Properties

Label 363.3.h.q.251.3
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-4,18,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.3
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.q.269.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.647210 - 0.210291i) q^{2} +(0.554129 + 2.94838i) q^{3} +(-2.86141 - 2.07894i) q^{4} +(6.17237 - 2.00553i) q^{5} +(0.261380 - 2.02475i) q^{6} +(-7.57686 - 5.50491i) q^{7} +(3.01474 + 4.14944i) q^{8} +(-8.38588 + 3.26757i) q^{9} -4.41657 q^{10} +(4.54390 - 9.58852i) q^{12} +(-1.28903 + 3.96722i) q^{13} +(3.74618 + 5.15618i) q^{14} +(9.33334 + 17.0872i) q^{15} +(3.29326 + 10.1356i) q^{16} +(-28.4618 + 9.24781i) q^{17} +(6.11457 - 0.351324i) q^{18} +(-8.32617 + 6.04932i) q^{19} +(-21.8311 - 7.09334i) q^{20} +(12.0320 - 25.3899i) q^{21} +27.8850i q^{23} +(-10.5636 + 11.1879i) q^{24} +(13.8506 - 10.0631i) q^{25} +(1.66854 - 2.29655i) q^{26} +(-14.2809 - 22.9141i) q^{27} +(10.2361 + 31.5036i) q^{28} +(9.49235 - 13.0651i) q^{29} +(-2.44735 - 13.0217i) q^{30} +(-5.45778 + 16.7973i) q^{31} -27.7684i q^{32} +20.3655 q^{34} +(-57.8074 - 18.7828i) q^{35} +(30.7885 + 8.08386i) q^{36} +(-11.7790 - 8.55794i) q^{37} +(6.66090 - 2.16426i) q^{38} +(-12.4112 - 1.60219i) q^{39} +(26.9299 + 19.5657i) q^{40} +(-20.5756 - 28.3199i) q^{41} +(-13.1265 + 13.9024i) q^{42} -64.3417 q^{43} +(-45.2076 + 36.9867i) q^{45} +(5.86397 - 18.0474i) q^{46} +(-6.14617 - 8.45948i) q^{47} +(-28.0588 + 15.3262i) q^{48} +(11.9629 + 36.8181i) q^{49} +(-11.0804 + 3.60026i) q^{50} +(-43.0376 - 78.7918i) q^{51} +(11.9360 - 8.67204i) q^{52} +(-57.4452 - 18.6651i) q^{53} +(4.42410 + 17.8334i) q^{54} -48.0356i q^{56} +(-22.4495 - 21.1966i) q^{57} +(-8.89102 + 6.45971i) q^{58} +(-23.9032 + 32.8999i) q^{59} +(8.81663 - 68.2968i) q^{60} +(7.26488 + 22.3590i) q^{61} +(7.06466 - 9.72367i) q^{62} +(81.5263 + 21.4056i) q^{63} +(7.33362 - 22.5705i) q^{64} +27.0724i q^{65} +30.8376 q^{67} +(100.667 + 32.7086i) q^{68} +(-82.2155 + 15.4519i) q^{69} +(33.4637 + 24.3128i) q^{70} +(-0.946935 + 0.307678i) q^{71} +(-38.8398 - 24.9458i) q^{72} +(75.6188 + 54.9403i) q^{73} +(5.82382 + 8.01580i) q^{74} +(37.3448 + 35.2607i) q^{75} +36.4007 q^{76} +(7.69570 + 3.64691i) q^{78} +(-34.9425 + 107.542i) q^{79} +(40.6545 + 55.9561i) q^{80} +(59.6460 - 54.8029i) q^{81} +(7.36131 + 22.6558i) q^{82} +(98.9769 - 32.1595i) q^{83} +(-87.2124 + 47.6371i) q^{84} +(-157.130 + 114.162i) q^{85} +(41.6426 + 13.5305i) q^{86} +(43.7809 + 20.7473i) q^{87} -20.3993i q^{89} +(37.0368 - 14.4314i) q^{90} +(31.6060 - 22.9631i) q^{91} +(57.9711 - 79.7904i) q^{92} +(-52.5492 - 6.78372i) q^{93} +(2.19891 + 6.76754i) q^{94} +(-39.2602 + 54.0370i) q^{95} +(81.8717 - 15.3873i) q^{96} +(58.7378 - 180.776i) q^{97} -26.3447i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.647210 0.210291i −0.323605 0.105146i 0.142710 0.989765i \(-0.454418\pi\)
−0.466315 + 0.884619i \(0.654418\pi\)
\(3\) 0.554129 + 2.94838i 0.184710 + 0.982793i
\(4\) −2.86141 2.07894i −0.715352 0.519734i
\(5\) 6.17237 2.00553i 1.23447 0.401105i 0.382141 0.924104i \(-0.375187\pi\)
0.852333 + 0.522999i \(0.175187\pi\)
\(6\) 0.261380 2.02475i 0.0435634 0.337458i
\(7\) −7.57686 5.50491i −1.08241 0.786416i −0.104307 0.994545i \(-0.533262\pi\)
−0.978101 + 0.208130i \(0.933262\pi\)
\(8\) 3.01474 + 4.14944i 0.376843 + 0.518679i
\(9\) −8.38588 + 3.26757i −0.931765 + 0.363063i
\(10\) −4.41657 −0.441657
\(11\) 0 0
\(12\) 4.54390 9.58852i 0.378658 0.799043i
\(13\) −1.28903 + 3.96722i −0.0991561 + 0.305171i −0.988315 0.152428i \(-0.951291\pi\)
0.889158 + 0.457599i \(0.151291\pi\)
\(14\) 3.74618 + 5.15618i 0.267584 + 0.368298i
\(15\) 9.33334 + 17.0872i 0.622223 + 1.13915i
\(16\) 3.29326 + 10.1356i 0.205829 + 0.633477i
\(17\) −28.4618 + 9.24781i −1.67423 + 0.543989i −0.983777 0.179393i \(-0.942587\pi\)
−0.690448 + 0.723382i \(0.742587\pi\)
\(18\) 6.11457 0.351324i 0.339698 0.0195180i
\(19\) −8.32617 + 6.04932i −0.438220 + 0.318385i −0.784927 0.619588i \(-0.787300\pi\)
0.346707 + 0.937973i \(0.387300\pi\)
\(20\) −21.8311 7.09334i −1.09155 0.354667i
\(21\) 12.0320 25.3899i 0.572952 1.20904i
\(22\) 0 0
\(23\) 27.8850i 1.21239i 0.795316 + 0.606195i \(0.207305\pi\)
−0.795316 + 0.606195i \(0.792695\pi\)
\(24\) −10.5636 + 11.1879i −0.440148 + 0.466164i
\(25\) 13.8506 10.0631i 0.554026 0.402523i
\(26\) 1.66854 2.29655i 0.0641748 0.0883290i
\(27\) −14.2809 22.9141i −0.528922 0.848671i
\(28\) 10.2361 + 31.5036i 0.365576 + 1.12513i
\(29\) 9.49235 13.0651i 0.327323 0.450521i −0.613363 0.789801i \(-0.710184\pi\)
0.940685 + 0.339281i \(0.110184\pi\)
\(30\) −2.44735 13.0217i −0.0815783 0.434057i
\(31\) −5.45778 + 16.7973i −0.176057 + 0.541849i −0.999680 0.0252890i \(-0.991949\pi\)
0.823623 + 0.567138i \(0.191949\pi\)
\(32\) 27.7684i 0.867761i
\(33\) 0 0
\(34\) 20.3655 0.598986
\(35\) −57.8074 18.7828i −1.65164 0.536651i
\(36\) 30.7885 + 8.08386i 0.855236 + 0.224552i
\(37\) −11.7790 8.55794i −0.318351 0.231296i 0.417120 0.908851i \(-0.363039\pi\)
−0.735472 + 0.677556i \(0.763039\pi\)
\(38\) 6.66090 2.16426i 0.175287 0.0569542i
\(39\) −12.4112 1.60219i −0.318235 0.0410818i
\(40\) 26.9299 + 19.5657i 0.673248 + 0.489143i
\(41\) −20.5756 28.3199i −0.501844 0.690729i 0.480673 0.876900i \(-0.340392\pi\)
−0.982517 + 0.186171i \(0.940392\pi\)
\(42\) −13.1265 + 13.9024i −0.312536 + 0.331009i
\(43\) −64.3417 −1.49632 −0.748159 0.663519i \(-0.769062\pi\)
−0.748159 + 0.663519i \(0.769062\pi\)
\(44\) 0 0
\(45\) −45.2076 + 36.9867i −1.00461 + 0.821928i
\(46\) 5.86397 18.0474i 0.127478 0.392336i
\(47\) −6.14617 8.45948i −0.130770 0.179989i 0.738611 0.674132i \(-0.235482\pi\)
−0.869381 + 0.494143i \(0.835482\pi\)
\(48\) −28.0588 + 15.3262i −0.584558 + 0.319297i
\(49\) 11.9629 + 36.8181i 0.244141 + 0.751389i
\(50\) −11.0804 + 3.60026i −0.221609 + 0.0720051i
\(51\) −43.0376 78.7918i −0.843874 1.54494i
\(52\) 11.9360 8.67204i 0.229539 0.166770i
\(53\) −57.4452 18.6651i −1.08387 0.352171i −0.287997 0.957631i \(-0.592989\pi\)
−0.795876 + 0.605460i \(0.792989\pi\)
\(54\) 4.42410 + 17.8334i 0.0819277 + 0.330248i
\(55\) 0 0
\(56\) 48.0356i 0.857778i
\(57\) −22.4495 21.1966i −0.393850 0.371870i
\(58\) −8.89102 + 6.45971i −0.153293 + 0.111374i
\(59\) −23.9032 + 32.8999i −0.405139 + 0.557625i −0.962024 0.272964i \(-0.911996\pi\)
0.556886 + 0.830589i \(0.311996\pi\)
\(60\) 8.81663 68.2968i 0.146944 1.13828i
\(61\) 7.26488 + 22.3590i 0.119096 + 0.366541i 0.992779 0.119955i \(-0.0382749\pi\)
−0.873683 + 0.486496i \(0.838275\pi\)
\(62\) 7.06466 9.72367i 0.113946 0.156833i
\(63\) 81.5263 + 21.4056i 1.29407 + 0.339772i
\(64\) 7.33362 22.5705i 0.114588 0.352665i
\(65\) 27.0724i 0.416498i
\(66\) 0 0
\(67\) 30.8376 0.460263 0.230132 0.973159i \(-0.426084\pi\)
0.230132 + 0.973159i \(0.426084\pi\)
\(68\) 100.667 + 32.7086i 1.48039 + 0.481008i
\(69\) −82.2155 + 15.4519i −1.19153 + 0.223940i
\(70\) 33.4637 + 24.3128i 0.478053 + 0.347326i
\(71\) −0.946935 + 0.307678i −0.0133371 + 0.00433349i −0.315678 0.948866i \(-0.602232\pi\)
0.302341 + 0.953200i \(0.402232\pi\)
\(72\) −38.8398 24.9458i −0.539442 0.346469i
\(73\) 75.6188 + 54.9403i 1.03587 + 0.752607i 0.969476 0.245186i \(-0.0788491\pi\)
0.0663985 + 0.997793i \(0.478849\pi\)
\(74\) 5.82382 + 8.01580i 0.0787003 + 0.108322i
\(75\) 37.3448 + 35.2607i 0.497931 + 0.470143i
\(76\) 36.4007 0.478957
