Properties

Label 363.3.h.q.269.1
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-4,18,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.1
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.q.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.32956 + 1.08184i) q^{2} +(2.68613 - 1.33594i) q^{3} +(6.67952 - 4.85296i) q^{4} +(-7.51264 - 2.44100i) q^{5} +(-7.49835 + 7.35404i) q^{6} +(-1.46803 + 1.06658i) q^{7} +(-8.75863 + 12.0552i) q^{8} +(5.43055 - 7.17698i) q^{9} +27.6545 q^{10} +(11.4588 - 21.9591i) q^{12} +(0.0219178 + 0.0674561i) q^{13} +(3.73401 - 5.13943i) q^{14} +(-23.4409 + 3.47955i) q^{15} +(5.91516 - 18.2050i) q^{16} +(-3.48121 - 1.13111i) q^{17} +(-10.3170 + 29.7712i) q^{18} +(-21.2992 - 15.4748i) q^{19} +(-62.0269 + 20.1538i) q^{20} +(-2.51842 + 4.82617i) q^{21} +6.84236i q^{23} +(-7.42179 + 44.0828i) q^{24} +(30.2558 + 21.9821i) q^{25} +(-0.145953 - 0.200887i) q^{26} +(4.99916 - 26.5332i) q^{27} +(-4.62964 + 14.2486i) q^{28} +(17.7569 + 24.4403i) q^{29} +(74.2836 - 36.9447i) q^{30} +(13.0523 + 40.1709i) q^{31} +7.40958i q^{32} +12.8146 q^{34} +(13.6323 - 4.42940i) q^{35} +(1.44390 - 74.2931i) q^{36} +(-2.99344 + 2.17486i) q^{37} +(87.6582 + 28.4819i) q^{38} +(0.148991 + 0.151915i) q^{39} +(95.2272 - 69.1866i) q^{40} +(-41.7768 + 57.5009i) q^{41} +(3.16409 - 18.7936i) q^{42} -13.8601 q^{43} +(-58.3168 + 40.6621i) q^{45} +(-7.40233 - 22.7820i) q^{46} +(-16.0807 + 22.1332i) q^{47} +(-8.43183 - 56.8032i) q^{48} +(-14.1243 + 43.4702i) q^{49} +(-124.520 - 40.4589i) q^{50} +(-10.8621 + 1.61236i) q^{51} +(0.473762 + 0.344208i) q^{52} +(-20.6619 + 6.71345i) q^{53} +(12.0596 + 93.7520i) q^{54} -27.0392i q^{56} +(-77.8857 - 13.1128i) q^{57} +(-85.5633 - 62.1654i) q^{58} +(46.9059 + 64.5605i) q^{59} +(-139.688 + 137.000i) q^{60} +(24.4640 - 75.2925i) q^{61} +(-86.9169 - 119.631i) q^{62} +(-0.317340 + 16.3282i) q^{63} +(15.6447 + 48.1493i) q^{64} -0.560274i q^{65} -101.689 q^{67} +(-28.7421 + 9.33887i) q^{68} +(9.14095 + 18.3794i) q^{69} +(-40.5976 + 29.4959i) q^{70} +(-44.1378 - 14.3412i) q^{71} +(38.9559 + 128.327i) q^{72} +(-93.4412 + 67.8890i) q^{73} +(7.61398 - 10.4797i) q^{74} +(110.638 + 18.6270i) q^{75} -217.367 q^{76} +(-0.660422 - 0.344625i) q^{78} +(19.4337 + 59.8107i) q^{79} +(-88.8769 + 122.329i) q^{80} +(-22.0182 - 77.9500i) q^{81} +(76.8918 - 236.649i) q^{82} +(80.3644 + 26.1120i) q^{83} +(6.59936 + 44.4583i) q^{84} +(23.3920 + 16.9953i) q^{85} +(46.1481 - 14.9944i) q^{86} +(80.3481 + 41.9277i) q^{87} -45.3523i q^{89} +(150.179 - 198.476i) q^{90} +(-0.104124 - 0.0756502i) q^{91} +(33.2057 + 45.7037i) q^{92} +(88.7259 + 90.4670i) q^{93} +(29.5971 - 91.0905i) q^{94} +(122.239 + 168.248i) q^{95} +(9.89872 + 19.9031i) q^{96} +(-29.7481 - 91.5551i) q^{97} -160.017i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.32956 + 1.08184i −1.66478 + 0.540920i −0.981866 0.189579i \(-0.939288\pi\)
−0.682914 + 0.730498i \(0.739288\pi\)
\(3\) 2.68613 1.33594i 0.895376 0.445312i
\(4\) 6.67952 4.85296i 1.66988 1.21324i
\(5\) −7.51264 2.44100i −1.50253 0.488201i −0.561773 0.827291i \(-0.689881\pi\)
−0.940754 + 0.339090i \(0.889881\pi\)
\(6\) −7.49835 + 7.35404i −1.24973 + 1.22567i
\(7\) −1.46803 + 1.06658i −0.209718 + 0.152369i −0.687686 0.726008i \(-0.741374\pi\)
0.477968 + 0.878377i \(0.341374\pi\)
\(8\) −8.75863 + 12.0552i −1.09483 + 1.50690i
\(9\) 5.43055 7.17698i 0.603395 0.797443i
\(10\) 27.6545 2.76545
\(11\) 0 0
\(12\) 11.4588 21.9591i 0.954901 1.82992i
\(13\) 0.0219178 + 0.0674561i 0.00168599 + 0.00518893i 0.951896 0.306421i \(-0.0991317\pi\)
−0.950210 + 0.311610i \(0.899132\pi\)
\(14\) 3.73401 5.13943i 0.266715 0.367102i
\(15\) −23.4409 + 3.47955i −1.56273 + 0.231970i
\(16\) 5.91516 18.2050i 0.369697 1.13781i
\(17\) −3.48121 1.13111i −0.204777 0.0665361i 0.204832 0.978797i \(-0.434335\pi\)
−0.409610 + 0.912261i \(0.634335\pi\)
\(18\) −10.3170 + 29.7712i −0.573167 + 1.65395i
\(19\) −21.2992 15.4748i −1.12101 0.814462i −0.136649 0.990620i \(-0.543633\pi\)
−0.984362 + 0.176157i \(0.943633\pi\)
\(20\) −62.0269 + 20.1538i −3.10135 + 1.00769i
\(21\) −2.51842 + 4.82617i −0.119925 + 0.229818i
\(22\) 0 0
\(23\) 6.84236i 0.297494i 0.988875 + 0.148747i \(0.0475240\pi\)
−0.988875 + 0.148747i \(0.952476\pi\)
\(24\) −7.42179 + 44.0828i −0.309241 + 1.83678i
\(25\) 30.2558 + 21.9821i 1.21023 + 0.879284i
\(26\) −0.145953 0.200887i −0.00561359 0.00772644i
\(27\) 4.99916 26.5332i 0.185154 0.982709i
\(28\) −4.62964 + 14.2486i −0.165344 + 0.508877i
\(29\) 17.7569 + 24.4403i 0.612308 + 0.842770i 0.996765 0.0803733i \(-0.0256112\pi\)
−0.384457 + 0.923143i \(0.625611\pi\)
\(30\) 74.2836 36.9447i 2.47612 1.23149i
\(31\) 13.0523 + 40.1709i 0.421042 + 1.29583i 0.906733 + 0.421704i \(0.138568\pi\)
−0.485691 + 0.874131i \(0.661432\pi\)
\(32\) 7.40958i 0.231549i
\(33\) 0 0
\(34\) 12.8146 0.376899
\(35\) 13.6323 4.42940i 0.389494 0.126554i
\(36\) 1.44390 74.2931i 0.0401082 2.06370i
\(37\) −2.99344 + 2.17486i −0.0809037 + 0.0587800i −0.627502 0.778615i \(-0.715923\pi\)
0.546598 + 0.837395i \(0.315923\pi\)
\(38\) 87.6582 + 28.4819i 2.30680 + 0.749523i
\(39\) 0.148991 + 0.151915i 0.00382028 + 0.00389525i
\(40\) 95.2272 69.1866i 2.38068 1.72967i
\(41\) −41.7768 + 57.5009i −1.01895 + 1.40246i −0.106008 + 0.994365i \(0.533807\pi\)
−0.912939 + 0.408096i \(0.866193\pi\)
\(42\) 3.16409 18.7936i 0.0753354 0.447466i
\(43\) −13.8601 −0.322329 −0.161164 0.986928i \(-0.551525\pi\)
−0.161164 + 0.986928i \(0.551525\pi\)
\(44\) 0 0
\(45\) −58.3168 + 40.6621i −1.29593 + 0.903602i
\(46\) −7.40233 22.7820i −0.160920 0.495262i
\(47\) −16.0807 + 22.1332i −0.342143 + 0.470919i −0.945066 0.326880i \(-0.894003\pi\)
0.602923 + 0.797799i \(0.294003\pi\)
\(48\) −8.43183 56.8032i −0.175663 1.18340i
\(49\) −14.1243 + 43.4702i −0.288252 + 0.887147i
\(50\) −124.520 40.4589i −2.49039 0.809177i
\(51\) −10.8621 + 1.61236i −0.212982 + 0.0316149i
\(52\) 0.473762 + 0.344208i 0.00911081 + 0.00661939i
\(53\) −20.6619 + 6.71345i −0.389846 + 0.126669i −0.497380 0.867533i \(-0.665705\pi\)
0.107534 + 0.994201i \(0.465705\pi\)
\(54\) 12.0596 + 93.7520i 0.223326 + 1.73615i
\(55\) 0 0
\(56\) 27.0392i 0.482843i
\(57\) −77.8857 13.1128i −1.36642 0.230050i
\(58\) −85.5633 62.1654i −1.47523 1.07182i
\(59\) 46.9059 + 64.5605i 0.795016 + 1.09425i 0.993465 + 0.114134i \(0.0364093\pi\)
−0.198450 + 0.980111i \(0.563591\pi\)
\(60\) −139.688 + 137.000i −2.32813 + 2.28333i
\(61\) 24.4640 75.2925i 0.401050 1.23430i −0.523100 0.852272i \(-0.675224\pi\)
0.924149 0.382032i \(-0.124776\pi\)
\(62\) −86.9169 119.631i −1.40189 1.92953i
\(63\) −0.317340 + 16.3282i −0.00503714 + 0.259177i
\(64\) 15.6447 + 48.1493i 0.244448 + 0.752333i
\(65\) 0.560274i 0.00861961i
\(66\) 0 0
\(67\) −101.689 −1.51775 −0.758874 0.651238i \(-0.774250\pi\)
−0.758874 + 0.651238i \(0.774250\pi\)
\(68\) −28.7421 + 9.33887i −0.422678 + 0.137336i
\(69\) 9.14095 + 18.3794i 0.132478 + 0.266369i
\(70\) −40.5976 + 29.4959i −0.579966 + 0.421370i
\(71\) −44.1378 14.3412i −0.621659 0.201989i −0.0187823 0.999824i \(-0.505979\pi\)
−0.602877 + 0.797834i \(0.705979\pi\)
\(72\) 38.9559 + 128.327i 0.541054 + 1.78232i
\(73\) −93.4412 + 67.8890i −1.28002 + 0.929987i −0.999554 0.0298780i \(-0.990488\pi\)
−0.280463 + 0.959865i \(0.590488\pi\)
\(74\) 7.61398 10.4797i 0.102892 0.141618i
\(75\) 110.638 + 18.6270i 1.47517 + 0.248359i
