Properties

Label 363.3.h.q.251.2
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-4,18,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.2
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.q.269.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73676 - 0.889226i) q^{2} +(-2.95896 - 0.494538i) q^{3} +(3.46304 + 2.51605i) q^{4} +(4.70571 - 1.52898i) q^{5} +(7.65819 + 3.98461i) q^{6} +(9.04489 + 6.57149i) q^{7} +(-0.474528 - 0.653131i) q^{8} +(8.51086 + 2.92664i) q^{9} -14.2380 q^{10} +(-9.00271 - 9.15748i) q^{12} +(-5.22225 + 16.0724i) q^{13} +(-18.9101 - 26.0275i) q^{14} +(-14.6801 + 2.19703i) q^{15} +(-4.57317 - 14.0748i) q^{16} +(0.0595216 - 0.0193397i) q^{17} +(-20.6897 - 15.5776i) q^{18} +(-4.35333 + 3.16288i) q^{19} +(20.1430 + 6.54487i) q^{20} +(-23.5136 - 23.9178i) q^{21} -8.69537i q^{23} +(1.08111 + 2.16726i) q^{24} +(-0.419501 + 0.304785i) q^{25} +(28.5840 - 39.3425i) q^{26} +(-23.7360 - 12.8687i) q^{27} +(14.7886 + 45.5147i) q^{28} +(-29.3632 + 40.4149i) q^{29} +(42.1296 + 7.04122i) q^{30} +(-7.59453 + 23.3736i) q^{31} +45.8150i q^{32} -0.180094 q^{34} +(52.6103 + 17.0941i) q^{35} +(22.1099 + 31.5488i) q^{36} +(31.7618 + 23.0763i) q^{37} +(14.7265 - 4.78493i) q^{38} +(23.4008 - 44.9750i) q^{39} +(-3.23161 - 2.34790i) q^{40} +(-25.8089 - 35.5228i) q^{41} +(43.0826 + 86.3661i) q^{42} +0.201842 q^{43} +(44.5244 + 0.758975i) q^{45} +(-7.73215 + 23.7971i) q^{46} +(8.76165 + 12.0594i) q^{47} +(6.57130 + 43.9082i) q^{48} +(23.4836 + 72.2751i) q^{49} +(1.41909 - 0.461092i) q^{50} +(-0.185686 + 0.0277898i) q^{51} +(-58.5238 + 42.5200i) q^{52} +(-93.1486 - 30.2658i) q^{53} +(53.5163 + 56.3252i) q^{54} -9.02585i q^{56} +(14.4455 - 7.20594i) q^{57} +(116.298 - 84.4953i) q^{58} +(-8.51816 + 11.7242i) q^{59} +(-56.3657 - 29.3275i) q^{60} +(9.06134 + 27.8879i) q^{61} +(41.5687 - 57.2145i) q^{62} +(57.7474 + 82.4002i) q^{63} +(22.4472 - 69.0854i) q^{64} +83.6168i q^{65} +82.8515 q^{67} +(0.254785 + 0.0827848i) q^{68} +(-4.30019 + 25.7292i) q^{69} +(-128.781 - 93.5648i) q^{70} +(-25.3986 + 8.25251i) q^{71} +(-2.12716 - 6.94748i) q^{72} +(-11.3022 - 8.21153i) q^{73} +(-66.4042 - 91.3976i) q^{74} +(1.39201 - 0.694387i) q^{75} -23.0337 q^{76} +(-104.035 + 102.277i) q^{78} +(15.5088 - 47.7311i) q^{79} +(-43.0400 - 59.2395i) q^{80} +(63.8696 + 49.8164i) q^{81} +(39.0447 + 120.167i) q^{82} +(57.2933 - 18.6157i) q^{83} +(-21.2501 - 141.990i) q^{84} +(0.250521 - 0.182014i) q^{85} +(-0.552394 - 0.179484i) q^{86} +(106.871 - 105.065i) q^{87} +40.3489i q^{89} +(-121.178 - 41.6694i) q^{90} +(-152.854 + 111.055i) q^{91} +(21.8779 - 30.1124i) q^{92} +(34.0310 - 65.4056i) q^{93} +(-13.2550 - 40.7946i) q^{94} +(-15.6495 + 21.5397i) q^{95} +(22.6573 - 135.565i) q^{96} +(-9.52170 + 29.3048i) q^{97} -218.681i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73676 0.889226i −1.36838 0.444613i −0.469546 0.882908i \(-0.655583\pi\)