\(77\) 0 0
\(78\) 7.69570 + 3.64691i 0.0986629 + 0.0467553i
\(79\) −34.9425 + 107.542i −0.442310 + 1.36129i 0.443098 + 0.896473i \(0.353879\pi\)
−0.885407 + 0.464816i \(0.846121\pi\)
\(80\) 40.6545 + 55.9561i 0.508182 + 0.699452i
\(81\) 59.6460 54.8029i 0.736370 0.676579i
\(82\) 7.36131 + 22.6558i 0.0897721 + 0.276290i
\(83\) 98.9769 32.1595i 1.19249 0.387464i 0.355499 0.934677i \(-0.384311\pi\)
0.836994 + 0.547212i \(0.184311\pi\)
\(84\) −87.2124 + 47.6371i −1.03824 + 0.567108i
\(85\) −157.130 + 114.162i −1.84859 + 1.34308i
\(86\) 41.6426 + 13.5305i 0.484216 + 0.157331i
\(87\) 43.7809 + 20.7473i 0.503228 + 0.238475i
\(88\) 0 0
\(89\) 20.3993i 0.229206i −0.993411 0.114603i \(-0.963440\pi\)
0.993411 0.114603i \(-0.0365595\pi\)
\(90\) 37.0368 14.4314i 0.411520 0.160349i
\(91\) 31.6060 22.9631i 0.347319 0.252342i
\(92\) 57.9711 79.7904i 0.630121 0.867287i
\(93\) −52.5492 6.78372i −0.565045 0.0729432i
\(94\) 2.19891 + 6.76754i 0.0233926 + 0.0719951i
\(95\) −39.2602 + 54.0370i −0.413265 + 0.568811i
\(96\) 81.8717 15.3873i 0.852830 0.160284i
\(97\) 58.7378 180.776i 0.605545 1.86368i 0.112543 0.993647i \(-0.464100\pi\)
0.493002 0.870028i \(-0.335900\pi\)
\(98\) 26.3447i 0.268824i
\(99\) 0 0
\(100\) −60.5528 −0.605528
\(101\) 45.2739 + 14.7104i 0.448256 + 0.145647i 0.524442 0.851446i \(-0.324274\pi\)
−0.0761854 + 0.997094i \(0.524274\pi\)
\(102\) 11.2851 + 60.0453i 0.110639 + 0.588679i
\(103\) −42.6153 30.9619i −0.413741 0.300601i 0.361374 0.932421i \(-0.382308\pi\)
−0.775115 + 0.631821i \(0.782308\pi\)
\(104\) −20.3478 + 6.61141i −0.195652 + 0.0635713i
\(105\) 23.3459 180.846i 0.222342 1.72235i
\(106\) 33.2540 + 24.1605i 0.313717 + 0.227929i
\(107\) −40.1565 55.2706i −0.375294 0.516548i 0.579036 0.815302i \(-0.303429\pi\)
−0.954330 + 0.298754i \(0.903429\pi\)
\(108\) −6.77347 + 95.2557i −0.0627173 + 0.881997i
\(109\) 37.7254 0.346105 0.173053 0.984913i \(-0.444637\pi\)
0.173053 + 0.984913i \(0.444637\pi\)
\(110\) 0 0
\(111\) 18.7050 39.4711i 0.168513 0.355596i
\(112\) 30.8431 94.9253i 0.275385 0.847548i
\(113\) −100.089 137.760i −0.885739 1.21912i −0.974798 0.223089i \(-0.928386\pi\)
0.0890591 0.996026i \(-0.471614\pi\)
\(114\) 10.0721 + 18.4396i 0.0883514 + 0.161751i
\(115\) 55.9241 + 172.117i 0.486296 + 1.49667i
\(116\) −54.3230 + 17.6506i −0.468302 + 0.152161i
\(117\) −2.15352 37.4807i −0.0184062 0.320347i
\(118\) 22.3889 16.2665i 0.189737 0.137852i
\(119\) 266.560 + 86.6105i 2.24000 + 0.727819i
\(120\) −42.7645 + 90.2415i −0.356371 + 0.752013i
\(121\) 0 0
\(122\) 15.9987i 0.131137i
\(123\) 72.0962 76.3576i 0.586148 0.620793i
\(124\) 50.5375 36.7176i 0.407560 0.296110i
\(125\) −30.0589 + 41.3725i −0.240471 + 0.330980i
\(126\) −48.2632 30.9982i −0.383041 0.246017i
\(127\) 44.9068 + 138.209i 0.353597 + 1.08826i 0.956819 + 0.290685i \(0.0938833\pi\)
−0.603222 + 0.797573i \(0.706117\pi\)
\(128\) −74.7801 + 102.926i −0.584220 + 0.804109i
\(129\) −35.6536 189.704i −0.276385 1.47057i
\(130\) 5.69308 17.5215i 0.0437929 0.134781i
\(131\) 174.147i 1.32936i 0.747126 + 0.664682i \(0.231433\pi\)
−0.747126 + 0.664682i \(0.768567\pi\)
\(132\) 0 0
\(133\) 96.3872 0.724716
\(134\) −19.9584 6.48489i −0.148944 0.0483947i
\(135\) −134.102 112.794i −0.993347 0.835509i
\(136\) −124.178 90.2208i −0.913075 0.663388i
\(137\) −77.3163 + 25.1216i −0.564353 + 0.183369i −0.577279 0.816547i \(-0.695885\pi\)
0.0129260 + 0.999916i \(0.495885\pi\)
\(138\) 56.4601 + 7.28859i 0.409131 + 0.0528159i
\(139\) 0.550962 + 0.400297i 0.00396375 + 0.00287984i 0.589765 0.807575i \(-0.299220\pi\)
−0.585802 + 0.810454i \(0.699220\pi\)
\(140\) 126.363 + 173.923i 0.902590 + 1.24231i
\(141\) 21.5360 22.8089i 0.152737 0.161765i
\(142\) 0.677567 0.00477160
\(143\) 0 0
\(144\) −60.7358 74.2352i −0.421776 0.515522i
\(145\) 32.3880 99.6799i 0.223365 0.687447i
\(146\) −37.3878 51.4599i −0.256081 0.352465i
\(147\) −101.925 + 55.6732i −0.693365 + 0.378729i
\(148\) 15.9131 + 48.9755i 0.107521 + 0.330916i
\(149\) 188.245 61.1645i 1.26339 0.410500i 0.400688 0.916214i \(-0.368771\pi\)
0.862701 + 0.505715i \(0.168771\pi\)
\(150\) −16.7549 30.6744i −0.111699 0.204496i
\(151\) 71.9338 52.2630i 0.476383 0.346112i −0.323541 0.946214i \(-0.604873\pi\)
0.799924 + 0.600102i \(0.204873\pi\)
\(152\) −50.2025 16.3118i −0.330280 0.107314i
\(153\) 208.460 170.552i 1.36248 1.11472i
\(154\) 0 0
\(155\) 114.625i 0.739516i
\(156\) 32.1826 + 30.3866i 0.206299 + 0.194786i
\(157\) −53.9913 + 39.2270i −0.343893 + 0.249853i −0.746303 0.665607i \(-0.768173\pi\)
0.402409 + 0.915460i \(0.368173\pi\)
\(158\) 45.2302 62.2541i 0.286267 0.394013i
\(159\) 23.1997 179.713i 0.145910 1.13027i
\(160\) −55.6902 171.397i −0.348064 1.07123i
\(161\) 153.504 211.281i 0.953443 1.31230i
\(162\) −50.1280 + 22.9259i −0.309432 + 0.141518i
\(163\) −43.2141 + 132.999i −0.265117 + 0.815946i 0.726549 + 0.687114i \(0.241123\pi\)
−0.991666 + 0.128832i \(0.958877\pi\)
\(164\) 123.810i 0.754940i
\(165\) 0 0
\(166\) −70.8217 −0.426637
\(167\) −130.674 42.4586i −0.782480 0.254243i −0.109581 0.993978i \(-0.534951\pi\)
−0.672899 + 0.739735i \(0.734951\pi\)
\(168\) 141.627 26.6179i 0.843018 0.158440i
\(169\) 122.647 + 89.1080i 0.725720 + 0.527266i
\(170\) 125.704 40.8436i 0.739433 0.240256i
\(171\) 50.0557 77.9352i 0.292724 0.455761i
\(172\) 184.108 + 133.762i 1.07040 + 0.777688i
\(173\) −0.622044 0.856170i −0.00359563 0.00494896i 0.807215 0.590257i \(-0.200974\pi\)
−0.810811 + 0.585308i \(0.800974\pi\)
\(174\) −23.9724 22.6346i −0.137773 0.130084i
\(175\) −160.341 −0.916232
\(176\) 0 0
\(177\) −110.247 52.2448i −0.622863 0.295168i
\(178\) −4.28980 + 13.2026i −0.0241000 + 0.0741721i
\(179\) 50.9881 + 70.1791i 0.284850 + 0.392062i 0.927333 0.374238i \(-0.122096\pi\)
−0.642483 + 0.766300i \(0.722096\pi\)
\(180\) 206.251 11.8505i 1.14584 0.0658363i
\(181\) −33.4265 102.876i −0.184677 0.568376i 0.815266 0.579087i \(-0.196591\pi\)
−0.999943 + 0.0107104i \(0.996591\pi\)
\(182\) −25.2847 + 8.21548i −0.138927 + 0.0451400i
\(183\) −61.8971 + 33.8094i −0.338236 + 0.184751i
\(184\) −115.707 + 84.0660i −0.628842 + 0.456881i
\(185\) −89.8675 29.1997i −0.485770 0.157836i
\(186\) 32.5838 + 15.4411i 0.175182 + 0.0830168i
\(187\) 0 0
\(188\) 36.9835i 0.196721i
\(189\) −17.9358 + 252.232i −0.0948984 + 1.33456i
\(190\) 36.7731 26.7172i 0.193543 0.140617i
\(191\) 16.8407 23.1793i 0.0881714 0.121358i −0.762653 0.646808i \(-0.776103\pi\)
0.850824 + 0.525451i \(0.176103\pi\)
\(192\) 70.6103 + 9.11528i 0.367762 + 0.0474754i
\(193\) 3.92289 + 12.0734i 0.0203258 + 0.0625565i 0.960705 0.277572i \(-0.0895296\pi\)
−0.940379 + 0.340128i \(0.889530\pi\)
\(194\) −76.0314 + 104.648i −0.391915 + 0.539424i
\(195\) −79.8196 + 15.0016i −0.409331 + 0.0769313i
\(196\) 42.3116 130.222i 0.215875 0.664396i
\(197\) 336.692i 1.70910i −0.519370 0.854549i \(-0.673834\pi\)
0.519370 0.854549i \(-0.326166\pi\)
\(198\) 0 0
\(199\) 183.863 0.923932 0.461966 0.886898i \(-0.347144\pi\)
0.461966 + 0.886898i \(0.347144\pi\)
\(200\) 83.5122 + 27.1348i 0.417561 + 0.135674i
\(201\) 17.0880 + 90.9211i 0.0850152 + 0.452344i
\(202\) −26.2082 19.0414i −0.129744 0.0942644i
\(203\) −143.844 + 46.7379i −0.708593 + 0.230236i
\(204\) −40.6549 + 314.928i −0.199289 + 1.54376i
\(205\) −183.797 133.536i −0.896569 0.651395i
\(206\) 21.0701 + 29.0004i 0.102282 + 0.140779i
