 24
3.2 odd 2 inner 363.3.h.q.269.3 24
11.2 odd 10 363.3.h.p.251.4 24
11.3 even 5 363.3.b.j.122.3 6
11.4 even 5 inner 363.3.h.q.245.4 24
11.5 even 5 inner 363.3.h.q.323.3 24
11.6 odd 10 363.3.h.p.323.4 24
11.7 odd 10 363.3.h.p.245.3 24
11.8 odd 10 363.3.b.k.122.4 yes 6
11.9 even 5 inner 363.3.h.q.251.3 24
11.10 odd 2 363.3.h.p.269.3 24
33.2 even 10 363.3.h.p.251.3 24
33.5 odd 10 inner 363.3.h.q.323.4 24
33.8 even 10 363.3.b.k.122.3 yes 6
33.14 odd 10 363.3.b.j.122.4 yes 6
33.17 even 10 363.3.h.p.323.3 24
33.20 odd 10 inner 363.3.h.q.251.4 24
33.26 odd 10 inner 363.3.h.q.245.3 24
33.29 even 10 363.3.h.p.245.4 24
33.32 even 2 363.3.h.p.269.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.3 6 11.3 even 5
363.3.b.j.122.4 yes 6 33.14 odd 10
363.3.b.k.122.3 yes 6 33.8 even 10
363.3.b.k.122.4 yes 6 11.8 odd 10
363.3.h.p.245.3 24 11.7 odd 10
363.3.h.p.245.4 24 33.29 even 10
363.3.h.p.251.3 24 33.2 even 10
363.3.h.p.251.4 24 11.2 odd 10
363.3.h.p.269.3 24 11.10 odd 2
363.3.h.p.269.4 24 33.32 even 2
363.3.h.p.323.3 24 33.17 even 10
363.3.h.p.323.4 24 11.6 odd 10
363.3.h.q.245.3 24 33.26 odd 10 inner
363.3.h.q.245.4 24 11.4 even 5 inner
363.3.h.q.251.3 24 11.9 even 5 inner
363.3.h.q.251.4 24 33.20 odd 10 inner
363.3.h.q.269.3 24 3.2 odd 2 inner
363.3.h.q.269.4 24 1.1 even 1 trivial
363.3.h.q.323.3 24 11.5 even 5 inner
363.3.h.q.323.4 24 33.5 odd 10 inner