Properties

Label 363.3.h.q.269.3
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.3
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.q.251.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.647210 + 0.210291i) q^{2} +(0.554129 - 2.94838i) q^{3} +(-2.86141 + 2.07894i) q^{4} +(6.17237 + 2.00553i) q^{5} +(0.261380 + 2.02475i) q^{6} +(-7.57686 + 5.50491i) q^{7} +(3.01474 - 4.14944i) q^{8} +(-8.38588 - 3.26757i) q^{9} -4.41657 q^{10} +(4.54390 + 9.58852i) q^{12} +(-1.28903 - 3.96722i) q^{13} +(3.74618 - 5.15618i) q^{14} +(9.33334 - 17.0872i) q^{15} +(3.29326 - 10.1356i) q^{16} +(-28.4618 - 9.24781i) q^{17} +(6.11457 + 0.351324i) q^{18} +(-8.32617 - 6.04932i) q^{19} +(-21.8311 + 7.09334i) q^{20} +(12.0320 + 25.3899i) q^{21} -27.8850i q^{23} +(-10.5636 - 11.1879i) q^{24} +(13.8506 + 10.0631i) q^{25} +(1.66854 + 2.29655i) q^{26} +(-14.2809 + 22.9141i) q^{27} +(10.2361 - 31.5036i) q^{28} +(9.49235 + 13.0651i) q^{29} +(-2.44735 + 13.0217i) q^{30} +(-5.45778 - 16.7973i) q^{31} +27.7684i q^{32} +20.3655 q^{34} +(-57.8074 + 18.7828i) q^{35} +(30.7885 - 8.08386i) q^{36} +(-11.7790 + 8.55794i) q^{37} +(6.66090 + 2.16426i) q^{38} +(-12.4112 + 1.60219i) q^{39} +(26.9299 - 19.5657i) q^{40} +(-20.5756 + 28.3199i) q^{41} +(-13.1265 - 13.9024i) q^{42} -64.3417 q^{43} +(-45.2076 - 36.9867i) q^{45} +(5.86397 + 18.0474i) q^{46} +(-6.14617 + 8.45948i) q^{47} +(-28.0588 - 15.3262i) q^{48} +(11.9629 - 36.8181i) q^{49} +(-11.0804 - 3.60026i) q^{50} +(-43.0376 + 78.7918i) q^{51} +(11.9360 + 8.67204i) q^{52} +(-57.4452 + 18.6651i) q^{53} +(4.42410 - 17.8334i) q^{54} +48.0356i q^{56} +(-22.4495 + 21.1966i) q^{57} +(-8.89102 - 6.45971i) q^{58} +(-23.9032 - 32.8999i) q^{59} +(8.81663 + 68.2968i) q^{60} +(7.26488 - 22.3590i) q^{61} +(7.06466 + 9.72367i) q^{62} +(81.5263 - 21.4056i) q^{63} +(7.33362 + 22.5705i) q^{64} -27.0724i q^{65} +30.8376 q^{67} +(100.667 - 32.7086i) q^{68} +(-82.2155 - 15.4519i) q^{69} +(33.4637 - 24.3128i) q^{70} +(-0.946935 - 0.307678i) q^{71} +(-38.8398 + 24.9458i) q^{72} +(75.6188 - 54.9403i) q^{73} +(5.82382 - 8.01580i) q^{74} +(37.3448 - 35.2607i) q^{75} +36.4007 q^{76} +(7.69570 - 3.64691i) q^{78} +(-34.9425 - 107.542i) q^{79} +(40.6545 - 55.9561i) q^{80} +(59.6460 + 54.8029i) q^{81} +(7.36131 - 22.6558i) q^{82} +(98.9769 + 32.1595i) q^{83} +(-87.2124 - 47.6371i) q^{84} +(-157.130 - 114.162i) q^{85} +(41.6426 - 13.5305i) q^{86} +(43.7809 - 20.7473i) q^{87} +20.3993i q^{89} +(37.0368 + 14.4314i) q^{90} +(31.6060 + 22.9631i) q^{91} +(57.9711 + 79.7904i) q^{92} +(-52.5492 + 6.78372i) q^{93} +(2.19891 - 6.76754i) q^{94} +(-39.2602 - 54.0370i) q^{95} +(81.8717 + 15.3873i) q^{96} +(58.7378 + 180.776i) q^{97} +26.3447i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.647210 + 0.210291i −0.323605 + 0.105146i −0.466315 0.884619i \(-0.654418\pi\)
0.142710 + 0.989765i \(0.454418\pi\)
\(3\) 0.554129 2.94838i 0.184710 0.982793i
\(4\) −2.86141 + 2.07894i −0.715352 + 0.519734i
\(5\) 6.17237 + 2.00553i 1.23447 + 0.401105i 0.852333 0.522999i \(-0.175187\pi\)
0.382141 + 0.924104i \(0.375187\pi\)
\(6\) 0.261380 + 2.02475i 0.0435634 + 0.337458i
\(7\) −7.57686 + 5.50491i −1.08241 + 0.786416i −0.978101 0.208130i \(-0.933262\pi\)
−0.104307 + 0.994545i \(0.533262\pi\)
\(8\) 3.01474 4.14944i 0.376843 0.518679i
\(9\) −8.38588 3.26757i −0.931765 0.363063i
\(10\) −4.41657 −0.441657
\(11\) 0 0
\(12\) 4.54390 + 9.58852i 0.378658 + 0.799043i
\(13\) −1.28903 3.96722i −0.0991561 0.305171i 0.889158 0.457599i \(-0.151291\pi\)
−0.988315 + 0.152428i \(0.951291\pi\)
\(14\) 3.74618 5.15618i 0.267584 0.368298i
\(15\) 9.33334 17.0872i 0.622223 1.13915i
\(16\) 3.29326 10.1356i 0.205829 0.633477i
\(17\) −28.4618 9.24781i −1.67423 0.543989i −0.690448 0.723382i \(-0.742587\pi\)
−0.983777 + 0.179393i \(0.942587\pi\)
\(18\) 6.11457 + 0.351324i 0.339698 + 0.0195180i
\(19\) −8.32617 6.04932i −0.438220 0.318385i 0.346707 0.937973i \(-0.387300\pi\)
−0.784927 + 0.619588i \(0.787300\pi\)
\(20\) −21.8311 + 7.09334i −1.09155 + 0.354667i
\(21\) 12.0320 + 25.3899i 0.572952 + 1.20904i
\(22\) 0 0
\(23\) 27.8850i 1.21239i −0.795316 0.606195i \(-0.792695\pi\)
0.795316 0.606195i \(-0.207305\pi\)
\(24\) −10.5636 11.1879i −0.440148 0.466164i
\(25\) 13.8506 + 10.0631i 0.554026 + 0.402523i
\(26\) 1.66854 + 2.29655i 0.0641748 + 0.0883290i
\(27\) −14.2809 + 22.9141i −0.528922 + 0.848671i
\(28\) 10.2361 31.5036i 0.365576 1.12513i
\(29\) 9.49235 + 13.0651i 0.327323 + 0.450521i 0.940685 0.339281i \(-0.110184\pi\)
−0.613363 + 0.789801i \(0.710184\pi\)
\(30\) −2.44735 + 13.0217i −0.0815783 + 0.434057i
\(31\) −5.45778 16.7973i −0.176057 0.541849i 0.823623 0.567138i \(-0.191949\pi\)
−0.999680 + 0.0252890i \(0.991949\pi\)
\(32\) 27.7684i 0.867761i
\(33\) 0 0
\(34\) 20.3655 0.598986
\(35\) −57.8074 + 18.7828i −1.65164 + 0.536651i
\(36\) 30.7885 8.08386i 0.855236 0.224552i
\(37\) −11.7790 + 8.55794i −0.318351 + 0.231296i −0.735472 0.677556i \(-0.763039\pi\)
0.417120 + 0.908851i \(0.363039\pi\)
\(38\) 6.66090 + 2.16426i 0.175287 + 0.0569542i
\(39\) −12.4112 + 1.60219i −0.318235 + 0.0410818i
\(40\) 26.9299 19.5657i 0.673248 0.489143i
\(41\) −20.5756 + 28.3199i −0.501844 + 0.690729i −0.982517 0.186171i \(-0.940392\pi\)
0.480673 + 0.876900i \(0.340392\pi\)
\(42\) −13.1265 13.9024i −0.312536 0.331009i
\(43\) −64.3417 −1.49632 −0.748159 0.663519i \(-0.769062\pi\)
−0.748159 + 0.663519i \(0.769062\pi\)
\(44\) 0 0
\(45\) −45.2076 36.9867i −1.00461 0.821928i
\(46\) 5.86397 + 18.0474i 0.127478 + 0.392336i
\(47\) −6.14617 + 8.45948i −0.130770 + 0.179989i −0.869381 0.494143i \(-0.835482\pi\)
0.738611 + 0.674132i \(0.235482\pi\)
\(48\) −28.0588 15.3262i −0.584558 0.319297i
\(49\) 11.9629 36.8181i 0.244141 0.751389i
\(50\) −11.0804 3.60026i −0.221609 0.0720051i
\(51\) −43.0376 + 78.7918i −0.843874 + 1.54494i
\(52\) 11.9360 + 8.67204i 0.229539 + 0.166770i
\(53\) −57.4452 + 18.6651i −1.08387 + 0.352171i −0.795876 0.605460i \(-0.792989\pi\)
−0.287997 + 0.957631i \(0.592989\pi\)
\(54\) 4.42410 17.8334i 0.0819277 0.330248i
\(55\) 0 0
\(56\) 48.0356i 0.857778i
\(57\) −22.4495 + 21.1966i −0.393850 + 0.371870i
\(58\) −8.89102 6.45971i −0.153293 0.111374i
\(59\) −23.9032 32.8999i −0.405139 0.557625i 0.556886 0.830589i \(-0.311996\pi\)
−0.962024 + 0.272964i \(0.911996\pi\)
\(60\) 8.81663 + 68.2968i 0.146944 + 1.13828i
\(61\) 7.26488 22.3590i 0.119096 0.366541i −0.873683 0.486496i \(-0.838275\pi\)
0.992779 + 0.119955i \(0.0382749\pi\)
\(62\) 7.06466 + 9.72367i 0.113946 + 0.156833i
\(63\) 81.5263 21.4056i 1.29407 0.339772i
\(64\) 7.33362 + 22.5705i 0.114588 + 0.352665i
\(65\) 27.0724i 0.416498i
\(66\) 0 0
\(67\) 30.8376 0.460263 0.230132 0.973159i \(-0.426084\pi\)
0.230132 + 0.973159i \(0.426084\pi\)
\(68\) 100.667 32.7086i 1.48039 0.481008i
\(69\) −82.2155 15.4519i −1.19153 0.223940i
\(70\) 33.4637 24.3128i 0.478053 0.347326i
\(71\) −0.946935 0.307678i −0.0133371 0.00433349i 0.302341 0.953200i \(-0.402232\pi\)
−0.315678 + 0.948866i \(0.602232\pi\)
\(72\) −38.8398 + 24.9458i −0.539442 + 0.346469i
\(73\) 75.6188 54.9403i 1.03587 0.752607i 0.0663985 0.997793i \(-0.478849\pi\)
0.969476 + 0.245186i \(0.0788491\pi\)
\(74\) 5.82382 8.01580i 0.0787003 0.108322i
\(75\) 37.3448 35.2607i 0.497931 0.470143i
\(76\) 36.4007 0.478957
\(77\) 0 0
\(78\) 7.69570 3.64691i 0.0986629 0.0467553i
