Properties

Label 363.3.h.q.269.2
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.2
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.q.251.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73676 + 0.889226i) q^{2} +(-2.95896 + 0.494538i) q^{3} +(3.46304 - 2.51605i) q^{4} +(4.70571 + 1.52898i) q^{5} +(7.65819 - 3.98461i) q^{6} +(9.04489 - 6.57149i) q^{7} +(-0.474528 + 0.653131i) q^{8} +(8.51086 - 2.92664i) q^{9} -14.2380 q^{10} +(-9.00271 + 9.15748i) q^{12} +(-5.22225 - 16.0724i) q^{13} +(-18.9101 + 26.0275i) q^{14} +(-14.6801 - 2.19703i) q^{15} +(-4.57317 + 14.0748i) q^{16} +(0.0595216 + 0.0193397i) q^{17} +(-20.6897 + 15.5776i) q^{18} +(-4.35333 - 3.16288i) q^{19} +(20.1430 - 6.54487i) q^{20} +(-23.5136 + 23.9178i) q^{21} +8.69537i q^{23} +(1.08111 - 2.16726i) q^{24} +(-0.419501 - 0.304785i) q^{25} +(28.5840 + 39.3425i) q^{26} +(-23.7360 + 12.8687i) q^{27} +(14.7886 - 45.5147i) q^{28} +(-29.3632 - 40.4149i) q^{29} +(42.1296 - 7.04122i) q^{30} +(-7.59453 - 23.3736i) q^{31} -45.8150i q^{32} -0.180094 q^{34} +(52.6103 - 17.0941i) q^{35} +(22.1099 - 31.5488i) q^{36} +(31.7618 - 23.0763i) q^{37} +(14.7265 + 4.78493i) q^{38} +(23.4008 + 44.9750i) q^{39} +(-3.23161 + 2.34790i) q^{40} +(-25.8089 + 35.5228i) q^{41} +(43.0826 - 86.3661i) q^{42} +0.201842 q^{43} +(44.5244 - 0.758975i) q^{45} +(-7.73215 - 23.7971i) q^{46} +(8.76165 - 12.0594i) q^{47} +(6.57130 - 43.9082i) q^{48} +(23.4836 - 72.2751i) q^{49} +(1.41909 + 0.461092i) q^{50} +(-0.185686 - 0.0277898i) q^{51} +(-58.5238 - 42.5200i) q^{52} +(-93.1486 + 30.2658i) q^{53} +(53.5163 - 56.3252i) q^{54} +9.02585i q^{56} +(14.4455 + 7.20594i) q^{57} +(116.298 + 84.4953i) q^{58} +(-8.51816 - 11.7242i) q^{59} +(-56.3657 + 29.3275i) q^{60} +(9.06134 - 27.8879i) q^{61} +(41.5687 + 57.2145i) q^{62} +(57.7474 - 82.4002i) q^{63} +(22.4472 + 69.0854i) q^{64} -83.6168i q^{65} +82.8515 q^{67} +(0.254785 - 0.0827848i) q^{68} +(-4.30019 - 25.7292i) q^{69} +(-128.781 + 93.5648i) q^{70} +(-25.3986 - 8.25251i) q^{71} +(-2.12716 + 6.94748i) q^{72} +(-11.3022 + 8.21153i) q^{73} +(-66.4042 + 91.3976i) q^{74} +(1.39201 + 0.694387i) q^{75} -23.0337 q^{76} +(-104.035 - 102.277i) q^{78} +(15.5088 + 47.7311i) q^{79} +(-43.0400 + 59.2395i) q^{80} +(63.8696 - 49.8164i) q^{81} +(39.0447 - 120.167i) q^{82} +(57.2933 + 18.6157i) q^{83} +(-21.2501 + 141.990i) q^{84} +(0.250521 + 0.182014i) q^{85} +(-0.552394 + 0.179484i) q^{86} +(106.871 + 105.065i) q^{87} -40.3489i q^{89} +(-121.178 + 41.6694i) q^{90} +(-152.854 - 111.055i) q^{91} +(21.8779 + 30.1124i) q^{92} +(34.0310 + 65.4056i) q^{93} +(-13.2550 + 40.7946i) q^{94} +(-15.6495 - 21.5397i) q^{95} +(22.6573 + 135.565i) q^{96} +(-9.52170 - 29.3048i) q^{97} +218.681i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73676 + 0.889226i −1.36838 + 0.444613i −0.898831 0.438295i \(-0.855583\pi\)
−0.469546 + 0.882908i \(0.655583\pi\)
\(3\) −2.95896 + 0.494538i −0.986319 + 0.164846i
\(4\) 3.46304 2.51605i 0.865760 0.629011i
\(5\) 4.70571 + 1.52898i 0.941142 + 0.305796i 0.739111 0.673584i \(-0.235246\pi\)
0.202031 + 0.979379i \(0.435246\pi\)
\(6\) 7.65819 3.98461i 1.27636 0.664102i
\(7\) 9.04489 6.57149i 1.29213 0.938785i 0.292280 0.956333i \(-0.405586\pi\)
0.999846 + 0.0175478i \(0.00558591\pi\)
\(8\) −0.474528 + 0.653131i −0.0593159 + 0.0816414i
\(9\) 8.51086 2.92664i 0.945652 0.325182i
\(10\) −14.2380 −1.42380
\(11\) 0 0
\(12\) −9.00271 + 9.15748i −0.750226 + 0.763123i
\(13\) −5.22225 16.0724i −0.401711 1.23634i −0.923610 0.383333i \(-0.874776\pi\)
0.521899 0.853007i \(-0.325224\pi\)
\(14\) −18.9101 + 26.0275i −1.35072 + 1.85911i
\(15\) −14.6801 2.19703i −0.978675 0.146468i
\(16\) −4.57317 + 14.0748i −0.285823 + 0.879673i
\(17\) 0.0595216 + 0.0193397i 0.00350127 + 0.00113763i 0.310767 0.950486i \(-0.399414\pi\)
−0.307266 + 0.951624i \(0.599414\pi\)
\(18\) −20.6897 + 15.5776i −1.14943 + 0.865420i
\(19\) −4.35333 3.16288i −0.229123 0.166467i 0.467301 0.884098i \(-0.345226\pi\)
−0.696424 + 0.717631i \(0.745226\pi\)
\(20\) 20.1430 6.54487i 1.00715 0.327243i
\(21\) −23.5136 + 23.9178i −1.11969 + 1.13894i
\(22\) 0 0
\(23\) 8.69537i 0.378060i 0.981971 + 0.189030i \(0.0605343\pi\)
−0.981971 + 0.189030i \(0.939466\pi\)
\(24\) 1.08111 2.16726i 0.0450462 0.0903025i
\(25\) −0.419501 0.304785i −0.0167800 0.0121914i
\(26\) 28.5840 + 39.3425i 1.09939 + 1.51317i
\(27\) −23.7360 + 12.8687i −0.879109 + 0.476620i
\(28\) 14.7886 45.5147i 0.528165 1.62552i
\(29\) −29.3632 40.4149i −1.01252 1.39362i −0.917316 0.398160i \(-0.869649\pi\)
−0.0952067 0.995458i \(-0.530351\pi\)
\(30\) 42.1296 7.04122i 1.40432 0.234707i
\(31\) −7.59453 23.3736i −0.244985 0.753986i −0.995639 0.0932904i \(-0.970261\pi\)
0.750654 0.660695i \(-0.229739\pi\)
\(32\) 45.8150i 1.43172i
\(33\) 0 0
\(34\) −0.180094 −0.00529687
\(35\) 52.6103 17.0941i 1.50315 0.488403i
\(36\) 22.1099 31.5488i 0.614164 0.876355i
\(37\) 31.7618 23.0763i 0.858427 0.623684i −0.0690298 0.997615i \(-0.521990\pi\)
0.927456 + 0.373931i \(0.121990\pi\)
\(38\) 14.7265 + 4.78493i 0.387540 + 0.125919i
\(39\) 23.4008 + 44.9750i 0.600021 + 1.15321i
\(40\) −3.23161 + 2.34790i −0.0807903 + 0.0586976i
\(41\) −25.8089 + 35.5228i −0.629484 + 0.866411i −0.998000 0.0632106i \(-0.979866\pi\)
0.368516 + 0.929621i \(0.379866\pi\)
\(42\) 43.0826 86.3661i 1.02578 2.05634i
\(43\) 0.201842 0.00469401 0.00234701 0.999997i \(-0.499253\pi\)
0.00234701 + 0.999997i \(0.499253\pi\)
\(44\) 0 0
\(45\) 44.5244 0.758975i 0.989431 0.0168661i
\(46\) −7.73215 23.7971i −0.168090 0.517328i
\(47\) 8.76165 12.0594i 0.186418 0.256582i −0.705571 0.708639i \(-0.749309\pi\)
0.891989 + 0.452057i \(0.149309\pi\)
\(48\) 6.57130 43.9082i 0.136902 0.914755i
\(49\) 23.4836 72.2751i 0.479257 1.47500i
\(50\) 1.41909 + 0.461092i 0.0283819 + 0.00922183i
\(51\) −0.185686 0.0277898i −0.00364091 0.000544898i
\(52\) −58.5238 42.5200i −1.12546 0.817693i
\(53\) −93.1486 + 30.2658i −1.75752 + 0.571053i −0.996939 0.0781891i \(-0.975086\pi\)
−0.760582 + 0.649242i \(0.775086\pi\)
\(54\) 53.5163 56.3252i 0.991042 1.04306i
\(55\) 0 0
\(56\) 9.02585i 0.161176i
\(57\) 14.4455 + 7.20594i 0.253429 + 0.126420i
\(58\) 116.298 + 84.4953i 2.00513 + 1.45681i
\(59\) −8.51816 11.7242i −0.144376 0.198716i 0.730705 0.682694i \(-0.239192\pi\)
−0.875080 + 0.483978i \(0.839192\pi\)
\(60\) −56.3657 + 29.3275i −0.939428 + 0.488791i
\(61\) 9.06134 27.8879i 0.148547 0.457179i −0.848903 0.528548i \(-0.822737\pi\)
0.997450 + 0.0713686i \(0.0227366\pi\)
\(62\) 41.5687 + 57.2145i 0.670464 + 0.922814i
\(63\) 57.7474 82.4002i 0.916626 1.30794i
\(64\) 22.4472 + 69.0854i 0.350738 + 1.07946i
\(65\) 83.6168i 1.28641i
\(66\) 0 0
\(67\) 82.8515 1.23659 0.618294 0.785947i \(-0.287824\pi\)
0.618294 + 0.785947i \(0.287824\pi\)
\(68\) 0.254785 0.0827848i 0.00374684 0.00121742i
\(69\) −4.30019 25.7292i −0.0623216 0.372887i
\(70\) −128.781 + 93.5648i −1.83973 + 1.33664i
\(71\) −25.3986 8.25251i −0.357727 0.116232i 0.124640 0.992202i \(-0.460223\pi\)
−0.482366 + 0.875970i \(0.660223\pi\)
\(72\) −2.12716 + 6.94748i −0.0295439 + 0.0964928i
\(73\) −11.3022 + 8.21153i −0.154825 + 0.112487i −0.662501 0.749061i \(-0.730505\pi\)
0.507676 + 0.861548i \(0.330505\pi\)
\(74\) −66.4042 + 91.3976i −0.897354 + 1.23510i
\(75\) 1.39201 + 0.694387i 0.0185602 + 0.00925850i
\(76\) −23.0337 −0.303075
\(77\) 0 0
\(78\) −104.035 102.277i −1.33379 1.31124i