\(76\) −217.367 −2.86009
\(77\) 0 0
\(78\) −0.660422 0.344625i −0.00846695 0.00441827i
\(79\) 19.4337 + 59.8107i 0.245996 + 0.757098i 0.995471 + 0.0950654i \(0.0303060\pi\)
−0.749475 + 0.662033i \(0.769694\pi\)
\(80\) −88.8769 + 122.329i −1.11096 + 1.52911i
\(81\) −22.0182 77.9500i −0.271830 0.962345i
\(82\) 76.8918 236.649i 0.937705 2.88596i
\(83\) 80.3644 + 26.1120i 0.968246 + 0.314602i 0.750108 0.661316i \(-0.230002\pi\)
0.218138 + 0.975918i \(0.430002\pi\)
\(84\) 6.59936 + 44.4583i 0.0785639 + 0.529266i
\(85\) 23.3920 + 16.9953i 0.275200 + 0.199945i
\(86\) 46.1481 14.9944i 0.536606 0.174354i
\(87\) 80.3481 + 41.9277i 0.923541 + 0.481927i
\(88\) 0 0
\(89\) 45.3523i 0.509577i −0.966997 0.254788i \(-0.917994\pi\)
0.966997 0.254788i \(-0.0820058\pi\)
\(90\) 150.179 198.476i 1.66866 2.20529i
\(91\) −0.104124 0.0756502i −0.00114422 0.000831321i
\(92\) 33.2057 + 45.7037i 0.360931 + 0.496779i
\(93\) 88.7259 + 90.4670i 0.954042 + 0.972764i
\(94\) 29.5971 91.0905i 0.314863 0.969048i
\(95\) 122.239 + 168.248i 1.28673 + 1.77103i
\(96\) 9.89872 + 19.9031i 0.103112 + 0.207324i
\(97\) −29.7481 91.5551i −0.306681 0.943867i −0.979045 0.203646i \(-0.934721\pi\)
0.672363 0.740221i \(-0.265279\pi\)
\(98\) 160.017i 1.63283i
\(99\) 0 0
\(100\) 308.772 3.08772
\(101\) −52.9697 + 17.2109i −0.524452 + 0.170405i −0.559265 0.828989i \(-0.688917\pi\)
0.0348128 + 0.999394i \(0.488917\pi\)
\(102\) 34.4216 17.1195i 0.337467 0.167838i
\(103\) −105.559 + 76.6932i −1.02485 + 0.744594i −0.967271 0.253747i \(-0.918337\pi\)
−0.0575756 + 0.998341i \(0.518337\pi\)
\(104\) −1.00517 0.326599i −0.00966507 0.00314037i
\(105\) 30.7007 30.1098i 0.292387 0.286760i
\(106\) 61.5320 44.7056i 0.580491 0.421751i
\(107\) 34.1736 47.0359i 0.319379 0.439588i −0.618898 0.785471i \(-0.712421\pi\)
0.938278 + 0.345883i \(0.112421\pi\)
\(108\) −95.3723 201.490i −0.883077 1.86564i
\(109\) 49.0112 0.449644 0.224822 0.974400i \(-0.427820\pi\)
0.224822 + 0.974400i \(0.427820\pi\)
\(110\) 0 0
\(111\) −5.13528 + 9.84099i −0.0462638 + 0.0886575i
\(112\) 10.7335 + 33.0344i 0.0958352 + 0.294950i
\(113\) 30.6859 42.2355i 0.271557 0.373766i −0.651358 0.758771i \(-0.725800\pi\)
0.922915 + 0.385005i \(0.125800\pi\)
\(114\) 273.511 40.5998i 2.39922 0.356139i
\(115\) 16.7022 51.4041i 0.145237 0.446993i
\(116\) 237.216 + 77.0761i 2.04496 + 0.664449i
\(117\) 0.603157 + 0.209020i 0.00515519 + 0.00178650i
\(118\) −226.020 164.213i −1.91542 1.39164i
\(119\) 6.31694 2.05250i 0.0530836 0.0172479i
\(120\) 163.363 313.061i 1.36136 2.60884i
\(121\) 0 0
\(122\) 277.157i 2.27178i
\(123\) −35.4004 + 210.266i −0.287808 + 1.70948i
\(124\) 282.131 + 204.980i 2.27525 + 1.65306i
\(125\) −57.5656 79.2323i −0.460525 0.633858i
\(126\) −16.6078 54.7089i −0.131808 0.434198i
\(127\) −18.0690 + 55.6105i −0.142275 + 0.437878i −0.996651 0.0817783i \(-0.973940\pi\)
0.854375 + 0.519656i \(0.173940\pi\)
\(128\) −121.601 167.369i −0.950005 1.30757i
\(129\) −37.2301 + 18.5162i −0.288605 + 0.143537i
\(130\) 0.606127 + 1.86547i 0.00466252 + 0.0143497i
\(131\) 147.683i 1.12735i −0.825997 0.563675i \(-0.809387\pi\)
0.825997 0.563675i \(-0.190613\pi\)
\(132\) 0 0
\(133\) 47.7730 0.359196
\(134\) 338.580 110.011i 2.52672 0.820980i
\(135\) −102.324 + 187.131i −0.757959 + 1.38616i
\(136\) 44.1264 32.0597i 0.324459 0.235733i
\(137\) −157.356 51.1281i −1.14858 0.373198i −0.327974 0.944687i \(-0.606366\pi\)
−0.820610 + 0.571489i \(0.806366\pi\)
\(138\) −50.3189 51.3064i −0.364630 0.371786i
\(139\) 42.1468 30.6214i 0.303214 0.220298i −0.425765 0.904834i \(-0.639995\pi\)
0.728979 + 0.684536i \(0.239995\pi\)
\(140\) 69.5615 95.7433i 0.496868 0.683880i
\(141\) −13.6263 + 80.9353i −0.0966403 + 0.574009i
\(142\) 162.474 1.14419
\(143\) 0 0
\(144\) −98.5343 141.316i −0.684266 0.981362i
\(145\) −73.7425 226.956i −0.508569 1.56521i
\(146\) 237.673 327.129i 1.62790 2.24061i
\(147\) 20.1337 + 135.636i 0.136964 + 0.922692i
\(148\) −9.44023 + 29.0541i −0.0637854 + 0.196311i
\(149\) −29.0495 9.43876i −0.194963 0.0633474i 0.209908 0.977721i \(-0.432684\pi\)
−0.404871 + 0.914374i \(0.632684\pi\)
\(150\) −388.526 + 57.6725i −2.59017 + 0.384483i
\(151\) 133.712 + 97.1472i 0.885508 + 0.643359i 0.934703 0.355430i \(-0.115666\pi\)
−0.0491952 + 0.998789i \(0.515666\pi\)
\(152\) 373.104 121.229i 2.45463 0.797557i
\(153\) −27.0229 + 18.8420i −0.176620 + 0.123150i
\(154\) 0 0
\(155\) 333.650i 2.15258i
\(156\) 1.73242 + 0.291671i 0.0111053 + 0.00186969i
\(157\) 170.804 + 124.096i 1.08792 + 0.790421i 0.979047 0.203634i \(-0.0652754\pi\)
0.108874 + 0.994056i \(0.465275\pi\)
\(158\) −129.411 178.119i −0.819059 1.12734i
\(159\) −46.5316 + 45.6361i −0.292652 + 0.287019i
\(160\) 18.0868 55.6655i 0.113043 0.347909i
\(161\) −7.29795 10.0448i −0.0453289 0.0623899i
\(162\) 157.640 + 235.719i 0.973088 + 1.45506i
\(163\) −27.0122 83.1350i −0.165719 0.510031i 0.833370 0.552716i \(-0.186409\pi\)
−0.999089 + 0.0426855i \(0.986409\pi\)
\(164\) 586.820i 3.57817i
\(165\) 0 0
\(166\) −295.827 −1.78209
\(167\) 39.3415 12.7828i 0.235578 0.0765439i −0.188849 0.982006i \(-0.560476\pi\)
0.424427 + 0.905462i \(0.360476\pi\)
\(168\) −36.1226 72.6307i −0.215016 0.432326i
\(169\) 136.720 99.3328i 0.808993 0.587768i
\(170\) −96.2713 31.2804i −0.566302 0.184003i
\(171\) −226.729 + 68.8275i −1.32590 + 0.402500i
\(172\) −92.5791 + 67.2626i −0.538250 + 0.391062i
\(173\) −121.574 + 167.332i −0.702740 + 0.967238i 0.297183 + 0.954820i \(0.403953\pi\)
−0.999923 + 0.0124175i \(0.996047\pi\)
\(174\) −312.883 52.6770i −1.79818 0.302741i
\(175\) −67.8621 −0.387784
\(176\) 0 0
\(177\) 212.244 + 110.754i 1.19912 + 0.625730i
\(178\) 49.0639 + 151.003i 0.275640 + 0.848333i
\(179\) −81.2859 + 111.880i −0.454111 + 0.625030i −0.973275 0.229645i \(-0.926244\pi\)
0.519164 + 0.854675i \(0.326244\pi\)
\(180\) −192.197 + 554.612i −1.06776 + 3.08118i
\(181\) −19.1377 + 58.8999i −0.105733 + 0.325414i −0.989902 0.141754i \(-0.954726\pi\)
0.884168 + 0.467168i \(0.154726\pi\)
\(182\) 0.428527 + 0.139237i 0.00235454 + 0.000765038i
\(183\) −34.8725 234.928i −0.190560 1.28376i
\(184\) −82.4861 59.9297i −0.448294 0.325705i
\(185\) 27.7974 9.03194i 0.150256 0.0488213i
\(186\) −393.289 205.228i −2.11446 1.10338i
\(187\) 0 0
\(188\) 225.878i 1.20148i
\(189\) 20.9610 + 44.2834i 0.110905 + 0.234304i
\(190\) −589.020 427.948i −3.10011 2.25236i
\(191\) −14.2774 19.6512i −0.0747508 0.102886i 0.770004 0.638039i \(-0.220254\pi\)
−0.844755 + 0.535153i \(0.820254\pi\)
\(192\) 106.348 + 108.435i 0.553895 + 0.564765i
\(193\) 62.3636 191.935i 0.323127 0.994484i −0.649151 0.760659i \(-0.724876\pi\)
0.972279 0.233825i \(-0.0751241\pi\)
\(194\) 198.096 + 272.656i 1.02111 + 1.40544i
\(195\) −0.748490 1.50497i −0.00383841 0.00771778i
\(196\) 116.615 + 358.905i 0.594976 + 1.83115i
\(197\) 64.9088i 0.329486i −0.986337 0.164743i \(-0.947320\pi\)
0.986337 0.164743i \(-0.0526795\pi\)
\(198\) 0 0
\(199\) 136.263 0.684741 0.342370 0.939565i \(-0.388770\pi\)
0.342370 + 0.939565i \(0.388770\pi\)
\(200\) −529.998 + 172.207i −2.64999 + 0.861034i
\(201\) −273.150 + 135.850i −1.35895 + 0.675871i
\(202\) 157.746 114.609i 0.780922 0.567373i
\(203\) −52.1353 16.9398i −0.256824 0.0834473i
\(204\) −64.7287 + 63.4829i −0.317298 + 0.311191i
\(205\) 454.214 330.006i 2.21568 1.60978i
\(206\) 268.496 369.553i 1.30338 1.79395i