\(79\) −34.9425 107.542i −0.442310 1.36129i −0.885407 0.464816i \(-0.846121\pi\)
0.443098 0.896473i \(-0.353879\pi\)
\(80\) 40.6545 55.9561i 0.508182 0.699452i
\(81\) 59.6460 + 54.8029i 0.736370 + 0.676579i
\(82\) 7.36131 22.6558i 0.0897721 0.276290i
\(83\) 98.9769 + 32.1595i 1.19249 + 0.387464i 0.836994 0.547212i \(-0.184311\pi\)
0.355499 + 0.934677i \(0.384311\pi\)
\(84\) −87.2124 47.6371i −1.03824 0.567108i
\(85\) −157.130 114.162i −1.84859 1.34308i
\(86\) 41.6426 13.5305i 0.484216 0.157331i
\(87\) 43.7809 20.7473i 0.503228 0.238475i
\(88\) 0 0
\(89\) 20.3993i 0.229206i 0.993411 + 0.114603i \(0.0365595\pi\)
−0.993411 + 0.114603i \(0.963440\pi\)
\(90\) 37.0368 + 14.4314i 0.411520 + 0.160349i
\(91\) 31.6060 + 22.9631i 0.347319 + 0.252342i
\(92\) 57.9711 + 79.7904i 0.630121 + 0.867287i
\(93\) −52.5492 + 6.78372i −0.565045 + 0.0729432i
\(94\) 2.19891 6.76754i 0.0233926 0.0719951i
\(95\) −39.2602 54.0370i −0.413265 0.568811i
\(96\) 81.8717 + 15.3873i 0.852830 + 0.160284i
\(97\) 58.7378 + 180.776i 0.605545 + 1.86368i 0.493002 + 0.870028i \(0.335900\pi\)
0.112543 + 0.993647i \(0.464100\pi\)
\(98\) 26.3447i 0.268824i
\(99\) 0 0
\(100\) −60.5528 −0.605528
\(101\) 45.2739 14.7104i 0.448256 0.145647i −0.0761854 0.997094i \(-0.524274\pi\)
0.524442 + 0.851446i \(0.324274\pi\)
\(102\) 11.2851 60.0453i 0.110639 0.588679i
\(103\) −42.6153 + 30.9619i −0.413741 + 0.300601i −0.775115 0.631821i \(-0.782308\pi\)
0.361374 + 0.932421i \(0.382308\pi\)
\(104\) −20.3478 6.61141i −0.195652 0.0635713i
\(105\) 23.3459 + 180.846i 0.222342 + 1.72235i
\(106\) 33.2540 24.1605i 0.313717 0.227929i
\(107\) −40.1565 + 55.2706i −0.375294 + 0.516548i −0.954330 0.298754i \(-0.903429\pi\)
0.579036 + 0.815302i \(0.303429\pi\)
\(108\) −6.77347 95.2557i −0.0627173 0.881997i
\(109\) 37.7254 0.346105 0.173053 0.984913i \(-0.444637\pi\)
0.173053 + 0.984913i \(0.444637\pi\)
\(110\) 0 0
\(111\) 18.7050 + 39.4711i 0.168513 + 0.355596i
\(112\) 30.8431 + 94.9253i 0.275385 + 0.847548i
\(113\) −100.089 + 137.760i −0.885739 + 1.21912i 0.0890591 + 0.996026i \(0.471614\pi\)
−0.974798 + 0.223089i \(0.928386\pi\)
\(114\) 10.0721 18.4396i 0.0883514 0.161751i
\(115\) 55.9241 172.117i 0.486296 1.49667i
\(116\) −54.3230 17.6506i −0.468302 0.152161i
\(117\) −2.15352 + 37.4807i −0.0184062 + 0.320347i
\(118\) 22.3889 + 16.2665i 0.189737 + 0.137852i
\(119\) 266.560 86.6105i 2.24000 0.727819i
\(120\) −42.7645 90.2415i −0.356371 0.752013i
\(121\) 0 0
\(122\) 15.9987i 0.131137i
\(123\) 72.0962 + 76.3576i 0.586148 + 0.620793i
\(124\) 50.5375 + 36.7176i 0.407560 + 0.296110i
\(125\) −30.0589 41.3725i −0.240471 0.330980i
\(126\) −48.2632 + 30.9982i −0.383041 + 0.246017i
\(127\) 44.9068 138.209i 0.353597 1.08826i −0.603222 0.797573i \(-0.706117\pi\)
0.956819 0.290685i \(-0.0938833\pi\)
\(128\) −74.7801 102.926i −0.584220 0.804109i
\(129\) −35.6536 + 189.704i −0.276385 + 1.47057i
\(130\) 5.69308 + 17.5215i 0.0437929 + 0.134781i
\(131\) 174.147i 1.32936i −0.747126 0.664682i \(-0.768567\pi\)
0.747126 0.664682i \(-0.231433\pi\)
\(132\) 0 0
\(133\) 96.3872 0.724716
\(134\) −19.9584 + 6.48489i −0.148944 + 0.0483947i
\(135\) −134.102 + 112.794i −0.993347 + 0.835509i
\(136\) −124.178 + 90.2208i −0.913075 + 0.663388i
\(137\) −77.3163 25.1216i −0.564353 0.183369i 0.0129260 0.999916i \(-0.495885\pi\)
−0.577279 + 0.816547i \(0.695885\pi\)
\(138\) 56.4601 7.28859i 0.409131 0.0528159i
\(139\) 0.550962 0.400297i 0.00396375 0.00287984i −0.585802 0.810454i \(-0.699220\pi\)
0.589765 + 0.807575i \(0.299220\pi\)
\(140\) 126.363 173.923i 0.902590 1.24231i
\(141\) 21.5360 + 22.8089i 0.152737 + 0.161765i
\(142\) 0.677567 0.00477160
\(143\) 0 0
\(144\) −60.7358 + 74.2352i −0.421776 + 0.515522i
\(145\) 32.3880 + 99.6799i 0.223365 + 0.687447i
\(146\) −37.3878 + 51.4599i −0.256081 + 0.352465i
\(147\) −101.925 55.6732i −0.693365 0.378729i
\(148\) 15.9131 48.9755i 0.107521 0.330916i
\(149\) 188.245 + 61.1645i 1.26339 + 0.410500i 0.862701 0.505715i \(-0.168771\pi\)
0.400688 + 0.916214i \(0.368771\pi\)
\(150\) −16.7549 + 30.6744i −0.111699 + 0.204496i
\(151\) 71.9338 + 52.2630i 0.476383 + 0.346112i 0.799924 0.600102i \(-0.204873\pi\)
−0.323541 + 0.946214i \(0.604873\pi\)
\(152\) −50.2025 + 16.3118i −0.330280 + 0.107314i
\(153\) 208.460 + 170.552i 1.36248 + 1.11472i
\(154\) 0 0
\(155\) 114.625i 0.739516i
\(156\) 32.1826 30.3866i 0.206299 0.194786i
\(157\) −53.9913 39.2270i −0.343893 0.249853i 0.402409 0.915460i \(-0.368173\pi\)
−0.746303 + 0.665607i \(0.768173\pi\)
\(158\) 45.2302 + 62.2541i 0.286267 + 0.394013i
\(159\) 23.1997 + 179.713i 0.145910 + 1.13027i
\(160\) −55.6902 + 171.397i −0.348064 + 1.07123i
\(161\) 153.504 + 211.281i 0.953443 + 1.31230i
\(162\) −50.1280 22.9259i −0.309432 0.141518i
\(163\) −43.2141 132.999i −0.265117 0.815946i −0.991666 0.128832i \(-0.958877\pi\)
0.726549 0.687114i \(-0.241123\pi\)
\(164\) 123.810i 0.754940i
\(165\) 0 0
\(166\) −70.8217 −0.426637
\(167\) −130.674 + 42.4586i −0.782480 + 0.254243i −0.672899 0.739735i \(-0.734951\pi\)
−0.109581 + 0.993978i \(0.534951\pi\)
\(168\) 141.627 + 26.6179i 0.843018 + 0.158440i
\(169\) 122.647 89.1080i 0.725720 0.527266i
\(170\) 125.704 + 40.8436i 0.739433 + 0.240256i
\(171\) 50.0557 + 77.9352i 0.292724 + 0.455761i
\(172\) 184.108 133.762i 1.07040 0.777688i
\(173\) −0.622044 + 0.856170i −0.00359563 + 0.00494896i −0.810811 0.585308i \(-0.800974\pi\)
0.807215 + 0.590257i \(0.200974\pi\)
\(174\) −23.9724 + 22.6346i −0.137773 + 0.130084i
\(175\) −160.341 −0.916232
\(176\) 0 0
\(177\) −110.247 + 52.2448i −0.622863 + 0.295168i
\(178\) −4.28980 13.2026i −0.0241000 0.0741721i
\(179\) 50.9881 70.1791i 0.284850 0.392062i −0.642483 0.766300i \(-0.722096\pi\)
0.927333 + 0.374238i \(0.122096\pi\)
\(180\) 206.251 + 11.8505i 1.14584 + 0.0658363i
\(181\) −33.4265 + 102.876i −0.184677 + 0.568376i −0.999943 0.0107104i \(-0.996591\pi\)
0.815266 + 0.579087i \(0.196591\pi\)
\(182\) −25.2847 8.21548i −0.138927 0.0451400i
\(183\) −61.8971 33.8094i −0.338236 0.184751i
\(184\) −115.707 84.0660i −0.628842 0.456881i
\(185\) −89.8675 + 29.1997i −0.485770 + 0.157836i
\(186\) 32.5838 15.4411i 0.175182 0.0830168i
\(187\) 0 0
\(188\) 36.9835i 0.196721i
\(189\) −17.9358 252.232i −0.0948984 1.33456i
\(190\) 36.7731 + 26.7172i 0.193543 + 0.140617i
\(191\) 16.8407 + 23.1793i 0.0881714 + 0.121358i 0.850824 0.525451i \(-0.176103\pi\)
−0.762653 + 0.646808i \(0.776103\pi\)
\(192\) 70.6103 9.11528i 0.367762 0.0474754i
\(193\) 3.92289 12.0734i 0.0203258 0.0625565i −0.940379 0.340128i \(-0.889530\pi\)
0.960705 + 0.277572i \(0.0895296\pi\)
\(194\) −76.0314 104.648i −0.391915 0.539424i
\(195\) −79.8196 15.0016i −0.409331 0.0769313i
\(196\) 42.3116 + 130.222i 0.215875 + 0.664396i
\(197\) 336.692i 1.70910i 0.519370 + 0.854549i \(0.326166\pi\)
−0.519370 + 0.854549i \(0.673834\pi\)
\(198\) 0 0
\(199\) 183.863 0.923932 0.461966 0.886898i \(-0.347144\pi\)
0.461966 + 0.886898i \(0.347144\pi\)
\(200\) 83.5122 27.1348i 0.417561 0.135674i
\(201\) 17.0880 90.9211i 0.0850152 0.452344i
\(202\) −26.2082 + 19.0414i −0.129744 + 0.0942644i
\(203\) −143.844 46.7379i −0.708593 0.230236i
\(204\) −40.6549 314.928i −0.199289 1.54376i
\(205\) −183.797 + 133.536i −0.896569 + 0.651395i
\(206\) 21.0701 29.0004i 0.102282 0.140779i
\(207\) −91.1161 + 233.840i −0.440174 + 1.12966i
\(208\) −44.4554 −0.213728