−0.898831 + 0.438295i \(0.855583\pi\)
\(3\) −2.95896 0.494538i −0.986319 0.164846i
\(4\) 3.46304 + 2.51605i 0.865760 + 0.629011i
\(5\) 4.70571 1.52898i 0.941142 0.305796i 0.202031 0.979379i \(-0.435246\pi\)
0.739111 + 0.673584i \(0.235246\pi\)
\(6\) 7.65819 + 3.98461i 1.27636 + 0.664102i
\(7\) 9.04489 + 6.57149i 1.29213 + 0.938785i 0.999846 0.0175478i \(-0.00558591\pi\)
0.292280 + 0.956333i \(0.405586\pi\)
\(8\) −0.474528 0.653131i −0.0593159 0.0816414i
\(9\) 8.51086 + 2.92664i 0.945652 + 0.325182i
\(10\) −14.2380 −1.42380
\(11\) 0 0
\(12\) −9.00271 9.15748i −0.750226 0.763123i
\(13\) −5.22225 + 16.0724i −0.401711 + 1.23634i 0.521899 + 0.853007i \(0.325224\pi\)
−0.923610 + 0.383333i \(0.874776\pi\)
\(14\) −18.9101 26.0275i −1.35072 1.85911i
\(15\) −14.6801 + 2.19703i −0.978675 + 0.146468i
\(16\) −4.57317 14.0748i −0.285823 0.879673i
\(17\) 0.0595216 0.0193397i 0.00350127 0.00113763i −0.307266 0.951624i \(-0.599414\pi\)
0.310767 + 0.950486i \(0.399414\pi\)
\(18\) −20.6897 15.5776i −1.14943 0.865420i
\(19\) −4.35333 + 3.16288i −0.229123 + 0.166467i −0.696424 0.717631i \(-0.745226\pi\)
0.467301 + 0.884098i \(0.345226\pi\)
\(20\) 20.1430 + 6.54487i 1.00715 + 0.327243i
\(21\) −23.5136 23.9178i −1.11969 1.13894i
\(22\) 0 0
\(23\) 8.69537i 0.378060i −0.981971 0.189030i \(-0.939466\pi\)
0.981971 0.189030i \(-0.0605343\pi\)
\(24\) 1.08111 + 2.16726i 0.0450462 + 0.0903025i
\(25\) −0.419501 + 0.304785i −0.0167800 + 0.0121914i
\(26\) 28.5840 39.3425i 1.09939 1.51317i
\(27\) −23.7360 12.8687i −0.879109 0.476620i
\(28\) 14.7886 + 45.5147i 0.528165 + 1.62552i
\(29\) −29.3632 + 40.4149i −1.01252 + 1.39362i −0.0952067 + 0.995458i \(0.530351\pi\)
−0.917316 + 0.398160i \(0.869649\pi\)
\(30\) 42.1296 + 7.04122i 1.40432 + 0.234707i
\(31\) −7.59453 + 23.3736i −0.244985 + 0.753986i 0.750654 + 0.660695i \(0.229739\pi\)
−0.995639 + 0.0932904i \(0.970261\pi\)
\(32\) 45.8150i 1.43172i
\(33\) 0 0
\(34\) −0.180094 −0.00529687
\(35\) 52.6103 + 17.0941i 1.50315 + 0.488403i
\(36\) 22.1099 + 31.5488i 0.614164 + 0.876355i
\(37\) 31.7618 + 23.0763i 0.858427 + 0.623684i 0.927456 0.373931i \(-0.121990\pi\)
−0.0690298 + 0.997615i \(0.521990\pi\)
\(38\) 14.7265 4.78493i 0.387540 0.125919i
\(39\) 23.4008 44.9750i 0.600021 1.15321i