\(207\) 49.1075 + 37.1578i 0.237234 + 0.179506i
\(208\) 1.35768 0.00652733
\(209\) 0 0
\(210\) −69.6458 + 133.466i −0.331647 + 0.635550i
\(211\) −0.383783 1.18116i −0.00181888 0.00559793i 0.950143 0.311815i \(-0.100937\pi\)
−0.951962 + 0.306217i \(0.900937\pi\)
\(212\) −105.431 + 145.114i −0.497318 + 0.684499i
\(213\) −137.719 + 20.4429i −0.646567 + 0.0959759i
\(214\) −62.8977 + 193.579i −0.293915 + 0.904576i
\(215\) 104.126 + 33.8326i 0.484307 + 0.157361i
\(216\) 276.077 + 292.660i 1.27813 + 1.35491i
\(217\) −62.0068 45.0506i −0.285746 0.207606i
\(218\) −163.186 + 53.0222i −0.748558 + 0.243221i
\(219\) −160.300 + 307.190i −0.731962 + 1.40269i
\(220\) 0 0
\(221\) 0.259620i 0.00117475i
\(222\) 6.45185 38.3217i 0.0290624 0.172620i
\(223\) −100.528 73.0378i −0.450798 0.327524i 0.339113 0.940746i \(-0.389873\pi\)
−0.789911 + 0.613222i \(0.789873\pi\)
\(224\) −7.90294 10.8775i −0.0352810 0.0485601i
\(225\) 322.071 97.7703i 1.43143 0.434535i
\(226\) −56.4785 + 173.823i −0.249905 + 0.769128i
\(227\) 28.0418 + 38.5962i 0.123532 + 0.170027i 0.866304 0.499517i \(-0.166489\pi\)
−0.742772 + 0.669545i \(0.766489\pi\)
\(228\) −583.875 + 290.388i −2.56086 + 1.27363i
\(229\) −22.6223 69.6244i −0.0987874 0.304037i 0.889435 0.457062i \(-0.151098\pi\)
−0.988222 + 0.153026i \(0.951098\pi\)
\(230\) 189.222i 0.822706i
\(231\) 0 0
\(232\) −450.160 −1.94034
\(233\) −176.322 + 57.2904i −0.756745 + 0.245881i −0.661881 0.749609i \(-0.730242\pi\)
−0.0948641 + 0.995490i \(0.530242\pi\)
\(234\) −2.23437 0.0434253i −0.00954860 0.000185578i
\(235\) 174.836 127.026i 0.743981 0.540534i
\(236\) 626.618 + 203.601i 2.65516 + 0.862715i
\(237\) 132.105 + 134.697i 0.557404 + 0.568342i
\(238\) −18.8122 + 13.6678i −0.0790427 + 0.0574279i
\(239\) 206.294 283.939i 0.863154 1.18803i −0.117655 0.993055i \(-0.537538\pi\)
0.980808 0.194975i \(-0.0624624\pi\)
\(240\) −75.3115 + 447.324i −0.313798 + 1.86385i
\(241\) −175.508 −0.728248 −0.364124 0.931351i \(-0.618631\pi\)
−0.364124 + 0.931351i \(0.618631\pi\)
\(242\) 0 0
\(243\) −163.280 179.969i −0.671934 0.740611i
\(244\) −201.983 621.641i −0.827801 2.54771i
\(245\) 212.222 292.098i 0.866212 1.19224i
\(246\) −109.606 738.390i −0.445554 3.00159i
\(247\) 0.577036 1.77593i 0.00233618 0.00719002i
\(248\) −598.589 194.493i −2.41367 0.784247i
\(249\) 250.753 37.2216i 1.00704 0.149484i
\(250\) 277.385 + 201.532i 1.10954 + 0.806128i
\(251\) −132.205 + 42.9562i −0.526715 + 0.171140i −0.560291 0.828296i \(-0.689311\pi\)
0.0335755 + 0.999436i \(0.489311\pi\)
\(252\) 77.1202 + 110.604i 0.306032 + 0.438906i
\(253\) 0 0
\(254\) 204.706i 0.805930i
\(255\) 85.5385 + 14.4013i 0.335445 + 0.0564756i
\(256\) 422.110 + 306.681i 1.64887 + 1.19797i
\(257\) −251.203 345.752i −0.977445 1.34534i −0.938194 0.346109i \(-0.887503\pi\)
−0.0392507 0.999229i \(-0.512497\pi\)
\(258\) 103.928 101.928i 0.402822 0.395069i
\(259\) 2.07478 6.38551i 0.00801072 0.0246545i
\(260\) −2.71899 3.74237i −0.0104576 0.0143937i
\(261\) 271.838 + 5.28320i 1.04152 + 0.0202422i
\(262\) 159.769 + 491.719i 0.609806 + 1.87679i
\(263\) 201.638i 0.766686i −0.923606 0.383343i \(-0.874773\pi\)
0.923606 0.383343i \(-0.125227\pi\)
\(264\) 0 0
\(265\) 171.613 0.647595
\(266\) −159.063 + 51.6827i −0.597981 + 0.194296i
\(267\) −60.5878 121.822i −0.226921 0.456263i
\(268\) −679.235 + 493.493i −2.53446 + 1.84139i
\(269\) −326.260 106.008i −1.21286 0.394083i −0.368385 0.929673i \(-0.620089\pi\)
−0.844478 + 0.535590i \(0.820089\pi\)
\(270\) 138.250 733.762i 0.512035 2.71764i
\(271\) −329.745 + 239.574i −1.21677 + 0.884035i −0.995828 0.0912517i \(-0.970913\pi\)
−0.220942 + 0.975287i \(0.570913\pi\)
\(272\) −41.1838 + 56.6847i −0.151411 + 0.208400i
\(273\) −0.380753 0.0641036i −0.00139470 0.000234812i
\(274\) 579.239 2.11401
\(275\) 0 0
\(276\) 150.252 + 78.4053i 0.544391 + 0.284077i
\(277\) 153.580 + 472.671i 0.554441 + 1.70639i 0.697416 + 0.716667i \(0.254333\pi\)
−0.142975 + 0.989726i \(0.545667\pi\)
\(278\) −107.203 + 147.552i −0.385622 + 0.530763i
\(279\) 359.187 + 124.474i 1.28741 + 0.446143i
\(280\) −66.0028 + 203.136i −0.235724 + 0.725485i
\(281\) 368.065 + 119.591i 1.30984 + 0.425593i 0.878994 0.476833i \(-0.158215\pi\)
0.430845 + 0.902426i \(0.358215\pi\)
\(282\) −42.1895 284.220i −0.149608 1.00787i
\(283\) −179.404 130.344i −0.633935 0.460581i 0.223826 0.974629i \(-0.428145\pi\)
−0.857761 + 0.514048i \(0.828145\pi\)
\(284\) −364.417 + 118.406i −1.28316 + 0.416923i
\(285\) 553.118 + 288.631i 1.94077 + 1.01274i
\(286\) 0 0
\(287\) 128.971i 0.449378i
\(288\) 53.1784 + 40.2381i 0.184647 + 0.139716i
\(289\) −222.967 161.995i −0.771510 0.560535i
\(290\) 491.060 + 675.886i 1.69331 + 2.33064i
\(291\) −202.219 206.187i −0.694910 0.708547i
\(292\) −294.680 + 906.933i −1.00918 + 3.10593i
\(293\) −260.247 358.200i −0.888216 1.22252i −0.974077 0.226217i \(-0.927364\pi\)
0.0858612 0.996307i \(-0.472636\pi\)
\(294\) −213.772 429.826i −0.727117 1.46199i
\(295\) −194.795 599.517i −0.660321 2.03226i
\(296\) 55.1353i 0.186268i
\(297\) 0 0
\(298\) 106.933 0.358837
\(299\) −0.461559 + 0.149969i −0.00154367 + 0.000501570i
\(300\) 829.402 412.500i 2.76467 1.37500i
\(301\) 20.3471 14.7830i 0.0675982 0.0491130i
\(302\) −550.299 178.803i −1.82218 0.592062i
\(303\) −119.291 + 116.995i −0.393698 + 0.386121i
\(304\) −407.706 + 296.216i −1.34114 + 0.974395i
\(305\) −367.579 + 505.929i −1.20518 + 1.65878i
\(306\) 69.5903 91.9701i 0.227419 0.300556i
\(307\) −324.906 −1.05832 −0.529162 0.848521i \(-0.677494\pi\)
−0.529162 + 0.848521i \(0.677494\pi\)
\(308\) 0 0
\(309\) −181.088 + 347.028i −0.586046 + 1.12307i
\(310\) 360.956 + 1110.91i 1.16437 + 3.58357i
\(311\) 68.7732 94.6582i 0.221136 0.304367i −0.684007 0.729476i \(-0.739764\pi\)
0.905142 + 0.425109i \(0.139764\pi\)
\(312\) −3.13632 + 0.465554i −0.0100523 + 0.00149216i
\(313\) −45.1399 + 138.926i −0.144217 + 0.443854i −0.996909 0.0785593i \(-0.974968\pi\)
0.852693 + 0.522413i \(0.174968\pi\)
\(314\) −702.953 228.403i −2.23870 0.727399i
\(315\) 42.2411 121.893i 0.134099 0.386962i
\(316\) 420.067 + 305.196i 1.32933 + 0.965811i
\(317\) −64.2560 + 20.8781i −0.202700 + 0.0658614i −0.408608 0.912710i \(-0.633986\pi\)
0.205907 + 0.978572i \(0.433986\pi\)
\(318\) 105.559 202.288i 0.331946 0.636125i
\(319\) 0 0
\(320\) 399.917i 1.24974i
\(321\) 28.9576 171.998i 0.0902107 0.535820i
\(322\) 35.1658 + 25.5495i 0.109211 + 0.0793461i
\(323\) 56.6433 + 77.9628i 0.175366 + 0.241371i
\(324\) −525.359 413.815i −1.62148 1.27721i
\(325\) −0.819687 + 2.52274i −0.00252211 + 0.00776226i
\(326\) 179.878 + 247.580i 0.551772 + 0.759448i
\(327\) 131.650 65.4758i 0.402600 0.200232i
\(328\) −327.278 1007.26i −0.997799 3.07091i
\(329\) 49.6436i 0.150892i
\(330\) 0 0
\(331\) 303.465 0.916814 0.458407 0.888742i \(-0.348420\pi\)
0.458407 + 0.888742i \(0.348420\pi\)
\(332\) 663.516 215.589i 1.99854 0.649366i
\(333\) −0.647084 + 33.2945i −0.00194320 + 0.0999836i
\(334\) −117.161 + 85.1224i −0.350781 + 0.254857i
\(335\) 763.953 + 248.223i 2.28046 + 0.740966i
\(336\) 72.9635 + 74.3954i 0.217153 + 0.221415i
\(337\) −449.359 + 326.478i −1.33341 + 0.968779i −0.333751 + 0.942661i \(0.608314\pi\)
−0.999659 + 0.0261175i \(0.991686\pi\)
\(338\) −347.755 + 478.643i −1.02886 + 1.41610i
\(339\) 26.0023 154.444i 0.0767029 0.455588i
\(340\) 238.725 0.702132
\(341\) 0 0