\(207\) −91.1161 233.840i −0.440174 1.12966i
\(208\) −44.4554 −0.213728
\(209\) 0 0
\(210\) −53.1401 + 112.136i −0.253048 + 0.533981i
\(211\) −55.6255 + 171.198i −0.263628 + 0.811364i 0.728378 + 0.685175i \(0.240274\pi\)
−0.992006 + 0.126188i \(0.959726\pi\)
\(212\) 125.571 + 172.833i 0.592315 + 0.815252i
\(213\) −1.43187 2.62143i −0.00672242 0.0123072i
\(214\) 14.3667 + 44.2162i 0.0671342 + 0.206618i
\(215\) −397.141 + 129.039i −1.84717 + 0.600181i
\(216\) 52.0274 128.338i 0.240868 0.594156i
\(217\) 133.821 97.2263i 0.616684 0.448048i
\(218\) −24.4163 7.93333i −0.112001 0.0363914i
\(219\) −120.082 + 253.397i −0.548321 + 1.15706i
\(220\) 0 0
\(221\) 124.835i 0.564865i
\(222\) −20.4065 + 21.6126i −0.0919211 + 0.0973542i
\(223\) −212.819 + 154.622i −0.954344 + 0.693372i −0.951830 0.306625i \(-0.900800\pi\)
−0.00251375 + 0.999997i \(0.500800\pi\)
\(224\) −152.862 + 210.397i −0.682421 + 0.939272i
\(225\) −83.2680 + 129.646i −0.370080 + 0.576203i
\(226\) 35.8085 + 110.207i 0.158445 + 0.487643i
\(227\) −5.30714 + 7.30465i −0.0233795 + 0.0321791i −0.820547 0.571579i \(-0.806331\pi\)
0.797167 + 0.603759i \(0.206331\pi\)
\(228\) 20.1707 + 107.323i 0.0884681 + 0.470716i
\(229\) −108.907 + 335.180i −0.475575 + 1.46367i 0.369607 + 0.929188i \(0.379492\pi\)
−0.845181 + 0.534480i \(0.820508\pi\)
\(230\) 123.156i 0.535460i
\(231\) 0 0
\(232\) 82.8298 0.357025
\(233\) −33.6696 10.9399i −0.144505 0.0469525i 0.235872 0.971784i \(-0.424206\pi\)
−0.380376 + 0.924832i \(0.624206\pi\)
\(234\) −6.48807 + 24.7107i −0.0277268 + 0.105601i
\(235\) −54.9021 39.8887i −0.233626 0.169739i
\(236\) 136.794 44.4469i 0.579634 0.188334i
\(237\) −336.437 43.4315i −1.41956 0.183255i
\(238\) −154.307 112.110i −0.648347 0.471052i
\(239\) −76.8818 105.819i −0.321681 0.442756i 0.617298 0.786729i \(-0.288227\pi\)
−0.938980 + 0.343973i \(0.888227\pi\)
\(240\) −142.452 + 150.872i −0.593550 + 0.628633i
\(241\) −134.526 −0.558198 −0.279099 0.960262i \(-0.590036\pi\)
−0.279099 + 0.960262i \(0.590036\pi\)
\(242\) 0 0
\(243\) 194.631 + 145.491i 0.800952 + 0.598729i
\(244\) 25.6951 79.0815i 0.105308 0.324104i
\(245\) 147.679 + 203.263i 0.602772 + 0.829644i
\(246\) −62.7187 + 34.2582i −0.254954 + 0.139261i
\(247\) −13.2663 40.8295i −0.0537098 0.165302i
\(248\) −86.1532 + 27.9929i −0.347392 + 0.112874i
\(249\) 149.665 + 274.001i 0.601062 + 1.10041i
\(250\) 28.1547 20.4556i 0.112619 0.0818222i
\(251\) −384.764 125.017i −1.53292 0.498077i −0.583511 0.812105i \(-0.698321\pi\)
−0.949414 + 0.314028i \(0.898321\pi\)
\(252\) −188.779 230.738i −0.749124 0.915628i
\(253\) 0 0
\(254\) 98.8936i 0.389345i
\(255\) −423.663 400.019i −1.66142 1.56870i
\(256\) −6.75577 + 4.90836i −0.0263897 + 0.0191733i
\(257\) −80.7301 + 111.115i −0.314125 + 0.432356i −0.936662 0.350234i \(-0.886102\pi\)
0.622537 + 0.782590i \(0.286102\pi\)
\(258\) −16.8177 + 130.276i −0.0651847 + 0.504945i
\(259\) 42.1371 + 129.685i 0.162691 + 0.500713i
\(260\) 56.2817 77.4651i 0.216468 0.297943i
\(261\) −36.9106 + 140.579i −0.141420 + 0.538618i
\(262\) 36.6215 112.710i 0.139777 0.430189i
\(263\) 138.001i 0.524720i −0.964970 0.262360i \(-0.915499\pi\)
0.964970 0.262360i \(-0.0845008\pi\)
\(264\) 0 0
\(265\) −392.007 −1.47927
\(266\) −62.3827 20.2694i −0.234522 0.0762007i
\(267\) 60.1449 11.3039i 0.225262 0.0423365i
\(268\) −88.2391 64.1095i −0.329251 0.239215i
\(269\) 29.3816 9.54665i 0.109225 0.0354894i −0.253895 0.967232i \(-0.581712\pi\)
0.363120 + 0.931743i \(0.381712\pi\)
\(270\) 63.0725 + 101.202i 0.233602 + 0.374821i
\(271\) −162.195 117.842i −0.598507 0.434841i 0.246842 0.969056i \(-0.420607\pi\)
−0.845349 + 0.534215i \(0.820607\pi\)
\(272\) −187.465 258.023i −0.689208 0.948614i
\(273\) 85.2177 + 80.4619i 0.312153 + 0.294732i
\(274\) 55.3227 0.201908
\(275\) 0 0
\(276\) 267.376 + 126.707i 0.968753 + 0.459082i
\(277\) −49.3221 + 151.798i −0.178058 + 0.548007i −0.999760 0.0219109i \(-0.993025\pi\)
0.821702 + 0.569918i \(0.193025\pi\)
\(278\) −0.272409 0.374939i −0.000979888 0.00134870i
\(279\) −9.11807 158.694i −0.0326813 0.568796i
\(280\) −96.3366 296.493i −0.344059 1.05891i
\(281\) 377.786 122.750i 1.34444 0.436834i 0.453619 0.891196i \(-0.350133\pi\)
0.890817 + 0.454362i \(0.150133\pi\)
\(282\) −18.7348 + 10.2333i −0.0664355 + 0.0362883i
\(283\) −54.6819 + 39.7287i −0.193222 + 0.140384i −0.680190 0.733036i \(-0.738103\pi\)
0.486968 + 0.873420i \(0.338103\pi\)
\(284\) 3.34921 + 1.08822i 0.0117930 + 0.00383178i
\(285\) −181.077 85.8104i −0.635357 0.301089i
\(286\) 0 0
\(287\) 327.843i 1.14231i
\(288\) 90.7350 + 232.862i 0.315052 + 0.808549i
\(289\) 490.748 356.549i 1.69809 1.23373i
\(290\) −41.9236 + 57.7029i −0.144564 + 0.198975i
\(291\) 565.546 + 73.0079i 1.94346 + 0.250886i
\(292\) −102.159 314.413i −0.349860 1.07676i
\(293\) 214.903 295.788i 0.733457 1.00952i −0.265511 0.964108i \(-0.585541\pi\)
0.998968 0.0454093i \(-0.0144592\pi\)
\(294\) 77.6742 14.5984i 0.264198 0.0496543i
\(295\) −81.5577 + 251.009i −0.276467 + 0.850878i
\(296\) 74.6761i 0.252284i
\(297\) 0 0
\(298\) −134.696 −0.452001
\(299\) −110.626 35.9446i −0.369987 0.120216i
\(300\) −33.5541 178.533i −0.111847 0.595109i
\(301\) 487.508 + 354.195i 1.61963 + 1.17673i
\(302\) −57.5467 + 18.6981i −0.190552 + 0.0619141i
\(303\) −18.2842 + 141.636i −0.0603438 + 0.467446i
\(304\) −88.7339 64.4690i −0.291888 0.212069i
\(305\) 89.6831 + 123.438i 0.294043 + 0.404715i
\(306\) −170.783 + 66.5457i −0.558114 + 0.217470i
\(307\) 484.160 1.57707 0.788534 0.614992i \(-0.210841\pi\)
0.788534 + 0.614992i \(0.210841\pi\)
\(308\) 0 0
\(309\) 67.6729 142.803i 0.219006 0.462146i
\(310\) 24.1046 74.1865i 0.0777569 0.239311i
\(311\) −197.585 271.953i −0.635323 0.874447i 0.363033 0.931776i \(-0.381741\pi\)
−0.998355 + 0.0573298i \(0.981741\pi\)
\(312\) −30.7683 56.3295i −0.0986163 0.180543i
\(313\) −151.139 465.157i −0.482871 1.48612i −0.835041 0.550188i \(-0.814556\pi\)
0.352170 0.935936i \(-0.385444\pi\)
\(314\) 43.1928 14.0342i 0.137557 0.0446948i
\(315\) 546.140 31.3796i 1.73378 0.0996177i
\(316\) 323.557 235.078i 1.02392 0.743918i
\(317\) −148.670 48.3059i −0.468992 0.152385i 0.0649808 0.997887i \(-0.479301\pi\)
−0.533972 + 0.845502i \(0.679301\pi\)
\(318\) −52.8072 + 111.433i −0.166060 + 0.350420i
\(319\) 0 0
\(320\) 154.022i 0.481318i
\(321\) 140.707 149.024i 0.438339 0.464248i
\(322\) −143.780 + 104.462i −0.446522 + 0.324417i
\(323\) 181.035 249.174i 0.560481 0.771435i
\(324\) −284.603 + 32.8132i −0.878405 + 0.101275i
\(325\) 22.0686 + 67.9202i 0.0679034 + 0.208985i
\(326\) 55.9371 76.9909i 0.171586 0.236168i
\(327\) 20.9048 + 111.229i 0.0639290 + 0.340150i
\(328\) 55.4814 170.754i 0.169151 0.520592i
\(329\) 97.9303i 0.297661i
\(330\) 0 0
\(331\) 40.2792 0.121689 0.0608447 0.998147i \(-0.480621\pi\)
0.0608447 + 0.998147i \(0.480621\pi\)
\(332\) −350.071 113.745i −1.05443 0.342605i
\(333\) 126.741 + 33.2772i 0.380603 + 0.0999316i
\(334\) 75.6449 + 54.9592i 0.226482 + 0.164549i
\(335\) 190.341 61.8457i 0.568184 0.184614i
\(336\) 296.967 + 38.3363i 0.883830 + 0.114096i
\(337\) 9.64009 + 7.00393i 0.0286056 + 0.0207832i 0.601996 0.798499i \(-0.294372\pi\)
−0.573391 + 0.819282i \(0.694372\pi\)
\(338\) −60.6395 83.4631i −0.179407 0.246932i
\(339\) 350.707 371.436i 1.03453 1.09568i
\(340\) 686.950 2.02044
\(341\) 0 0
\(342\) −48.7857 + 39.9142i −0.142648 + 0.116708i