\(79\) 15.5088 + 47.7311i 0.196314 + 0.604191i 0.999959 + 0.00908239i \(0.00289105\pi\)
−0.803645 + 0.595109i \(0.797109\pi\)
\(80\) −43.0400 + 59.2395i −0.538000 + 0.740493i
\(81\) 63.8696 49.8164i 0.788514 0.615017i
\(82\) 39.0447 120.167i 0.476155 1.46545i
\(83\) 57.2933 + 18.6157i 0.690281 + 0.224286i 0.633091 0.774078i \(-0.281786\pi\)
0.0571899 + 0.998363i \(0.481786\pi\)
\(84\) −21.2501 + 141.990i −0.252978 + 1.69035i
\(85\) 0.250521 + 0.182014i 0.00294731 + 0.00214135i
\(86\) −0.552394 + 0.179484i −0.00642318 + 0.00208702i
\(87\) 106.871 + 105.065i 1.22840 + 1.20764i
\(88\) 0 0
\(89\) 40.3489i 0.453359i −0.973969 0.226679i \(-0.927213\pi\)
0.973969 0.226679i \(-0.0727869\pi\)
\(90\) −121.178 + 41.6694i −1.34642 + 0.462993i
\(91\) −152.854 111.055i −1.67972 1.22039i
\(92\) 21.8779 + 30.1124i 0.237804 + 0.327309i
\(93\) 34.0310 + 65.4056i 0.365925 + 0.703286i
\(94\) −13.2550 + 40.7946i −0.141010 + 0.433986i
\(95\) −15.6495 21.5397i −0.164732 0.226734i
\(96\) 22.6573 + 135.565i 0.236013 + 1.41213i
\(97\) −9.52170 29.3048i −0.0981619 0.302111i 0.889903 0.456150i \(-0.150772\pi\)
−0.988065 + 0.154039i \(0.950772\pi\)
\(98\) 218.681i 2.23144i
\(99\) 0 0
\(100\) −2.21960 −0.0221960
\(101\) −49.3806 + 16.0447i −0.488917 + 0.158859i −0.543093 0.839673i \(-0.682747\pi\)
0.0541757 + 0.998531i \(0.482747\pi\)
\(102\) 0.532889 0.0890631i 0.00522440 0.000873168i
\(103\) 41.3843 30.0674i 0.401789 0.291917i −0.368480 0.929636i \(-0.620122\pi\)
0.770269 + 0.637719i \(0.220122\pi\)
\(104\) 12.9755 + 4.21599i 0.124764 + 0.0405384i
\(105\) −147.218 + 76.5985i −1.40207 + 0.729510i
\(106\) 228.012 165.660i 2.15105 1.56283i
\(107\) 40.2296 55.3713i 0.375978 0.517489i −0.578536 0.815657i \(-0.696376\pi\)
0.954513 + 0.298168i \(0.0963756\pi\)
\(108\) −49.8202 + 104.286i −0.461298 + 0.965608i
\(109\) −125.737 −1.15355 −0.576773 0.816904i \(-0.695688\pi\)
−0.576773 + 0.816904i \(0.695688\pi\)
\(110\) 0 0
\(111\) −82.5697 + 83.9892i −0.743871 + 0.756659i
\(112\) 51.1284 + 157.357i 0.456504 + 1.40497i
\(113\) 58.0332 79.8758i 0.513568 0.706866i −0.470948 0.882161i \(-0.656088\pi\)
0.984516 + 0.175295i \(0.0560880\pi\)
\(114\) −45.9414 6.87559i −0.402995 0.0603122i
\(115\) −13.2950 + 40.9179i −0.115609 + 0.355808i
\(116\) −203.372 66.0794i −1.75320 0.569650i
\(117\) −91.4839 121.507i −0.781914 1.03852i
\(118\) 33.7376 + 24.5118i 0.285912 + 0.207727i
\(119\) 0.665457 0.216220i 0.00559208 0.00181698i
\(120\) 8.40107 8.54550i 0.0700089 0.0712125i
\(121\) 0 0
\(122\) 84.3801i 0.691640i
\(123\) 58.7999 117.874i 0.478048 0.958326i
\(124\) −85.1091 61.8354i −0.686364 0.498672i
\(125\) −74.2152 102.149i −0.593722 0.817188i
\(126\) −84.7682 + 276.860i −0.672764 + 2.19730i
\(127\) −6.44270 + 19.8286i −0.0507299 + 0.156131i −0.973212 0.229909i \(-0.926157\pi\)
0.922482 + 0.386040i \(0.126157\pi\)
\(128\) −15.1475 20.8488i −0.118340 0.162881i
\(129\) −0.597243 + 0.0998188i −0.00462979 + 0.000773789i
\(130\) 74.3542 + 228.839i 0.571956 + 1.76030i
\(131\) 29.0290i 0.221595i 0.993843 + 0.110798i \(0.0353405\pi\)
−0.993843 + 0.110798i \(0.964659\pi\)
\(132\) 0 0
\(133\) −60.1602 −0.452332
\(134\) −226.744 + 73.6736i −1.69212 + 0.549803i
\(135\) −131.371 + 24.2648i −0.973115 + 0.179739i
\(136\) −0.0408760 + 0.0296982i −0.000300559 + 0.000218369i
\(137\) 144.285 + 46.8811i 1.05318 + 0.342198i 0.783915 0.620869i \(-0.213220\pi\)
0.269263 + 0.963067i \(0.413220\pi\)
\(138\) 34.6477 + 66.5908i 0.251070 + 0.482542i
\(139\) 15.5515 11.2988i 0.111881 0.0812863i −0.530438 0.847724i \(-0.677972\pi\)
0.642319 + 0.766437i \(0.277972\pi\)
\(140\) 139.182 191.567i 0.994156 1.36834i
\(141\) −19.9615 + 40.0162i −0.141571 + 0.283803i
\(142\) 76.8481 0.541184
\(143\) 0 0
\(144\) 2.27009 + 133.172i 0.0157645 + 0.924808i
\(145\) −76.3810 235.076i −0.526765 1.62122i
\(146\) 23.6295 32.5232i 0.161846 0.222761i
\(147\) −33.7442 + 225.472i −0.229552 + 1.53383i
\(148\) 51.9313 159.828i 0.350887 1.07992i
\(149\) −172.775 56.1381i −1.15957 0.376766i −0.334827 0.942280i \(-0.608678\pi\)
−0.824739 + 0.565514i \(0.808678\pi\)
\(150\) −4.42707 0.662554i −0.0295138 0.00441703i
\(151\) −113.418 82.4026i −0.751109 0.545713i 0.145061 0.989423i \(-0.453662\pi\)
−0.896171 + 0.443710i \(0.853662\pi\)
\(152\) 4.13155 1.34242i 0.0271812 0.00883172i
\(153\) 0.563181 0.00960013i 0.00368092 6.27460e-5i
\(154\) 0 0
\(155\) 121.601i 0.784523i
\(156\) 194.197 + 96.8727i 1.24485 + 0.620979i
\(157\) 145.309 + 105.573i 0.925536 + 0.672441i 0.944896 0.327371i \(-0.106163\pi\)
−0.0193599 + 0.999813i \(0.506163\pi\)
\(158\) −84.8875 116.838i −0.537262 0.739478i
\(159\) 260.655 135.621i 1.63934 0.852961i
\(160\) 70.0501 215.592i 0.437813 1.34745i
\(161\) 57.1416 + 78.6486i 0.354917 + 0.488501i
\(162\) −130.497 + 193.130i −0.805540 + 1.19216i
\(163\) 68.3722 + 210.428i 0.419461 + 1.29097i 0.908199 + 0.418538i \(0.137457\pi\)
−0.488738 + 0.872431i \(0.662543\pi\)
\(164\) 187.953i 1.14606i
\(165\) 0 0
\(166\) −173.351 −1.04428
\(167\) 175.393 56.9886i 1.05026 0.341249i 0.267488 0.963561i \(-0.413806\pi\)
0.782769 + 0.622312i \(0.213806\pi\)
\(168\) −4.46363 26.7071i −0.0265692 0.158971i
\(169\) −94.3269 + 68.5325i −0.558148 + 0.405518i
\(170\) −0.847468 0.275359i −0.00498510 0.00161976i
\(171\) −46.3072 14.1782i −0.270802 0.0829136i
\(172\) 0.698988 0.507845i 0.00406389 0.00295259i
\(173\) 143.153 197.033i 0.827472 1.13892i −0.160916 0.986968i \(-0.551445\pi\)
0.988388 0.151950i \(-0.0485552\pi\)
\(174\) −385.906 192.504i −2.21785 1.10635i
\(175\) −5.79723 −0.0331270
\(176\) 0 0
\(177\) 31.0030 + 30.4790i 0.175158 + 0.172198i
\(178\) 35.8793 + 110.425i 0.201569 + 0.620366i
\(179\) 186.107 256.154i 1.03970 1.43103i 0.142295 0.989824i \(-0.454552\pi\)
0.897407 0.441203i \(-0.145448\pi\)
\(180\) 152.280 114.654i 0.846001 0.636965i
\(181\) −9.54820 + 29.3863i −0.0527525 + 0.162355i −0.973962 0.226712i \(-0.927203\pi\)
0.921209 + 0.389067i \(0.127203\pi\)
\(182\) 517.078 + 168.009i 2.84109 + 0.923126i
\(183\) −13.0205 + 87.0004i −0.0711502 + 0.475412i
\(184\) −5.67922 4.12619i −0.0308653 0.0224250i
\(185\) 184.745 60.0272i 0.998621 0.324472i
\(186\) −151.295 148.738i −0.813413 0.799666i
\(187\) 0 0
\(188\) 63.8068i 0.339398i
\(189\) −130.122 + 272.377i −0.688477 + 1.44115i
\(190\) 61.9826 + 45.0330i 0.326224 + 0.237016i
\(191\) 173.938 + 239.405i 0.910669 + 1.25343i 0.966938 + 0.255013i \(0.0820798\pi\)
−0.0562681 + 0.998416i \(0.517920\pi\)
\(192\) −100.586 193.320i −0.523884 1.00687i
\(193\) −24.5692 + 75.6161i −0.127301 + 0.391793i −0.994313 0.106494i \(-0.966038\pi\)
0.867012 + 0.498287i \(0.166038\pi\)
\(194\) 52.1171 + 71.7331i 0.268645 + 0.369758i
\(195\) 41.3517 + 247.419i 0.212060 + 1.26881i
\(196\) −100.523 309.377i −0.512871 1.57845i
\(197\) 360.331i 1.82909i −0.404485 0.914544i \(-0.632549\pi\)
0.404485 0.914544i \(-0.367451\pi\)
\(198\) 0 0
\(199\) 369.874 1.85866 0.929332 0.369245i \(-0.120384\pi\)
0.929332 + 0.369245i \(0.120384\pi\)
\(200\) 0.398129 0.129360i 0.00199065 0.000646800i
\(201\) −245.154 + 40.9732i −1.21967 + 0.203847i
\(202\) 120.875 87.8211i 0.598393 0.434758i
\(203\) −531.173 172.588i −2.61661 0.850190i
\(204\) −0.712959 + 0.370958i −0.00349490 + 0.00181842i
\(205\) −175.763 + 127.699i −0.857379 + 0.622922i
\(206\) −86.5219 + 119.087i −0.420009 + 0.578093i