\(209\) 0 0
\(210\) −53.1401 112.136i −0.253048 0.533981i
\(211\) −55.6255 171.198i −0.263628 0.811364i −0.992006 0.126188i \(-0.959726\pi\)
0.728378 0.685175i \(-0.240274\pi\)
\(212\) 125.571 172.833i 0.592315 0.815252i
\(213\) −1.43187 + 2.62143i −0.00672242 + 0.0123072i
\(214\) 14.3667 44.2162i 0.0671342 0.206618i
\(215\) −397.141 129.039i −1.84717 0.600181i
\(216\) 52.0274 + 128.338i 0.240868 + 0.594156i
\(217\) 133.821 + 97.2263i 0.616684 + 0.448048i
\(218\) −24.4163 + 7.93333i −0.112001 + 0.0363914i
\(219\) −120.082 253.397i −0.548321 1.15706i
\(220\) 0 0
\(221\) 124.835i 0.564865i
\(222\) −20.4065 21.6126i −0.0919211 0.0973542i
\(223\) −212.819 154.622i −0.954344 0.693372i −0.00251375 0.999997i \(-0.500800\pi\)
−0.951830 + 0.306625i \(0.900800\pi\)
\(224\) −152.862 210.397i −0.682421 0.939272i
\(225\) −83.2680 129.646i −0.370080 0.576203i
\(226\) 35.8085 110.207i 0.158445 0.487643i
\(227\) −5.30714 7.30465i −0.0233795 0.0321791i 0.797167 0.603759i \(-0.206331\pi\)
−0.820547 + 0.571579i \(0.806331\pi\)
\(228\) 20.1707 107.323i 0.0884681 0.470716i
\(229\) −108.907 335.180i −0.475575 1.46367i −0.845181 0.534480i \(-0.820508\pi\)
0.369607 0.929188i \(-0.379492\pi\)
\(230\) 123.156i 0.535460i
\(231\) 0 0
\(232\) 82.8298 0.357025
\(233\) −33.6696 + 10.9399i −0.144505 + 0.0469525i −0.380376 0.924832i \(-0.624206\pi\)
0.235872 + 0.971784i \(0.424206\pi\)
\(234\) −6.48807 24.7107i −0.0277268 0.105601i
\(235\) −54.9021 + 39.8887i −0.233626 + 0.169739i
\(236\) 136.794 + 44.4469i 0.579634 + 0.188334i
\(237\) −336.437 + 43.4315i −1.41956 + 0.183255i
\(238\) −154.307 + 112.110i −0.648347 + 0.471052i
\(239\) −76.8818 + 105.819i −0.321681 + 0.442756i −0.938980 0.343973i \(-0.888227\pi\)
0.617298 + 0.786729i \(0.288227\pi\)
\(240\) −142.452 150.872i −0.593550 0.628633i
\(241\) −134.526 −0.558198 −0.279099 0.960262i \(-0.590036\pi\)
−0.279099 + 0.960262i \(0.590036\pi\)
\(242\) 0 0
\(243\) 194.631 145.491i 0.800952 0.598729i
\(244\) 25.6951 + 79.0815i 0.105308 + 0.324104i
\(245\) 147.679 203.263i 0.602772 0.829644i
\(246\) −62.7187 34.2582i −0.254954 0.139261i
\(247\) −13.2663 + 40.8295i −0.0537098 + 0.165302i
\(248\) −86.1532 27.9929i −0.347392 0.112874i
\(249\) 149.665 274.001i 0.601062 1.10041i
\(250\) 28.1547 + 20.4556i 0.112619 + 0.0818222i
\(251\) −384.764 + 125.017i −1.53292 + 0.498077i −0.949414 0.314028i \(-0.898321\pi\)
−0.583511 + 0.812105i \(0.698321\pi\)
\(252\) −188.779 + 230.738i −0.749124 + 0.915628i
\(253\) 0 0
\(254\) 98.8936i 0.389345i
\(255\) −423.663 + 400.019i −1.66142 + 1.56870i
\(256\) −6.75577 4.90836i −0.0263897 0.0191733i
\(257\) −80.7301 111.115i −0.314125 0.432356i 0.622537 0.782590i \(-0.286102\pi\)
−0.936662 + 0.350234i \(0.886102\pi\)
\(258\) −16.8177 130.276i −0.0651847 0.504945i
\(259\) 42.1371 129.685i 0.162691 0.500713i
\(260\) 56.2817 + 77.4651i 0.216468 + 0.297943i
\(261\) −36.9106 140.579i −0.141420 0.538618i
\(262\) 36.6215 + 112.710i 0.139777 + 0.430189i
\(263\) 138.001i 0.524720i 0.964970 + 0.262360i \(0.0845008\pi\)
−0.964970 + 0.262360i \(0.915499\pi\)
\(264\) 0 0
\(265\) −392.007 −1.47927
\(266\) −62.3827 + 20.2694i −0.234522 + 0.0762007i
\(267\) 60.1449 + 11.3039i 0.225262 + 0.0423365i
\(268\) −88.2391 + 64.1095i −0.329251 + 0.239215i
\(269\) 29.3816 + 9.54665i 0.109225 + 0.0354894i 0.363120 0.931743i \(-0.381712\pi\)
−0.253895 + 0.967232i \(0.581712\pi\)
\(270\) 63.0725 101.202i 0.233602 0.374821i
\(271\) −162.195 + 117.842i −0.598507 + 0.434841i −0.845349 0.534215i \(-0.820607\pi\)
0.246842 + 0.969056i \(0.420607\pi\)
\(272\) −187.465 + 258.023i −0.689208 + 0.948614i
\(273\) 85.2177 80.4619i 0.312153 0.294732i
\(274\) 55.3227 0.201908
\(275\) 0 0
\(276\) 267.376 126.707i 0.968753 0.459082i
\(277\) −49.3221 151.798i −0.178058 0.548007i 0.821702 0.569918i \(-0.193025\pi\)
−0.999760 + 0.0219109i \(0.993025\pi\)
\(278\) −0.272409 + 0.374939i −0.000979888 + 0.00134870i
\(279\) −9.11807 + 158.694i −0.0326813 + 0.568796i
\(280\) −96.3366 + 296.493i −0.344059 + 1.05891i
\(281\) 377.786 + 122.750i 1.34444 + 0.436834i 0.890817 0.454362i \(-0.150133\pi\)
0.453619 + 0.891196i \(0.350133\pi\)
\(282\) −18.7348 10.2333i −0.0664355 0.0362883i
\(283\) −54.6819 39.7287i −0.193222 0.140384i 0.486968 0.873420i \(-0.338103\pi\)
−0.680190 + 0.733036i \(0.738103\pi\)
\(284\) 3.34921 1.08822i 0.0117930 0.00383178i
\(285\) −181.077 + 85.8104i −0.635357 + 0.301089i
\(286\) 0 0
\(287\) 327.843i 1.14231i
\(288\) 90.7350 232.862i 0.315052 0.808549i
\(289\) 490.748 + 356.549i 1.69809 + 1.23373i
\(290\) −41.9236 57.7029i −0.144564 0.198975i
\(291\) 565.546 73.0079i 1.94346 0.250886i
\(292\) −102.159 + 314.413i −0.349860 + 1.07676i
\(293\) 214.903 + 295.788i 0.733457 + 1.00952i 0.998968 + 0.0454093i \(0.0144592\pi\)
−0.265511 + 0.964108i \(0.585541\pi\)
\(294\) 77.6742 + 14.5984i 0.264198 + 0.0496543i
\(295\) −81.5577 251.009i −0.276467 0.850878i
\(296\) 74.6761i 0.252284i
\(297\) 0 0
\(298\) −134.696 −0.452001
\(299\) −110.626 + 35.9446i −0.369987 + 0.120216i
\(300\) −33.5541 + 178.533i −0.111847 + 0.595109i
\(301\) 487.508 354.195i 1.61963 1.17673i
\(302\) −57.5467 18.6981i −0.190552 0.0619141i
\(303\) −18.2842 141.636i −0.0603438 0.467446i
\(304\) −88.7339 + 64.4690i −0.291888 + 0.212069i
\(305\) 89.6831 123.438i 0.294043 0.404715i
\(306\) −170.783 66.5457i −0.558114 0.217470i
\(307\) 484.160 1.57707 0.788534 0.614992i \(-0.210841\pi\)
0.788534 + 0.614992i \(0.210841\pi\)
\(308\) 0 0
\(309\) 67.6729 + 142.803i 0.219006 + 0.462146i
\(310\) 24.1046 + 74.1865i 0.0777569 + 0.239311i
\(311\) −197.585 + 271.953i −0.635323 + 0.874447i −0.998355 0.0573298i \(-0.981741\pi\)
0.363033 + 0.931776i \(0.381741\pi\)
\(312\) −30.7683 + 56.3295i −0.0986163 + 0.180543i
\(313\) −151.139 + 465.157i −0.482871 + 1.48612i 0.352170 + 0.935936i \(0.385444\pi\)
−0.835041 + 0.550188i \(0.814556\pi\)
\(314\) 43.1928 + 14.0342i 0.137557 + 0.0446948i
\(315\) 546.140 + 31.3796i 1.73378 + 0.0996177i
\(316\) 323.557 + 235.078i 1.02392 + 0.743918i
\(317\) −148.670 + 48.3059i −0.468992 + 0.152385i −0.533972 0.845502i \(-0.679301\pi\)
0.0649808 + 0.997887i \(0.479301\pi\)
\(318\) −52.8072 111.433i −0.166060 0.350420i
\(319\) 0 0
\(320\) 154.022i 0.481318i
\(321\) 140.707 + 149.024i 0.438339 + 0.464248i
\(322\) −143.780 104.462i −0.446522 0.324417i
\(323\) 181.035 + 249.174i 0.560481 + 0.771435i
\(324\) −284.603 32.8132i −0.878405 0.101275i
\(325\) 22.0686 67.9202i 0.0679034 0.208985i
\(326\) 55.9371 + 76.9909i 0.171586 + 0.236168i
\(327\) 20.9048 111.229i 0.0639290 0.340150i
\(328\) 55.4814 + 170.754i 0.169151 + 0.520592i
\(329\) 97.9303i 0.297661i
\(330\) 0 0
\(331\) 40.2792 0.121689 0.0608447 0.998147i \(-0.480621\pi\)
0.0608447 + 0.998147i \(0.480621\pi\)
\(332\) −350.071 + 113.745i −1.05443 + 0.342605i
\(333\) 126.741 33.2772i 0.380603 0.0999316i
\(334\) 75.6449 54.9592i 0.226482 0.164549i
\(335\) 190.341 + 61.8457i 0.568184 + 0.184614i
\(336\) 296.967 38.3363i 0.883830 0.114096i
\(337\) 9.64009 7.00393i 0.0286056 0.0207832i −0.573391 0.819282i \(-0.694372\pi\)
0.601996 + 0.798499i \(0.294372\pi\)
\(338\) −60.6395 + 83.4631i −0.179407 + 0.246932i
\(339\) 350.707 + 371.436i 1.03453 + 1.09568i
\(340\) 686.950 2.02044
\(341\) 0 0
\(342\) −48.7857 39.9142i −0.142648 0.116708i
\(343\) −29.7722 91.6294i −0.0867994 0.267141i