\(343\) −29.7722 + 91.6294i −0.0867994 + 0.267141i
\(344\) −193.974 266.982i −0.563877 0.776110i
\(345\) −476.476 + 260.260i −1.38109 + 0.754377i
\(346\) 0.222548 + 0.684932i 0.000643202 + 0.00197957i
\(347\) −571.856 + 185.807i −1.64800 + 0.535468i −0.978305 0.207168i \(-0.933575\pi\)
−0.669695 + 0.742636i \(0.733575\pi\)
\(348\) −82.1427 150.384i −0.236042 0.432138i
\(349\) −107.566 + 78.1511i −0.308211 + 0.223929i −0.731129 0.682240i \(-0.761006\pi\)
0.422917 + 0.906168i \(0.361006\pi\)
\(350\) 103.774 + 33.7182i 0.296497 + 0.0963378i
\(351\) 109.314 27.1185i 0.311435 0.0772608i
\(352\) 0 0
\(353\) 172.864i 0.489699i −0.969561 0.244850i \(-0.921261\pi\)
0.969561 0.244850i \(-0.0787386\pi\)
\(354\) 60.3662 + 56.9973i 0.170526 + 0.161009i
\(355\) −5.22778 + 3.79820i −0.0147261 + 0.0106992i
\(356\) −42.4089 + 58.3708i −0.119126 + 0.163963i
\(357\) −107.652 + 833.912i −0.301546 + 2.33589i
\(358\) −18.2420 56.1430i −0.0509552 0.156824i
\(359\) −354.287 + 487.634i −0.986871 + 1.35831i −0.0538262 + 0.998550i \(0.517142\pi\)
−0.933045 + 0.359761i \(0.882858\pi\)
\(360\) −289.763 76.0806i −0.804898 0.211335i
\(361\) −78.8242 + 242.596i −0.218350 + 0.672011i
\(362\) 73.6117i 0.203347i
\(363\) 0 0
\(364\) −138.177 −0.379606
\(365\) 576.932 + 187.457i 1.58064 + 0.513580i
\(366\) 47.1702 8.86535i 0.128880 0.0242223i
\(367\) −201.333 146.277i −0.548592 0.398575i 0.278674 0.960386i \(-0.410105\pi\)
−0.827266 + 0.561810i \(0.810105\pi\)
\(368\) −282.632 + 91.8327i −0.768021 + 0.249545i
\(369\) 265.082 + 170.255i 0.718379 + 0.461396i
\(370\) 52.0227 + 37.7967i 0.140602 + 0.102153i
\(371\) 332.505 + 457.654i 0.896239 + 1.23357i
\(372\) 136.262 + 128.657i 0.366295 + 0.345853i
\(373\) −677.639 −1.81673 −0.908364 0.418181i \(-0.862668\pi\)
−0.908364 + 0.418181i \(0.862668\pi\)
\(374\) 0 0
\(375\) −138.638 65.6992i −0.369702 0.175198i
\(376\) 16.5729 51.0063i 0.0440770 0.135655i
\(377\) 39.5963 + 54.4996i 0.105030 + 0.144561i
\(378\) 64.6504 159.475i 0.171033 0.421892i
\(379\) −35.1742 108.255i −0.0928079 0.285633i 0.893868 0.448330i \(-0.147981\pi\)
−0.986676 + 0.162696i \(0.947981\pi\)
\(380\) 224.679 73.0026i 0.591261 0.192112i
\(381\) −382.608 + 208.988i −1.00422 + 0.548524i
\(382\) −15.7739 + 11.4604i −0.0412929 + 0.0300011i
\(383\) 573.154 + 186.229i 1.49649 + 0.486238i 0.938991 0.343942i \(-0.111762\pi\)
0.557496 + 0.830180i \(0.311762\pi\)
\(384\) −344.903 163.446i −0.898184 0.425640i
\(385\) 0 0
\(386\) 8.63898i 0.0223808i
\(387\) 539.562 210.241i 1.39422 0.543258i
\(388\) −543.896 + 395.163i −1.40179 + 1.01846i
\(389\) 267.543 368.242i 0.687772 0.946637i −0.312222 0.950009i \(-0.601073\pi\)
0.999994 + 0.00337225i \(0.00107342\pi\)
\(390\) 54.8147 + 7.07618i 0.140551 + 0.0181441i
\(391\) −257.875 793.658i −0.659527 2.02982i
\(392\) −116.709 + 160.636i −0.297727 + 0.409786i
\(393\) −513.451 + 96.4998i −1.30649 + 0.245547i
\(394\) −70.8035 + 217.911i −0.179704 + 0.553073i
\(395\) 733.867i 1.85789i
\(396\) 0 0
\(397\) 327.783 0.825649 0.412824 0.910811i \(-0.364542\pi\)
0.412824 + 0.910811i \(0.364542\pi\)
\(398\) −118.998 38.6647i −0.298989 0.0971474i
\(399\) 53.4110 + 284.186i 0.133862 + 0.712246i
\(400\) 147.609 + 107.245i 0.369024 + 0.268111i
\(401\) 239.706 77.8852i 0.597770 0.194227i 0.00552464 0.999985i \(-0.498241\pi\)
0.592246 + 0.805757i \(0.298241\pi\)
\(402\) 8.06035 62.4385i 0.0200506 0.155320i
\(403\) −59.6035 43.3045i −0.147899 0.107455i
\(404\) −98.9652 136.214i −0.244963 0.337163i
\(405\) 258.249 457.885i 0.637652 1.13058i
\(406\) 102.926 0.253513
\(407\) 0 0
\(408\) 197.194 416.119i 0.483319 1.01990i
\(409\) 140.226 431.571i 0.342851 1.05519i −0.619873 0.784702i \(-0.712816\pi\)
0.962724 0.270485i \(-0.0871840\pi\)
\(410\) 90.8735 + 125.077i 0.221643 + 0.305065i
\(411\) −116.911 214.037i −0.284456 0.520772i
\(412\) 57.5722 + 177.189i 0.139738 + 0.430071i
\(413\) 362.222 117.693i 0.877051 0.284971i
\(414\) 9.79668 + 170.505i 0.0236635 + 0.411847i
\(415\) 546.426 397.001i 1.31669 0.956630i
\(416\) 110.163 + 35.7942i 0.264816 + 0.0860438i
\(417\) −0.874924 + 1.84626i −0.00209814 + 0.00442748i
\(418\) 0 0
\(419\) 295.753i 0.705855i 0.935651 + 0.352927i \(0.114814\pi\)
−0.935651 + 0.352927i \(0.885186\pi\)
\(420\) −442.770 + 468.941i −1.05421 + 1.11653i
\(421\) −185.253 + 134.594i −0.440030 + 0.319701i −0.785647 0.618675i \(-0.787670\pi\)
0.345617 + 0.938376i \(0.387670\pi\)
\(422\) 72.0028 99.1033i 0.170623 0.234842i
\(423\) 79.1829 + 50.8571i 0.187194 + 0.120230i
\(424\) −95.7329 294.636i −0.225785 0.694896i
\(425\) −301.153 + 414.502i −0.708596 + 0.975298i
\(426\) 0.375460 + 1.99773i 0.000881361 + 0.00468950i
\(427\) 68.0393 209.403i 0.159343 0.490406i
\(428\) 241.635i 0.564567i
\(429\) 0 0
\(430\) 284.169 0.660859
\(431\) 531.608 + 172.730i 1.23343 + 0.400766i 0.851956 0.523614i \(-0.175417\pi\)
0.381474 + 0.924380i \(0.375417\pi\)
\(432\) 185.218 220.208i 0.428745 0.509741i
\(433\) −233.218 169.443i −0.538609 0.391322i 0.284959 0.958540i \(-0.408020\pi\)
−0.823568 + 0.567217i \(0.808020\pi\)
\(434\) −107.056 + 34.7845i −0.246672 + 0.0801487i
\(435\) 311.841 + 40.2564i 0.716876 + 0.0925435i
\(436\) −107.948 78.4288i −0.247587 0.179883i
\(437\) −168.685 232.175i −0.386007 0.531294i
\(438\) 131.006 138.749i 0.299099 0.316778i
\(439\) 179.800 0.409567 0.204784 0.978807i \(-0.434351\pi\)
0.204784 + 0.978807i \(0.434351\pi\)
\(440\) 0 0
\(441\) −220.625 269.662i −0.500284 0.611479i
\(442\) −26.2517 + 80.7945i −0.0593931 + 0.182793i
\(443\) 165.331 + 227.558i 0.373207 + 0.513676i 0.953769 0.300541i \(-0.0971671\pi\)
−0.580562 + 0.814216i \(0.697167\pi\)
\(444\) −135.581 + 74.0567i −0.305362 + 0.166794i
\(445\) −40.9113 125.912i −0.0919356 0.282949i
\(446\) 170.254 55.3189i 0.381735 0.124033i
\(447\) 284.648 + 521.125i 0.636797 + 1.16583i
\(448\) −179.815 + 130.643i −0.401372 + 0.291614i
\(449\) 264.108 + 85.8140i 0.588214 + 0.191122i 0.587977 0.808878i \(-0.299925\pi\)
0.000237150 1.00000i \(0.499925\pi\)
\(450\) 81.1552 66.3974i 0.180345 0.147550i
\(451\) 0 0
\(452\) 602.265i 1.33245i
\(453\) 193.952 + 183.128i 0.428149 + 0.404255i
\(454\) 4.97093 3.61160i 0.0109492 0.00795506i
\(455\) 149.031 205.123i 0.327541 0.450821i
\(456\) 20.2746 157.055i 0.0444619 0.344419i
\(457\) 106.989 + 329.280i 0.234113 + 0.720524i 0.997238 + 0.0742739i \(0.0236639\pi\)
−0.763125 + 0.646251i \(0.776336\pi\)
\(458\) 140.971 194.030i 0.307797 0.423646i
\(459\) 618.366 + 520.110i 1.34720 + 1.13314i
\(460\) 197.798 608.759i 0.429995 1.32339i
\(461\) 67.1487i 0.145659i 0.997344 + 0.0728294i \(0.0232029\pi\)
−0.997344 + 0.0728294i \(0.976797\pi\)
\(462\) 0 0
\(463\) −754.683 −1.62999 −0.814993 0.579471i \(-0.803259\pi\)
−0.814993 + 0.579471i \(0.803259\pi\)
\(464\) 163.684 + 53.1841i 0.352767 + 0.114621i
\(465\) −337.958 + 63.5171i −0.726792 + 0.136596i
\(466\) 19.4907 + 14.1609i 0.0418256 + 0.0303881i
\(467\) −275.211 + 89.4216i −0.589317 + 0.191481i −0.588470 0.808519i \(-0.700270\pi\)
−0.000847110 1.00000i \(0.500270\pi\)
\(468\) −71.7578 + 111.725i −0.153329 + 0.238728i
\(469\) −233.652 169.758i −0.498193 0.361958i
\(470\) 27.1450 + 37.3618i 0.0577552 + 0.0794933i
\(471\) −145.574 137.450i −0.309075 0.291826i
\(472\) −208.578 −0.441902
\(473\) 0 0
\(474\) 208.612 + 98.8590i 0.440110 + 0.208563i
\(475\) −54.4481 + 167.574i −0.114627 + 0.352787i