\(207\) 25.4482 + 74.0051i 0.122938 + 0.357513i
\(208\) 250.098 1.20239
\(209\) 0 0
\(210\) 334.786 340.541i 1.59422 1.62163i
\(211\) −47.8204 147.176i −0.226637 0.697517i −0.998121 0.0612686i \(-0.980485\pi\)
0.771484 0.636248i \(-0.219515\pi\)
\(212\) −246.427 + 339.178i −1.16239 + 1.59989i
\(213\) 79.2346 + 11.8582i 0.371993 + 0.0556725i
\(214\) −60.8610 + 187.311i −0.284397 + 0.875285i
\(215\) 0.949812 + 0.308613i 0.00441773 + 0.00143541i
\(216\) 2.85839 21.6093i 0.0132333 0.100043i
\(217\) −222.291 161.504i −1.02438 0.744257i
\(218\) 344.110 111.808i 1.57849 0.512882i
\(219\) 29.3818 29.8870i 0.134164 0.136470i
\(220\) 0 0
\(221\) 1.05765i 0.00478576i
\(222\) 151.288 303.281i 0.681476 1.36613i
\(223\) 289.076 + 210.026i 1.29631 + 0.941821i 0.999912 0.0132452i \(-0.00421621\pi\)
0.296393 + 0.955066i \(0.404216\pi\)
\(224\) −301.073 414.392i −1.34408 1.84996i
\(225\) −4.46231 1.36626i −0.0198325 0.00607226i
\(226\) −87.7950 + 270.205i −0.388473 + 1.19560i
\(227\) 60.2830 + 82.9725i 0.265564 + 0.365517i 0.920886 0.389832i \(-0.127467\pi\)
−0.655322 + 0.755350i \(0.727467\pi\)
\(228\) 68.1557 11.3910i 0.298929 0.0499607i
\(229\) −114.140 351.286i −0.498426 1.53400i −0.811548 0.584285i \(-0.801375\pi\)
0.313122 0.949713i \(-0.398625\pi\)
\(230\) 123.804i 0.538280i
\(231\) 0 0
\(232\) 40.3299 0.173836
\(233\) −16.4775 + 5.35387i −0.0707190 + 0.0229780i −0.344163 0.938910i \(-0.611837\pi\)
0.273444 + 0.961888i \(0.411837\pi\)
\(234\) 358.416 + 251.184i 1.53169 + 1.07344i
\(235\) 59.6683 43.3516i 0.253908 0.184475i
\(236\) −58.9975 19.1694i −0.249989 0.0812264i
\(237\) −69.4947 133.565i −0.293226 0.563564i
\(238\) −1.62893 + 1.18348i −0.00684422 + 0.00497262i
\(239\) −128.623 + 177.035i −0.538172 + 0.740730i −0.988348 0.152209i \(-0.951361\pi\)
0.450176 + 0.892940i \(0.351361\pi\)
\(240\) 98.0574 196.572i 0.408572 0.819050i
\(241\) 118.033 0.489765 0.244883 0.969553i \(-0.421251\pi\)
0.244883 + 0.969553i \(0.421251\pi\)
\(242\) 0 0
\(243\) −164.351 + 178.991i −0.676343 + 0.736587i
\(244\) −38.7876 119.376i −0.158965 0.489245i
\(245\) 221.014 304.199i 0.902097 1.24163i
\(246\) −56.1043 + 374.879i −0.228066 + 1.52390i
\(247\) −28.1010 + 86.4859i −0.113769 + 0.350145i
\(248\) 18.8698 + 6.13117i 0.0760880 + 0.0247225i
\(249\) −178.735 26.7494i −0.717810 0.107427i
\(250\) 293.942 + 213.561i 1.17577 + 0.854246i
\(251\) −152.702 + 49.6160i −0.608376 + 0.197673i −0.596973 0.802262i \(-0.703630\pi\)
−0.0114036 + 0.999935i \(0.503630\pi\)
\(252\) −7.34098 430.650i −0.0291309 1.70893i
\(253\) 0 0
\(254\) 59.9950i 0.236201i
\(255\) −0.831295 0.414681i −0.00325998 0.00162620i
\(256\) −175.076 127.200i −0.683891 0.496876i
\(257\) −15.3895 21.1818i −0.0598811 0.0824193i 0.778026 0.628232i \(-0.216221\pi\)
−0.837907 + 0.545813i \(0.816221\pi\)
\(258\) 1.54575 0.804264i 0.00599127 0.00311730i
\(259\) 135.636 417.445i 0.523691 1.61176i
\(260\) −210.384 289.568i −0.809168 1.11372i
\(261\) −368.186 258.031i −1.41067 0.988623i
\(262\) −25.8133 79.4451i −0.0985240 0.303226i
\(263\) 221.020i 0.840378i 0.907437 + 0.420189i \(0.138036\pi\)
−0.907437 + 0.420189i \(0.861964\pi\)
\(264\) 0 0
\(265\) −484.606 −1.82870
\(266\) 164.644 53.4960i 0.618961 0.201113i
\(267\) 19.9541 + 119.391i 0.0747344 + 0.447156i
\(268\) 286.918 208.458i 1.07059 0.777828i
\(269\) 119.300 + 38.7629i 0.443494 + 0.144100i 0.522247 0.852794i \(-0.325094\pi\)
−0.0787531 + 0.996894i \(0.525094\pi\)
\(270\) 337.952 183.225i 1.25167 0.678611i
\(271\) −323.549 + 235.072i −1.19391 + 0.867425i −0.993672 0.112323i \(-0.964171\pi\)
−0.200236 + 0.979748i \(0.564171\pi\)
\(272\) −0.544405 + 0.749309i −0.00200149 + 0.00275481i
\(273\) 507.211 + 253.015i 1.85792 + 0.926796i
\(274\) −436.561 −1.59329
\(275\) 0 0
\(276\) −79.6276 78.2819i −0.288506 0.283630i
\(277\) 22.7480 + 70.0112i 0.0821228 + 0.252748i 0.983684 0.179903i \(-0.0575783\pi\)
−0.901562 + 0.432651i \(0.857578\pi\)
\(278\) −32.5134 + 44.7508i −0.116955 + 0.160974i
\(279\) −133.042 176.703i −0.476853 0.633343i
\(280\) −13.8003 + 42.4730i −0.0492869 + 0.151689i
\(281\) 398.855 + 129.596i 1.41941 + 0.461195i 0.915415 0.402511i \(-0.131863\pi\)
0.503996 + 0.863706i \(0.331863\pi\)
\(282\) 19.0464 127.265i 0.0675405 0.451293i
\(283\) 214.669 + 155.966i 0.758548 + 0.551117i 0.898465 0.439046i \(-0.144683\pi\)
−0.139917 + 0.990163i \(0.544683\pi\)
\(284\) −108.720 + 35.3253i −0.382817 + 0.124385i
\(285\) 56.9585 + 55.9959i 0.199854 + 0.196477i
\(286\) 0 0
\(287\) 490.903i 1.71046i
\(288\) −134.084 389.925i −0.465569 1.35391i
\(289\) −233.803 169.868i −0.809006 0.587777i
\(290\) 418.072 + 575.427i 1.44163 + 1.98423i
\(291\) 42.6667 + 82.0028i 0.146621 + 0.281797i
\(292\) −18.4794 + 56.8737i −0.0632856 + 0.194773i
\(293\) 111.987 + 154.137i 0.382209 + 0.526065i 0.956168 0.292819i \(-0.0945932\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(294\) −108.146 647.069i −0.367844 2.20091i
\(295\) −22.1579 68.1950i −0.0751115 0.231169i
\(296\) 31.6949i 0.107078i
\(297\) 0 0
\(298\) 522.763 1.75424
\(299\) 139.756 45.4094i 0.467410 0.151871i
\(300\) 6.56771 1.09768i 0.0218924 0.00365893i
\(301\) 1.82564 1.32641i 0.00606526 0.00440667i
\(302\) 383.671 + 124.662i 1.27043 + 0.412788i
\(303\) 138.180 71.8963i 0.456041 0.237282i
\(304\) 64.4253 46.8077i 0.211925 0.153973i
\(305\) 85.2801 117.378i 0.279607 0.384846i
\(306\) −1.53275 + 0.527068i −0.00500899 + 0.00172244i
\(307\) −285.254 −0.929166 −0.464583 0.885530i \(-0.653796\pi\)
−0.464583 + 0.885530i \(0.653796\pi\)
\(308\) 0 0
\(309\) −107.585 + 109.434i −0.348171 + 0.354156i
\(310\) 108.131 + 332.792i 0.348809 + 1.07352i
\(311\) −296.766 + 408.463i −0.954230 + 1.31339i −0.00460774 + 0.999989i \(0.501467\pi\)
−0.949623 + 0.313396i \(0.898533\pi\)
\(312\) −40.4789 6.05807i −0.129740 0.0194169i
\(313\) 24.7740 76.2465i 0.0791501 0.243599i −0.903650 0.428272i \(-0.859123\pi\)
0.982800 + 0.184673i \(0.0591225\pi\)
\(314\) −491.554 159.716i −1.56546 0.508648i
\(315\) 397.731 299.457i 1.26264 0.950656i
\(316\) 173.801 + 126.274i 0.550004 + 0.399601i
\(317\) 8.23294 2.67505i 0.0259714 0.00843863i −0.296002 0.955187i \(-0.595654\pi\)
0.321974 + 0.946749i \(0.395654\pi\)
\(318\) −592.752 + 602.942i −1.86400 + 1.89604i
\(319\) 0 0
\(320\) 359.417i 1.12318i
\(321\) −91.6545 + 183.736i −0.285528 + 0.572388i
\(322\) −226.319 164.430i −0.702854 0.510653i
\(323\) −0.197948 0.272452i −0.000612842 0.000843504i
\(324\) 95.8427 333.215i 0.295811 1.02844i
\(325\) −2.70790 + 8.33406i −0.00833200 + 0.0256433i
\(326\) −374.236 515.091i −1.14796 1.58003i
\(327\) 372.049 62.1816i 1.13777 0.190158i
\(328\) −10.9541 33.7131i −0.0333965 0.102784i
\(329\) 166.653i 0.506544i
\(330\) 0 0
\(331\) 28.2554 0.0853638 0.0426819 0.999089i \(-0.486410\pi\)
0.0426819 + 0.999089i \(0.486410\pi\)
\(332\) 245.247 79.6856i 0.738696 0.240017i
\(333\) 202.784 289.354i 0.608962 0.868932i
\(334\) −429.332 + 311.928i −1.28542 + 0.933916i
\(335\) 389.875 + 126.678i 1.16381 + 0.378143i
\(336\) −229.106 440.328i −0.681863 1.31050i
\(337\) 233.420 169.589i 0.692640 0.503232i −0.184887 0.982760i \(-0.559192\pi\)
0.877527 + 0.479527i \(0.159192\pi\)
\(338\) 197.209 271.435i 0.583458 0.803061i
\(339\) −132.216 + 265.049i −0.390018 + 0.781855i
\(340\) 1.32552 0.00389859
\(341\) 0 0
\(342\) 139.339 2.37521i 0.407424 0.00694506i
\(343\) −93.2616 287.030i −0.271900 0.836821i