\(344\) −193.974 + 266.982i −0.563877 + 0.776110i
\(345\) −476.476 260.260i −1.38109 0.754377i
\(346\) 0.222548 0.684932i 0.000643202 0.00197957i
\(347\) −571.856 185.807i −1.64800 0.535468i −0.669695 0.742636i \(-0.733575\pi\)
−0.978305 + 0.207168i \(0.933575\pi\)
\(348\) −82.1427 + 150.384i −0.236042 + 0.432138i
\(349\) −107.566 78.1511i −0.308211 0.223929i 0.422917 0.906168i \(-0.361006\pi\)
−0.731129 + 0.682240i \(0.761006\pi\)
\(350\) 103.774 33.7182i 0.296497 0.0963378i
\(351\) 109.314 + 27.1185i 0.311435 + 0.0772608i
\(352\) 0 0
\(353\) 172.864i 0.489699i 0.969561 + 0.244850i \(0.0787386\pi\)
−0.969561 + 0.244850i \(0.921261\pi\)
\(354\) 60.3662 56.9973i 0.170526 0.161009i
\(355\) −5.22778 3.79820i −0.0147261 0.0106992i
\(356\) −42.4089 58.3708i −0.119126 0.163963i
\(357\) −107.652 833.912i −0.301546 2.33589i
\(358\) −18.2420 + 56.1430i −0.0509552 + 0.156824i
\(359\) −354.287 487.634i −0.986871 1.35831i −0.933045 0.359761i \(-0.882858\pi\)
−0.0538262 0.998550i \(-0.517142\pi\)
\(360\) −289.763 + 76.0806i −0.804898 + 0.211335i
\(361\) −78.8242 242.596i −0.218350 0.672011i
\(362\) 73.6117i 0.203347i
\(363\) 0 0
\(364\) −138.177 −0.379606
\(365\) 576.932 187.457i 1.58064 0.513580i
\(366\) 47.1702 + 8.86535i 0.128880 + 0.0242223i
\(367\) −201.333 + 146.277i −0.548592 + 0.398575i −0.827266 0.561810i \(-0.810105\pi\)
0.278674 + 0.960386i \(0.410105\pi\)
\(368\) −282.632 91.8327i −0.768021 0.249545i
\(369\) 265.082 170.255i 0.718379 0.461396i
\(370\) 52.0227 37.7967i 0.140602 0.102153i
\(371\) 332.505 457.654i 0.896239 1.23357i
\(372\) 136.262 128.657i 0.366295 0.345853i
\(373\) −677.639 −1.81673 −0.908364 0.418181i \(-0.862668\pi\)
−0.908364 + 0.418181i \(0.862668\pi\)
\(374\) 0 0
\(375\) −138.638 + 65.6992i −0.369702 + 0.175198i
\(376\) 16.5729 + 51.0063i 0.0440770 + 0.135655i
\(377\) 39.5963 54.4996i 0.105030 0.144561i
\(378\) 64.6504 + 159.475i 0.171033 + 0.421892i
\(379\) −35.1742 + 108.255i −0.0928079 + 0.285633i −0.986676 0.162696i \(-0.947981\pi\)
0.893868 + 0.448330i \(0.147981\pi\)
\(380\) 224.679 + 73.0026i 0.591261 + 0.192112i
\(381\) −382.608 208.988i −1.00422 0.548524i
\(382\) −15.7739 11.4604i −0.0412929 0.0300011i
\(383\) 573.154 186.229i 1.49649 0.486238i 0.557496 0.830180i \(-0.311762\pi\)
0.938991 + 0.343942i \(0.111762\pi\)
\(384\) −344.903 + 163.446i −0.898184 + 0.425640i
\(385\) 0 0
\(386\) 8.63898i 0.0223808i
\(387\) 539.562 + 210.241i 1.39422 + 0.543258i
\(388\) −543.896 395.163i −1.40179 1.01846i
\(389\) 267.543 + 368.242i 0.687772 + 0.946637i 0.999994 0.00337225i \(-0.00107342\pi\)
−0.312222 + 0.950009i \(0.601073\pi\)
\(390\) 54.8147 7.07618i 0.140551 0.0181441i
\(391\) −257.875 + 793.658i −0.659527 + 2.02982i
\(392\) −116.709 160.636i −0.297727 0.409786i
\(393\) −513.451 96.4998i −1.30649 0.245547i
\(394\) −70.8035 217.911i −0.179704 0.553073i
\(395\) 733.867i 1.85789i
\(396\) 0 0
\(397\) 327.783 0.825649 0.412824 0.910811i \(-0.364542\pi\)
0.412824 + 0.910811i \(0.364542\pi\)
\(398\) −118.998 + 38.6647i −0.298989 + 0.0971474i
\(399\) 53.4110 284.186i 0.133862 0.712246i
\(400\) 147.609 107.245i 0.369024 0.268111i
\(401\) 239.706 + 77.8852i 0.597770 + 0.194227i 0.592246 0.805757i \(-0.298241\pi\)
0.00552464 + 0.999985i \(0.498241\pi\)
\(402\) 8.06035 + 62.4385i 0.0200506 + 0.155320i
\(403\) −59.6035 + 43.3045i −0.147899 + 0.107455i
\(404\) −98.9652 + 136.214i −0.244963 + 0.337163i
\(405\) 258.249 + 457.885i 0.637652 + 1.13058i
\(406\) 102.926 0.253513
\(407\) 0 0
\(408\) 197.194 + 416.119i 0.483319 + 1.01990i
\(409\) 140.226 + 431.571i 0.342851 + 1.05519i 0.962724 + 0.270485i \(0.0871840\pi\)
−0.619873 + 0.784702i \(0.712816\pi\)
\(410\) 90.8735 125.077i 0.221643 0.305065i
\(411\) −116.911 + 214.037i −0.284456 + 0.520772i
\(412\) 57.5722 177.189i 0.139738 0.430071i
\(413\) 362.222 + 117.693i 0.877051 + 0.284971i
\(414\) 9.79668 170.505i 0.0236635 0.411847i
\(415\) 546.426 + 397.001i 1.31669 + 0.956630i
\(416\) 110.163 35.7942i 0.264816 0.0860438i
\(417\) −0.874924 1.84626i −0.00209814 0.00442748i
\(418\) 0 0
\(419\) 295.753i 0.705855i −0.935651 0.352927i \(-0.885186\pi\)
0.935651 0.352927i \(-0.114814\pi\)
\(420\) −442.770 468.941i −1.05421 1.11653i
\(421\) −185.253 134.594i −0.440030 0.319701i 0.345617 0.938376i \(-0.387670\pi\)
−0.785647 + 0.618675i \(0.787670\pi\)
\(422\) 72.0028 + 99.1033i 0.170623 + 0.234842i
\(423\) 79.1829 50.8571i 0.187194 0.120230i
\(424\) −95.7329 + 294.636i −0.225785 + 0.694896i
\(425\) −301.153 414.502i −0.708596 0.975298i
\(426\) 0.375460 1.99773i 0.000881361 0.00468950i
\(427\) 68.0393 + 209.403i 0.159343 + 0.490406i
\(428\) 241.635i 0.564567i
\(429\) 0 0
\(430\) 284.169 0.660859
\(431\) 531.608 172.730i 1.23343 0.400766i 0.381474 0.924380i \(-0.375417\pi\)
0.851956 + 0.523614i \(0.175417\pi\)
\(432\) 185.218 + 220.208i 0.428745 + 0.509741i
\(433\) −233.218 + 169.443i −0.538609 + 0.391322i −0.823568 0.567217i \(-0.808020\pi\)
0.284959 + 0.958540i \(0.408020\pi\)
\(434\) −107.056 34.7845i −0.246672 0.0801487i
\(435\) 311.841 40.2564i 0.716876 0.0925435i
\(436\) −107.948 + 78.4288i −0.247587 + 0.179883i
\(437\) −168.685 + 232.175i −0.386007 + 0.531294i
\(438\) 131.006 + 138.749i 0.299099 + 0.316778i
\(439\) 179.800 0.409567 0.204784 0.978807i \(-0.434351\pi\)
0.204784 + 0.978807i \(0.434351\pi\)
\(440\) 0 0
\(441\) −220.625 + 269.662i −0.500284 + 0.611479i
\(442\) −26.2517 80.7945i −0.0593931 0.182793i
\(443\) 165.331 227.558i 0.373207 0.513676i −0.580562 0.814216i \(-0.697167\pi\)
0.953769 + 0.300541i \(0.0971671\pi\)
\(444\) −135.581 74.0567i −0.305362 0.166794i
\(445\) −40.9113 + 125.912i −0.0919356 + 0.282949i
\(446\) 170.254 + 55.3189i 0.381735 + 0.124033i
\(447\) 284.648 521.125i 0.636797 1.16583i
\(448\) −179.815 130.643i −0.401372 0.291614i
\(449\) 264.108 85.8140i 0.588214 0.191122i 0.000237150 1.00000i \(-0.499925\pi\)
0.587977 + 0.808878i \(0.299925\pi\)
\(450\) 81.1552 + 66.3974i 0.180345 + 0.147550i
\(451\) 0 0
\(452\) 602.265i 1.33245i
\(453\) 193.952 183.128i 0.428149 0.404255i
\(454\) 4.97093 + 3.61160i 0.0109492 + 0.00795506i
\(455\) 149.031 + 205.123i 0.327541 + 0.450821i
\(456\) 20.2746 + 157.055i 0.0444619 + 0.344419i
\(457\) 106.989 329.280i 0.234113 0.720524i −0.763125 0.646251i \(-0.776336\pi\)
0.997238 0.0742739i \(-0.0236639\pi\)
\(458\) 140.971 + 194.030i 0.307797 + 0.423646i
\(459\) 618.366 520.110i 1.34720 1.13314i
\(460\) 197.798 + 608.759i 0.429995 + 1.32339i
\(461\) 67.1487i 0.145659i −0.997344 0.0728294i \(-0.976797\pi\)
0.997344 0.0728294i \(-0.0232029\pi\)
\(462\) 0 0
\(463\) −754.683 −1.62999 −0.814993 0.579471i \(-0.803259\pi\)
−0.814993 + 0.579471i \(0.803259\pi\)
\(464\) 163.684 53.1841i 0.352767 0.114621i
\(465\) −337.958 63.5171i −0.726792 0.136596i
\(466\) 19.4907 14.1609i 0.0418256 0.0303881i
\(467\) −275.211 89.4216i −0.589317 0.191481i −0.000847110 1.00000i \(-0.500270\pi\)
−0.588470 + 0.808519i \(0.700270\pi\)
\(468\) −71.7578 111.725i −0.153329 0.238728i
\(469\) −233.652 + 169.758i −0.498193 + 0.361958i
\(470\) 27.1450 37.3618i 0.0577552 0.0794933i
\(471\) −145.574 + 137.450i −0.309075 + 0.291826i
\(472\) −208.578 −0.441902
\(473\) 0 0
\(474\) 208.612 98.8590i 0.440110 0.208563i
\(475\) −54.4481 167.574i −0.114627 0.352787i
\(476\) −582.679 + 801.988i −1.22411 + 1.68485i