\(476\) −582.679 801.988i −1.22411 1.68485i
\(477\) 542.718 31.1829i 1.13777 0.0653731i
\(478\) 27.5059 + 84.6545i 0.0575437 + 0.177101i
\(479\) −158.005 + 51.3391i −0.329865 + 0.107180i −0.469267 0.883056i \(-0.655482\pi\)
0.139402 + 0.990236i \(0.455482\pi\)
\(480\) 474.483 259.172i 0.988506 0.539941i
\(481\) 49.1347 35.6985i 0.102151 0.0742172i
\(482\) 87.0664 + 28.2896i 0.180636 + 0.0586921i
\(483\) 707.997 + 335.512i 1.46583 + 0.694642i
\(484\) 0 0
\(485\) 1233.62i 2.54355i
\(486\) −95.3717 135.093i −0.196238 0.277968i
\(487\) 16.6332 12.0847i 0.0341545 0.0248147i −0.570577 0.821244i \(-0.693280\pi\)
0.604732 + 0.796429i \(0.293280\pi\)
\(488\) −70.8755 + 97.5517i −0.145237 + 0.199901i
\(489\) −416.078 53.7127i −0.850876 0.109842i
\(490\) −52.8350 162.609i −0.107827 0.331856i
\(491\) 281.310 387.190i 0.572933 0.788574i −0.419966 0.907540i \(-0.637958\pi\)
0.992898 + 0.118966i \(0.0379579\pi\)
\(492\) −365.039 + 68.6068i −0.741950 + 0.139445i
\(493\) −149.346 + 459.640i −0.302933 + 0.932333i
\(494\) 29.2151i 0.0591398i
\(495\) 0 0
\(496\) −188.225 −0.379486
\(497\) 8.86853 + 2.88156i 0.0178441 + 0.00579791i
\(498\) −39.2444 208.809i −0.0788040 0.419296i
\(499\) 206.262 + 149.858i 0.413352 + 0.300317i 0.774957 0.632014i \(-0.217771\pi\)
−0.361606 + 0.932331i \(0.617771\pi\)
\(500\) 172.021 55.8932i 0.344043 0.111786i
\(501\) 52.7737 408.804i 0.105337 0.815977i
\(502\) 222.733 + 161.825i 0.443691 + 0.322361i
\(503\) 150.204 + 206.738i 0.298616 + 0.411010i 0.931789 0.363001i \(-0.118248\pi\)
−0.633173 + 0.774011i \(0.718248\pi\)
\(504\) 156.959 + 402.821i 0.311427 + 0.799247i
\(505\) 308.949 0.611781
\(506\) 0 0
\(507\) −194.762 + 410.986i −0.384146 + 0.810623i
\(508\) 158.831 488.830i 0.312659 0.962265i
\(509\) 31.1173 + 42.8293i 0.0611342 + 0.0841440i 0.838489 0.544918i \(-0.183439\pi\)
−0.777355 + 0.629062i \(0.783439\pi\)
\(510\) 190.078 + 347.989i 0.372703 + 0.682332i
\(511\) −270.512 832.550i −0.529377 1.62926i
\(512\) 489.392 159.013i 0.955843 0.310572i
\(513\) 257.520 + 104.397i 0.501988 + 0.203503i
\(514\) 75.6160 54.9382i 0.147113 0.106884i
\(515\) −325.133 105.642i −0.631325 0.205130i
\(516\) −292.362 + 616.942i −0.566594 + 1.19562i
\(517\) 0 0
\(518\) 92.7942i 0.179139i
\(519\) 2.17962 2.30845i 0.00419966 0.00444788i
\(520\) −112.335 + 81.6162i −0.216029 + 0.156954i
\(521\) −512.433 + 705.303i −0.983557 + 1.35375i −0.0486653 + 0.998815i \(0.515497\pi\)
−0.934891 + 0.354934i \(0.884503\pi\)
\(522\) 53.4515 83.2223i 0.102398 0.159430i
\(523\) 219.180 + 674.565i 0.419081 + 1.28980i 0.908549 + 0.417779i \(0.137191\pi\)
−0.489467 + 0.872022i \(0.662809\pi\)
\(524\) 362.040 498.305i 0.690916 0.950964i
\(525\) −88.8495 472.745i −0.169237 0.900467i
\(526\) −29.0205 + 89.3158i −0.0551720 + 0.169802i
\(527\) 528.555i 1.00295i
\(528\) 0 0
\(529\) −248.573 −0.469892
\(530\) 253.711 + 82.4356i 0.478699 + 0.155539i
\(531\) 92.9466 354.000i 0.175041 0.666666i
\(532\) −275.803 200.383i −0.518427 0.376659i
\(533\) 138.874 45.1229i 0.260551 0.0846583i
\(534\) −41.3035 5.33198i −0.0773473 0.00998498i
\(535\) −358.707 260.616i −0.670481 0.487133i
\(536\) 92.9675 + 127.959i 0.173447 + 0.238729i
\(537\) −178.661 + 189.221i −0.332702 + 0.352366i
\(538\) −21.0236 −0.0390774
\(539\) 0 0
\(540\) 149.229 + 601.538i 0.276351 + 1.11396i
\(541\) −52.7194 + 162.254i −0.0974480 + 0.299914i −0.987884 0.155195i \(-0.950400\pi\)
0.890436 + 0.455109i \(0.150400\pi\)
\(542\) 80.1933 + 110.377i 0.147958 + 0.203647i
\(543\) 284.795 155.561i 0.524485 0.286484i
\(544\) 256.797 + 790.338i 0.472052 + 1.45283i
\(545\) 232.856 75.6594i 0.427258 0.138825i
\(546\) −38.2333 69.9963i −0.0700244 0.128198i
\(547\) 85.8184 62.3507i 0.156889 0.113987i −0.506571 0.862198i \(-0.669087\pi\)
0.663460 + 0.748212i \(0.269087\pi\)
\(548\) 273.460 + 88.8525i 0.499014 + 0.162140i
\(549\) −133.982 163.761i −0.244047 0.298290i
\(550\) 0 0
\(551\) 166.205i 0.301642i
\(552\) −311.975 294.565i −0.565172 0.533631i
\(553\) 856.762 622.474i 1.54930 1.12563i
\(554\) 63.8435 87.8731i 0.115241 0.158616i
\(555\) 36.2936 281.144i 0.0653939 0.506566i
\(556\) −0.744335 2.29083i −0.00133873 0.00412019i
\(557\) −431.366 + 593.724i −0.774445 + 1.06593i 0.221428 + 0.975177i \(0.428928\pi\)
−0.995873 + 0.0907553i \(0.971072\pi\)
\(558\) −27.4706 + 104.626i −0.0492305 + 0.187501i
\(559\) 82.9383 255.258i 0.148369 0.456633i
\(560\) 647.771i 1.15673i
\(561\) 0 0
\(562\) −270.320 −0.480997
\(563\) −944.916 307.022i −1.67836 0.545332i −0.693767 0.720200i \(-0.744050\pi\)
−0.984592 + 0.174868i \(0.944050\pi\)
\(564\) −109.041 + 20.4937i −0.193336 + 0.0363363i
\(565\) −894.065 649.576i −1.58242 1.14969i
\(566\) 43.7452 14.2137i 0.0772884 0.0251125i
\(567\) −753.614 + 86.8876i −1.32913 + 0.153241i
\(568\) −4.13145 3.00168i −0.00727368 0.00528464i
\(569\) −626.713 862.596i −1.10143 1.51599i −0.833478 0.552553i \(-0.813654\pi\)
−0.267950 0.963433i \(-0.586346\pi\)
\(570\) 99.1495 + 93.6162i 0.173947 + 0.164239i
\(571\) −409.079 −0.716425 −0.358213 0.933640i \(-0.616614\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(572\) 0 0
\(573\) 77.6733 + 36.8086i 0.135556 + 0.0642384i
\(574\) 68.9424 212.183i 0.120109 0.369657i
\(575\) 280.609 + 386.225i 0.488015 + 0.671696i
\(576\) 12.2520 + 213.237i 0.0212708 + 0.370203i
\(577\) 142.077 + 437.267i 0.246233 + 0.757828i 0.995431 + 0.0954818i \(0.0304392\pi\)
−0.749198 + 0.662346i \(0.769561\pi\)
\(578\) −392.596 + 127.562i −0.679232 + 0.220696i
\(579\) −33.4232 + 18.2564i −0.0577257 + 0.0315309i
\(580\) −299.903 + 217.892i −0.517075 + 0.375677i
\(581\) −926.969 301.191i −1.59547 0.518400i
\(582\) −350.674 166.181i −0.602533 0.285534i
\(583\) 0 0
\(584\) 479.406i 0.820901i
\(585\) −88.4608 227.026i −0.151215 0.388078i
\(586\) −201.289 + 146.245i −0.343497 + 0.249565i
\(587\) −34.6014 + 47.6247i −0.0589461 + 0.0811324i −0.837472 0.546480i \(-0.815968\pi\)
0.778526 + 0.627612i \(0.215968\pi\)
\(588\) 407.389 + 52.5910i 0.692838 + 0.0894404i
\(589\) −56.1699 172.873i −0.0953649 0.293503i
\(590\) 105.570 145.305i 0.178932 0.246279i
\(591\) 992.697 186.571i 1.67969 0.315687i
\(592\) 47.9487 147.571i 0.0809945 0.249275i
\(593\) 149.728i 0.252493i −0.991999 0.126247i \(-0.959707\pi\)
0.991999 0.126247i \(-0.0402931\pi\)
\(594\) 0 0
\(595\) 1819.01 3.05715
\(596\) −665.803 216.333i −1.11712 0.362974i
\(597\) 101.884 + 542.096i 0.170659 + 0.908034i
\(598\) 64.0394 + 46.5274i 0.107089 + 0.0778049i
\(599\) −421.867 + 137.073i −0.704286 + 0.228836i −0.639197 0.769043i \(-0.720733\pi\)
−0.0650891 + 0.997879i \(0.520733\pi\)
\(600\) −33.7270 + 261.262i −0.0562117 + 0.435436i
\(601\) 334.929 + 243.340i 0.557286 + 0.404892i 0.830465 0.557071i \(-0.188075\pi\)
−0.273178 + 0.961963i \(0.588075\pi\)
\(602\) −241.036 331.757i −0.400392 0.551092i
\(603\) −258.601 + 100.764i −0.428857 + 0.167105i
\(604\) −314.483 −0.520668
\(605\) 0 0
\(606\) 41.6185 87.8232i 0.0686774 0.144923i
\(607\) −117.688 + 362.207i −0.193885 + 0.596716i 0.806103 + 0.591775i \(0.201573\pi\)
−0.999988 + 0.00494086i \(0.998427\pi\)
\(608\) 167.980 + 231.204i 0.276282 + 0.380270i
\(609\) −217.509 398.209i −0.357158 0.653874i
\(610\) −32.0858 98.7500i −0.0525997 0.161885i
\(611\) 41.4832 13.4787i 0.0678940 0.0220601i
\(612\) −951.055 + 54.6448i −1.55401 + 0.0892888i