\(342\) 680.447 474.449i 1.98961 1.38728i
\(343\) −53.1059 163.443i −0.154828 0.476510i
\(344\) 121.396 167.087i 0.352894 0.485718i
\(345\) −23.8084 160.391i −0.0690097 0.464902i
\(346\) 223.761 688.666i 0.646708 1.99036i
\(347\) −368.981 119.889i −1.06335 0.345502i −0.275454 0.961314i \(-0.588828\pi\)
−0.787893 + 0.615812i \(0.788828\pi\)
\(348\) 740.160 109.869i 2.12690 0.315715i
\(349\) 365.704 + 265.700i 1.04786 + 0.761317i 0.971805 0.235787i \(-0.0757667\pi\)
0.0760578 + 0.997103i \(0.475767\pi\)
\(350\) 225.951 73.4159i 0.645574 0.209760i
\(351\) 1.89939 0.244325i 0.00541138 0.000696082i
\(352\) 0 0
\(353\) 304.454i 0.862476i 0.902238 + 0.431238i \(0.141923\pi\)
−0.902238 + 0.431238i \(0.858077\pi\)
\(354\) −826.497 139.149i −2.33474 0.393077i
\(355\) 296.584 + 215.481i 0.835448 + 0.606989i
\(356\) −220.093 302.932i −0.618239 0.850932i
\(357\) 14.2261 13.9523i 0.0398490 0.0390821i
\(358\) 149.610 460.451i 0.417904 1.28618i
\(359\) 178.166 + 245.224i 0.496284 + 0.683076i 0.981532 0.191301i \(-0.0612705\pi\)
−0.485248 + 0.874377i \(0.661270\pi\)
\(360\) 20.5850 1059.17i 0.0571806 2.94213i
\(361\) 102.632 + 315.870i 0.284300 + 0.874986i
\(362\) 216.815i 0.598936i
\(363\) 0 0
\(364\) −1.06262 −0.00291929
\(365\) 867.707 281.935i 2.37728 0.772425i
\(366\) 370.264 + 744.479i 1.01165 + 2.03410i
\(367\) 339.757 246.848i 0.925770 0.672611i −0.0191838 0.999816i \(-0.506107\pi\)
0.944953 + 0.327205i \(0.106107\pi\)
\(368\) 124.565 + 40.4736i 0.338492 + 0.109983i
\(369\) 185.812 + 612.093i 0.503555 + 1.65879i
\(370\) −82.7822 + 60.1448i −0.223736 + 0.162553i
\(371\) 23.1717 31.8932i 0.0624575 0.0859654i
\(372\) 1031.68 + 173.694i 2.77333 + 0.466919i
\(373\) 198.795 0.532963 0.266482 0.963840i \(-0.414139\pi\)
0.266482 + 0.963840i \(0.414139\pi\)
\(374\) 0 0
\(375\) −260.478 135.924i −0.694608 0.362464i
\(376\) −125.975 387.713i −0.335041 1.03115i
\(377\) −1.25945 + 1.73349i −0.00334073 + 0.00459812i
\(378\) −117.698 124.768i −0.311371 0.330074i
\(379\) 22.3758 68.8656i 0.0590390 0.181703i −0.917188 0.398455i \(-0.869546\pi\)
0.976227 + 0.216752i \(0.0695463\pi\)
\(380\) 1633.00 + 530.594i 4.29737 + 1.39630i
\(381\) 25.7566 + 173.516i 0.0676026 + 0.455422i
\(382\) 68.7969 + 49.9839i 0.180097 + 0.130848i
\(383\) −499.215 + 162.205i −1.30343 + 0.423511i −0.876775 0.480901i \(-0.840309\pi\)
−0.426659 + 0.904413i \(0.640309\pi\)
\(384\) −550.229 287.123i −1.43289 0.747717i
\(385\) 0 0
\(386\) 706.528i 1.83038i
\(387\) −75.2682 + 99.4739i −0.194491 + 0.257039i
\(388\) −643.016 467.179i −1.65726 1.20407i
\(389\) 219.197 + 301.699i 0.563489 + 0.775576i 0.991765 0.128072i \(-0.0408788\pi\)
−0.428276 + 0.903648i \(0.640879\pi\)
\(390\) 4.12028 + 4.20113i 0.0105648 + 0.0107721i
\(391\) 7.73949 23.8197i 0.0197941 0.0609199i
\(392\) −400.333 551.011i −1.02126 1.40564i
\(393\) −197.295 396.695i −0.502022 1.00940i
\(394\) 70.2209 + 216.118i 0.178226 + 0.548522i
\(395\) 496.774i 1.25766i
\(396\) 0 0
\(397\) −184.584 −0.464947 −0.232474 0.972603i \(-0.574682\pi\)
−0.232474 + 0.972603i \(0.574682\pi\)
\(398\) −453.697 + 147.415i −1.13994 + 0.370390i
\(399\) 128.324 63.8217i 0.321615 0.159954i
\(400\) 579.152 420.778i 1.44788 1.05195i
\(401\) −86.3473 28.0559i −0.215330 0.0699649i 0.199366 0.979925i \(-0.436112\pi\)
−0.414695 + 0.909960i \(0.636112\pi\)
\(402\) 762.501 747.825i 1.89677 1.86026i
\(403\) −2.42369 + 1.76092i −0.00601412 + 0.00436952i
\(404\) −270.288 + 372.020i −0.669031 + 0.920842i
\(405\) −24.8613 + 639.356i −0.0613860 + 1.57866i
\(406\) 191.914 0.472694
\(407\) 0 0
\(408\) 75.6995 145.067i 0.185538 0.355555i
\(409\) −169.936 523.008i −0.415490 1.27875i −0.911812 0.410609i \(-0.865316\pi\)
0.496321 0.868139i \(-0.334684\pi\)
\(410\) −1155.32 + 1590.16i −2.81785 + 3.87844i
\(411\) −490.982 + 72.8811i −1.19460 + 0.177326i
\(412\) −332.896 + 1024.55i −0.808000 + 2.48677i
\(413\) −137.718 44.7474i −0.333459 0.108347i
\(414\) −203.705 70.5926i −0.492041 0.170514i
\(415\) −540.009 392.339i −1.30123 0.945396i
\(416\) −0.499821 + 0.162402i −0.00120149 + 0.000390389i
\(417\) 72.3034 138.558i 0.173389 0.332275i
\(418\) 0 0
\(419\) 298.402i 0.712176i 0.934452 + 0.356088i \(0.115890\pi\)
−0.934452 + 0.356088i \(0.884110\pi\)
\(420\) 58.9443 350.108i 0.140344 0.833591i
\(421\) 99.1856 + 72.0626i 0.235595 + 0.171170i 0.699319 0.714810i \(-0.253487\pi\)
−0.463723 + 0.885980i \(0.653487\pi\)
\(422\) 2.55566 + 3.51756i 0.00605606 + 0.00833545i
\(423\) 71.5224 + 235.606i 0.169084 + 0.556989i
\(424\) 100.037 307.884i 0.235937 0.726141i
\(425\) −80.4625 110.747i −0.189323 0.260581i
\(426\) 436.427 217.055i 1.02448 0.509519i
\(427\) 44.3920 + 136.624i 0.103962 + 0.319964i
\(428\) 480.021i 1.12154i
\(429\) 0 0
\(430\) −383.296 −0.891385
\(431\) −562.102 + 182.638i −1.30418 + 0.423754i −0.877034 0.480428i \(-0.840481\pi\)
−0.427147 + 0.904182i \(0.640481\pi\)
\(432\) −453.465 247.957i −1.04969 0.573976i
\(433\) −519.659 + 377.554i −1.20014 + 0.871950i −0.994298 0.106636i \(-0.965992\pi\)
−0.205838 + 0.978586i \(0.565992\pi\)
\(434\) 255.193 + 82.9172i 0.588002 + 0.191053i
\(435\) −501.280 511.117i −1.15237 1.17498i
\(436\) 327.371 237.849i 0.750851 0.545526i
\(437\) 105.884 145.737i 0.242297 0.333494i
\(438\) 201.397 1196.23i 0.459810 2.73111i
\(439\) −476.217 −1.08478 −0.542388 0.840128i \(-0.682480\pi\)
−0.542388 + 0.840128i \(0.682480\pi\)
\(440\) 0 0
\(441\) 235.282 + 337.437i 0.533520 + 0.765164i
\(442\) 0.280868 + 0.864421i 0.000635447 + 0.00195570i
\(443\) 63.3171 87.1485i 0.142928 0.196723i −0.731551 0.681786i \(-0.761203\pi\)
0.874479 + 0.485063i \(0.161203\pi\)
\(444\) 13.4567 + 90.6544i 0.0303078 + 0.204177i
\(445\) −110.705 + 340.716i −0.248776 + 0.765653i
\(446\) 413.729 + 134.429i 0.927643 + 0.301409i
\(447\) −90.6403 + 13.4546i −0.202775 + 0.0300997i
\(448\) −74.3221 53.9982i −0.165898 0.120532i
\(449\) 213.489 69.3667i 0.475476 0.154491i −0.0614686 0.998109i \(-0.519578\pi\)
0.536945 + 0.843618i \(0.319578\pi\)
\(450\) −966.582 + 673.961i −2.14796 + 1.49769i
\(451\) 0 0
\(452\) 431.031i 0.953608i
\(453\) 488.949 + 82.3195i 1.07936 + 0.181721i
\(454\) −135.122 98.1716i −0.297625 0.216237i
\(455\) 0.597580 + 0.822498i 0.00131336 + 0.00180769i
\(456\) 840.250 824.078i 1.84265 1.80719i
\(457\) −22.0293 + 67.7991i −0.0482041 + 0.148357i −0.972261 0.233897i \(-0.924852\pi\)
0.924057 + 0.382254i \(0.124852\pi\)
\(458\) 150.645 + 207.345i 0.328919 + 0.452718i
\(459\) −47.4152 + 86.7129i −0.103301 + 0.188917i
\(460\) −137.899 424.410i −0.299781 0.922631i
\(461\) 876.537i 1.90138i 0.310141 + 0.950691i \(0.399624\pi\)
−0.310141 + 0.950691i \(0.600376\pi\)
\(462\) 0 0
\(463\) −824.691 −1.78119 −0.890595 0.454797i \(-0.849712\pi\)
−0.890595 + 0.454797i \(0.849712\pi\)
\(464\) 549.971 178.696i 1.18528 0.385121i
\(465\) −445.735 896.226i −0.958570 1.92737i
\(466\) 525.094 381.503i 1.12681 0.818677i
\(467\) −305.347 99.2132i −0.653847 0.212448i −0.0367376 0.999325i \(-0.511697\pi\)
−0.617110 + 0.786877i \(0.711697\pi\)
\(468\) 5.04317 1.53094i 0.0107760 0.00327124i
\(469\) 149.282 108.460i 0.318299 0.231258i
\(470\) −444.704 + 612.083i −0.946180 + 1.30230i
\(471\) 624.585 + 105.155i 1.32608 + 0.223259i
\(472\) −1189.12 −2.51933
\(473\) 0 0
\(474\) −585.571 305.566i −1.23538 0.644654i
\(475\) −304.256 936.403i −0.640539 1.97138i