\(477\) 542.718 + 31.1829i 1.13777 + 0.0653731i
\(478\) 27.5059 84.6545i 0.0575437 0.177101i
\(479\) −158.005 51.3391i −0.329865 0.107180i 0.139402 0.990236i \(-0.455482\pi\)
−0.469267 + 0.883056i \(0.655482\pi\)
\(480\) 474.483 + 259.172i 0.988506 + 0.539941i
\(481\) 49.1347 + 35.6985i 0.102151 + 0.0742172i
\(482\) 87.0664 28.2896i 0.180636 0.0586921i
\(483\) 707.997 335.512i 1.46583 0.694642i
\(484\) 0 0
\(485\) 1233.62i 2.54355i
\(486\) −95.3717 + 135.093i −0.196238 + 0.277968i
\(487\) 16.6332 + 12.0847i 0.0341545 + 0.0248147i 0.604732 0.796429i \(-0.293280\pi\)
−0.570577 + 0.821244i \(0.693280\pi\)
\(488\) −70.8755 97.5517i −0.145237 0.199901i
\(489\) −416.078 + 53.7127i −0.850876 + 0.109842i
\(490\) −52.8350 + 162.609i −0.107827 + 0.331856i
\(491\) 281.310 + 387.190i 0.572933 + 0.788574i 0.992898 0.118966i \(-0.0379579\pi\)
−0.419966 + 0.907540i \(0.637958\pi\)
\(492\) −365.039 68.6068i −0.741950 0.139445i
\(493\) −149.346 459.640i −0.302933 0.932333i
\(494\) 29.2151i 0.0591398i
\(495\) 0 0
\(496\) −188.225 −0.379486
\(497\) 8.86853 2.88156i 0.0178441 0.00579791i
\(498\) −39.2444 + 208.809i −0.0788040 + 0.419296i
\(499\) 206.262 149.858i 0.413352 0.300317i −0.361606 0.932331i \(-0.617771\pi\)
0.774957 + 0.632014i \(0.217771\pi\)
\(500\) 172.021 + 55.8932i 0.344043 + 0.111786i
\(501\) 52.7737 + 408.804i 0.105337 + 0.815977i
\(502\) 222.733 161.825i 0.443691 0.322361i
\(503\) 150.204 206.738i 0.298616 0.411010i −0.633173 0.774011i \(-0.718248\pi\)
0.931789 + 0.363001i \(0.118248\pi\)
\(504\) 156.959 402.821i 0.311427 0.799247i
\(505\) 308.949 0.611781
\(506\) 0 0
\(507\) −194.762 410.986i −0.384146 0.810623i
\(508\) 158.831 + 488.830i 0.312659 + 0.962265i
\(509\) 31.1173 42.8293i 0.0611342 0.0841440i −0.777355 0.629062i \(-0.783439\pi\)
0.838489 + 0.544918i \(0.183439\pi\)
\(510\) 190.078 347.989i 0.372703 0.682332i
\(511\) −270.512 + 832.550i −0.529377 + 1.62926i
\(512\) 489.392 + 159.013i 0.955843 + 0.310572i
\(513\) 257.520 104.397i 0.501988 0.203503i
\(514\) 75.6160 + 54.9382i 0.147113 + 0.106884i
\(515\) −325.133 + 105.642i −0.631325 + 0.205130i
\(516\) −292.362 616.942i −0.566594 1.19562i
\(517\) 0 0
\(518\) 92.7942i 0.179139i
\(519\) 2.17962 + 2.30845i 0.00419966 + 0.00444788i
\(520\) −112.335 81.6162i −0.216029 0.156954i
\(521\) −512.433 705.303i −0.983557 1.35375i −0.934891 0.354934i \(-0.884503\pi\)
−0.0486653 0.998815i \(-0.515497\pi\)
\(522\) 53.4515 + 83.2223i 0.102398 + 0.159430i
\(523\) 219.180 674.565i 0.419081 1.28980i −0.489467 0.872022i \(-0.662809\pi\)
0.908549 0.417779i \(-0.137191\pi\)
\(524\) 362.040 + 498.305i 0.690916 + 0.950964i
\(525\) −88.8495 + 472.745i −0.169237 + 0.900467i
\(526\) −29.0205 89.3158i −0.0551720 0.169802i
\(527\) 528.555i 1.00295i
\(528\) 0 0
\(529\) −248.573 −0.469892
\(530\) 253.711 82.4356i 0.478699 0.155539i
\(531\) 92.9466 + 354.000i 0.175041 + 0.666666i
\(532\) −275.803 + 200.383i −0.518427 + 0.376659i
\(533\) 138.874 + 45.1229i 0.260551 + 0.0846583i
\(534\) −41.3035 + 5.33198i −0.0773473 + 0.00998498i
\(535\) −358.707 + 260.616i −0.670481 + 0.487133i
\(536\) 92.9675 127.959i 0.173447 0.238729i
\(537\) −178.661 189.221i −0.332702 0.352366i
\(538\) −21.0236 −0.0390774
\(539\) 0 0
\(540\) 149.229 601.538i 0.276351 1.11396i
\(541\) −52.7194 162.254i −0.0974480 0.299914i 0.890436 0.455109i \(-0.150400\pi\)
−0.987884 + 0.155195i \(0.950400\pi\)
\(542\) 80.1933 110.377i 0.147958 0.203647i
\(543\) 284.795 + 155.561i 0.524485 + 0.286484i
\(544\) 256.797 790.338i 0.472052 1.45283i
\(545\) 232.856 + 75.6594i 0.427258 + 0.138825i
\(546\) −38.2333 + 69.9963i −0.0700244 + 0.128198i
\(547\) 85.8184 + 62.3507i 0.156889 + 0.113987i 0.663460 0.748212i \(-0.269087\pi\)
−0.506571 + 0.862198i \(0.669087\pi\)
\(548\) 273.460 88.8525i 0.499014 0.162140i
\(549\) −133.982 + 163.761i −0.244047 + 0.298290i
\(550\) 0 0
\(551\) 166.205i 0.301642i
\(552\) −311.975 + 294.565i −0.565172 + 0.533631i
\(553\) 856.762 + 622.474i 1.54930 + 1.12563i
\(554\) 63.8435 + 87.8731i 0.115241 + 0.158616i
\(555\) 36.2936 + 281.144i 0.0653939 + 0.506566i
\(556\) −0.744335 + 2.29083i −0.00133873 + 0.00412019i
\(557\) −431.366 593.724i −0.774445 1.06593i −0.995873 0.0907553i \(-0.971072\pi\)
0.221428 0.975177i \(-0.428928\pi\)
\(558\) −27.4706 104.626i −0.0492305 0.187501i
\(559\) 82.9383 + 255.258i 0.148369 + 0.456633i
\(560\) 647.771i 1.15673i
\(561\) 0 0
\(562\) −270.320 −0.480997
\(563\) −944.916 + 307.022i −1.67836 + 0.545332i −0.984592 0.174868i \(-0.944050\pi\)
−0.693767 + 0.720200i \(0.744050\pi\)
\(564\) −109.041 20.4937i −0.193336 0.0363363i
\(565\) −894.065 + 649.576i −1.58242 + 1.14969i
\(566\) 43.7452 + 14.2137i 0.0772884 + 0.0251125i
\(567\) −753.614 86.8876i −1.32913 0.153241i
\(568\) −4.13145 + 3.00168i −0.00727368 + 0.00528464i
\(569\) −626.713 + 862.596i −1.10143 + 1.51599i −0.267950 + 0.963433i \(0.586346\pi\)
−0.833478 + 0.552553i \(0.813654\pi\)
\(570\) 99.1495 93.6162i 0.173947 0.164239i
\(571\) −409.079 −0.716425 −0.358213 0.933640i \(-0.616614\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(572\) 0 0
\(573\) 77.6733 36.8086i 0.135556 0.0642384i
\(574\) 68.9424 + 212.183i 0.120109 + 0.369657i
\(575\) 280.609 386.225i 0.488015 0.671696i
\(576\) 12.2520 213.237i 0.0212708 0.370203i
\(577\) 142.077 437.267i 0.246233 0.757828i −0.749198 0.662346i \(-0.769561\pi\)
0.995431 0.0954818i \(-0.0304392\pi\)
\(578\) −392.596 127.562i −0.679232 0.220696i
\(579\) −33.4232 18.2564i −0.0577257 0.0315309i
\(580\) −299.903 217.892i −0.517075 0.375677i
\(581\) −926.969 + 301.191i −1.59547 + 0.518400i
\(582\) −350.674 + 166.181i −0.602533 + 0.285534i
\(583\) 0 0
\(584\) 479.406i 0.820901i
\(585\) −88.4608 + 227.026i −0.151215 + 0.388078i
\(586\) −201.289 146.245i −0.343497 0.249565i
\(587\) −34.6014 47.6247i −0.0589461 0.0811324i 0.778526 0.627612i \(-0.215968\pi\)
−0.837472 + 0.546480i \(0.815968\pi\)
\(588\) 407.389 52.5910i 0.692838 0.0894404i
\(589\) −56.1699 + 172.873i −0.0953649 + 0.293503i
\(590\) 105.570 + 145.305i 0.178932 + 0.246279i
\(591\) 992.697 + 186.571i 1.67969 + 0.315687i
\(592\) 47.9487 + 147.571i 0.0809945 + 0.249275i
\(593\) 149.728i 0.252493i 0.991999 + 0.126247i \(0.0402931\pi\)
−0.991999 + 0.126247i \(0.959707\pi\)
\(594\) 0 0
\(595\) 1819.01 3.05715
\(596\) −665.803 + 216.333i −1.11712 + 0.362974i
\(597\) 101.884 542.096i 0.170659 0.908034i
\(598\) 64.0394 46.5274i 0.107089 0.0778049i
\(599\) −421.867 137.073i −0.704286 0.228836i −0.0650891 0.997879i \(-0.520733\pi\)
−0.639197 + 0.769043i \(0.720733\pi\)
\(600\) −33.7270 261.262i −0.0562117 0.435436i
\(601\) 334.929 243.340i 0.557286 0.404892i −0.273178 0.961963i \(-0.588075\pi\)
0.830465 + 0.557071i \(0.188075\pi\)
\(602\) −241.036 + 331.757i −0.400392 + 0.551092i
\(603\) −258.601 100.764i −0.428857 0.167105i
\(604\) −314.483 −0.520668
\(605\) 0 0
\(606\) 41.6185 + 87.8232i 0.0686774 + 0.144923i
\(607\) −117.688 362.207i −0.193885 0.596716i −0.999988 0.00494086i \(-0.998427\pi\)
0.806103 0.591775i \(-0.201573\pi\)
\(608\) 167.980 231.204i 0.276282 0.380270i
\(609\) −217.509 + 398.209i −0.357158 + 0.653874i
\(610\) −32.0858 + 98.7500i −0.0525997 + 0.161885i
\(611\) 41.4832 + 13.4787i 0.0678940 + 0.0220601i
\(612\) −951.055 54.6448i −1.55401 0.0892888i
\(613\) −91.3802 66.3916i −0.149071 0.108306i 0.510750 0.859729i \(-0.329368\pi\)