\(40\) −3.23161 2.34790i −0.0807903 0.0586976i
\(41\) −25.8089 35.5228i −0.629484 0.866411i 0.368516 0.929621i \(-0.379866\pi\)
−0.998000 + 0.0632106i \(0.979866\pi\)
\(42\) 43.0826 + 86.3661i 1.02578 + 2.05634i
\(43\) 0.201842 0.00469401 0.00234701 0.999997i \(-0.499253\pi\)
0.00234701 + 0.999997i \(0.499253\pi\)
\(44\) 0 0
\(45\) 44.5244 + 0.758975i 0.989431 + 0.0168661i
\(46\) −7.73215 + 23.7971i −0.168090 + 0.517328i
\(47\) 8.76165 + 12.0594i 0.186418 + 0.256582i 0.891989 0.452057i \(-0.149309\pi\)
−0.705571 + 0.708639i \(0.749309\pi\)
\(48\) 6.57130 + 43.9082i 0.136902 + 0.914755i
\(49\) 23.4836 + 72.2751i 0.479257 + 1.47500i
\(50\) 1.41909 0.461092i 0.0283819 0.00922183i
\(51\) −0.185686 + 0.0277898i −0.00364091 + 0.000544898i
\(52\) −58.5238 + 42.5200i −1.12546 + 0.817693i
\(53\) −93.1486 30.2658i −1.75752 0.571053i −0.760582 0.649242i \(-0.775086\pi\)
−0.996939 + 0.0781891i \(0.975086\pi\)
\(54\) 53.5163 + 56.3252i 0.991042 + 1.04306i
\(55\) 0 0
\(56\) 9.02585i 0.161176i
\(57\) 14.4455 7.20594i 0.253429 0.126420i
\(58\) 116.298 84.4953i 2.00513 1.45681i
\(59\) −8.51816 + 11.7242i −0.144376 + 0.198716i −0.875080 0.483978i \(-0.839192\pi\)
0.730705 + 0.682694i \(0.239192\pi\)
\(60\) −56.3657 29.3275i −0.939428 0.488791i
\(61\) 9.06134 + 27.8879i 0.148547 + 0.457179i 0.997450 0.0713686i \(-0.0227366\pi\)
−0.848903 + 0.528548i \(0.822737\pi\)
\(62\) 41.5687 57.2145i 0.670464 0.922814i
\(63\) 57.7474 + 82.4002i 0.916626 + 1.30794i
\(64\) 22.4472 69.0854i 0.350738 1.07946i
\(65\) 83.6168i 1.28641i
\(66\) 0 0
\(67\) 82.8515 1.23659 0.618294 0.785947i \(-0.287824\pi\)
0.618294 + 0.785947i \(0.287824\pi\)
\(68\) 0.254785 + 0.0827848i 0.00374684 + 0.00121742i
\(69\) −4.30019 + 25.7292i −0.0623216 + 0.372887i
\(70\) −128.781 93.5648i −1.83973 1.33664i
\(71\) −25.3986 + 8.25251i −0.357727 + 0.116232i −0.482366 0.875970i \(-0.660223\pi\)
0.124640 + 0.992202i \(0.460223\pi\)
\(72\) −2.12716 6.94748i −0.0295439 0.0964928i
\(73\) −11.3022 8.21153i −0.154825 0.112487i 0.507676 0.861548i \(-0.330505\pi\)
−0.662501 + 0.749061i \(0.730505\pi\)
\(74\) −66.4042 91.3976i −0.897354 1.23510i
\(75\) 1.39201 0.694387i 0.0185602 0.00925850i
\(76\) −23.0337 −0.303075
\(77\) 0 0
\(78\) −104.035 + 102.277i −1.33379 + 1.31124i
\(79\) 15.5088 47.7311i 0.196314 0.604191i −0.803645 0.595109i \(-0.797109\pi\)
0.999959 0.00908239i \(-0.00289105\pi\)
\(80\) −43.0400 59.2395i −0.538000 0.740493i
\(81\) 63.8696 + 49.8164i 0.788514 + 0.615017i
\(82\) 39.0447 + 120.167i 0.476155 + 1.46545i