\(613\) −91.3802 + 66.3916i −0.149071 + 0.108306i −0.659821 0.751423i \(-0.729368\pi\)
0.510750 + 0.859729i \(0.329368\pi\)
\(614\) −313.353 101.815i −0.510347 0.165822i
\(615\) 291.868 615.898i 0.474582 1.00146i
\(616\) 0 0
\(617\) 378.251i 0.613049i −0.951863 0.306524i \(-0.900834\pi\)
0.951863 0.306524i \(-0.0991661\pi\)
\(618\) −73.8288 + 78.1925i −0.119464 + 0.126525i
\(619\) 23.7034 17.2215i 0.0382931 0.0278216i −0.568474 0.822701i \(-0.692466\pi\)
0.606767 + 0.794880i \(0.292466\pi\)
\(620\) 238.298 327.989i 0.384352 0.529015i
\(621\) 638.960 398.223i 1.02892 0.641260i
\(622\) 70.6899 + 217.561i 0.113649 + 0.349777i
\(623\) −112.296 + 154.563i −0.180251 + 0.248094i
\(624\) −24.6340 131.071i −0.0394776 0.210050i
\(625\) −234.823 + 722.710i −0.375716 + 1.15634i
\(626\) 332.837i 0.531689i
\(627\) 0 0
\(628\) 236.041 0.375862
\(629\) 414.394 + 134.645i 0.658814 + 0.214062i
\(630\) −360.066 94.5393i −0.571534 0.150062i
\(631\) 787.079 + 571.847i 1.24735 + 0.906254i 0.998065 0.0621752i \(-0.0198037\pi\)
0.249287 + 0.968430i \(0.419804\pi\)
\(632\) −551.580 + 179.219i −0.872754 + 0.283575i
\(633\) −535.580 69.1394i −0.846097 0.109225i
\(634\) 86.0626 + 62.5281i 0.135745 + 0.0986248i
\(635\) 554.363 + 763.015i 0.873012 + 1.20160i
\(636\) −439.996 + 466.003i −0.691818 + 0.732708i
\(637\) −161.486 −0.253510
\(638\) 0 0
\(639\) 6.93552 5.67432i 0.0108537 0.00888000i
\(640\) −255.150 + 785.271i −0.398672 + 1.22699i
\(641\) 513.946 + 707.386i 0.801788 + 1.10357i 0.992539 + 0.121928i \(0.0389078\pi\)
−0.190751 + 0.981639i \(0.561092\pi\)
\(642\) −122.405 + 66.8601i −0.190662 + 0.104143i
\(643\) 225.637 + 694.441i 0.350914 + 1.08000i 0.958341 + 0.285626i \(0.0922015\pi\)
−0.607428 + 0.794375i \(0.707798\pi\)
\(644\) −878.478 + 285.435i −1.36410 + 0.443222i
\(645\) −600.523 1099.42i −0.931044 1.70452i
\(646\) −169.567 + 123.197i −0.262487 + 0.190708i
\(647\) 706.330 + 229.501i 1.09170 + 0.354715i 0.798903 0.601459i \(-0.205414\pi\)
0.292798 + 0.956174i \(0.405414\pi\)
\(648\) 407.218 + 82.2808i 0.628423 + 0.126977i
\(649\) 0 0
\(650\) 48.5994i 0.0747684i
\(651\) 360.814 + 340.678i 0.554246 + 0.523314i
\(652\) 400.150 290.726i 0.613727 0.445899i
\(653\) −653.864 + 899.967i −1.00132 + 1.37820i −0.0768135 + 0.997045i \(0.524475\pi\)
−0.924510 + 0.381158i \(0.875525\pi\)
\(654\) 9.86069 76.3846i 0.0150775 0.116796i
\(655\) 349.256 + 1074.90i 0.533215 + 1.64107i
\(656\) 219.279 301.812i 0.334267 0.460079i
\(657\) −813.652 213.633i −1.23843 0.325165i
\(658\) 20.5939 63.3815i 0.0312977 0.0963244i
\(659\) 829.020i 1.25800i −0.777407 0.628998i \(-0.783465\pi\)
0.777407 0.628998i \(-0.216535\pi\)
\(660\) 0 0
\(661\) −1040.95 −1.57480 −0.787402 0.616439i \(-0.788575\pi\)
−0.787402 + 0.616439i \(0.788575\pi\)
\(662\) −26.0691 8.47037i −0.0393793 0.0127951i
\(663\) 368.061 69.1748i 0.555145 0.104336i
\(664\) 431.834 + 313.746i 0.650352 + 0.472508i
\(665\) 594.938 193.307i 0.894643 0.290687i
\(666\) −75.0300 48.1898i −0.112658 0.0723571i
\(667\) 364.320 + 264.694i 0.546207 + 0.396843i
\(668\) 285.643 + 393.154i 0.427610 + 0.588555i
\(669\) −573.813 541.790i −0.857717 0.809850i
\(670\) −136.196 −0.203278
\(671\) 0 0
\(672\) −705.035 334.109i −1.04916 0.497186i
\(673\) 78.5875 241.868i 0.116772 0.359387i −0.875541 0.483145i \(-0.839495\pi\)
0.992312 + 0.123758i \(0.0394945\pi\)
\(674\) −4.76629 6.56024i −0.00707165 0.00973330i
\(675\) −428.386 173.665i −0.634646 0.257282i
\(676\) −165.692 509.949i −0.245107 0.754362i
\(677\) −964.286 + 313.315i −1.42435 + 0.462800i −0.916982 0.398929i \(-0.869382\pi\)
−0.507369 + 0.861729i \(0.669382\pi\)
\(678\) −305.091 + 166.646i −0.449986 + 0.245791i
\(679\) −1440.21 + 1046.37i −2.12107 + 1.54105i
\(680\) −947.415 307.834i −1.39326 0.452697i
\(681\) −24.4777 11.5997i −0.0359438 0.0170334i
\(682\) 0 0
\(683\) 561.211i 0.821685i 0.911706 + 0.410842i \(0.134765\pi\)
−0.911706 + 0.410842i \(0.865235\pi\)
\(684\) −305.252 + 118.942i −0.446275 + 0.173892i
\(685\) −426.843 + 310.120i −0.623129 + 0.452730i
\(686\) 38.5377 53.0426i 0.0561775 0.0773216i
\(687\) −1048.59 135.365i −1.52633 0.197038i
\(688\) −211.894 652.144i −0.307986 0.947883i
\(689\) 148.097 203.838i 0.214945 0.295847i
\(690\) 363.110 68.2443i 0.526247 0.0989048i
\(691\) 176.558 543.389i 0.255510 0.786380i −0.738218 0.674562i \(-0.764333\pi\)
0.993729 0.111818i \(-0.0356674\pi\)
\(692\) 3.74304i 0.00540902i
\(693\) 0 0
\(694\) 409.185 0.589603
\(695\) 4.20355 + 1.36582i 0.00604827 + 0.00196520i
\(696\) 45.8984 + 244.214i 0.0659460 + 0.350882i
\(697\) 847.516 + 615.757i 1.21595 + 0.883438i
\(698\) 86.0521 27.9600i 0.123284 0.0400573i
\(699\) 13.5977 105.333i 0.0194531 0.150691i
\(700\) 458.800 + 333.338i 0.655429 + 0.476197i
\(701\) 415.641 + 572.080i 0.592925 + 0.816092i 0.995038 0.0994987i \(-0.0317239\pi\)
−0.402112 + 0.915590i \(0.631724\pi\)
\(702\) −76.4518 5.43636i −0.108906 0.00774410i
\(703\) 149.844 0.213149
\(704\) 0 0
\(705\) 87.1843 183.976i 0.123666 0.260959i
\(706\) −36.3517 + 111.879i −0.0514897 + 0.158469i
\(707\) −262.054 360.687i −0.370657 0.510166i
\(708\) 206.848 + 378.690i 0.292158 + 0.534873i
\(709\) 282.481 + 869.387i 0.398422 + 1.22622i 0.926265 + 0.376874i \(0.123001\pi\)
−0.527843 + 0.849342i \(0.676999\pi\)
\(710\) 4.18220 1.35888i 0.00589042 0.00191391i
\(711\) −58.3769 1016.01i −0.0821053 1.42899i
\(712\) 84.6456 61.4986i 0.118884 0.0863745i
\(713\) −468.393 152.190i −0.656933 0.213450i
\(714\) 245.038 517.078i 0.343190 0.724199i
\(715\) 0 0
\(716\) 306.812i 0.428509i
\(717\) 269.391 285.314i 0.375720 0.397927i
\(718\) 331.843 241.098i 0.462177 0.335791i
\(719\) 495.361 681.806i 0.688958 0.948270i −0.311039 0.950397i \(-0.600677\pi\)
0.999998 + 0.00212717i \(0.000677098\pi\)
\(720\) −523.764 336.400i −0.727451 0.467223i
\(721\) 152.448 + 469.187i 0.211440 + 0.650745i
\(722\) 102.032 140.434i 0.141318 0.194508i
\(723\) −74.5447 396.633i −0.103105 0.548593i
\(724\) −118.226 + 363.862i −0.163296 + 0.502572i
\(725\) 276.482i 0.381355i
\(726\) 0 0
\(727\) 958.596 1.31856 0.659282 0.751895i \(-0.270860\pi\)
0.659282 + 0.751895i \(0.270860\pi\)
\(728\) 190.568 + 61.9192i 0.261769 + 0.0850539i
\(729\) −321.112 + 654.468i −0.440483 + 0.897761i
\(730\) −333.976 242.647i −0.457501 0.332394i
\(731\) 1831.28 595.020i 2.50518 0.813981i
\(732\) 247.401 + 31.9376i 0.337979 + 0.0436306i
\(733\) 815.585 + 592.557i 1.11267 + 0.808400i 0.983082 0.183168i \(-0.0586352\pi\)
0.129586 + 0.991568i \(0.458635\pi\)
\(734\) 99.5441 + 137.011i 0.135619 + 0.186663i
\(735\) −517.463 + 548.048i −0.704031 + 0.745644i
\(736\) 774.320 1.05207
\(737\) 0 0
\(738\) −135.760 165.935i −0.183957 0.224844i
\(739\) −350.139 + 1077.62i −0.473802 + 1.45821i 0.373765 + 0.927523i \(0.378067\pi\)
−0.847567 + 0.530688i \(0.821933\pi\)
\(740\) 196.443 + 270.381i 0.265464 + 0.365380i
\(741\) 113.030 61.7390i 0.152537 0.0833185i
\(742\) −118.960 366.121i −0.160323 0.493424i
\(743\) 12.0434 3.91313i 0.0162091 0.00526666i −0.300901 0.953655i \(-0.597287\pi\)
0.317110 + 0.948389i \(0.397287\pi\)
\(744\) −130.274 238.501i −0.175099 0.320565i
\(745\) 1039.25 755.060i 1.39497 1.01350i
\(746\) 438.575 + 142.502i 0.587902 + 0.191021i
\(747\) −724.925 + 593.100i −0.970449 + 0.793976i
\(748\) 0 0
\(749\) 639.835i 0.854253i
\(750\) 75.9121 + 71.6756i 0.101216 + 0.0955675i