\(344\) −0.0957798 + 0.131830i −0.000278430 + 0.000383226i
\(345\) 19.1040 127.649i 0.0553738 0.369998i
\(346\) −216.567 + 666.526i −0.625917 + 1.92637i
\(347\) −250.710 81.4606i −0.722507 0.234757i −0.0753975 0.997154i \(-0.524023\pi\)
−0.647110 + 0.762397i \(0.724023\pi\)
\(348\) 634.447 + 94.9512i 1.82312 + 0.272848i
\(349\) 394.738 + 286.794i 1.13106 + 0.821760i 0.985848 0.167641i \(-0.0536150\pi\)
0.145207 + 0.989401i \(0.453615\pi\)
\(350\) 15.8656 5.15505i 0.0453303 0.0147287i
\(351\) 330.787 + 314.291i 0.942412 + 0.895415i
\(352\) 0 0
\(353\) 437.345i 1.23894i −0.785021 0.619469i \(-0.787348\pi\)
0.785021 0.619469i \(-0.212652\pi\)
\(354\) −111.950 55.8449i −0.316244 0.157754i
\(355\) −106.901 77.6678i −0.301128 0.218782i
\(356\) −101.520 139.730i −0.285168 0.392500i
\(357\) −1.86213 + 0.968881i −0.00521605 + 0.00271395i
\(358\) −281.550 + 866.521i −0.786452 + 2.42045i
\(359\) 144.007 + 198.208i 0.401132 + 0.552111i 0.961028 0.276452i \(-0.0891587\pi\)
−0.559895 + 0.828563i \(0.689159\pi\)
\(360\) −20.6323 + 29.4404i −0.0573121 + 0.0817790i
\(361\) −102.607 315.793i −0.284231 0.874774i
\(362\) 88.9137i 0.245618i
\(363\) 0 0
\(364\) −808.761 −2.22187
\(365\) −65.7402 + 21.3603i −0.180110 + 0.0585213i
\(366\) −41.7292 249.677i −0.114014 0.682178i
\(367\) −182.111 + 132.311i −0.496216 + 0.360522i −0.807570 0.589772i \(-0.799217\pi\)
0.311354 + 0.950294i \(0.399217\pi\)
\(368\) −122.385 39.7654i −0.332569 0.108058i
\(369\) −115.693 + 377.863i −0.313532 + 1.02402i
\(370\) −452.224 + 328.560i −1.22223 + 0.887999i
\(371\) −643.627 + 885.876i −1.73484 + 2.38781i
\(372\) 282.414 + 140.879i 0.759178 + 0.378706i
\(373\) −283.156 −0.759131 −0.379566 0.925165i \(-0.623927\pi\)
−0.379566 + 0.925165i \(0.623927\pi\)
\(374\) 0 0
\(375\) 270.116 + 265.551i 0.720310 + 0.708136i
\(376\) 3.71871 + 11.4450i 0.00989019 + 0.0304389i
\(377\) −496.224 + 682.994i −1.31624 + 1.81165i
\(378\) 113.908 861.137i 0.301344 2.27814i
\(379\) −141.092 + 434.237i −0.372275 + 1.14574i 0.573024 + 0.819538i \(0.305770\pi\)
−0.945299 + 0.326205i \(0.894230\pi\)
\(380\) −108.390 35.2180i −0.285236 0.0926789i
\(381\) 9.25768 61.8581i 0.0242984 0.162357i
\(382\) −688.910 500.523i −1.80343 1.31027i
\(383\) −305.540 + 99.2761i −0.797755 + 0.259206i −0.679403 0.733765i \(-0.737761\pi\)
−0.118352 + 0.992972i \(0.537761\pi\)
\(384\) 55.1314 + 54.1997i 0.143571 + 0.141145i
\(385\) 0 0
\(386\) 228.790i 0.592721i
\(387\) 1.71785 0.590719i 0.00443890 0.00152641i
\(388\) −106.706 77.5266i −0.275016 0.199811i
\(389\) 185.407 + 255.190i 0.476624 + 0.656017i 0.977852 0.209299i \(-0.0671181\pi\)
−0.501228 + 0.865315i \(0.667118\pi\)
\(390\) −333.181 640.353i −0.854309 1.64193i
\(391\) −0.168166 + 0.517562i −0.000430093 + 0.00132369i
\(392\) 36.0615 + 49.6344i 0.0919936 + 0.126618i
\(393\) −14.3559 85.8954i −0.0365291 0.218563i
\(394\) 320.415 + 986.136i 0.813236 + 2.50288i
\(395\) 248.321i 0.628661i
\(396\) 0 0
\(397\) −338.199 −0.851885 −0.425943 0.904750i \(-0.640057\pi\)
−0.425943 + 0.904750i \(0.640057\pi\)
\(398\) −1012.25 + 328.902i −2.54335 + 0.826386i
\(399\) 178.011 29.7515i 0.446144 0.0745652i
\(400\) 6.20823 4.51054i 0.0155206 0.0112764i
\(401\) −343.284 111.540i −0.856070 0.278154i −0.152084 0.988368i \(-0.548598\pi\)
−0.703986 + 0.710214i \(0.748598\pi\)
\(402\) 634.492 330.131i 1.57834 0.821221i
\(403\) −336.009 + 244.125i −0.833770 + 0.605769i
\(404\) −130.638 + 179.807i −0.323361 + 0.445068i
\(405\) 376.720 136.766i 0.930173 0.337694i
\(406\) 1607.16 3.95852
\(407\) 0 0
\(408\) 0.106264 0.108090i 0.000260450 0.000264928i
\(409\) 136.320 + 419.551i 0.333302 + 1.02580i 0.967553 + 0.252670i \(0.0813087\pi\)
−0.634251 + 0.773127i \(0.718691\pi\)
\(410\) 367.466 505.774i 0.896259 1.23359i
\(411\) −450.119 67.3647i −1.09518 0.163904i
\(412\) 67.6643 208.249i 0.164234 0.505460i
\(413\) −154.092 50.0674i −0.373103 0.121229i
\(414\) −135.453 179.905i −0.327180 0.434552i
\(415\) 241.143 + 175.200i 0.581066 + 0.422169i
\(416\) −736.358 + 239.257i −1.77009 + 0.575138i
\(417\) −40.4284 + 41.1235i −0.0969507 + 0.0986174i
\(418\) 0 0
\(419\) 393.180i 0.938377i −0.883098 0.469188i \(-0.844547\pi\)
0.883098 0.469188i \(-0.155453\pi\)
\(420\) −317.096 + 635.671i −0.754990 + 1.51350i
\(421\) 569.050 + 413.439i 1.35166 + 0.982041i 0.998927 + 0.0463181i \(0.0147488\pi\)
0.352737 + 0.935723i \(0.385251\pi\)
\(422\) 261.745 + 360.262i 0.620250 + 0.853701i
\(423\) 39.2758 128.278i 0.0928506 0.303257i
\(424\) 24.4340 75.2002i 0.0576274 0.177359i
\(425\) −0.0190749 0.0262544i −4.48821e−5 6.17749e-5i
\(426\) −227.390 + 38.0043i −0.533780 + 0.0892120i
\(427\) −101.307 311.790i −0.237252 0.730187i
\(428\) 292.973i 0.684515i
\(429\) 0 0
\(430\) −2.87383 −0.00668332
\(431\) −143.851 + 46.7401i −0.333762 + 0.108446i −0.471103 0.882078i \(-0.656144\pi\)
0.137342 + 0.990524i \(0.456144\pi\)
\(432\) −72.5759 392.929i −0.168000 0.909558i
\(433\) 381.538 277.204i 0.881150 0.640193i −0.0524055 0.998626i \(-0.516689\pi\)
0.933555 + 0.358433i \(0.116689\pi\)
\(434\) 751.969 + 244.330i 1.73265 + 0.562971i
\(435\) 342.262 + 657.808i 0.786810 + 1.51220i
\(436\) −435.431 + 316.359i −0.998695 + 0.725594i
\(437\) 27.5024 37.8538i 0.0629345 0.0866220i
\(438\) −53.8347 + 107.920i −0.122910 + 0.246394i
\(439\) 506.417 1.15357 0.576784 0.816897i \(-0.304307\pi\)
0.576784 + 0.816897i \(0.304307\pi\)
\(440\) 0 0
\(441\) −11.6571 683.851i −0.0264334 1.55068i
\(442\) 0.940493 + 2.89454i 0.00212781 + 0.00654873i
\(443\) 375.325 516.591i 0.847235 1.16612i −0.137230 0.990539i \(-0.543820\pi\)
0.984465 0.175580i \(-0.0561801\pi\)
\(444\) −74.6215 + 498.607i −0.168066 + 1.12299i
\(445\) 61.6926 189.870i 0.138635 0.426675i
\(446\) −977.891 317.736i −2.19258 0.712413i
\(447\) 538.997 + 80.6663i 1.20581 + 0.180461i
\(448\) 657.027 + 477.358i 1.46658 + 1.06553i
\(449\) −315.250 + 102.431i −0.702116 + 0.228131i −0.638252 0.769827i \(-0.720342\pi\)
−0.0638637 + 0.997959i \(0.520342\pi\)
\(450\) 13.4272 0.228883i 0.0298381 0.000508629i
\(451\) 0 0
\(452\) 422.627i 0.935016i
\(453\) 376.349 + 187.737i 0.830792 + 0.414430i
\(454\) −238.761 173.470i −0.525906 0.382093i
\(455\) −549.487 756.305i −1.20766 1.66221i
\(456\) −11.5612 + 6.01538i −0.0253535 + 0.0131916i
\(457\) −26.5560 + 81.7309i −0.0581094 + 0.178842i −0.975898 0.218227i \(-0.929973\pi\)
0.917789 + 0.397069i \(0.129973\pi\)
\(458\) 624.744 + 859.887i 1.36407 + 1.87748i
\(459\) −1.66168 + 0.306921i −0.00362022 + 0.000668673i
\(460\) 56.9100 + 175.151i 0.123717 + 0.380763i
\(461\) 65.3245i 0.141702i −0.997487 0.0708508i \(-0.977429\pi\)
0.997487 0.0708508i \(-0.0225714\pi\)
\(462\) 0 0
\(463\) 535.374 1.15632 0.578158 0.815925i \(-0.303772\pi\)
0.578158 + 0.815925i \(0.303772\pi\)
\(464\) 703.113 228.455i 1.51533 0.492361i
\(465\) 60.1364 + 359.812i 0.129326 + 0.773790i
\(466\) 40.3341 29.3045i 0.0865539 0.0628851i
\(467\) −473.636 153.894i −1.01421 0.329537i −0.245681 0.969351i \(-0.579011\pi\)
−0.768530 + 0.639814i \(0.779011\pi\)
\(468\) −622.528 190.604i −1.33019 0.407274i
\(469\) 749.382 544.458i 1.59783 1.16089i
\(470\) −124.748 + 171.701i −0.265422 + 0.365322i
\(471\) −482.174 240.526i −1.02372 0.510671i
\(472\) 11.6996 0.0247872
\(473\) 0 0
\(474\) 308.959 + 303.737i 0.651812 + 0.640796i
\(475\) 0.862227 + 2.65366i 0.00181521 + 0.00558665i