\(476\) 32.2335 44.3656i 0.0677174 0.0932050i
\(477\) −64.0230 + 184.748i −0.134220 + 0.387311i
\(478\) −379.691 + 1168.57i −0.794332 + 2.44470i
\(479\) −412.015 133.872i −0.860157 0.279482i −0.154463 0.987999i \(-0.549365\pi\)
−0.705694 + 0.708517i \(0.749365\pi\)
\(480\) −25.7820 173.687i −0.0537126 0.361849i
\(481\) −0.212317 0.154257i −0.000441408 0.000320701i
\(482\) 584.363 189.871i 1.21237 0.393924i
\(483\) −33.0224 17.2319i −0.0683694 0.0356769i
\(484\) 0 0
\(485\) 760.436i 1.56791i
\(486\) 738.347 + 422.574i 1.51923 + 0.869493i
\(487\) 285.224 + 207.228i 0.585676 + 0.425519i 0.840766 0.541399i \(-0.182105\pi\)
−0.255090 + 0.966917i \(0.582105\pi\)
\(488\) 693.396 + 954.378i 1.42089 + 1.95569i
\(489\) −183.621 187.225i −0.375504 0.382872i
\(490\) −390.602 + 1202.15i −0.797147 + 2.45337i
\(491\) −262.378 361.133i −0.534375 0.735505i 0.453414 0.891300i \(-0.350206\pi\)
−0.987789 + 0.155795i \(0.950206\pi\)
\(492\) 783.954 + 1576.27i 1.59340 + 3.20381i
\(493\) −34.1708 105.167i −0.0693120 0.213321i
\(494\) 6.53734i 0.0132335i
\(495\) 0 0
\(496\) 808.517 1.63007
\(497\) 80.0917 26.0234i 0.161150 0.0523609i
\(498\) −794.629 + 395.206i −1.59564 + 0.793586i
\(499\) −72.6250 + 52.7651i −0.145541 + 0.105742i −0.658173 0.752867i \(-0.728671\pi\)
0.512632 + 0.858608i \(0.328671\pi\)
\(500\) −769.022 249.870i −1.53804 0.499741i
\(501\) 88.5992 86.8940i 0.176845 0.173441i
\(502\) 393.714 286.050i 0.784292 0.569821i
\(503\) 573.691 789.618i 1.14054 1.56982i 0.374242 0.927331i \(-0.377903\pi\)
0.766297 0.642487i \(-0.222097\pi\)
\(504\) −194.060 146.838i −0.385040 0.291345i
\(505\) 439.954 0.871195
\(506\) 0 0
\(507\) 234.545 449.469i 0.462612 0.886527i
\(508\) 149.184 + 459.140i 0.293668 + 0.903818i
\(509\) 189.070 260.232i 0.371454 0.511262i −0.581842 0.813302i \(-0.697668\pi\)
0.953295 + 0.302040i \(0.0976676\pi\)
\(510\) −300.386 + 44.5890i −0.588991 + 0.0874295i
\(511\) 64.7649 199.326i 0.126742 0.390070i
\(512\) −950.204 308.740i −1.85587 0.603007i
\(513\) −517.073 + 487.774i −1.00794 + 0.950827i
\(514\) 1210.44 + 879.440i 2.35495 + 1.71097i
\(515\) 980.236 318.498i 1.90337 0.618443i
\(516\) −158.821 + 304.356i −0.307792 + 0.589836i
\(517\) 0 0
\(518\) 23.5055i 0.0453774i
\(519\) −103.018 + 611.890i −0.198493 + 1.17898i
\(520\) 6.75423 + 4.90723i 0.0129889 + 0.00943699i
\(521\) 180.087 + 247.868i 0.345656 + 0.475755i 0.946083 0.323925i \(-0.105002\pi\)
−0.600426 + 0.799680i \(0.705002\pi\)
\(522\) −910.816 + 276.494i −1.74486 + 0.529682i
\(523\) 207.538 638.736i 0.396822 1.22129i −0.530711 0.847553i \(-0.678075\pi\)
0.927533 0.373740i \(-0.121925\pi\)
\(524\) −716.699 986.451i −1.36775 1.88254i
\(525\) −182.286 + 90.6594i −0.347212 + 0.172685i
\(526\) 218.140 + 671.367i 0.414715 + 1.27636i
\(527\) 154.607i 0.293372i
\(528\) 0 0
\(529\) 482.182 0.911497
\(530\) −571.394 + 185.657i −1.07810 + 0.350297i
\(531\) 718.074 + 13.9559i 1.35231 + 0.0262823i
\(532\) 319.101 231.840i 0.599814 0.435790i
\(533\) −4.79444 1.55781i −0.00899520 0.00292272i
\(534\) 333.523 + 340.068i 0.624574 + 0.636831i
\(535\) −371.549 + 269.946i −0.694484 + 0.504572i
\(536\) 890.657 1225.88i 1.66167 2.28710i
\(537\) −68.8791 + 409.118i −0.128267 + 0.761858i
\(538\) 1200.99 2.23232
\(539\) 0 0
\(540\) 224.661 + 1746.52i 0.416038 + 3.23430i
\(541\) −56.8905 175.091i −0.105158 0.323643i 0.884610 0.466332i \(-0.154425\pi\)
−0.989767 + 0.142690i \(0.954425\pi\)
\(542\) 838.725 1154.41i 1.54746 2.12990i
\(543\) 27.2801 + 183.779i 0.0502396 + 0.338452i
\(544\) 8.38108 25.7943i 0.0154064 0.0474160i
\(545\) −368.203 119.636i −0.675602 0.219516i
\(546\) 1.33709 0.198477i 0.00244888 0.000363510i
\(547\) −491.170 356.856i −0.897934 0.652387i 0.0400006 0.999200i \(-0.487264\pi\)
−0.937934 + 0.346812i \(0.887264\pi\)
\(548\) −1299.19 + 422.131i −2.37078 + 0.770312i
\(549\) −407.520 584.458i −0.742295 1.06459i
\(550\) 0 0
\(551\) 795.344i 1.44346i
\(552\) −301.630 50.7825i −0.546432 0.0919973i
\(553\) −92.3224 67.0762i −0.166948 0.121295i
\(554\) −1022.71 1407.64i −1.84604 2.54086i
\(555\) 62.6014 61.3965i 0.112795 0.110624i
\(556\) 132.916 409.073i 0.239057 0.735743i
\(557\) 238.714 + 328.561i 0.428570 + 0.589876i 0.967624 0.252395i \(-0.0812182\pi\)
−0.539054 + 0.842271i \(0.681218\pi\)
\(558\) −1330.60 25.8603i −2.38458 0.0463446i
\(559\) −0.303784 0.934950i −0.000543441 0.00167254i
\(560\) 274.376i 0.489958i
\(561\) 0 0
\(562\) −1354.87 −2.41081
\(563\) 306.504 99.5891i 0.544412 0.176890i −0.0238835 0.999715i \(-0.507603\pi\)
0.568295 + 0.822825i \(0.307603\pi\)
\(564\) 301.759 + 606.737i 0.535033 + 1.07578i
\(565\) −333.629 + 242.396i −0.590494 + 0.429019i
\(566\) 738.347 + 239.903i 1.30450 + 0.423857i
\(567\) 115.464 + 90.9485i 0.203640 + 0.160403i
\(568\) 559.473 406.481i 0.984988 0.715636i
\(569\) −256.283 + 352.744i −0.450410 + 0.619936i −0.972486 0.232963i \(-0.925158\pi\)
0.522075 + 0.852899i \(0.325158\pi\)
\(570\) −2153.89 362.630i −3.77876 0.636193i
\(571\) 155.637 0.272569 0.136284 0.990670i \(-0.456484\pi\)
0.136284 + 0.990670i \(0.456484\pi\)
\(572\) 0 0
\(573\) −64.6036 33.7118i −0.112746 0.0588339i
\(574\) 139.526 + 429.418i 0.243077 + 0.748115i
\(575\) −150.409 + 207.021i −0.261582 + 0.360036i
\(576\) 430.526 + 149.196i 0.747441 + 0.259021i
\(577\) 259.039 797.241i 0.448942 1.38170i −0.429161 0.903228i \(-0.641191\pi\)
0.878103 0.478472i \(-0.158809\pi\)
\(578\) 917.633 + 298.157i 1.58760 + 0.515842i
\(579\) −88.8968 598.876i −0.153535 1.03433i
\(580\) −1593.97 1158.09i −2.74823 1.99670i
\(581\) −145.828 + 47.3823i −0.250994 + 0.0815531i
\(582\) 896.361 + 467.744i 1.54014 + 0.803684i
\(583\) 0 0
\(584\) 1721.07i 2.94704i
\(585\) −4.02108 3.04260i −0.00687364 0.00520102i
\(586\) 1254.02 + 911.101i 2.13997 + 1.55478i
\(587\) 358.686 + 493.689i 0.611050 + 0.841038i 0.996663 0.0816225i \(-0.0260102\pi\)
−0.385613 + 0.922660i \(0.626010\pi\)
\(588\) 792.718 + 808.274i 1.34816 + 1.37462i
\(589\) 343.632 1057.59i 0.583416 1.79557i
\(590\) 1297.16 + 1785.39i 2.19858 + 3.02609i
\(591\) −86.7139 174.353i −0.146724 0.295014i
\(592\) 21.8866 + 67.3601i 0.0369707 + 0.113784i
\(593\) 626.517i 1.05652i 0.849083 + 0.528260i \(0.177155\pi\)
−0.849083 + 0.528260i \(0.822845\pi\)
\(594\) 0 0
\(595\) −52.4671 −0.0881799
\(596\) −239.843 + 77.9297i −0.402421 + 0.130755i
\(597\) 366.021 182.039i 0.613100 0.304923i
\(598\) 1.37454 0.998665i 0.00229857 0.00167001i
\(599\) 1090.50 + 354.326i 1.82054 + 0.591529i 0.999795 + 0.0202344i \(0.00644123\pi\)
0.820745 + 0.571295i \(0.193559\pi\)
\(600\) −1193.58 + 1170.61i −1.98931 + 1.95102i
\(601\) −494.787 + 359.484i −0.823273 + 0.598143i −0.917648 0.397394i \(-0.869915\pi\)
0.0943748 + 0.995537i \(0.469915\pi\)
\(602\) −51.7539 + 71.2331i −0.0859699 + 0.118327i
\(603\) −552.228 + 729.821i −0.915801 + 1.21032i
\(604\) 1364.58 2.25924
\(605\) 0 0
\(606\) 270.616 518.594i 0.446560 0.855766i
\(607\) −34.4711 106.091i −0.0567893 0.174780i 0.918638 0.395099i \(-0.129290\pi\)
−0.975428 + 0.220320i \(0.929290\pi\)
\(608\) 114.662 157.818i 0.188588 0.259569i
\(609\) −162.673 + 24.1470i −0.267114 + 0.0396503i
\(610\) 676.541 2082.18i 1.10908 3.41341i
\(611\) −1.84547 0.599630i −0.00302041 0.000981391i
\(612\) −89.0604 + 256.997i −0.145524 + 0.419929i
\(613\) 585.747 + 425.570i 0.955542 + 0.694242i 0.952111 0.305752i \(-0.0989080\pi\)