\(751\) 155.182 112.746i 0.206633 0.150128i −0.479656 0.877457i \(-0.659238\pi\)
0.686289 + 0.727329i \(0.259238\pi\)
\(752\) 65.5011 90.1546i 0.0871026 0.119886i
\(753\) 155.390 1203.71i 0.206361 1.59855i
\(754\) −14.1663 43.5994i −0.0187882 0.0578242i
\(755\) 339.188 466.852i 0.449255 0.618346i
\(756\) 575.696 684.452i 0.761502 0.905359i
\(757\) 159.304 490.289i 0.210442 0.647673i −0.789004 0.614388i \(-0.789403\pi\)
0.999446 0.0332854i \(-0.0105970\pi\)
\(758\) 77.4605i 0.102191i
\(759\) 0 0
\(760\) −342.582 −0.450766
\(761\) −979.307 318.196i −1.28687 0.418129i −0.415874 0.909422i \(-0.636524\pi\)
−0.870994 + 0.491294i \(0.836524\pi\)
\(762\) 291.576 54.7999i 0.382646 0.0719158i
\(763\) −285.840 207.675i −0.374627 0.272182i
\(764\) −96.3766 + 31.3146i −0.126147 + 0.0409877i
\(765\) 944.645 1470.78i 1.23483 1.92259i
\(766\) −331.789 241.059i −0.433145 0.314698i
\(767\) −99.7094 137.238i −0.129999 0.178928i
\(768\) −18.2153 17.1987i −0.0237178 0.0223942i
\(769\) −1094.35 −1.42308 −0.711539 0.702647i \(-0.752001\pi\)
−0.711539 + 0.702647i \(0.752001\pi\)
\(770\) 0 0
\(771\) −372.346 176.451i −0.482938 0.228860i
\(772\) 13.8749 42.7024i 0.0179726 0.0553140i
\(773\) −303.368 417.550i −0.392455 0.540168i 0.566376 0.824147i \(-0.308345\pi\)
−0.958830 + 0.283980i \(0.908345\pi\)
\(774\) −393.422 + 22.6048i −0.508297 + 0.0292052i
\(775\) 93.4390 + 287.576i 0.120566 + 0.371065i
\(776\) 927.200 301.265i 1.19485 0.388229i
\(777\) −359.010 + 196.098i −0.462046 + 0.252379i
\(778\) −250.595 + 182.068i −0.322101 + 0.234020i
\(779\) 342.632 + 111.328i 0.439836 + 0.142911i
\(780\) 259.584 + 123.014i 0.332800 + 0.157710i
\(781\) 0 0
\(782\) 567.892i 0.726205i
\(783\) −434.934 30.9275i −0.555472 0.0394987i
\(784\) −333.777 + 242.503i −0.425736 + 0.309315i
\(785\) −254.584 + 350.404i −0.324310 + 0.446375i
\(786\) 352.603 + 45.5185i 0.448605 + 0.0579116i
\(787\) 224.489 + 690.907i 0.285247 + 0.877900i 0.986325 + 0.164815i \(0.0527026\pi\)
−0.701078 + 0.713085i \(0.747297\pi\)
\(788\) −699.962 + 963.415i −0.888277 + 1.22261i
\(789\) 406.880 76.4706i 0.515691 0.0969209i
\(790\) 154.326 474.966i 0.195349 0.601222i
\(791\) 1594.77i 2.01614i
\(792\) 0 0
\(793\) −98.0678 −0.123667
\(794\) −212.144 68.9298i −0.267184 0.0868134i
\(795\) −217.222 1155.78i −0.273236 1.45382i
\(796\) −526.106 382.238i −0.660937 0.480199i
\(797\) −1395.59 + 453.455i −1.75105 + 0.568952i −0.996212 0.0869550i \(-0.972286\pi\)
−0.754842 + 0.655907i \(0.772286\pi\)
\(798\) 25.1937 195.160i 0.0315711 0.244561i
\(799\) 253.163 + 183.934i 0.316850 + 0.230205i
\(800\) −279.435 384.610i −0.349294 0.480762i
\(801\) 66.6561 + 171.066i 0.0832161 + 0.213566i
\(802\) −171.519 −0.213864
\(803\) 0 0
\(804\) 140.123 295.687i 0.174283 0.367770i
\(805\) 523.757 1611.96i 0.650630 2.00243i
\(806\) 29.4694 + 40.5612i 0.0365625 + 0.0503240i
\(807\) 44.4283 + 81.3379i 0.0550537 + 0.100791i
\(808\) 75.4493 + 232.209i 0.0933778 + 0.287387i
\(809\) −24.4139 + 7.93257i −0.0301779 + 0.00980540i −0.324067 0.946034i \(-0.605050\pi\)
0.293889 + 0.955840i \(0.405050\pi\)
\(810\) −263.431 + 242.040i −0.325223 + 0.298815i
\(811\) −531.579 + 386.215i −0.655461 + 0.476221i −0.865127 0.501553i \(-0.832762\pi\)
0.209666 + 0.977773i \(0.432762\pi\)
\(812\) 508.763 + 165.307i 0.626555 + 0.203580i
\(813\) 257.565 543.513i 0.316808 0.668528i
\(814\) 0 0
\(815\) 907.588i 1.11360i
\(816\) 656.870 695.695i 0.804988 0.852568i
\(817\) 535.720 389.224i 0.655716 0.476406i
\(818\) −181.511 + 249.829i −0.221897 + 0.305414i
\(819\) −190.011 + 295.841i −0.232003 + 0.361222i
\(820\) 248.304 + 764.203i 0.302810 + 0.931954i
\(821\) 553.696 762.098i 0.674417 0.928255i −0.325433 0.945565i \(-0.605510\pi\)
0.999850 + 0.0173098i \(0.00551014\pi\)
\(822\) 30.6560 + 163.112i 0.0372944 + 0.198434i
\(823\) −63.1327 + 194.302i −0.0767104 + 0.236090i −0.982057 0.188582i \(-0.939611\pi\)
0.905347 + 0.424673i \(0.139611\pi\)
\(824\) 270.172i 0.327878i
\(825\) 0 0
\(826\) −259.183 −0.313781
\(827\) 110.504 + 35.9050i 0.133620 + 0.0434159i 0.375064 0.926999i \(-0.377621\pi\)
−0.241443 + 0.970415i \(0.577621\pi\)
\(828\) −225.418 + 858.537i −0.272244 + 1.03688i
\(829\) −1225.41 890.312i −1.47818 1.07396i −0.978138 0.207957i \(-0.933319\pi\)
−0.500040 0.866002i \(-0.666681\pi\)
\(830\) −437.138 + 142.035i −0.526672 + 0.171126i
\(831\) −474.889 61.3047i −0.571466 0.0737722i
\(832\) 80.0892 + 58.1882i 0.0962610 + 0.0699377i
\(833\) −680.973 937.279i −0.817494 1.12518i
\(834\) 0.954512 1.01093i 0.00114450 0.00121215i
\(835\) −891.721 −1.06793
\(836\) 0 0
\(837\) 462.837 114.821i 0.552972 0.137181i
\(838\) 62.1943 191.414i 0.0742175 0.228418i
\(839\) −494.807 681.043i −0.589758 0.811732i 0.404965 0.914332i \(-0.367284\pi\)
−0.994723 + 0.102600i \(0.967284\pi\)
\(840\) 820.792 448.332i 0.977134 0.533729i
\(841\) 179.291 + 551.801i 0.213188 + 0.656125i
\(842\) 148.201 48.1535i 0.176011 0.0571894i
\(843\) 571.257 + 1045.84i 0.677647 + 1.24061i
\(844\) 515.077 374.225i 0.610280 0.443395i
\(845\) 935.729 + 304.037i 1.10737 + 0.359807i
\(846\) −40.5532 49.5667i −0.0479352 0.0585895i
\(847\) 0 0
\(848\) 643.713i 0.759095i
\(849\) −147.436 139.208i −0.173659 0.163967i
\(850\) 282.075 204.940i 0.331853 0.241106i
\(851\) 238.638 328.457i 0.280421 0.385966i
\(852\) −1.35260 + 10.4778i −0.00158756 + 0.0122978i
\(853\) −111.793 344.062i −0.131058 0.403356i 0.863898 0.503667i \(-0.168016\pi\)
−0.994956 + 0.100311i \(0.968016\pi\)
\(854\) −88.0714 + 121.220i −0.103128 + 0.141944i
\(855\) 152.662 581.433i 0.178552 0.680039i
\(856\) 108.281 333.253i 0.126496 0.389315i
\(857\) 519.778i 0.606509i 0.952910 + 0.303254i \(0.0980732\pi\)
−0.952910 + 0.303254i \(0.901927\pi\)
\(858\) 0 0
\(859\) −1258.77 −1.46538 −0.732692 0.680560i \(-0.761737\pi\)
−0.732692 + 0.680560i \(0.761737\pi\)
\(860\) 1404.65 + 456.398i 1.63331 + 0.530695i
\(861\) −966.604 + 181.667i −1.12265 + 0.210996i
\(862\) −307.738 223.585i −0.357005 0.259379i
\(863\) −1079.28 + 350.678i −1.25061 + 0.406348i −0.858139 0.513417i \(-0.828380\pi\)
−0.392471 + 0.919765i \(0.628380\pi\)
\(864\) −636.287 + 396.557i −0.736443 + 0.458978i
\(865\) −5.55656 4.03708i −0.00642377 0.00466714i
\(866\) 115.309 + 158.709i 0.133151 + 0.183266i
\(867\) 1323.18 + 1249.34i 1.52616 + 1.44099i
\(868\) −585.043 −0.674012
\(869\) 0 0
\(870\) −193.361 91.6318i −0.222254 0.105324i
\(871\) −39.7506 + 122.340i −0.0456379 + 0.140459i
\(872\) 113.732 + 156.539i 0.130427 + 0.179518i
\(873\) 98.1308 + 1707.90i 0.112406 + 1.95636i
\(874\) 60.3503 + 185.739i 0.0690507 + 0.212516i
\(875\) 455.503 148.002i 0.520575 0.169145i
\(876\) 870.401 475.430i 0.993608 0.542728i
\(877\) −1183.15 + 859.606i −1.34908 + 0.980167i −0.350028 + 0.936739i \(0.613828\pi\)
−0.999057 + 0.0434275i \(0.986172\pi\)
\(878\) −116.368 37.8104i −0.132538 0.0430642i
\(879\) 991.181 + 469.710i 1.12762 + 0.534369i
\(880\) 0 0
\(881\) 1493.59i 1.69534i −0.530526 0.847668i \(-0.678006\pi\)
0.530526 0.847668i \(-0.321994\pi\)
\(882\) 86.0831 + 220.924i 0.0975999 + 0.250480i
\(883\) −1074.40 + 780.594i −1.21676 + 0.884025i −0.995827 0.0912647i \(-0.970909\pi\)
−0.220930 + 0.975290i \(0.570909\pi\)
\(884\) −259.524 + 357.205i −0.293579 + 0.404078i
\(885\) −785.263 101.372i −0.887303 0.114544i
\(886\) −59.1502 182.046i −0.0667609 0.205469i