\(476\) 1.76048 2.42310i 0.00369850 0.00509055i
\(477\) −704.198 + 530.200i −1.47631 + 1.11153i
\(478\) 194.586 598.875i 0.407084 1.25288i
\(479\) 826.166 + 268.438i 1.72477 + 0.560412i 0.992678 0.120791i \(-0.0385432\pi\)
0.732094 + 0.681204i \(0.238543\pi\)
\(480\) −100.657 + 672.571i −0.209702 + 1.40119i
\(481\) −536.760 389.979i −1.11592 0.810767i
\(482\) −323.029 + 104.958i −0.670184 + 0.217756i
\(483\) −207.974 204.459i −0.430588 0.423311i
\(484\) 0 0
\(485\) 152.458i 0.314347i
\(486\) 290.626 635.999i 0.597997 1.30864i
\(487\) −195.067 141.725i −0.400549 0.291016i 0.369216 0.929344i \(-0.379626\pi\)
−0.769764 + 0.638328i \(0.779626\pi\)
\(488\) 13.9146 + 19.1518i 0.0285136 + 0.0392456i
\(489\) −306.375 588.835i −0.626534 1.20416i
\(490\) −334.359 + 1029.05i −0.682365 + 2.10010i
\(491\) −293.922 404.549i −0.598619 0.823928i 0.396962 0.917835i \(-0.370064\pi\)
−0.995581 + 0.0939071i \(0.970064\pi\)
\(492\) −92.9501 556.146i −0.188923 1.13038i
\(493\) −0.966128 2.97344i −0.00195969 0.00603131i
\(494\) 261.679i 0.529714i
\(495\) 0 0
\(496\) 363.708 0.733283
\(497\) −283.959 + 92.2638i −0.571346 + 0.185641i
\(498\) 512.939 85.7288i 1.03000 0.172146i
\(499\) 448.855 326.112i 0.899509 0.653531i −0.0388311 0.999246i \(-0.512363\pi\)
0.938340 + 0.345715i \(0.112363\pi\)
\(500\) −514.021 167.015i −1.02804 0.334031i
\(501\) −490.797 + 255.365i −0.979635 + 0.509712i
\(502\) 373.789 271.574i 0.744600 0.540984i
\(503\) 395.277 544.051i 0.785838 1.08161i −0.208776 0.977964i \(-0.566948\pi\)
0.994614 0.103650i \(-0.0330521\pi\)
\(504\) 26.4154 + 76.8178i 0.0524115 + 0.152416i
\(505\) −256.903 −0.508719
\(506\) 0 0
\(507\) 245.217 249.433i 0.483664 0.491979i
\(508\) 27.5783 + 84.8773i 0.0542880 + 0.167081i
\(509\) −378.324 + 520.719i −0.743270 + 1.02302i 0.255154 + 0.966900i \(0.417874\pi\)
−0.998424 + 0.0561224i \(0.982126\pi\)
\(510\) 2.64380 + 0.395670i 0.00518392 + 0.000775824i
\(511\) −48.2651 + 148.545i −0.0944523 + 0.290694i
\(512\) 690.287 + 224.288i 1.34822 + 0.438062i
\(513\) 144.033 + 19.0521i 0.280765 + 0.0371386i
\(514\) 60.9525 + 44.2846i 0.118585 + 0.0861568i
\(515\) 240.715 78.2130i 0.467407 0.151870i
\(516\) −1.81713 + 1.84837i −0.00352157 + 0.00358211i
\(517\) 0 0
\(518\) 1263.06i 2.43833i
\(519\) −326.143 + 653.806i −0.628406 + 1.25974i
\(520\) 54.6127 + 39.6785i 0.105025 + 0.0763048i
\(521\) 313.882 + 432.022i 0.602462 + 0.829217i 0.995931 0.0901206i \(-0.0287252\pi\)
−0.393469 + 0.919338i \(0.628725\pi\)
\(522\) 1237.08 + 378.767i 2.36989 + 0.725606i
\(523\) 307.507 946.409i 0.587967 1.80958i 0.000954046 1.00000i \(-0.499696\pi\)
0.587013 0.809577i \(-0.300304\pi\)
\(524\) 73.0382 + 100.528i 0.139386 + 0.191848i
\(525\) 17.1538 2.86695i 0.0326738 0.00546086i
\(526\) −196.536 604.876i −0.373643 1.14996i
\(527\) 1.53811i 0.00291861i
\(528\) 0 0
\(529\) 453.391 0.857071
\(530\) 1326.25 430.924i 2.50235 0.813064i
\(531\) −106.810 74.8539i −0.201148 0.140968i
\(532\) −208.337 + 151.366i −0.391611 + 0.284522i
\(533\) 705.718 + 229.302i 1.32405 + 0.430210i
\(534\) −160.775 309.000i −0.301076 0.578651i
\(535\) 273.970 199.051i 0.512094 0.372058i
\(536\) −39.3153 + 54.1129i −0.0733494 + 0.100957i
\(537\) −424.004 + 849.985i −0.789579 + 1.58284i
\(538\) −360.964 −0.670936
\(539\) 0 0
\(540\) −393.890 + 414.564i −0.729426 + 0.767711i
\(541\) 213.440 + 656.899i 0.394528 + 1.21423i 0.929329 + 0.369254i \(0.120387\pi\)
−0.534801 + 0.844978i \(0.679613\pi\)
\(542\) 676.442 931.043i 1.24805 1.71779i
\(543\) 13.7201 91.6749i 0.0252671 0.168830i
\(544\) 0.886051 2.72698i 0.00162877 0.00501284i
\(545\) −591.680 192.248i −1.08565 0.352749i
\(546\) −1613.10 241.416i −2.95440 0.442155i
\(547\) −70.3505 51.1127i −0.128612 0.0934418i 0.521620 0.853178i \(-0.325328\pi\)
−0.650231 + 0.759736i \(0.725328\pi\)
\(548\) 617.621 200.677i 1.12705 0.366199i
\(549\) −4.49800 263.870i −0.00819307 0.480637i
\(550\) 0 0
\(551\) 268.812i 0.487861i
\(552\) 18.8451 + 9.40064i 0.0341397 + 0.0170301i
\(553\) 453.940 + 329.807i 0.820868 + 0.596395i
\(554\) −124.511 171.375i −0.224750 0.309342i
\(555\) −516.966 + 268.981i −0.931471 + 0.484651i
\(556\) 25.4270 78.2564i 0.0457321 0.140749i
\(557\) −432.298 595.007i −0.776118 1.06824i −0.995700 0.0926409i \(-0.970469\pi\)
0.219581 0.975594i \(-0.429531\pi\)
\(558\) 521.232 + 365.288i 0.934107 + 0.654638i
\(559\) −1.05407 3.24410i −0.00188564 0.00580339i
\(560\) 818.651i 1.46188i
\(561\) 0 0
\(562\) −1206.81 −2.14734
\(563\) −542.073 + 176.130i −0.962829 + 0.312842i −0.747918 0.663792i \(-0.768946\pi\)
−0.214911 + 0.976634i \(0.568946\pi\)
\(564\) 31.5549 + 188.802i 0.0559484 + 0.334755i
\(565\) 395.216 287.141i 0.699497 0.508214i
\(566\) −726.186 235.952i −1.28301 0.416876i
\(567\) 250.325 870.302i 0.441491 1.53492i
\(568\) 17.4423 12.6726i 0.0307083 0.0223109i
\(569\) 333.772 459.398i 0.586594 0.807378i −0.407805 0.913069i \(-0.633706\pi\)
0.994399 + 0.105691i \(0.0337055\pi\)
\(570\) −205.674 102.598i −0.360832 0.179996i
\(571\) 229.442 0.401825 0.200912 0.979609i \(-0.435609\pi\)
0.200912 + 0.979609i \(0.435609\pi\)
\(572\) 0 0
\(573\) −633.070 622.370i −1.10483 1.08616i
\(574\) −436.523 1343.48i −0.760494 2.34056i
\(575\) 2.65022 3.64771i 0.00460908 0.00634385i
\(576\) 393.233 + 522.282i 0.682696 + 0.906740i
\(577\) −222.195 + 683.846i −0.385087 + 1.18518i 0.551331 + 0.834287i \(0.314120\pi\)
−0.936417 + 0.350888i \(0.885880\pi\)
\(578\) 790.912 + 256.983i 1.36836 + 0.444607i
\(579\) 35.3041 235.895i 0.0609742 0.407419i
\(580\) −855.973 621.901i −1.47582 1.07224i
\(581\) 640.544 208.125i 1.10249 0.358219i
\(582\) −189.687 186.481i −0.325923 0.320415i
\(583\) 0 0
\(584\) 11.2784i 0.0193124i
\(585\) −244.716 711.651i −0.418318 1.21650i
\(586\) −443.544 322.254i −0.756902 0.549921i
\(587\) −300.738 413.930i −0.512331 0.705162i 0.471980 0.881609i \(-0.343540\pi\)
−0.984310 + 0.176447i \(0.943540\pi\)
\(588\) 450.441 + 865.722i 0.766057 + 1.47232i
\(589\) −40.8662 + 125.773i −0.0693824 + 0.213537i
\(590\) 121.281 + 166.930i 0.205562 + 0.282931i
\(591\) 178.197 + 1066.20i 0.301518 + 1.80407i
\(592\) 179.541 + 552.571i 0.303279 + 0.933398i
\(593\) 241.775i 0.407715i 0.979001 + 0.203858i \(0.0653480\pi\)
−0.979001 + 0.203858i \(0.934652\pi\)
\(594\) 0 0
\(595\) 3.46204 0.00581856
\(596\) −739.573 + 240.302i −1.24089 + 0.403191i
\(597\) −1094.44 + 182.917i −1.83324 + 0.306393i
\(598\) −342.098 + 248.549i −0.572070 + 0.415633i
\(599\) 460.604 + 149.659i 0.768955 + 0.249849i 0.667118 0.744952i \(-0.267528\pi\)
0.101837 + 0.994801i \(0.467528\pi\)
\(600\) −1.11407 + 0.579661i −0.00185679 + 0.000966102i
\(601\) −391.082 + 284.138i −0.650719 + 0.472775i −0.863516 0.504321i \(-0.831743\pi\)
0.212797 + 0.977096i \(0.431743\pi\)
\(602\) −3.81686 + 5.25346i −0.00634030 + 0.00872668i
\(603\) 705.138 242.476i 1.16938 0.402116i
\(604\) −600.098 −0.993540
\(605\) 0 0
\(606\) −314.234 + 319.636i −0.518538 + 0.527453i
\(607\) −153.768 473.248i −0.253324 0.779651i −0.994155 0.107960i \(-0.965568\pi\)
0.740831 0.671691i \(-0.234432\pi\)
\(608\) −144.907 + 199.448i −0.238334 + 0.328039i
\(609\) 1657.07 + 247.997i 2.72097 + 0.407220i
\(610\) −129.015 + 397.068i −0.211500 + 0.650931i
\(611\) −239.579 77.8439i −0.392109 0.127404i
\(612\) 1.92616 1.45023i 0.00314733 0.00236966i
\(613\) 847.792 + 615.957i 1.38302 + 1.00482i 0.996591 + 0.0825060i \(0.0262924\pi\)