−0.659821 + 0.751423i \(0.729368\pi\)
\(614\) −313.353 + 101.815i −0.510347 + 0.165822i
\(615\) 291.868 + 615.898i 0.474582 + 1.00146i
\(616\) 0 0
\(617\) 378.251i 0.613049i 0.951863 + 0.306524i \(0.0991661\pi\)
−0.951863 + 0.306524i \(0.900834\pi\)
\(618\) −73.8288 78.1925i −0.119464 0.126525i
\(619\) 23.7034 + 17.2215i 0.0382931 + 0.0278216i 0.606767 0.794880i \(-0.292466\pi\)
−0.568474 + 0.822701i \(0.692466\pi\)
\(620\) 238.298 + 327.989i 0.384352 + 0.529015i
\(621\) 638.960 + 398.223i 1.02892 + 0.641260i
\(622\) 70.6899 217.561i 0.113649 0.349777i
\(623\) −112.296 154.563i −0.180251 0.248094i
\(624\) −24.6340 + 131.071i −0.0394776 + 0.210050i
\(625\) −234.823 722.710i −0.375716 1.15634i
\(626\) 332.837i 0.531689i
\(627\) 0 0
\(628\) 236.041 0.375862
\(629\) 414.394 134.645i 0.658814 0.214062i
\(630\) −360.066 + 94.5393i −0.571534 + 0.150062i
\(631\) 787.079 571.847i 1.24735 0.906254i 0.249287 0.968430i \(-0.419804\pi\)
0.998065 + 0.0621752i \(0.0198037\pi\)
\(632\) −551.580 179.219i −0.872754 0.283575i
\(633\) −535.580 + 69.1394i −0.846097 + 0.109225i
\(634\) 86.0626 62.5281i 0.135745 0.0986248i
\(635\) 554.363 763.015i 0.873012 1.20160i
\(636\) −439.996 466.003i −0.691818 0.732708i
\(637\) −161.486 −0.253510
\(638\) 0 0
\(639\) 6.93552 + 5.67432i 0.0108537 + 0.00888000i
\(640\) −255.150 785.271i −0.398672 1.22699i
\(641\) 513.946 707.386i 0.801788 1.10357i −0.190751 0.981639i \(-0.561092\pi\)
0.992539 0.121928i \(-0.0389078\pi\)
\(642\) −122.405 66.8601i −0.190662 0.104143i
\(643\) 225.637 694.441i 0.350914 1.08000i −0.607428 0.794375i \(-0.707798\pi\)
0.958341 0.285626i \(-0.0922015\pi\)
\(644\) −878.478 285.435i −1.36410 0.443222i
\(645\) −600.523 + 1099.42i −0.931044 + 1.70452i
\(646\) −169.567 123.197i −0.262487 0.190708i
\(647\) 706.330 229.501i 1.09170 0.354715i 0.292798 0.956174i \(-0.405414\pi\)
0.798903 + 0.601459i \(0.205414\pi\)
\(648\) 407.218 82.2808i 0.628423 0.126977i
\(649\) 0 0
\(650\) 48.5994i 0.0747684i
\(651\) 360.814 340.678i 0.554246 0.523314i
\(652\) 400.150 + 290.726i 0.613727 + 0.445899i
\(653\) −653.864 899.967i −1.00132 1.37820i −0.924510 0.381158i \(-0.875525\pi\)
−0.0768135 0.997045i \(-0.524475\pi\)
\(654\) 9.86069 + 76.3846i 0.0150775 + 0.116796i
\(655\) 349.256 1074.90i 0.533215 1.64107i
\(656\) 219.279 + 301.812i 0.334267 + 0.460079i
\(657\) −813.652 + 213.633i −1.23843 + 0.325165i
\(658\) 20.5939 + 63.3815i 0.0312977 + 0.0963244i
\(659\) 829.020i 1.25800i 0.777407 + 0.628998i \(0.216535\pi\)
−0.777407 + 0.628998i \(0.783465\pi\)
\(660\) 0 0
\(661\) −1040.95 −1.57480 −0.787402 0.616439i \(-0.788575\pi\)
−0.787402 + 0.616439i \(0.788575\pi\)
\(662\) −26.0691 + 8.47037i −0.0393793 + 0.0127951i
\(663\) 368.061 + 69.1748i 0.555145 + 0.104336i
\(664\) 431.834 313.746i 0.650352 0.472508i
\(665\) 594.938 + 193.307i 0.894643 + 0.290687i
\(666\) −75.0300 + 48.1898i −0.112658 + 0.0723571i
\(667\) 364.320 264.694i 0.546207 0.396843i
\(668\) 285.643 393.154i 0.427610 0.588555i
\(669\) −573.813 + 541.790i −0.857717 + 0.809850i
\(670\) −136.196 −0.203278
\(671\) 0 0
\(672\) −705.035 + 334.109i −1.04916 + 0.497186i
\(673\) 78.5875 + 241.868i 0.116772 + 0.359387i 0.992312 0.123758i \(-0.0394945\pi\)
−0.875541 + 0.483145i \(0.839495\pi\)
\(674\) −4.76629 + 6.56024i −0.00707165 + 0.00973330i
\(675\) −428.386 + 173.665i −0.634646 + 0.257282i
\(676\) −165.692 + 509.949i −0.245107 + 0.754362i
\(677\) −964.286 313.315i −1.42435 0.462800i −0.507369 0.861729i \(-0.669382\pi\)
−0.916982 + 0.398929i \(0.869382\pi\)
\(678\) −305.091 166.646i −0.449986 0.245791i
\(679\) −1440.21 1046.37i −2.12107 1.54105i
\(680\) −947.415 + 307.834i −1.39326 + 0.452697i
\(681\) −24.4777 + 11.5997i −0.0359438 + 0.0170334i
\(682\) 0 0
\(683\) 561.211i 0.821685i −0.911706 0.410842i \(-0.865235\pi\)
0.911706 0.410842i \(-0.134765\pi\)
\(684\) −305.252 118.942i −0.446275 0.173892i
\(685\) −426.843 310.120i −0.623129 0.452730i
\(686\) 38.5377 + 53.0426i 0.0561775 + 0.0773216i
\(687\) −1048.59 + 135.365i −1.52633 + 0.197038i
\(688\) −211.894 + 652.144i −0.307986 + 0.947883i
\(689\) 148.097 + 203.838i 0.214945 + 0.295847i
\(690\) 363.110 + 68.2443i 0.526247 + 0.0989048i
\(691\) 176.558 + 543.389i 0.255510 + 0.786380i 0.993729 + 0.111818i \(0.0356674\pi\)
−0.738218 + 0.674562i \(0.764333\pi\)
\(692\) 3.74304i 0.00540902i
\(693\) 0 0
\(694\) 409.185 0.589603
\(695\) 4.20355 1.36582i 0.00604827 0.00196520i
\(696\) 45.8984 244.214i 0.0659460 0.350882i
\(697\) 847.516 615.757i 1.21595 0.883438i
\(698\) 86.0521 + 27.9600i 0.123284 + 0.0400573i
\(699\) 13.5977 + 105.333i 0.0194531 + 0.150691i
\(700\) 458.800 333.338i 0.655429 0.476197i
\(701\) 415.641 572.080i 0.592925 0.816092i −0.402112 0.915590i \(-0.631724\pi\)
0.995038 + 0.0994987i \(0.0317239\pi\)
\(702\) −76.4518 + 5.43636i −0.108906 + 0.00774410i
\(703\) 149.844 0.213149
\(704\) 0 0
\(705\) 87.1843 + 183.976i 0.123666 + 0.260959i
\(706\) −36.3517 111.879i −0.0514897 0.158469i
\(707\) −262.054 + 360.687i −0.370657 + 0.510166i
\(708\) 206.848 378.690i 0.292158 0.534873i
\(709\) 282.481 869.387i 0.398422 1.22622i −0.527843 0.849342i \(-0.676999\pi\)
0.926265 0.376874i \(-0.123001\pi\)
\(710\) 4.18220 + 1.35888i 0.00589042 + 0.00191391i
\(711\) −58.3769 + 1016.01i −0.0821053 + 1.42899i
\(712\) 84.6456 + 61.4986i 0.118884 + 0.0863745i
\(713\) −468.393 + 152.190i −0.656933 + 0.213450i
\(714\) 245.038 + 517.078i 0.343190 + 0.724199i
\(715\) 0 0
\(716\) 306.812i 0.428509i
\(717\) 269.391 + 285.314i 0.375720 + 0.397927i
\(718\) 331.843 + 241.098i 0.462177 + 0.335791i
\(719\) 495.361 + 681.806i 0.688958 + 0.948270i 0.999998 0.00212717i \(-0.000677098\pi\)
−0.311039 + 0.950397i \(0.600677\pi\)
\(720\) −523.764 + 336.400i −0.727451 + 0.467223i
\(721\) 152.448 469.187i 0.211440 0.650745i
\(722\) 102.032 + 140.434i 0.141318 + 0.194508i
\(723\) −74.5447 + 396.633i −0.103105 + 0.548593i
\(724\) −118.226 363.862i −0.163296 0.502572i
\(725\) 276.482i 0.381355i
\(726\) 0 0
\(727\) 958.596 1.31856 0.659282 0.751895i \(-0.270860\pi\)
0.659282 + 0.751895i \(0.270860\pi\)
\(728\) 190.568 61.9192i 0.261769 0.0850539i
\(729\) −321.112 654.468i −0.440483 0.897761i
\(730\) −333.976 + 242.647i −0.457501 + 0.332394i
\(731\) 1831.28 + 595.020i 2.50518 + 0.813981i
\(732\) 247.401 31.9376i 0.337979 0.0436306i
\(733\) 815.585 592.557i 1.11267 0.808400i 0.129586 0.991568i \(-0.458635\pi\)
0.983082 + 0.183168i \(0.0586352\pi\)
\(734\) 99.5441 137.011i 0.135619 0.186663i
\(735\) −517.463 548.048i −0.704031 0.745644i
\(736\) 774.320 1.05207
\(737\) 0 0
\(738\) −135.760 + 165.935i −0.183957 + 0.224844i
\(739\) −350.139 1077.62i −0.473802 1.45821i −0.847567 0.530688i \(-0.821933\pi\)
0.373765 0.927523i \(-0.378067\pi\)
\(740\) 196.443 270.381i 0.265464 0.365380i
\(741\) 113.030 + 61.7390i 0.152537 + 0.0833185i
\(742\) −118.960 + 366.121i −0.160323 + 0.493424i
\(743\) 12.0434 + 3.91313i 0.0162091 + 0.00526666i 0.317110 0.948389i \(-0.397287\pi\)
−0.300901 + 0.953655i \(0.597287\pi\)
\(744\) −130.274 + 238.501i −0.175099 + 0.320565i
\(745\) 1039.25 + 755.060i 1.39497 + 1.01350i
\(746\) 438.575 142.502i 0.587902 0.191021i
\(747\) −724.925 593.100i −0.970449 0.793976i
\(748\) 0 0
\(749\) 639.835i 0.854253i
\(750\) 75.9121 71.6756i 0.101216 0.0955675i