\(887\) −489.520 + 673.766i −0.551882 + 0.759601i −0.990266 0.139187i \(-0.955551\pi\)
0.438384 + 0.898788i \(0.355551\pi\)
\(888\) 220.174 41.3802i 0.247943 0.0465994i
\(889\) 420.575 1294.40i 0.473088 1.45601i
\(890\) 90.0949i 0.101230i
\(891\) 0 0
\(892\) 930.411 1.04306
\(893\) 102.348 + 33.2549i 0.114612 + 0.0372396i
\(894\) −74.6392 397.136i −0.0834890 0.444224i
\(895\) 455.464 + 330.914i 0.508898 + 0.369736i
\(896\) 1133.20 368.198i 1.26473 0.410935i
\(897\) 44.6771 346.085i 0.0498072 0.385825i
\(898\) −152.888 111.079i −0.170253 0.123696i
\(899\) 167.652 + 230.753i 0.186487 + 0.256677i
\(900\) 507.789 197.861i 0.564210 0.219845i
\(901\) 1807.61 2.00622
\(902\) 0 0
\(903\) −774.160 + 1633.63i −0.857320 + 1.80911i
\(904\) 269.885 830.622i 0.298546 0.918829i
\(905\) −412.641 567.952i −0.455957 0.627571i
\(906\) −87.0173 159.308i −0.0960456 0.175837i
\(907\) 168.952 + 519.981i 0.186276 + 0.573298i 0.999968 0.00799786i \(-0.00254583\pi\)
−0.813692 + 0.581296i \(0.802546\pi\)
\(908\) 30.3718 9.86839i 0.0334491 0.0108683i
\(909\) −427.729 + 24.5760i −0.470548 + 0.0270363i
\(910\) −139.590 + 101.418i −0.153396 + 0.111448i
\(911\) −53.0058 17.2226i −0.0581842 0.0189052i 0.279780 0.960064i \(-0.409738\pi\)
−0.337964 + 0.941159i \(0.609738\pi\)
\(912\) 140.909 297.345i 0.154505 0.326037i
\(913\) 0 0
\(914\) 235.612i 0.257781i
\(915\) −314.247 + 332.820i −0.343439 + 0.363738i
\(916\) 1008.44 732.677i 1.10092 0.799866i
\(917\) 958.662 1319.49i 1.04543 1.43892i
\(918\) −290.838 466.657i −0.316817 0.508341i
\(919\) −330.064 1015.83i −0.359156 1.10537i −0.953560 0.301202i \(-0.902612\pi\)
0.594404 0.804166i \(-0.297388\pi\)
\(920\) −545.590 + 750.940i −0.593033 + 0.816239i
\(921\) 268.287 + 1427.49i 0.291300 + 1.54993i
\(922\) 14.1208 43.4593i 0.0153154 0.0471359i
\(923\) 4.15331i 0.00449979i
\(924\) 0 0
\(925\) −249.266 −0.269477
\(926\) 488.438 + 158.703i 0.527471 + 0.171386i
\(927\) 458.537 + 120.394i 0.494646 + 0.129875i
\(928\) −362.797 263.587i −0.390945 0.284038i
\(929\) −800.150 + 259.984i −0.861302 + 0.279854i −0.706172 0.708040i \(-0.749580\pi\)
−0.155130 + 0.987894i \(0.549580\pi\)
\(930\) 232.087 + 29.9607i 0.249556 + 0.0322158i
\(931\) −322.330 234.186i −0.346219 0.251543i
\(932\) 73.5992 + 101.301i 0.0789691 + 0.108692i
\(933\) 692.332 733.254i 0.742050 0.785910i
\(934\) 196.924 0.210839
\(935\) 0 0
\(936\) 149.031 121.930i 0.159221 0.130268i
\(937\) −387.353 + 1192.15i −0.413397 + 1.27231i 0.500279 + 0.865864i \(0.333231\pi\)
−0.913676 + 0.406442i \(0.866769\pi\)
\(938\) 115.523 + 159.004i 0.123159 + 0.169514i
\(939\) 1287.71 703.371i 1.37136 0.749064i
\(940\) 74.1714 + 228.276i 0.0789057 + 0.242847i
\(941\) 1298.15 421.795i 1.37954 0.448241i 0.477025 0.878890i \(-0.341715\pi\)
0.902520 + 0.430649i \(0.141715\pi\)
\(942\) 65.3125 + 119.572i 0.0693338 + 0.126934i
\(943\) 789.700 573.751i 0.837434 0.608431i
\(944\) −412.181 133.926i −0.436632 0.141870i
\(945\) 395.151 + 1592.84i 0.418149 + 1.68555i
\(946\) 0 0
\(947\) 1289.80i 1.36199i −0.732289 0.680994i \(-0.761548\pi\)
0.732289 0.680994i \(-0.238452\pi\)
\(948\) 872.392 + 823.706i 0.920245 + 0.868888i
\(949\) −315.435 + 229.177i −0.332387 + 0.241493i
\(950\) 70.4786 97.0055i 0.0741880 0.102111i
\(951\) 60.0416 465.104i 0.0631352 0.489069i
\(952\) 444.224 + 1367.18i 0.466622 + 1.43611i
\(953\) −389.907 + 536.661i −0.409137 + 0.563128i −0.963008 0.269474i \(-0.913150\pi\)
0.553871 + 0.832602i \(0.313150\pi\)
\(954\) −357.810 93.9470i −0.375063 0.0984769i
\(955\) 57.4607 176.846i 0.0601683 0.185179i
\(956\) 462.623i 0.483915i
\(957\) 0 0
\(958\) 113.059 0.118015
\(959\) 724.107 + 235.277i 0.755065 + 0.245335i
\(960\) 454.114 85.3479i 0.473036 0.0889041i
\(961\) 525.103 + 381.510i 0.546413 + 0.396992i
\(962\) −39.3076 + 12.7718i −0.0408602 + 0.0132763i
\(963\) 517.348 + 332.279i 0.537225 + 0.345046i
\(964\) 384.933 + 279.670i 0.399308 + 0.290115i
\(965\) 48.4271 + 66.6541i 0.0501835 + 0.0690716i
\(966\) −387.667 366.032i −0.401312 0.378915i
\(967\) 101.038 0.104486 0.0522428 0.998634i \(-0.483363\pi\)
0.0522428 + 0.998634i \(0.483363\pi\)
\(968\) 0 0
\(969\) 834.975 + 395.686i 0.861687 + 0.408345i
\(970\) −259.420 + 798.411i −0.267443 + 0.823104i
\(971\) −378.084 520.388i −0.389376 0.535930i 0.568662 0.822571i \(-0.307461\pi\)
−0.958038 + 0.286641i \(0.907461\pi\)
\(972\) −254.453 820.936i −0.261783 0.844584i
\(973\) −1.97096 6.06599i −0.00202565 0.00623432i
\(974\) −13.3065 + 4.32354i −0.0136617 + 0.00443896i
\(975\) −188.026 + 102.703i −0.192847 + 0.105337i
\(976\) −202.697 + 147.268i −0.207682 + 0.150890i
\(977\) 1428.41 + 464.118i 1.46204 + 0.475044i 0.928691 0.370854i \(-0.120935\pi\)
0.533345 + 0.845898i \(0.320935\pi\)
\(978\) 257.995 + 122.261i 0.263798 + 0.125011i
\(979\) 0 0
\(980\) 888.634i 0.906769i
\(981\) −316.361 + 123.270i −0.322488 + 0.125658i
\(982\) −263.489 + 191.436i −0.268319 + 0.194945i
\(983\) 428.555 589.856i 0.435967 0.600057i −0.533343 0.845899i \(-0.679065\pi\)
0.969310 + 0.245842i \(0.0790645\pi\)
\(984\) 534.192 + 68.9603i 0.542878 + 0.0700816i
\(985\) −675.245 2078.19i −0.685528 2.10984i
\(986\) 193.317 266.078i 0.196062 0.269856i
\(987\) −288.736 + 54.2661i −0.292539 + 0.0549808i
\(988\) −46.9216 + 144.410i −0.0474915 + 0.146164i
\(989\) 1794.17i 1.81412i
\(990\) 0 0
\(991\) 1823.31 1.83987 0.919936 0.392069i \(-0.128241\pi\)
0.919936 + 0.392069i \(0.128241\pi\)
\(992\) 466.434 + 151.554i 0.470196 + 0.152776i
\(993\) 22.3199 + 118.758i 0.0224772 + 0.119596i
\(994\) −5.13383 3.72995i −0.00516482 0.00375246i
\(995\) 1134.87 368.741i 1.14057 0.370594i
\(996\) 141.379 1095.17i 0.141947 1.09957i
\(997\) −8.87703 6.44954i −0.00890374 0.00646895i 0.583324 0.812239i \(-0.301752\pi\)
−0.592228 + 0.805770i \(0.701752\pi\)
\(998\) −101.981 140.365i −0.102186 0.140646i
\(999\) −27.8830 + 392.120i −0.0279109 + 0.392513i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.251.3 24
3.2 odd 2 inner 363.3.h.q.251.4 24
11.2 odd 10 363.3.h.p.245.3 24
11.3 even 5 inner 363.3.h.q.323.3 24
11.4 even 5 363.3.b.j.122.3 6
11.5 even 5 inner 363.3.h.q.269.4 24
11.6 odd 10 363.3.h.p.269.3 24
11.7 odd 10 363.3.b.k.122.4 yes 6
11.8 odd 10 363.3.h.p.323.4 24
11.9 even 5 inner 363.3.h.q.245.4 24
11.10 odd 2 363.3.h.p.251.4 24
33.2 even 10 363.3.h.p.245.4 24
33.5 odd 10 inner 363.3.h.q.269.3 24
33.8 even 10 363.3.h.p.323.3 24
33.14 odd 10 inner 363.3.h.q.323.4 24
33.17 even 10 363.3.h.p.269.4 24
33.20 odd 10 inner 363.3.h.q.245.3 24
33.26 odd 10 363.3.b.j.122.4 yes 6
33.29 even 10 363.3.b.k.122.3 yes 6
33.32 even 2 363.3.h.p.251.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.3 6 11.4 even 5
363.3.b.j.122.4 yes 6 33.26 odd 10
363.3.b.k.122.3 yes 6 33.29 even 10
363.3.b.k.122.4 yes 6 11.7 odd 10
363.3.h.p.245.3 24 11.2 odd 10
363.3.h.p.245.4 24 33.2 even 10
363.3.h.p.251.3 24 33.32 even 2
363.3.h.p.251.4 24 11.10 odd 2
363.3.h.p.269.3 24 11.6 odd 10
363.3.h.p.269.4 24 33.17 even 10
363.3.h.p.323.3 24 33.8 even 10
363.3.h.p.323.4 24 11.8 odd 10
363.3.h.q.245.3 24 33.20 odd 10 inner
363.3.h.q.245.4 24 11.9 even 5 inner
363.3.h.q.251.3 24 1.1 even 1 trivial
363.3.h.q.251.4 24 3.2 odd 2 inner
363.3.h.q.269.3 24 33.5 odd 10 inner
363.3.h.q.269.4 24 11.5 even 5 inner
363.3.h.q.323.3 24 11.3 even 5 inner
363.3.h.q.323.4 24 33.14 odd 10 inner