0.386431 + 0.922318i \(0.373708\pi\)
\(614\) 780.670 253.655i 1.27145 0.413119i
\(615\) 456.922 464.777i 0.742963 0.755735i
\(616\) 0 0
\(617\) 322.739i 0.523078i −0.965193 0.261539i \(-0.915770\pi\)
0.965193 0.261539i \(-0.0842301\pi\)
\(618\) 197.121 395.162i 0.318967 0.639421i
\(619\) −435.469 316.387i −0.703504 0.511126i 0.177567 0.984109i \(-0.443177\pi\)
−0.881072 + 0.472983i \(0.843177\pi\)
\(620\) −305.954 421.109i −0.493474 0.679208i
\(621\) −111.898 206.393i −0.180191 0.332356i
\(622\) 448.959 1381.75i 0.721799 2.22147i
\(623\) −265.153 364.951i −0.425606 0.585797i
\(624\) −740.029 + 123.683i −1.18594 + 0.198210i
\(625\) −189.047 581.826i −0.302475 0.930921i
\(626\) 230.698i 0.368527i
\(627\) 0 0
\(628\) 768.838 1.22426
\(629\) 2.33680 0.759273i 0.00371511 0.00120711i
\(630\) −822.207 + 1173.21i −1.30509 + 1.86224i
\(631\) −714.632 + 519.211i −1.13254 + 0.822838i −0.986062 0.166376i \(-0.946793\pi\)
−0.146477 + 0.989214i \(0.546793\pi\)
\(632\) −38.5340 12.5205i −0.0609715 0.0198109i
\(633\) 214.283 + 411.839i 0.338519 + 0.650614i
\(634\) −20.1528 + 14.6419i −0.0317868 + 0.0230945i
\(635\) −60.6349 + 83.4568i −0.0954881 + 0.131428i
\(636\) 561.431 1125.48i 0.882753 1.76962i
\(637\) −1284.27 −2.01613
\(638\) 0 0
\(639\) −240.316 + 4.09649i −0.376082 + 0.00641079i
\(640\) −39.4025 121.269i −0.0615665 0.189482i
\(641\) −173.396 + 238.659i −0.270509 + 0.372323i −0.922561 0.385850i \(-0.873908\pi\)
0.652053 + 0.758174i \(0.273908\pi\)
\(642\) 87.4528 584.343i 0.136219 0.910192i
\(643\) 258.185 794.613i 0.401532 1.23579i −0.522224 0.852809i \(-0.674897\pi\)
0.923756 0.382981i \(-0.125103\pi\)
\(644\) 395.767 + 128.592i 0.614545 + 0.199678i
\(645\) −2.96307 0.443453i −0.00459391 0.000687525i
\(646\) 0.784006 + 0.569614i 0.00121363 + 0.000881755i
\(647\) 777.637 252.670i 1.20191 0.390525i 0.361448 0.932392i \(-0.382282\pi\)
0.840464 + 0.541867i \(0.182282\pi\)
\(648\) 2.22875 + 65.3545i 0.00343943 + 0.100856i
\(649\) 0 0
\(650\) 25.2162i 0.0387942i
\(651\) 737.619 + 367.952i 1.13306 + 0.565210i
\(652\) 766.222 + 556.693i 1.17519 + 0.853823i
\(653\) −162.445 223.586i −0.248767 0.342399i 0.666312 0.745673i \(-0.267872\pi\)
−0.915079 + 0.403275i \(0.867872\pi\)
\(654\) −962.915 + 501.012i −1.47235 + 0.766073i
\(655\) −44.3846 + 136.602i −0.0677628 + 0.208552i
\(656\) −381.947 525.706i −0.582237 0.801380i
\(657\) −72.1594 + 102.965i −0.109832 + 0.156719i
\(658\) 148.192 + 456.088i 0.225216 + 0.693143i
\(659\) 881.372i 1.33744i 0.743515 + 0.668719i \(0.233157\pi\)
−0.743515 + 0.668719i \(0.766843\pi\)
\(660\) 0 0
\(661\) −501.036 −0.757997 −0.378999 0.925397i \(-0.623731\pi\)
−0.378999 + 0.925397i \(0.623731\pi\)
\(662\) −77.3282 + 25.1255i −0.116810 + 0.0379539i
\(663\) 0.523050 + 3.12955i 0.000788914 + 0.00472029i
\(664\) −39.3458 + 28.5864i −0.0592557 + 0.0430518i
\(665\) −283.096 91.9836i −0.425709 0.138321i
\(666\) −297.670 + 972.213i −0.446952 + 1.45978i
\(667\) 351.423 255.323i 0.526870 0.382794i
\(668\) 464.007 638.650i 0.694621 0.956064i
\(669\) −959.230 478.499i −1.43383 0.715245i
\(670\) −1179.64 −1.76065
\(671\) 0 0
\(672\) 1095.80 + 1077.28i 1.63065 + 1.60309i
\(673\) −1.37662 4.23681i −0.00204550 0.00629541i 0.950029 0.312163i \(-0.101054\pi\)
−0.952074 + 0.305868i \(0.901054\pi\)
\(674\) −488.009 + 671.687i −0.724049 + 0.996568i
\(675\) 13.8795 + 1.83592i 0.0205622 + 0.00271988i
\(676\) −154.227 + 474.662i −0.228146 + 0.702162i
\(677\) −16.4345 5.33989i −0.0242755 0.00788758i 0.296854 0.954923i \(-0.404062\pi\)
−0.321130 + 0.947035i \(0.604062\pi\)
\(678\) 126.155 842.944i 0.186069 1.24328i
\(679\) −278.699 202.487i −0.410455 0.298213i
\(680\) −0.237759 + 0.0772525i −0.000349645 + 0.000113607i
\(681\) −219.408 215.700i −0.322185 0.316740i
\(682\) 0 0
\(683\) 1085.69i 1.58958i 0.606882 + 0.794792i \(0.292420\pi\)
−0.606882 + 0.794792i \(0.707580\pi\)
\(684\) −196.037 + 67.4112i −0.286603 + 0.0985544i
\(685\) 607.284 + 441.218i 0.886547 + 0.644114i
\(686\) 510.468 + 702.600i 0.744123 + 1.02420i
\(687\) 511.458 + 982.993i 0.744481 + 1.43085i
\(688\) −0.923060 + 2.84089i −0.00134166 + 0.00412919i
\(689\) 972.890 + 1339.07i 1.41203 + 1.94349i
\(690\) 61.2260 + 366.332i 0.0887334 + 0.530916i
\(691\) −62.2864 191.698i −0.0901395 0.277421i 0.895817 0.444423i \(-0.146591\pi\)
−0.985957 + 0.167002i \(0.946591\pi\)
\(692\) 1042.51i 1.50652i
\(693\) 0 0
\(694\) 758.569 1.09304
\(695\) 90.4563 29.3910i 0.130153 0.0422892i
\(696\) −119.334 + 19.9447i −0.171457 + 0.0286561i
\(697\) −2.22319 + 1.61524i −0.00318965 + 0.00231742i
\(698\) −1335.33 433.874i −1.91308 0.621596i
\(699\) 46.1086 23.9906i 0.0659637 0.0343214i
\(700\) −20.0760 + 14.5861i −0.0286801 + 0.0208373i
\(701\) 252.573 347.637i 0.360304 0.495916i −0.589930 0.807455i \(-0.700845\pi\)
0.950233 + 0.311539i \(0.100845\pi\)
\(702\) −1184.76 565.992i −1.68769 0.806257i
\(703\) −211.257 −0.300508
\(704\) 0 0
\(705\) −155.117 + 157.784i −0.220024 + 0.223807i
\(706\) 388.899 + 1196.91i 0.550848 + 1.69534i
\(707\) −341.204 + 469.627i −0.482609 + 0.664254i
\(708\) 184.051 + 27.5451i 0.259959 + 0.0389054i
\(709\) 231.622 712.859i 0.326688 1.00544i −0.643985 0.765038i \(-0.722720\pi\)
0.970673 0.240404i \(-0.0772801\pi\)
\(710\) 361.625 + 117.499i 0.509331 + 0.165492i
\(711\) 271.685 + 360.844i 0.382116 + 0.507517i
\(712\) 26.3531 + 19.1467i 0.0370128 + 0.0268914i
\(713\) 203.242 66.0372i 0.285052 0.0926189i
\(714\) 4.23464 4.30744i 0.00593087 0.00603283i
\(715\) 0 0
\(716\) 1355.32i 1.89291i
\(717\) 293.040 587.447i 0.408703 0.819312i
\(718\) −570.362 414.392i −0.794376 0.577148i
\(719\) −265.207 365.026i −0.368855 0.507685i 0.583734 0.811945i \(-0.301591\pi\)
−0.952589 + 0.304260i \(0.901591\pi\)
\(720\) −192.935 + 630.141i −0.267966 + 0.875197i
\(721\) 176.728 543.913i 0.245115 0.754387i
\(722\) 561.623 + 773.008i 0.777871 + 1.07065i
\(723\) −349.256 + 58.3720i −0.483065 + 0.0807359i
\(724\) 40.8716 + 125.790i 0.0564524 + 0.173743i
\(725\) 25.9035i 0.0357290i
\(726\) 0 0
\(727\) 300.631 0.413523 0.206761 0.978391i \(-0.433708\pi\)
0.206761 + 0.978391i \(0.433708\pi\)
\(728\) 145.067 47.1352i 0.199268 0.0647462i
\(729\) 397.791 610.904i 0.545667 0.838002i
\(730\) 160.921 116.916i 0.220439 0.160158i
\(731\) 0.0120140 + 0.00390358i 1.64350e−5 + 5.34006e-6i
\(732\) 173.807 + 334.046i 0.237441 + 0.456347i
\(733\) −1078.72 + 783.739i −1.47166 + 1.06922i −0.491526 + 0.870863i \(0.663561\pi\)
−0.980130 + 0.198357i \(0.936439\pi\)
\(734\) 380.739 524.042i 0.518718 0.713954i
\(735\) −503.532 + 1009.41i −0.685078 + 1.37335i
\(736\) 398.379 0.541275
\(737\) 0 0
\(738\) −19.3815 1137.00i −0.0262623 1.54065i
\(739\) −326.316 1004.30i −0.441565 1.35900i −0.886207 0.463289i \(-0.846669\pi\)
0.444643 0.895708i \(-0.353331\pi\)
\(740\) 488.747 672.703i 0.660469 0.909058i
\(741\) 40.3790 269.805i 0.0544926 0.364109i
\(742\) 973.705 2996.76i 1.31227 4.03875i
\(743\) 959.620 + 311.799i 1.29155 + 0.419649i 0.872633 0.488377i \(-0.162411\pi\)
0.418914 + 0.908026i \(0.362411\pi\)
\(744\) −58.8671 8.81004i −0.0791224 0.0118415i
\(745\) −727.196 528.339i −0.976102 0.709180i
\(746\) 774.928 251.789i 1.03878 0.337519i
\(747\) 542.097 9.24073i 0.725699 0.0123705i
\(748\) 0 0
\(749\) 765.196i 1.02162i
\(750\) −975.376 486.554i −1.30050 0.648738i