\(751\) 155.182 + 112.746i 0.206633 + 0.150128i 0.686289 0.727329i \(-0.259238\pi\)
−0.479656 + 0.877457i \(0.659238\pi\)
\(752\) 65.5011 + 90.1546i 0.0871026 + 0.119886i
\(753\) 155.390 + 1203.71i 0.206361 + 1.59855i
\(754\) −14.1663 + 43.5994i −0.0187882 + 0.0578242i
\(755\) 339.188 + 466.852i 0.449255 + 0.618346i
\(756\) 575.696 + 684.452i 0.761502 + 0.905359i
\(757\) 159.304 + 490.289i 0.210442 + 0.647673i 0.999446 + 0.0332854i \(0.0105970\pi\)
−0.789004 + 0.614388i \(0.789403\pi\)
\(758\) 77.4605i 0.102191i
\(759\) 0 0
\(760\) −342.582 −0.450766
\(761\) −979.307 + 318.196i −1.28687 + 0.418129i −0.870994 0.491294i \(-0.836524\pi\)
−0.415874 + 0.909422i \(0.636524\pi\)
\(762\) 291.576 + 54.7999i 0.382646 + 0.0719158i
\(763\) −285.840 + 207.675i −0.374627 + 0.272182i
\(764\) −96.3766 31.3146i −0.126147 0.0409877i
\(765\) 944.645 + 1470.78i 1.23483 + 1.92259i
\(766\) −331.789 + 241.059i −0.433145 + 0.314698i
\(767\) −99.7094 + 137.238i −0.129999 + 0.178928i
\(768\) −18.2153 + 17.1987i −0.0237178 + 0.0223942i
\(769\) −1094.35 −1.42308 −0.711539 0.702647i \(-0.752001\pi\)
−0.711539 + 0.702647i \(0.752001\pi\)
\(770\) 0 0
\(771\) −372.346 + 176.451i −0.482938 + 0.228860i
\(772\) 13.8749 + 42.7024i 0.0179726 + 0.0553140i
\(773\) −303.368 + 417.550i −0.392455 + 0.540168i −0.958830 0.283980i \(-0.908345\pi\)
0.566376 + 0.824147i \(0.308345\pi\)
\(774\) −393.422 22.6048i −0.508297 0.0292052i
\(775\) 93.4390 287.576i 0.120566 0.371065i
\(776\) 927.200 + 301.265i 1.19485 + 0.388229i
\(777\) −359.010 196.098i −0.462046 0.252379i
\(778\) −250.595 182.068i −0.322101 0.234020i
\(779\) 342.632 111.328i 0.439836 0.142911i
\(780\) 259.584 123.014i 0.332800 0.157710i
\(781\) 0 0
\(782\) 567.892i 0.726205i
\(783\) −434.934 + 30.9275i −0.555472 + 0.0394987i
\(784\) −333.777 242.503i −0.425736 0.309315i
\(785\) −254.584 350.404i −0.324310 0.446375i
\(786\) 352.603 45.5185i 0.448605 0.0579116i
\(787\) 224.489 690.907i 0.285247 0.877900i −0.701078 0.713085i \(-0.747297\pi\)
0.986325 0.164815i \(-0.0527026\pi\)
\(788\) −699.962 963.415i −0.888277 1.22261i
\(789\) 406.880 + 76.4706i 0.515691 + 0.0969209i
\(790\) 154.326 + 474.966i 0.195349 + 0.601222i
\(791\) 1594.77i 2.01614i
\(792\) 0 0
\(793\) −98.0678 −0.123667
\(794\) −212.144 + 68.9298i −0.267184 + 0.0868134i
\(795\) −217.222 + 1155.78i −0.273236 + 1.45382i
\(796\) −526.106 + 382.238i −0.660937 + 0.480199i
\(797\) −1395.59 453.455i −1.75105 0.568952i −0.754842 0.655907i \(-0.772286\pi\)
−0.996212 + 0.0869550i \(0.972286\pi\)
\(798\) 25.1937 + 195.160i 0.0315711 + 0.244561i
\(799\) 253.163 183.934i 0.316850 0.230205i
\(800\) −279.435 + 384.610i −0.349294 + 0.480762i
\(801\) 66.6561 171.066i 0.0832161 0.213566i
\(802\) −171.519 −0.213864
\(803\) 0 0
\(804\) 140.123 + 295.687i 0.174283 + 0.367770i
\(805\) 523.757 + 1611.96i 0.650630 + 2.00243i
\(806\) 29.4694 40.5612i 0.0365625 0.0503240i
\(807\) 44.4283 81.3379i 0.0550537 0.100791i
\(808\) 75.4493 232.209i 0.0933778 0.287387i
\(809\) −24.4139 7.93257i −0.0301779 0.00980540i 0.293889 0.955840i \(-0.405050\pi\)
−0.324067 + 0.946034i \(0.605050\pi\)
\(810\) −263.431 242.040i −0.325223 0.298815i
\(811\) −531.579 386.215i −0.655461 0.476221i 0.209666 0.977773i \(-0.432762\pi\)
−0.865127 + 0.501553i \(0.832762\pi\)
\(812\) 508.763 165.307i 0.626555 0.203580i
\(813\) 257.565 + 543.513i 0.316808 + 0.668528i
\(814\) 0 0
\(815\) 907.588i 1.11360i
\(816\) 656.870 + 695.695i 0.804988 + 0.852568i
\(817\) 535.720 + 389.224i 0.655716 + 0.476406i
\(818\) −181.511 249.829i −0.221897 0.305414i
\(819\) −190.011 295.841i −0.232003 0.361222i
\(820\) 248.304 764.203i 0.302810 0.931954i
\(821\) 553.696 + 762.098i 0.674417 + 0.928255i 0.999850 0.0173098i \(-0.00551014\pi\)
−0.325433 + 0.945565i \(0.605510\pi\)
\(822\) 30.6560 163.112i 0.0372944 0.198434i
\(823\) −63.1327 194.302i −0.0767104 0.236090i 0.905347 0.424673i \(-0.139611\pi\)
−0.982057 + 0.188582i \(0.939611\pi\)
\(824\) 270.172i 0.327878i
\(825\) 0 0
\(826\) −259.183 −0.313781
\(827\) 110.504 35.9050i 0.133620 0.0434159i −0.241443 0.970415i \(-0.577621\pi\)
0.375064 + 0.926999i \(0.377621\pi\)
\(828\) −225.418 858.537i −0.272244 1.03688i
\(829\) −1225.41 + 890.312i −1.47818 + 1.07396i −0.500040 + 0.866002i \(0.666681\pi\)
−0.978138 + 0.207957i \(0.933319\pi\)
\(830\) −437.138 142.035i −0.526672 0.171126i
\(831\) −474.889 + 61.3047i −0.571466 + 0.0737722i
\(832\) 80.0892 58.1882i 0.0962610 0.0699377i
\(833\) −680.973 + 937.279i −0.817494 + 1.12518i
\(834\) 0.954512 + 1.01093i 0.00114450 + 0.00121215i
\(835\) −891.721 −1.06793
\(836\) 0 0
\(837\) 462.837 + 114.821i 0.552972 + 0.137181i
\(838\) 62.1943 + 191.414i 0.0742175 + 0.228418i
\(839\) −494.807 + 681.043i −0.589758 + 0.811732i −0.994723 0.102600i \(-0.967284\pi\)
0.404965 + 0.914332i \(0.367284\pi\)
\(840\) 820.792 + 448.332i 0.977134 + 0.533729i
\(841\) 179.291 551.801i 0.213188 0.656125i
\(842\) 148.201 + 48.1535i 0.176011 + 0.0571894i
\(843\) 571.257 1045.84i 0.677647 1.24061i
\(844\) 515.077 + 374.225i 0.610280 + 0.443395i
\(845\) 935.729 304.037i 1.10737 0.359807i
\(846\) −40.5532 + 49.5667i −0.0479352 + 0.0585895i
\(847\) 0 0
\(848\) 643.713i 0.759095i
\(849\) −147.436 + 139.208i −0.173659 + 0.163967i
\(850\) 282.075 + 204.940i 0.331853 + 0.241106i
\(851\) 238.638 + 328.457i 0.280421 + 0.385966i
\(852\) −1.35260 10.4778i −0.00158756 0.0122978i
\(853\) −111.793 + 344.062i −0.131058 + 0.403356i −0.994956 0.100311i \(-0.968016\pi\)
0.863898 + 0.503667i \(0.168016\pi\)
\(854\) −88.0714 121.220i −0.103128 0.141944i
\(855\) 152.662 + 581.433i 0.178552 + 0.680039i
\(856\) 108.281 + 333.253i 0.126496 + 0.389315i
\(857\) 519.778i 0.606509i −0.952910 0.303254i \(-0.901927\pi\)
0.952910 0.303254i \(-0.0980732\pi\)
\(858\) 0 0
\(859\) −1258.77 −1.46538 −0.732692 0.680560i \(-0.761737\pi\)
−0.732692 + 0.680560i \(0.761737\pi\)
\(860\) 1404.65 456.398i 1.63331 0.530695i
\(861\) −966.604 181.667i −1.12265 0.210996i
\(862\) −307.738 + 223.585i −0.357005 + 0.259379i
\(863\) −1079.28 350.678i −1.25061 0.406348i −0.392471 0.919765i \(-0.628380\pi\)
−0.858139 + 0.513417i \(0.828380\pi\)
\(864\) −636.287 396.557i −0.736443 0.458978i
\(865\) −5.55656 + 4.03708i −0.00642377 + 0.00466714i
\(866\) 115.309 158.709i 0.133151 0.183266i
\(867\) 1323.18 1249.34i 1.52616 1.44099i
\(868\) −585.043 −0.674012
\(869\) 0 0
\(870\) −193.361 + 91.6318i −0.222254 + 0.105324i
\(871\) −39.7506 122.340i −0.0456379 0.140459i
\(872\) 113.732 156.539i 0.130427 0.179518i
\(873\) 98.1308 1707.90i 0.112406 1.95636i
\(874\) 60.3503 185.739i 0.0690507 0.212516i
\(875\) 455.503 + 148.002i 0.520575 + 0.169145i
\(876\) 870.401 + 475.430i 0.993608 + 0.542728i
\(877\) −1183.15 859.606i −1.34908 0.980167i −0.999057 0.0434275i \(-0.986172\pi\)
−0.350028 0.936739i \(-0.613828\pi\)
\(878\) −116.368 + 37.8104i −0.132538 + 0.0430642i
\(879\) 991.181 469.710i 1.12762 0.534369i
\(880\) 0 0
\(881\) 1493.59i 1.69534i 0.530526 + 0.847668i \(0.321994\pi\)
−0.530526 + 0.847668i \(0.678006\pi\)
\(882\) 86.0831 220.924i 0.0975999 0.250480i
\(883\) −1074.40 780.594i −1.21676 0.884025i −0.220930 0.975290i \(-0.570909\pi\)
−0.995827 + 0.0912647i \(0.970909\pi\)
\(884\) −259.524 357.205i −0.293579 0.404078i
\(885\) −785.263 + 101.372i −0.887303 + 0.114544i
\(886\) −59.1502 + 182.046i −0.0667609 + 0.205469i