0.00343063 + 0.999994i \(0.498908\pi\)
\(614\) 1081.79 351.496i 1.76188 0.572469i
\(615\) 779.210 1493.24i 1.26701 2.42803i
\(616\) 0 0
\(617\) 305.723i 0.495499i 0.968824 + 0.247749i \(0.0796910\pi\)
−0.968824 + 0.247749i \(0.920309\pi\)
\(618\) 227.515 1351.36i 0.368147 2.18666i
\(619\) −801.760 582.513i −1.29525 0.941054i −0.295353 0.955388i \(-0.595437\pi\)
−0.999897 + 0.0143342i \(0.995437\pi\)
\(620\) −1619.19 2228.62i −2.61160 3.59455i
\(621\) 181.549 + 34.2060i 0.292350 + 0.0550822i
\(622\) −126.579 + 389.572i −0.203504 + 0.626321i
\(623\) 48.3721 + 66.5785i 0.0776438 + 0.106868i
\(624\) 3.64691 1.81378i 0.00584441 0.00290670i
\(625\) −49.8536 153.434i −0.0797658 0.245494i
\(626\) 511.397i 0.816928i
\(627\) 0 0
\(628\) 1743.12 2.77567
\(629\) 12.8808 4.18523i 0.0204782 0.00665378i
\(630\) −8.77589 + 451.548i −0.0139300 + 0.716742i
\(631\) 437.234 317.669i 0.692922 0.503437i −0.184698 0.982795i \(-0.559131\pi\)
0.877619 + 0.479358i \(0.159131\pi\)
\(632\) −891.244 289.583i −1.41020 0.458200i
\(633\) −2.60885 2.66004i −0.00412140 0.00420228i
\(634\) 191.358 139.029i 0.301826 0.219289i
\(635\) 271.491 373.675i 0.427545 0.588465i
\(636\) −89.3392 + 530.643i −0.140470 + 0.834345i
\(637\) −3.24190 −0.00508933
\(638\) 0 0
\(639\) −342.619 + 238.895i −0.536181 + 0.373858i
\(640\) 504.993 + 1554.21i 0.789052 + 2.42845i
\(641\) −167.415 + 230.427i −0.261178 + 0.359481i −0.919387 0.393355i \(-0.871314\pi\)
0.658209 + 0.752835i \(0.271314\pi\)
\(642\) 89.6582 + 604.006i 0.139655 + 0.940819i
\(643\) 50.1585 154.372i 0.0780071 0.240081i −0.904447 0.426586i \(-0.859716\pi\)
0.982454 + 0.186505i \(0.0597161\pi\)
\(644\) −97.4937 31.6776i −0.151388 0.0491889i
\(645\) 324.894 48.2271i 0.503712 0.0747707i
\(646\) −272.940 198.303i −0.422509 0.306970i
\(647\) −264.676 + 85.9983i −0.409081 + 0.132919i −0.506326 0.862342i \(-0.668997\pi\)
0.0972452 + 0.995260i \(0.468997\pi\)
\(648\) 1132.55 + 417.300i 1.74777 + 0.643982i
\(649\) 0 0
\(650\) 9.28637i 0.0142867i
\(651\) −226.743 38.1745i −0.348299 0.0586397i
\(652\) −583.879 424.213i −0.895521 0.650634i
\(653\) 351.286 + 483.504i 0.537957 + 0.740435i 0.988317 0.152412i \(-0.0487042\pi\)
−0.450360 + 0.892847i \(0.648704\pi\)
\(654\) −367.503 + 360.430i −0.561931 + 0.551116i
\(655\) −360.494 + 1109.49i −0.550373 + 1.69387i
\(656\) 799.686 + 1100.67i 1.21903 + 1.67786i
\(657\) −20.1990 + 1039.30i −0.0307442 + 1.58189i
\(658\) 53.7064 + 165.291i 0.0816206 + 0.251202i
\(659\) 187.267i 0.284169i 0.989855 + 0.142085i \(0.0453805\pi\)
−0.989855 + 0.142085i \(0.954620\pi\)
\(660\) 0 0
\(661\) 218.982 0.331289 0.165645 0.986186i \(-0.447030\pi\)
0.165645 + 0.986186i \(0.447030\pi\)
\(662\) −1010.41 + 328.301i −1.52629 + 0.495923i
\(663\) −0.346836 0.697373i −0.000523131 0.00105184i
\(664\) −1018.67 + 740.105i −1.53414 + 1.11462i
\(665\) −358.901 116.614i −0.539701 0.175360i
\(666\) −33.8648 111.556i −0.0508481 0.167502i
\(667\) −167.229 + 121.499i −0.250719 + 0.182158i
\(668\) 200.748 276.306i 0.300521 0.413632i
\(669\) −367.604 61.8899i −0.549483 0.0925111i
\(670\) −2812.17 −4.19726
\(671\) 0 0
\(672\) −35.7599 18.6604i −0.0532141 0.0277685i
\(673\) 189.780 + 584.082i 0.281991 + 0.867878i 0.987285 + 0.158963i \(0.0508151\pi\)
−0.705294 + 0.708915i \(0.749185\pi\)
\(674\) 1142.97 1573.16i 1.69580 2.33407i
\(675\) 734.508 692.889i 1.08816 1.02650i
\(676\) 431.165 1326.99i 0.637819 1.96300i
\(677\) 775.510 + 251.979i 1.14551 + 0.372199i 0.819450 0.573150i \(-0.194279\pi\)
0.326060 + 0.945349i \(0.394279\pi\)
\(678\) 80.5079 + 542.362i 0.118743 + 0.799944i
\(679\) 141.322 + 102.677i 0.208133 + 0.151217i
\(680\) −409.764 + 133.140i −0.602594 + 0.195795i
\(681\) 126.886 + 66.2122i 0.186323 + 0.0972279i
\(682\) 0 0
\(683\) 95.9038i 0.140416i 0.997532 + 0.0702078i \(0.0223662\pi\)
−0.997532 + 0.0702078i \(0.977634\pi\)
\(684\) −1180.42 + 1560.04i −1.72576 + 2.28076i
\(685\) 1057.35 + 768.213i 1.54358 + 1.12148i
\(686\) 353.638 + 486.741i 0.515508 + 0.709535i
\(687\) −153.780 156.798i −0.223843 0.228236i
\(688\) −81.9849 + 252.323i −0.119164 + 0.366749i
\(689\) −0.905725 1.24662i −0.00131455 0.00180932i
\(690\) 252.789 + 508.275i 0.366361 + 0.736630i
\(691\) 91.5341 + 281.713i 0.132466 + 0.407689i 0.995187 0.0979912i \(-0.0312417\pi\)
−0.862721 + 0.505680i \(0.831242\pi\)
\(692\) 1707.69i 2.46776i
\(693\) 0 0
\(694\) 1358.25 1.95713
\(695\) −391.381 + 127.167i −0.563138 + 0.182974i
\(696\) −1209.19 + 601.384i −1.73734 + 0.864058i
\(697\) 210.474 152.918i 0.301971 0.219395i
\(698\) −1505.08 489.029i −2.15627 0.700615i
\(699\) −397.086 + 389.444i −0.568077 + 0.557144i
\(700\) −453.287 + 329.332i −0.647552 + 0.470474i
\(701\) 437.413 602.048i 0.623985 0.858841i −0.373651 0.927569i \(-0.621894\pi\)
0.997635 + 0.0687283i \(0.0218942\pi\)
\(702\) −6.05982 + 2.86833i −0.00863223 + 0.00408594i
\(703\) 97.4133 0.138568
\(704\) 0 0
\(705\) 299.933 574.776i 0.425436 0.815285i
\(706\) −329.371 1013.70i −0.466530 1.43583i
\(707\) 59.4041 81.7627i 0.0840227 0.115647i
\(708\) 1955.17 290.225i 2.76154 0.409922i
\(709\) −243.404 + 749.120i −0.343306 + 1.05659i 0.619179 + 0.785250i \(0.287466\pi\)
−0.962484 + 0.271337i \(0.912534\pi\)
\(710\) −1220.61 396.600i −1.71917 0.558592i
\(711\) 534.796 + 185.330i 0.752175 + 0.260661i
\(712\) 546.732 + 397.224i 0.767882 + 0.557899i
\(713\) −274.864 + 89.3086i −0.385503 + 0.125257i
\(714\) −32.2725 + 61.8454i −0.0451996 + 0.0866182i
\(715\) 0 0
\(716\) 1141.78i 1.59467i
\(717\) 174.807 1038.29i 0.243803 1.44810i
\(718\) −858.508 623.742i −1.19569 0.868722i
\(719\) −287.294 395.426i −0.399574 0.549967i 0.561063 0.827773i \(-0.310393\pi\)
−0.960637 + 0.277806i \(0.910393\pi\)
\(720\) 395.299 + 1302.18i 0.549027 + 1.80858i
\(721\) 73.1640 225.176i 0.101476 0.312310i
\(722\) −683.441 940.676i −0.946594 1.30288i
\(723\) −471.436 + 234.467i −0.652055 + 0.324297i
\(724\) 158.008 + 486.298i 0.218243 + 0.671683i
\(725\) 1129.80i 1.55834i
\(726\) 0 0
\(727\) 270.772 0.372452 0.186226 0.982507i \(-0.440374\pi\)
0.186226 + 0.982507i \(0.440374\pi\)
\(728\) 1.82396 0.592640i 0.00250544 0.000814066i
\(729\) −679.017 265.287i −0.931436 0.363905i
\(730\) −2584.07 + 1877.44i −3.53983 + 2.57184i
\(731\) 48.2500 + 15.6774i 0.0660055 + 0.0214465i
\(732\) −1373.03 1399.97i −1.87572 1.91253i
\(733\) 328.669 238.792i 0.448388 0.325773i −0.340571 0.940219i \(-0.610620\pi\)
0.788959 + 0.614446i \(0.210620\pi\)
\(734\) −864.192 + 1189.46i −1.17737 + 1.62052i
\(735\) 179.830 1068.13i 0.244667 1.45324i
\(736\) −50.6990 −0.0688845
\(737\) 0 0
\(738\) −1280.86 1836.98i −1.73558 2.48914i
\(739\) 287.094 + 883.586i 0.388490 + 1.19565i 0.933916 + 0.357492i \(0.116368\pi\)
−0.545426 + 0.838159i \(0.683632\pi\)
\(740\) 141.842 195.229i 0.191678 0.263823i
\(741\) −0.822542 5.54127i −0.00111004 0.00747809i
\(742\) −42.6484 + 131.258i −0.0574776 + 0.176898i
\(743\) −690.050 224.211i −0.928734 0.301764i −0.194689 0.980865i \(-0.562370\pi\)
−0.734045 + 0.679101i \(0.762370\pi\)
\(744\) −1867.72 + 277.243i −2.51037 + 0.372638i
\(745\) 195.198 + 141.820i 0.262011 + 0.190362i
\(746\) −661.901 + 215.065i −0.887267 + 0.288290i
\(747\) 623.828 434.972i 0.835111 0.582291i
\(748\) 0 0
\(749\) 105.499i 0.140853i
\(750\) 1014.32 + 170.772i 1.35243 + 0.227696i