\(751\) 40.6835 + 29.5583i 0.0541725 + 0.0393586i 0.614542 0.788884i \(-0.289341\pi\)
−0.560369 + 0.828243i \(0.689341\pi\)
\(752\) 129.664 + 178.468i 0.172426 + 0.237324i
\(753\) 427.303 222.329i 0.567468 0.295258i
\(754\) 750.708 2310.44i 0.995634 3.06425i
\(755\) −407.718 561.176i −0.540024 0.743279i
\(756\) 234.695 + 1270.65i 0.310443 + 1.68075i
\(757\) 97.8844 + 301.257i 0.129306 + 0.397962i 0.994661 0.103197i \(-0.0329072\pi\)
−0.865355 + 0.501159i \(0.832907\pi\)
\(758\) 1313.86i 1.73333i
\(759\) 0 0
\(760\) 21.4944 0.0282821
\(761\) 67.8819 22.0562i 0.0892009 0.0289831i −0.264077 0.964502i \(-0.585067\pi\)
0.353277 + 0.935519i \(0.385067\pi\)
\(762\) 29.6698 + 177.523i 0.0389368 + 0.232969i
\(763\) −1137.27 + 826.277i −1.49053 + 1.08293i
\(764\) 1204.71 + 391.433i 1.57684 + 0.512347i
\(765\) 2.66484 + 0.815915i 0.00348346 + 0.00106656i
\(766\) 747.910 543.389i 0.976384 0.709384i
\(767\) −143.953 + 198.134i −0.187683 + 0.258324i
\(768\) 580.948 + 289.798i 0.756443 + 0.377341i
\(769\) 634.282 0.824814 0.412407 0.911000i \(-0.364688\pi\)
0.412407 + 0.911000i \(0.364688\pi\)
\(770\) 0 0
\(771\) 56.0119 + 55.0653i 0.0726484 + 0.0714206i
\(772\) 105.170 + 323.679i 0.136230 + 0.419273i
\(773\) 507.637 698.702i 0.656710 0.903884i −0.342657 0.939461i \(-0.611327\pi\)
0.999367 + 0.0355767i \(0.0113268\pi\)
\(774\) −4.17606 + 3.14421i −0.00539543 + 0.00406229i
\(775\) −3.93800 + 12.1199i −0.00508130 + 0.0156386i
\(776\) 23.6582 + 7.68701i 0.0304873 + 0.00990594i
\(777\) −194.899 + 1302.28i −0.250835 + 1.67603i
\(778\) −734.335 533.525i −0.943875 0.685765i
\(779\) 224.709 73.0123i 0.288458 0.0937257i
\(780\) 765.719 + 752.778i 0.981691 + 0.965100i
\(781\) 0 0
\(782\) 1.56598i 0.00200253i
\(783\) 1217.05 + 581.420i 1.55434 + 0.742554i
\(784\) 909.860 + 661.052i 1.16054 + 0.843179i
\(785\) 522.363 + 718.971i 0.665431 + 0.915887i
\(786\) 115.669 + 222.309i 0.147162 + 0.282836i
\(787\) −371.943 + 1144.72i −0.472609 + 1.45454i 0.376546 + 0.926398i \(0.377112\pi\)
−0.849155 + 0.528143i \(0.822888\pi\)
\(788\) −906.608 1247.84i −1.15052 1.58355i
\(789\) −109.303 653.987i −0.138533 0.828881i
\(790\) −220.814 679.595i −0.279511 0.860246i
\(791\) 1103.83i 1.39549i
\(792\) 0 0
\(793\) −495.547 −0.624902
\(794\) 925.567 300.735i 1.16570 0.378759i
\(795\) 1433.93 239.656i 1.80368 0.301454i
\(796\) 1280.89 930.620i 1.60916 1.16912i
\(797\) 595.973 + 193.643i 0.747770 + 0.242965i 0.658021 0.752999i \(-0.271394\pi\)
0.0897487 + 0.995964i \(0.471394\pi\)
\(798\) −460.718 + 239.715i −0.577341 + 0.300395i
\(799\) 0.754733 0.548346i 0.000944597 0.000686290i
\(800\) −13.9637 + 19.2194i −0.0174547 + 0.0240243i
\(801\) −118.087 343.404i −0.147424 0.428719i
\(802\) 1038.67 1.29510
\(803\) 0 0
\(804\) −745.887 + 758.710i −0.927721 + 0.943670i
\(805\) 148.640 + 457.466i 0.184645 + 0.568280i
\(806\) 702.493 966.898i 0.871579 1.19963i
\(807\) −372.173 55.6994i −0.461181 0.0690203i
\(808\) 12.9532 39.8657i 0.0160311 0.0493387i
\(809\) −382.449 124.265i −0.472743 0.153604i 0.0629493 0.998017i \(-0.479949\pi\)
−0.535692 + 0.844413i \(0.679949\pi\)
\(810\) −909.374 + 709.285i −1.12268 + 0.875660i
\(811\) 448.052 + 325.529i 0.552469 + 0.401392i 0.828695 0.559701i \(-0.189084\pi\)
−0.276226 + 0.961093i \(0.589084\pi\)
\(812\) −2273.71 + 738.774i −2.80014 + 0.909820i
\(813\) 841.116 855.576i 1.03458 1.05237i
\(814\) 0 0
\(815\) 1094.75i 1.34325i
\(816\) 1.24031 2.48640i 0.00151999 0.00304706i
\(817\) −0.878687 0.638403i −0.00107550 0.000781399i
\(818\) −746.151 1026.99i −0.912165 1.25549i
\(819\) −1625.94 497.827i −1.98528 0.607847i
\(820\) −287.376 + 884.453i −0.350459 + 1.07860i
\(821\) −129.901 178.794i −0.158223 0.217776i 0.722544 0.691325i \(-0.242973\pi\)
−0.880767 + 0.473549i \(0.842973\pi\)
\(822\) 1291.77 215.896i 1.57149 0.262648i
\(823\) 222.107 + 683.574i 0.269875 + 0.830589i 0.990530 + 0.137295i \(0.0438409\pi\)
−0.720656 + 0.693293i \(0.756159\pi\)
\(824\) 41.2972i 0.0501179i
\(825\) 0 0
\(826\) 466.232 0.564446
\(827\) −610.949 + 198.509i −0.738753 + 0.240035i −0.654135 0.756378i \(-0.726967\pi\)
−0.0846182 + 0.996413i \(0.526967\pi\)
\(828\) 274.328 + 192.254i 0.331314 + 0.232191i
\(829\) −664.227 + 482.589i −0.801239 + 0.582134i −0.911277 0.411793i \(-0.864903\pi\)
0.110038 + 0.993927i \(0.464903\pi\)
\(830\) −815.741 265.050i −0.982820 0.319338i
\(831\) −101.934 195.910i −0.122664 0.235753i
\(832\) 993.145 721.562i 1.19368 0.867262i
\(833\) 2.79556 3.84776i 0.00335602 0.00461916i
\(834\) 74.0747 148.495i 0.0888186 0.178051i
\(835\) 912.483 1.09279
\(836\) 0 0
\(837\) 481.052 + 457.062i 0.574733 + 0.546071i
\(838\) 349.626 + 1076.04i 0.417214 + 1.28405i
\(839\) 202.110 278.180i 0.240894 0.331562i −0.671402 0.741093i \(-0.734308\pi\)
0.912296 + 0.409531i \(0.134308\pi\)
\(840\) 19.8300 132.501i 0.0236072 0.157739i
\(841\) −511.287 + 1573.58i −0.607952 + 1.87108i
\(842\) −1924.99 625.468i −2.28621 0.742836i
\(843\) −1244.28 186.219i −1.47602 0.220901i
\(844\) −535.906 389.358i −0.634959 0.461325i
\(845\) −548.660 + 178.270i −0.649302 + 0.210971i
\(846\) 6.57969 + 385.990i 0.00777741 + 0.456253i
\(847\) 0 0
\(848\) 1449.45i 1.70926i
\(849\) −712.328 355.335i −0.839020 0.418534i
\(850\) 0.0755494 + 0.0548898i 8.88816e−5 + 6.45763e-5i
\(851\) 200.657 + 276.180i 0.235789 + 0.324536i
\(852\) 304.228 158.292i 0.357075 0.185789i
\(853\) −105.689 + 325.277i −0.123903 + 0.381333i −0.993700 0.112077i \(-0.964250\pi\)
0.869797 + 0.493410i \(0.164250\pi\)
\(854\) 554.503 + 763.208i 0.649301 + 0.893686i
\(855\) −196.230 137.521i −0.229509 0.160844i
\(856\) 17.0747 + 52.5504i 0.0199470 + 0.0613907i
\(857\) 1404.79i 1.63920i 0.572937 + 0.819600i \(0.305804\pi\)
−0.572937 + 0.819600i \(0.694196\pi\)
\(858\) 0 0
\(859\) 759.128 0.883735 0.441867 0.897080i \(-0.354316\pi\)
0.441867 + 0.897080i \(0.354316\pi\)
\(860\) 4.06572 1.32103i 0.00472758 0.00153608i
\(861\) −242.770 1452.56i −0.281963 1.68706i
\(862\) 352.123 255.832i 0.408496 0.296789i
\(863\) −376.240 122.248i −0.435968 0.141655i 0.0828067 0.996566i \(-0.473612\pi\)
−0.518775 + 0.854911i \(0.673612\pi\)
\(864\) 589.582 + 1087.46i 0.682386 + 1.25864i
\(865\) 974.894 708.302i 1.12704 0.818846i
\(866\) −797.679 + 1097.91i −0.921108 + 1.26780i
\(867\) 775.819 + 387.007i 0.894831 + 0.446375i
\(868\) −1176.15 −1.35501
\(869\) 0 0
\(870\) −1521.63 1495.91i −1.74900 1.71944i
\(871\) −432.671 1331.62i −0.496752 1.52884i
\(872\) 59.6655 82.1225i 0.0684237 0.0941772i
\(873\) −166.802 221.543i −0.191068 0.253772i
\(874\) −41.6068 + 128.052i −0.0476050 + 0.146513i
\(875\) −1342.54 436.217i −1.53433 0.498533i
\(876\) 26.5535 177.426i 0.0303122 0.202541i
\(877\) −917.111 666.320i −1.04574 0.759772i −0.0743391 0.997233i \(-0.523685\pi\)
−0.971397 + 0.237461i \(0.923685\pi\)
\(878\) −1385.94 + 450.319i −1.57852 + 0.512891i
\(879\) −407.592 400.703i −0.463700 0.455863i
\(880\) 0 0
\(881\) 894.628i 1.01547i 0.861514 + 0.507735i \(0.169517\pi\)
−0.861514 + 0.507735i \(0.830483\pi\)
\(882\) 640.001 + 1861.17i 0.725624 + 2.11017i
\(883\) −25.6769 18.6553i −0.0290791 0.0211272i 0.573151 0.819450i \(-0.305721\pi\)
−0.602230 + 0.798323i \(0.705721\pi\)
\(884\) −2.66110 3.66270i −0.00301030 0.00414332i
\(885\) 99.2893 + 190.828i 0.112191 + 0.215625i
\(886\) −567.807 + 1747.53i −0.640866 + 1.97238i
\(887\) 796.758 + 1096.64i 0.898262 + 1.23635i 0.971019 + 0.239002i \(0.0768202\pi\)