\(887\) −489.520 673.766i −0.551882 0.759601i 0.438384 0.898788i \(-0.355551\pi\)
−0.990266 + 0.139187i \(0.955551\pi\)
\(888\) 220.174 + 41.3802i 0.247943 + 0.0465994i
\(889\) 420.575 + 1294.40i 0.473088 + 1.45601i
\(890\) 90.0949i 0.101230i
\(891\) 0 0
\(892\) 930.411 1.04306
\(893\) 102.348 33.2549i 0.114612 0.0372396i
\(894\) −74.6392 + 397.136i −0.0834890 + 0.444224i
\(895\) 455.464 330.914i 0.508898 0.369736i
\(896\) 1133.20 + 368.198i 1.26473 + 0.410935i
\(897\) 44.6771 + 346.085i 0.0498072 + 0.385825i
\(898\) −152.888 + 111.079i −0.170253 + 0.123696i
\(899\) 167.652 230.753i 0.186487 0.256677i
\(900\) 507.789 + 197.861i 0.564210 + 0.219845i
\(901\) 1807.61 2.00622
\(902\) 0 0
\(903\) −774.160 1633.63i −0.857320 1.80911i
\(904\) 269.885 + 830.622i 0.298546 + 0.918829i
\(905\) −412.641 + 567.952i −0.455957 + 0.627571i
\(906\) −87.0173 + 159.308i −0.0960456 + 0.175837i
\(907\) 168.952 519.981i 0.186276 0.573298i −0.813692 0.581296i \(-0.802546\pi\)
0.999968 + 0.00799786i \(0.00254583\pi\)
\(908\) 30.3718 + 9.86839i 0.0334491 + 0.0108683i
\(909\) −427.729 24.5760i −0.470548 0.0270363i
\(910\) −139.590 101.418i −0.153396 0.111448i
\(911\) −53.0058 + 17.2226i −0.0581842 + 0.0189052i −0.337964 0.941159i \(-0.609738\pi\)
0.279780 + 0.960064i \(0.409738\pi\)
\(912\) 140.909 + 297.345i 0.154505 + 0.326037i
\(913\) 0 0
\(914\) 235.612i 0.257781i
\(915\) −314.247 332.820i −0.343439 0.363738i
\(916\) 1008.44 + 732.677i 1.10092 + 0.799866i
\(917\) 958.662 + 1319.49i 1.04543 + 1.43892i
\(918\) −290.838 + 466.657i −0.316817 + 0.508341i
\(919\) −330.064 + 1015.83i −0.359156 + 1.10537i 0.594404 + 0.804166i \(0.297388\pi\)
−0.953560 + 0.301202i \(0.902612\pi\)
\(920\) −545.590 750.940i −0.593033 0.816239i
\(921\) 268.287 1427.49i 0.291300 1.54993i
\(922\) 14.1208 + 43.4593i 0.0153154 + 0.0471359i
\(923\) 4.15331i 0.00449979i
\(924\) 0 0
\(925\) −249.266 −0.269477
\(926\) 488.438 158.703i 0.527471 0.171386i
\(927\) 458.537 120.394i 0.494646 0.129875i
\(928\) −362.797 + 263.587i −0.390945 + 0.284038i
\(929\) −800.150 259.984i −0.861302 0.279854i −0.155130 0.987894i \(-0.549580\pi\)
−0.706172 + 0.708040i \(0.749580\pi\)
\(930\) 232.087 29.9607i 0.249556 0.0322158i
\(931\) −322.330 + 234.186i −0.346219 + 0.251543i
\(932\) 73.5992 101.301i 0.0789691 0.108692i
\(933\) 692.332 + 733.254i 0.742050 + 0.785910i
\(934\) 196.924 0.210839
\(935\) 0 0
\(936\) 149.031 + 121.930i 0.159221 + 0.130268i
\(937\) −387.353 1192.15i −0.413397 1.27231i −0.913676 0.406442i \(-0.866769\pi\)
0.500279 0.865864i \(-0.333231\pi\)
\(938\) 115.523 159.004i 0.123159 0.169514i
\(939\) 1287.71 + 703.371i 1.37136 + 0.749064i
\(940\) 74.1714 228.276i 0.0789057 0.242847i
\(941\) 1298.15 + 421.795i 1.37954 + 0.448241i 0.902520 0.430649i \(-0.141715\pi\)
0.477025 + 0.878890i \(0.341715\pi\)
\(942\) 65.3125 119.572i 0.0693338 0.126934i
\(943\) 789.700 + 573.751i 0.837434 + 0.608431i
\(944\) −412.181 + 133.926i −0.436632 + 0.141870i
\(945\) 395.151 1592.84i 0.418149 1.68555i
\(946\) 0 0
\(947\) 1289.80i 1.36199i 0.732289 + 0.680994i \(0.238452\pi\)
−0.732289 + 0.680994i \(0.761548\pi\)
\(948\) 872.392 823.706i 0.920245 0.868888i
\(949\) −315.435 229.177i −0.332387 0.241493i
\(950\) 70.4786 + 97.0055i 0.0741880 + 0.102111i
\(951\) 60.0416 + 465.104i 0.0631352 + 0.489069i
\(952\) 444.224 1367.18i 0.466622 1.43611i
\(953\) −389.907 536.661i −0.409137 0.563128i 0.553871 0.832602i \(-0.313150\pi\)
−0.963008 + 0.269474i \(0.913150\pi\)
\(954\) −357.810 + 93.9470i −0.375063 + 0.0984769i
\(955\) 57.4607 + 176.846i 0.0601683 + 0.185179i
\(956\) 462.623i 0.483915i
\(957\) 0 0
\(958\) 113.059 0.118015
\(959\) 724.107 235.277i 0.755065 0.245335i
\(960\) 454.114 + 85.3479i 0.473036 + 0.0889041i
\(961\) 525.103 381.510i 0.546413 0.396992i
\(962\) −39.3076 12.7718i −0.0408602 0.0132763i
\(963\) 517.348 332.279i 0.537225 0.345046i
\(964\) 384.933 279.670i 0.399308 0.290115i
\(965\) 48.4271 66.6541i 0.0501835 0.0690716i
\(966\) −387.667 + 366.032i −0.401312 + 0.378915i
\(967\) 101.038 0.104486 0.0522428 0.998634i \(-0.483363\pi\)
0.0522428 + 0.998634i \(0.483363\pi\)
\(968\) 0 0
\(969\) 834.975 395.686i 0.861687 0.408345i
\(970\) −259.420 798.411i −0.267443 0.823104i
\(971\) −378.084 + 520.388i −0.389376 + 0.535930i −0.958038 0.286641i \(-0.907461\pi\)
0.568662 + 0.822571i \(0.307461\pi\)
\(972\) −254.453 + 820.936i −0.261783 + 0.844584i
\(973\) −1.97096 + 6.06599i −0.00202565 + 0.00623432i
\(974\) −13.3065 4.32354i −0.0136617 0.00443896i
\(975\) −188.026 102.703i −0.192847 0.105337i
\(976\) −202.697 147.268i −0.207682 0.150890i
\(977\) 1428.41 464.118i 1.46204 0.475044i 0.533345 0.845898i \(-0.320935\pi\)
0.928691 + 0.370854i \(0.120935\pi\)
\(978\) 257.995 122.261i 0.263798 0.125011i
\(979\) 0 0
\(980\) 888.634i 0.906769i
\(981\) −316.361 123.270i −0.322488 0.125658i
\(982\) −263.489 191.436i −0.268319 0.194945i
\(983\) 428.555 + 589.856i 0.435967 + 0.600057i 0.969310 0.245842i \(-0.0790645\pi\)
−0.533343 + 0.845899i \(0.679065\pi\)
\(984\) 534.192 68.9603i 0.542878 0.0700816i
\(985\) −675.245 + 2078.19i −0.685528 + 2.10984i
\(986\) 193.317 + 266.078i 0.196062 + 0.269856i
\(987\) −288.736 54.2661i −0.292539 0.0549808i
\(988\) −46.9216 144.410i −0.0474915 0.146164i
\(989\) 1794.17i 1.81412i
\(990\) 0 0
\(991\) 1823.31 1.83987 0.919936 0.392069i \(-0.128241\pi\)
0.919936 + 0.392069i \(0.128241\pi\)
\(992\) 466.434 151.554i 0.470196 0.152776i
\(993\) 22.3199 118.758i 0.0224772 0.119596i
\(994\) −5.13383 + 3.72995i −0.00516482 + 0.00375246i
\(995\) 1134.87 + 368.741i 1.14057 + 0.370594i
\(996\) 141.379 + 1095.17i 0.141947 + 1.09957i
\(997\) −8.87703 + 6.44954i −0.00890374 + 0.00646895i −0.592228 0.805770i \(-0.701752\pi\)
0.583324 + 0.812239i \(0.301752\pi\)
\(998\) −101.981 + 140.365i −0.102186 + 0.140646i
\(999\) −27.8830 392.120i −0.0279109 0.392513i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.269.3 24
3.2 odd 2 inner 363.3.h.q.269.4 24
11.2 odd 10 363.3.h.p.251.3 24
11.3 even 5 363.3.b.j.122.4 yes 6
11.4 even 5 inner 363.3.h.q.245.3 24
11.5 even 5 inner 363.3.h.q.323.4 24
11.6 odd 10 363.3.h.p.323.3 24
11.7 odd 10 363.3.h.p.245.4 24
11.8 odd 10 363.3.b.k.122.3 yes 6
11.9 even 5 inner 363.3.h.q.251.4 24
11.10 odd 2 363.3.h.p.269.4 24
33.2 even 10 363.3.h.p.251.4 24
33.5 odd 10 inner 363.3.h.q.323.3 24
33.8 even 10 363.3.b.k.122.4 yes 6
33.14 odd 10 363.3.b.j.122.3 6
33.17 even 10 363.3.h.p.323.4 24
33.20 odd 10 inner 363.3.h.q.251.3 24
33.26 odd 10 inner 363.3.h.q.245.4 24
33.29 even 10 363.3.h.p.245.3 24
33.32 even 2 363.3.h.p.269.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.3 6 33.14 odd 10
363.3.b.j.122.4 yes 6 11.3 even 5
363.3.b.k.122.3 yes 6 11.8 odd 10
363.3.b.k.122.4 yes 6 33.8 even 10
363.3.h.p.245.3 24 33.29 even 10
363.3.h.p.245.4 24 11.7 odd 10
363.3.h.p.251.3 24 11.2 odd 10
363.3.h.p.251.4 24 33.2 even 10
363.3.h.p.269.3 24 33.32 even 2
363.3.h.p.269.4 24 11.10 odd 2
363.3.h.p.323.3 24 11.6 odd 10
363.3.h.p.323.4 24 33.17 even 10
363.3.h.q.245.3 24 11.4 even 5 inner
363.3.h.q.245.4 24 33.26 odd 10 inner
363.3.h.q.251.3 24 33.20 odd 10 inner
363.3.h.q.251.4 24 11.9 even 5 inner
363.3.h.q.269.3 24 1.1 even 1 trivial
363.3.h.q.269.4 24 3.2 odd 2 inner
363.3.h.q.323.3 24 33.5 odd 10 inner
363.3.h.q.323.4 24 11.5 even 5 inner