\(751\) −890.002 646.624i −1.18509 0.861018i −0.192352 0.981326i \(-0.561612\pi\)
−0.992737 + 0.120308i \(0.961612\pi\)
\(752\) 307.814 + 423.670i 0.409328 + 0.563391i
\(753\) −297.734 + 292.004i −0.395397 + 0.387787i
\(754\) 2.31807 7.13429i 0.00307437 0.00946192i
\(755\) −767.390 1056.22i −1.01641 1.39897i
\(756\) 354.915 + 194.070i 0.469464 + 0.256706i
\(757\) −389.757 1199.55i −0.514871 1.58461i −0.783517 0.621370i \(-0.786576\pi\)
0.268646 0.963239i \(-0.413424\pi\)
\(758\) 253.499i 0.334431i
\(759\) 0 0
\(760\) −3098.91 −4.07752
\(761\) 110.930 36.0434i 0.145769 0.0473632i −0.235224 0.971941i \(-0.575582\pi\)
0.380993 + 0.924578i \(0.375582\pi\)
\(762\) −273.474 549.867i −0.358890 0.721610i
\(763\) −71.9498 + 52.2746i −0.0942985 + 0.0685119i
\(764\) −190.733 61.9728i −0.249650 0.0811162i
\(765\) 249.007 75.5903i 0.325499 0.0988109i
\(766\) 1486.69 1080.14i 1.94084 1.41011i
\(767\) −3.32692 + 4.57911i −0.00433758 + 0.00597016i
\(768\) 1543.55 + 259.872i 2.00983 + 0.338375i
\(769\) −1252.94 −1.62930 −0.814652 0.579949i \(-0.803072\pi\)
−0.814652 + 0.579949i \(0.803072\pi\)
\(770\) 0 0
\(771\) −1136.67 593.142i −1.47428 0.769315i
\(772\) −514.895 1584.68i −0.666963 2.05270i
\(773\) −686.689 + 945.147i −0.888343 + 1.22270i 0.0856964 + 0.996321i \(0.472689\pi\)
−0.974039 + 0.226378i \(0.927311\pi\)
\(774\) 142.995 412.632i 0.184748 0.533117i
\(775\) −488.133 + 1502.32i −0.629849 + 1.93848i
\(776\) 1364.27 + 443.278i 1.75808 + 0.571234i
\(777\) −2.95751 19.9241i −0.00380632 0.0256423i
\(778\) −1056.22 767.389i −1.35761 0.986361i
\(779\) 1779.63 578.236i 2.28450 0.742280i
\(780\) −12.3031 6.42008i −0.0157732 0.00823087i
\(781\) 0 0
\(782\) 87.6820i 0.112125i
\(783\) 737.249 348.966i 0.941569 0.445679i
\(784\) 707.827 + 514.266i 0.902841 + 0.655952i
\(785\) −980.267 1349.22i −1.24875 1.71875i
\(786\) 1086.06 + 1107.38i 1.38176 + 1.40888i
\(787\) −342.029 + 1052.66i −0.434598 + 1.33756i 0.458899 + 0.888488i \(0.348244\pi\)
−0.893498 + 0.449068i \(0.851756\pi\)
\(788\) −315.000 433.560i −0.399746 0.550203i
\(789\) −269.376 541.626i −0.341414 0.686472i
\(790\) 537.430 + 1654.04i 0.680291 + 2.09372i
\(791\) 94.7321i 0.119762i
\(792\) 0 0
\(793\) 5.61513 0.00708088
\(794\) 614.584 199.690i 0.774035 0.251499i
\(795\) 460.973 229.263i 0.579840 0.288382i
\(796\) 910.174 661.280i 1.14344 0.830754i
\(797\) 61.7682 + 20.0697i 0.0775009 + 0.0251816i 0.347511 0.937676i \(-0.387027\pi\)
−0.270010 + 0.962858i \(0.587027\pi\)
\(798\) −358.219 + 351.324i −0.448896 + 0.440256i
\(799\) 81.0155 58.8612i 0.101396 0.0736686i
\(800\) −162.878 + 224.183i −0.203598 + 0.280228i
\(801\) −325.493 246.288i −0.406358 0.307476i
\(802\) 317.851 0.396322
\(803\) 0 0
\(804\) −1165.24 + 2233.00i −1.44930 + 2.77736i
\(805\) 30.3076 + 93.2771i 0.0376491 + 0.115872i
\(806\) 6.16480 8.48512i 0.00764863 0.0105274i
\(807\) −1018.00 + 151.111i −1.26146 + 0.187250i
\(808\) 256.461 789.304i 0.317402 0.976862i
\(809\) 610.865 + 198.482i 0.755087 + 0.245343i 0.661169 0.750237i \(-0.270061\pi\)
0.0939183 + 0.995580i \(0.470061\pi\)
\(810\) −608.904 2155.67i −0.751733 2.66132i
\(811\) 73.8187 + 53.6324i 0.0910218 + 0.0661312i 0.632365 0.774670i \(-0.282084\pi\)
−0.541344 + 0.840802i \(0.682084\pi\)
\(812\) −430.447 + 139.861i −0.530108 + 0.172242i
\(813\) −565.681 + 1084.04i −0.695795 + 1.33339i
\(814\) 0 0
\(815\) 690.500i 0.847239i
\(816\) −34.8979 + 207.281i −0.0427670 + 0.254021i
\(817\) 295.210 + 214.482i 0.361334 + 0.262524i
\(818\) 1131.62 + 1557.54i 1.38340 + 1.90409i
\(819\) −1.10839 + 0.336471i −0.00135334 + 0.000410831i
\(820\) 1432.43 4408.56i 1.74687 5.37630i
\(821\) 532.043 + 732.295i 0.648043 + 0.891955i 0.999012 0.0444321i \(-0.0141478\pi\)
−0.350969 + 0.936387i \(0.614148\pi\)
\(822\) 1555.91 773.826i 1.89283 0.941394i
\(823\) 193.305 + 594.932i 0.234879 + 0.722883i 0.997137 + 0.0756101i \(0.0240904\pi\)
−0.762259 + 0.647273i \(0.775910\pi\)
\(824\) 1944.27i 2.35955i
\(825\) 0 0
\(826\) 506.951 0.613742
\(827\) −864.024 + 280.738i −1.04477 + 0.339466i −0.780613 0.625014i \(-0.785093\pi\)
−0.264156 + 0.964480i \(0.585093\pi\)
\(828\) 508.340 + 9.87965i 0.613937 + 0.0119319i
\(829\) 474.666 344.865i 0.572577 0.416001i −0.263464 0.964669i \(-0.584865\pi\)
0.836040 + 0.548668i \(0.184865\pi\)
\(830\) 2222.44 + 722.115i 2.67764 + 0.870018i
\(831\) 1043.99 + 1064.48i 1.25631 + 1.28096i
\(832\) −2.90507 + 2.11065i −0.00349167 + 0.00253684i
\(833\) 98.3395 135.353i 0.118055 0.162488i
\(834\) −90.8403 + 539.559i −0.108921 + 0.646954i
\(835\) −326.761 −0.391331
\(836\) 0 0
\(837\) 1131.11 145.498i 1.35139 0.173833i
\(838\) −322.823 993.547i −0.385230 1.18562i
\(839\) −601.835 + 828.355i −0.717325 + 0.987313i 0.282284 + 0.959331i \(0.408908\pi\)
−0.999608 + 0.0279817i \(0.991092\pi\)
\(840\) 94.0844 + 633.824i 0.112005 + 0.754552i
\(841\) −22.1373 + 68.1317i −0.0263226 + 0.0810127i
\(842\) −408.204 132.634i −0.484803 0.157522i
\(843\) 1148.44 170.473i 1.36232 0.202222i
\(844\) −8.29562 6.02712i −0.00982893 0.00714114i
\(845\) −1269.60 + 412.517i −1.50248 + 0.488186i
\(846\) −493.027 707.090i −0.582774 0.835803i
\(847\) 0 0
\(848\) 415.860i 0.490401i
\(849\) −656.032 110.450i −0.772712 0.130094i
\(850\) 387.715 + 281.692i 0.456136 + 0.331402i
\(851\) −14.8812 20.4822i −0.0174867 0.0240684i
\(852\) −820.687 + 804.892i −0.963247 + 0.944708i
\(853\) 121.995 375.463i 0.143019 0.440168i −0.853732 0.520713i \(-0.825666\pi\)
0.996751 + 0.0805454i \(0.0256662\pi\)
\(854\) −295.612 406.874i −0.346149 0.476434i
\(855\) 1871.34 + 36.3697i 2.18870 + 0.0425377i
\(856\) 267.714 + 823.940i 0.312750 + 0.962547i
\(857\) 1.34510i 0.00156955i −1.00000 0.000784774i \(-0.999750\pi\)
1.00000 0.000784774i \(-0.000249801\pi\)
\(858\) 0 0
\(859\) 847.638 0.986772 0.493386 0.869810i \(-0.335759\pi\)
0.493386 + 0.869810i \(0.335759\pi\)
\(860\) 859.701 279.334i 0.999652 0.324807i
\(861\) −172.298 346.434i −0.200113 0.402362i
\(862\) 1673.97 1216.21i 1.94196 1.41091i
\(863\) −442.630 143.819i −0.512897 0.166650i 0.0411222 0.999154i \(-0.486907\pi\)
−0.554019 + 0.832504i \(0.686907\pi\)
\(864\) 196.600 + 37.0417i 0.227546 + 0.0428723i
\(865\) 1321.80 960.343i 1.52809 1.11022i
\(866\) 1321.78 1819.28i 1.52631 2.10078i
\(867\) −815.331 137.269i −0.940404 0.158327i
\(868\) −632.804 −0.729037
\(869\) 0 0
\(870\) 2221.99 + 1159.49i 2.55401 + 1.33275i
\(871\) −2.22880 6.85955i −0.00255890 0.00787549i
\(872\) −429.271 + 590.840i −0.492283 + 0.677569i
\(873\) −818.638 283.694i −0.937730 0.324964i
\(874\) −194.883 + 599.789i −0.222979 + 0.686257i
\(875\) 169.016 + 54.9166i 0.193161 + 0.0627618i
\(876\) 420.055 + 2829.81i 0.479515 + 3.23038i
\(877\) −421.449 306.200i −0.480557 0.349145i 0.320984 0.947085i \(-0.395986\pi\)
−0.801541 + 0.597939i \(0.795986\pi\)
\(878\) 1585.59 515.190i 1.80591 0.586777i
\(879\) −1177.59 614.496i −1.33969 0.699085i
\(880\) 0 0
\(881\) 606.759i 0.688717i 0.938838 + 0.344358i \(0.111904\pi\)
−0.938838 + 0.344358i \(0.888096\pi\)
\(882\) −1148.44 868.980i −1.30209 0.985238i
\(883\) 90.4194 + 65.6935i 0.102400 + 0.0743981i 0.637807 0.770196i \(-0.279842\pi\)
−0.535407 + 0.844594i \(0.679842\pi\)
\(884\) −1.25993 1.73414i −0.00142526 0.00196170i
\(885\) −1324.16 1350.14i −1.49623 1.52559i
\(886\) −116.537 + 358.665i −0.131532 + 0.404814i