−0.0727570 + 0.997350i \(0.523180\pi\)
\(888\) −15.6744 93.7840i −0.0176513 0.105613i
\(889\) 72.0300 + 221.686i 0.0810236 + 0.249365i
\(890\) 574.487i 0.645491i
\(891\) 0 0
\(892\) 1529.52 1.71470
\(893\) −76.2847 + 24.7864i −0.0854252 + 0.0277563i
\(894\) −1546.83 + 258.526i −1.73024 + 0.289179i
\(895\) 1267.42 920.833i 1.41611 1.02886i
\(896\) −274.015 89.0330i −0.305821 0.0993672i
\(897\) −391.074 + 203.479i −0.435980 + 0.226844i
\(898\) 771.678 560.657i 0.859330 0.624339i
\(899\) −721.641 + 993.254i −0.802715 + 1.10484i
\(900\) −18.8907 + 6.49596i −0.0209897 + 0.00721774i
\(901\) −6.12969 −0.00680321
\(902\) 0 0
\(903\) −4.74604 + 4.82763i −0.00525586 + 0.00534621i
\(904\) 24.6310 + 75.8066i 0.0272467 + 0.0838568i
\(905\) −89.8621 + 123.685i −0.0992951 + 0.136668i
\(906\) −1196.92 179.130i −1.32110 0.197715i
\(907\) 278.095 855.889i 0.306610 0.943648i −0.672462 0.740132i \(-0.734763\pi\)
0.979072 0.203516i \(-0.0652370\pi\)
\(908\) 417.525 + 135.662i 0.459829 + 0.149408i
\(909\) −373.315 + 281.074i −0.410687 + 0.309212i
\(910\) 2176.34 + 1581.20i 2.39158 + 1.73758i
\(911\) −304.231 + 98.8506i −0.333953 + 0.108508i −0.471193 0.882030i \(-0.656177\pi\)
0.137241 + 0.990538i \(0.456177\pi\)
\(912\) −167.483 + 170.363i −0.183644 + 0.186801i
\(913\) 0 0
\(914\) 247.292i 0.270560i
\(915\) −194.292 + 389.491i −0.212341 + 0.425673i
\(916\) −1279.12 929.335i −1.39642 1.01456i
\(917\) 190.764 + 262.564i 0.208030 + 0.286329i
\(918\) 4.27469 2.31758i 0.00465653 0.00252459i
\(919\) −138.542 + 426.387i −0.150752 + 0.463968i −0.997706 0.0676988i \(-0.978434\pi\)
0.846953 + 0.531667i \(0.178434\pi\)
\(920\) −20.4159 28.1001i −0.0221912 0.0305435i
\(921\) 844.054 141.069i 0.916454 0.153169i
\(922\) 58.0882 + 178.777i 0.0630024 + 0.193901i
\(923\) 451.314i 0.488964i
\(924\) 0 0
\(925\) −20.3574 −0.0220080
\(926\) −1465.19 + 476.069i −1.58228 + 0.514113i
\(927\) 264.219 377.016i 0.285026 0.406706i
\(928\) −1851.61 + 1345.27i −1.99527 + 1.44965i
\(929\) 278.538 + 90.5026i 0.299826 + 0.0974193i 0.455067 0.890457i \(-0.349615\pi\)
−0.155241 + 0.987877i \(0.549615\pi\)
\(930\) −484.533 931.244i −0.521003 1.00134i
\(931\) −330.829 + 240.361i −0.355348 + 0.258175i
\(932\) −43.5917 + 59.9988i −0.0467722 + 0.0643764i
\(933\) 676.117 1355.39i 0.724669 1.45272i
\(934\) 1433.07 1.53434
\(935\) 0 0
\(936\) 122.771 2.09279i 0.131166 0.00223589i
\(937\) 45.6193 + 140.402i 0.0486865 + 0.149842i 0.972444 0.233136i \(-0.0748987\pi\)
−0.923758 + 0.382978i \(0.874899\pi\)
\(938\) −1566.73 + 2156.42i −1.67029 + 2.29895i
\(939\) −35.5984 + 237.862i −0.0379110 + 0.253314i
\(940\) 97.5592 300.256i 0.103786 0.319422i
\(941\) −33.1918 10.7847i −0.0352729 0.0114609i 0.291327 0.956623i \(-0.405903\pi\)
−0.326600 + 0.945163i \(0.605903\pi\)
\(942\) 1533.47 + 229.499i 1.62789 + 0.243630i
\(943\) −308.884 224.418i −0.327555 0.237983i
\(944\) 203.971 66.2742i 0.216071 0.0702057i
\(945\) −1028.78 + 1082.77i −1.08865 + 1.14579i
\(946\) 0 0
\(947\) 867.513i 0.916064i 0.888936 + 0.458032i \(0.151446\pi\)
−0.888936 + 0.458032i \(0.848554\pi\)
\(948\) −576.717 287.688i −0.608352 0.303468i
\(949\) 191.002 + 138.771i 0.201267 + 0.146229i
\(950\) −4.71941 6.49571i −0.00496780 0.00683758i
\(951\) −23.0380 + 11.9869i −0.0242251 + 0.0126045i
\(952\) −0.174558 + 0.537233i −0.000183359 + 0.000564321i
\(953\) −764.359 1052.05i −0.802056 1.10394i −0.992501 0.122237i \(-0.960993\pi\)
0.190445 0.981698i \(-0.439007\pi\)
\(954\) 1455.75 2077.22i 1.52594 2.17738i
\(955\) 452.456 + 1392.52i 0.473776 + 1.45813i
\(956\) 936.699i 0.979811i
\(957\) 0 0
\(958\) −2499.72 −2.60931
\(959\) 1613.12 524.135i 1.68209 0.546544i
\(960\) −177.746 1063.50i −0.185152 1.10781i
\(961\) 288.819 209.839i 0.300540 0.218355i
\(962\) 1815.76 + 589.976i 1.88748 + 0.613280i
\(963\) 180.337 588.995i 0.187266 0.611625i
\(964\) 408.754 296.977i 0.424019 0.308068i
\(965\) −231.231 + 318.262i −0.239617 + 0.329805i
\(966\) 750.985 + 374.619i 0.777417 + 0.387804i
\(967\) −1422.62 −1.47117 −0.735585 0.677433i \(-0.763093\pi\)
−0.735585 + 0.677433i \(0.763093\pi\)
\(968\) 0 0
\(969\) 0.720457 + 0.708281i 0.000743506 + 0.000730940i
\(970\) 135.570 + 417.241i 0.139763 + 0.430145i
\(971\) −204.126 + 280.955i −0.210222 + 0.289346i −0.901087 0.433638i \(-0.857230\pi\)
0.690865 + 0.722984i \(0.257230\pi\)
\(972\) −118.807 + 1033.37i −0.122229 + 1.06313i
\(973\) 66.4112 204.393i 0.0682541 0.210064i
\(974\) 659.877 + 214.407i 0.677491 + 0.220130i
\(975\) 3.89105 25.9993i 0.00399082 0.0266659i
\(976\) 351.077 + 255.073i 0.359710 + 0.261345i
\(977\) −443.757 + 144.185i −0.454204 + 0.147580i −0.527180 0.849754i \(-0.676750\pi\)
0.0729757 + 0.997334i \(0.476750\pi\)
\(978\) 1362.08 + 1339.06i 1.39272 + 1.36918i
\(979\) 0 0
\(980\) 1609.54i 1.64238i
\(981\) −1070.13 + 367.985i −1.09085 + 0.375112i
\(982\) 1164.13 + 845.788i 1.18547 + 0.861291i
\(983\) 595.696 + 819.905i 0.605998 + 0.834084i 0.996241 0.0866277i \(-0.0276091\pi\)
−0.390243 + 0.920712i \(0.627609\pi\)
\(984\) 49.0850 + 94.3385i 0.0498832 + 0.0958725i
\(985\) 550.937 1695.61i 0.559327 1.72143i
\(986\) 5.28811 + 7.27846i 0.00536320 + 0.00738181i
\(987\) 82.4162 + 493.119i 0.0835017 + 0.499614i
\(988\) 120.288 + 370.207i 0.121749 + 0.374704i
\(989\) 1.75510i 0.00177462i
\(990\) 0 0
\(991\) −1208.63 −1.21960 −0.609802 0.792554i \(-0.708751\pi\)
−0.609802 + 0.792554i \(0.708751\pi\)
\(992\) −1070.86 + 347.944i −1.07950 + 0.350750i
\(993\) −83.6066 + 13.9734i −0.0841960 + 0.0140719i
\(994\) 695.082 505.007i 0.699278 0.508055i
\(995\) 1740.52 + 565.529i 1.74927 + 0.568371i
\(996\) −686.268 + 357.070i −0.689024 + 0.358504i
\(997\) −116.802 + 84.8616i −0.117153 + 0.0851170i −0.644819 0.764335i \(-0.723067\pi\)
0.527666 + 0.849452i \(0.323067\pi\)
\(998\) −938.418 + 1291.62i −0.940299 + 1.29421i
\(999\) −456.934 + 956.472i −0.457391 + 0.957429i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.269.2 24
3.2 odd 2 inner 363.3.h.q.269.5 24
11.2 odd 10 363.3.h.p.251.2 24
11.3 even 5 363.3.b.j.122.5 yes 6
11.4 even 5 inner 363.3.h.q.245.2 24
11.5 even 5 inner 363.3.h.q.323.5 24
11.6 odd 10 363.3.h.p.323.2 24
11.7 odd 10 363.3.h.p.245.5 24
11.8 odd 10 363.3.b.k.122.2 yes 6
11.9 even 5 inner 363.3.h.q.251.5 24
11.10 odd 2 363.3.h.p.269.5 24
33.2 even 10 363.3.h.p.251.5 24
33.5 odd 10 inner 363.3.h.q.323.2 24
33.8 even 10 363.3.b.k.122.5 yes 6
33.14 odd 10 363.3.b.j.122.2 6
33.17 even 10 363.3.h.p.323.5 24
33.20 odd 10 inner 363.3.h.q.251.2 24
33.26 odd 10 inner 363.3.h.q.245.5 24
33.29 even 10 363.3.h.p.245.2 24
33.32 even 2 363.3.h.p.269.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.2 6 33.14 odd 10
363.3.b.j.122.5 yes 6 11.3 even 5
363.3.b.k.122.2 yes 6 11.8 odd 10
363.3.b.k.122.5 yes 6 33.8 even 10
363.3.h.p.245.2 24 33.29 even 10
363.3.h.p.245.5 24 11.7 odd 10
363.3.h.p.251.2 24 11.2 odd 10
363.3.h.p.251.5 24 33.2 even 10
363.3.h.p.269.2 24 33.32 even 2
363.3.h.p.269.5 24 11.10 odd 2
363.3.h.p.323.2 24 11.6 odd 10
363.3.h.p.323.5 24 33.17 even 10
363.3.h.q.245.2 24 11.4 even 5 inner
363.3.h.q.245.5 24 33.26 odd 10 inner
363.3.h.q.251.2 24 33.20 odd 10 inner
363.3.h.q.251.5 24 11.9 even 5 inner
363.3.h.q.269.2 24 1.1 even 1 trivial
363.3.h.q.269.5 24 3.2 odd 2 inner
363.3.h.q.323.2 24 33.5 odd 10 inner
363.3.h.q.323.5 24 11.5 even 5 inner