\(887\) −6.70027 9.22213i −0.00755386 0.0103970i 0.805223 0.592972i \(-0.202045\pi\)
−0.812777 + 0.582575i \(0.802045\pi\)
\(888\) −73.6572 148.100i −0.0829473 0.166780i
\(889\) −32.7876 100.910i −0.0368814 0.113509i
\(890\) 1254.20i 1.40921i
\(891\) 0 0
\(892\) −1025.93 −1.15014
\(893\) 685.012 222.574i 0.767091 0.249243i
\(894\) 287.237 142.856i 0.321294 0.159794i
\(895\) 883.772 642.098i 0.987454 0.717428i
\(896\) 357.026 + 116.005i 0.398467 + 0.129470i
\(897\) −1.03946 + 1.01945i −0.00115881 + 0.00113651i
\(898\) −635.780 + 461.921i −0.707995 + 0.514389i
\(899\) −750.020 + 1032.31i −0.834283 + 1.14829i
\(900\) 1676.80 2216.06i 1.86312 2.46228i
\(901\) 79.5220 0.0882597
\(902\) 0 0
\(903\) 34.9056 66.8914i 0.0386552 0.0740768i
\(904\) 240.392 + 739.851i 0.265920 + 0.818419i
\(905\) 287.550 395.778i 0.317735 0.437324i
\(906\) −1717.04 + 254.876i −1.89519 + 0.281321i
\(907\) 492.982 1517.24i 0.543531 1.67282i −0.180927 0.983496i \(-0.557910\pi\)
0.724458 0.689319i \(-0.242090\pi\)
\(908\) 374.611 + 121.719i 0.412567 + 0.134051i
\(909\) −164.132 + 473.627i −0.180563 + 0.521042i
\(910\) −2.87949 2.09207i −0.00316427 0.00229898i
\(911\) −575.802 + 187.089i −0.632055 + 0.205367i −0.607485 0.794331i \(-0.707822\pi\)
−0.0245695 + 0.999698i \(0.507822\pi\)
\(912\) −699.425 + 1340.34i −0.766914 + 1.46967i
\(913\) 0 0
\(914\) 249.573i 0.273056i
\(915\) −311.475 + 1850.05i −0.340409 + 2.02191i
\(916\) −488.990 355.272i −0.533832 0.387852i
\(917\) 157.516 + 216.803i 0.171773 + 0.236426i
\(918\) 64.0622 340.011i 0.0697845 0.370383i
\(919\) −113.582 + 349.570i −0.123593 + 0.380381i −0.993642 0.112585i \(-0.964087\pi\)
0.870049 + 0.492965i \(0.164087\pi\)
\(920\) 473.400 + 651.579i 0.514565 + 0.708238i
\(921\) −872.738 + 434.053i −0.947598 + 0.471284i
\(922\) −948.272 2918.48i −1.02849 3.16538i
\(923\) 3.29169i 0.00356630i
\(924\) 0 0
\(925\) −138.377 −0.149597
\(926\) 2745.86 892.183i 2.96529 0.963481i
\(927\) −22.8185 + 1174.08i −0.0246154 + 1.26654i
\(928\) −181.092 + 131.571i −0.195143 + 0.141780i
\(929\) 1589.96 + 516.611i 1.71148 + 0.556093i 0.990579 0.136946i \(-0.0437286\pi\)
0.720900 + 0.693039i \(0.243729\pi\)
\(930\) 2453.67 + 2501.82i 2.63836 + 2.69013i
\(931\) 973.529 707.310i 1.04568 0.759732i
\(932\) −899.717 + 1238.35i −0.965361 + 1.32871i
\(933\) 58.2763 346.140i 0.0624612 0.370997i
\(934\) 1124.00 1.20343
\(935\) 0 0
\(936\) −7.80261 + 5.44046i −0.00833612 + 0.00581246i
\(937\) 309.287 + 951.889i 0.330083 + 1.01589i 0.969094 + 0.246692i \(0.0793437\pi\)
−0.639011 + 0.769197i \(0.720656\pi\)
\(938\) −379.708 + 522.624i −0.404806 + 0.557168i
\(939\) 64.3451 + 433.477i 0.0685251 + 0.461637i
\(940\) 551.369 1696.94i 0.586563 1.80526i
\(941\) −335.079 108.874i −0.356088 0.115700i 0.125510 0.992092i \(-0.459943\pi\)
−0.481598 + 0.876392i \(0.659943\pi\)
\(942\) −2193.35 + 325.580i −2.32840 + 0.345626i
\(943\) −393.442 285.852i −0.417223 0.303131i
\(944\) 1452.78 472.036i 1.53896 0.500038i
\(945\) −49.3760 383.851i −0.0522497 0.406192i
\(946\) 0 0
\(947\) 1536.20i 1.62217i −0.584927 0.811086i \(-0.698877\pi\)
0.584927 0.811086i \(-0.301123\pi\)
\(948\) 1536.08 + 258.614i 1.62033 + 0.272800i
\(949\) −6.62755 4.81520i −0.00698372 0.00507397i
\(950\) 2026.08 + 2788.65i 2.13271 + 2.93543i
\(951\) −144.708 + 141.923i −0.152164 + 0.149236i
\(952\) −30.5844 + 94.1292i −0.0321265 + 0.0988752i
\(953\) −527.449 725.972i −0.553462 0.761775i 0.437015 0.899454i \(-0.356036\pi\)
−0.990477 + 0.137679i \(0.956036\pi\)
\(954\) 13.3012 684.391i 0.0139426 0.717391i
\(955\) 59.2924 + 182.483i 0.0620863 + 0.191082i
\(956\) 2897.71i 3.03108i
\(957\) 0 0
\(958\) 1516.66 1.58315
\(959\) 285.535 92.7761i 0.297743 0.0967425i
\(960\) −534.263 1074.23i −0.556524 1.11899i
\(961\) −665.871 + 483.784i −0.692894 + 0.503417i
\(962\) 0.873804 + 0.283916i 0.000908320 + 0.000295131i
\(963\) −151.995 500.694i −0.157834 0.519932i
\(964\) −1172.31 + 851.731i −1.21609 + 0.883539i
\(965\) −937.030 + 1289.71i −0.971015 + 1.33649i
\(966\) 128.592 + 21.6498i 0.133118 + 0.0224118i
\(967\) 1717.58 1.77620 0.888099 0.459652i \(-0.152026\pi\)
0.888099 + 0.459652i \(0.152026\pi\)
\(968\) 0 0
\(969\) 256.304 + 133.746i 0.264504 + 0.138025i
\(970\) −822.669 2531.92i −0.848113 2.61022i
\(971\) −880.936 + 1212.50i −0.907246 + 1.24872i 0.0608528 + 0.998147i \(0.480618\pi\)
−0.968099 + 0.250570i \(0.919382\pi\)
\(972\) −1964.01 409.714i −2.02059 0.421517i
\(973\) −29.2123 + 89.9063i −0.0300229 + 0.0924011i
\(974\) −1173.86 381.410i −1.20519 0.391591i
\(975\) 1.16843 + 7.87144i 0.00119839 + 0.00807327i
\(976\) −1225.99 890.734i −1.25614 0.912638i
\(977\) 53.6767 17.4406i 0.0549404 0.0178512i −0.281418 0.959585i \(-0.590805\pi\)
0.336358 + 0.941734i \(0.390805\pi\)
\(978\) 813.925 + 424.727i 0.832234 + 0.434281i
\(979\) 0 0
\(980\) 2980.98i 3.04182i
\(981\) 266.158 351.752i 0.271313 0.358565i
\(982\) 1264.29 + 918.562i 1.28747 + 0.935399i
\(983\) −27.9524 38.4732i −0.0284358 0.0391385i 0.794562 0.607183i \(-0.207700\pi\)
−0.822998 + 0.568044i \(0.807700\pi\)
\(984\) −2224.74 2268.40i −2.26092 2.30528i
\(985\) −158.443 + 487.636i −0.160855 + 0.495062i
\(986\) 227.548 + 313.192i 0.230779 + 0.317639i
\(987\) −66.3206 133.349i −0.0671941 0.135105i
\(988\) −4.76421 14.6627i −0.00482207 0.0148408i
\(989\) 94.8360i 0.0958908i
\(990\) 0 0
\(991\) −218.685 −0.220671 −0.110336 0.993894i \(-0.535193\pi\)
−0.110336 + 0.993894i \(0.535193\pi\)
\(992\) −297.649 + 96.7121i −0.300050 + 0.0974921i
\(993\) 815.146 405.410i 0.820893 0.408268i
\(994\) −238.517 + 173.293i −0.239957 + 0.174339i
\(995\) −1023.70 332.619i −1.02884 0.334291i
\(996\) 1494.27 1465.52i 1.50028 1.47140i
\(997\) −532.052 + 386.558i −0.533653 + 0.387721i −0.821722 0.569888i \(-0.806987\pi\)
0.288070 + 0.957609i \(0.406987\pi\)
\(998\) 184.726 254.253i 0.185096 0.254763i
\(999\) 42.7412 + 90.2978i 0.0427840 + 0.0903882i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.269.1 24
3.2 odd 2 inner 363.3.h.q.269.6 24
11.2 odd 10 363.3.h.p.251.1 24
11.3 even 5 363.3.b.j.122.6 yes 6
11.4 even 5 inner 363.3.h.q.245.1 24
11.5 even 5 inner 363.3.h.q.323.6 24
11.6 odd 10 363.3.h.p.323.1 24
11.7 odd 10 363.3.h.p.245.6 24
11.8 odd 10 363.3.b.k.122.1 yes 6
11.9 even 5 inner 363.3.h.q.251.6 24
11.10 odd 2 363.3.h.p.269.6 24
33.2 even 10 363.3.h.p.251.6 24
33.5 odd 10 inner 363.3.h.q.323.1 24
33.8 even 10 363.3.b.k.122.6 yes 6
33.14 odd 10 363.3.b.j.122.1 6
33.17 even 10 363.3.h.p.323.6 24
33.20 odd 10 inner 363.3.h.q.251.1 24
33.26 odd 10 inner 363.3.h.q.245.6 24
33.29 even 10 363.3.h.p.245.1 24
33.32 even 2 363.3.h.p.269.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.1 6 33.14 odd 10
363.3.b.j.122.6 yes 6 11.3 even 5
363.3.b.k.122.1 yes 6 11.8 odd 10
363.3.b.k.122.6 yes 6 33.8 even 10
363.3.h.p.245.1 24 33.29 even 10
363.3.h.p.245.6 24 11.7 odd 10
363.3.h.p.251.1 24 11.2 odd 10
363.3.h.p.251.6 24 33.2 even 10
363.3.h.p.269.1 24 33.32 even 2
363.3.h.p.269.6 24 11.10 odd 2
363.3.h.p.323.1 24 11.6 odd 10
363.3.h.p.323.6 24 33.17 even 10
363.3.h.q.245.1 24 11.4 even 5 inner
363.3.h.q.245.6 24 33.26 odd 10 inner
363.3.h.q.251.1 24 33.20 odd 10 inner
363.3.h.q.251.6 24 11.9 even 5 inner
363.3.h.q.269.1 24 1.1 even 1 trivial
363.3.h.q.269.6 24 3.2 odd 2 inner
363.3.h.q.323.1 24 33.5 odd 10 inner
363.3.h.q.323.6 24 11.5 even 5 inner