\(83\) 57.2933 18.6157i 0.690281 0.224286i 0.0571899 0.998363i \(-0.481786\pi\)
0.633091 + 0.774078i \(0.281786\pi\)
\(84\) −21.2501 141.990i −0.252978 1.69035i
\(85\) 0.250521 0.182014i 0.00294731 0.00214135i
\(86\) −0.552394 0.179484i −0.00642318 0.00208702i
\(87\) 106.871 105.065i 1.22840 1.20764i
\(88\) 0 0
\(89\) 40.3489i 0.453359i 0.973969 + 0.226679i \(0.0727869\pi\)
−0.973969 + 0.226679i \(0.927213\pi\)
\(90\) −121.178 41.6694i −1.34642 0.462993i
\(91\) −152.854 + 111.055i −1.67972 + 1.22039i
\(92\) 21.8779 30.1124i 0.237804 0.327309i
\(93\) 34.0310 65.4056i 0.365925 0.703286i
\(94\) −13.2550 40.7946i −0.141010 0.433986i
\(95\) −15.6495 + 21.5397i −0.164732 + 0.226734i
\(96\) 22.6573 135.565i 0.236013 1.41213i
\(97\) −9.52170 + 29.3048i −0.0981619 + 0.302111i −0.988065 0.154039i \(-0.950772\pi\)
0.889903 + 0.456150i \(0.150772\pi\)
\(98\) 218.681i 2.23144i
\(99\) 0 0
\(100\) −2.21960 −0.0221960
\(101\) −49.3806 16.0447i −0.488917 0.158859i 0.0541757 0.998531i \(-0.482747\pi\)
−0.543093 + 0.839673i \(0.682747\pi\)
\(102\) 0.532889 + 0.0890631i 0.00522440 + 0.000873168i
\(103\) 41.3843 + 30.0674i 0.401789 + 0.291917i 0.770269 0.637719i \(-0.220122\pi\)
−0.368480 + 0.929636i \(0.620122\pi\)
\(104\) 12.9755 4.21599i 0.124764 0.0405384i
\(105\) −147.218 76.5985i −1.40207 0.729510i
\(106\) 228.012 + 165.660i 2.15105 + 1.56283i
\(107\) 40.2296 + 55.3713i 0.375978 + 0.517489i 0.954513 0.298168i \(-0.0963756\pi\)
−0.578536 + 0.815657i \(0.696376\pi\)
\(108\) −49.8202 104.286i −0.461298 0.965608i
\(109\) −125.737 −1.15355 −0.576773 0.816904i \(-0.695688\pi\)
−0.576773 + 0.816904i \(0.695688\pi\)
\(110\) 0 0
\(111\) −82.5697 83.9892i −0.743871 0.756659i
\(112\) 51.1284 157.357i 0.456504 1.40497i
\(113\) 58.0332 + 79.8758i 0.513568 + 0.706866i 0.984516 0.175295i \(-0.0560880\pi\)
−0.470948 + 0.882161i \(0.656088\pi\)
\(114\) −45.9414 + 6.87559i −0.402995 + 0.0603122i
\(115\) −13.2950 40.9179i −0.115609 0.355808i
\(116\) −203.372 + 66.0794i −1.75320 + 0.569650i
\(117\) −91.4839 + 121.507i −0.781914 + 1.03852i
\(118\) 33.7376 24.5118i 0.285912 0.207727i
\(119\) 0.665457 + 0.216220i 0.00559208 + 0.00181698i
\(120\) 8.40107 + 8.54550i 0.0700089 + 0.0712125i
\(121\) 0 0
\(122\) 84.3801i 0.691640i
\(123\) 58.7999 + 117.874i 0.478048 + 0.958326i
\(124\) −85.1091 + 61.8354i −0.686364 + 0.498672i
\(125\) −74.2152 + 102.149i −0.593722 + 0.817188i
\(126\) −84.7682 276.860i −0.672764 2.19730i
\(127\) −6.44270 19.8286i −0.0507299 0.156131i 0.922482 0.386040i \(-0.126157\pi\)
−0.973212 + 0.229909i \(0.926157\pi\)
\(128\) −15.1475 + 20.8488i −0.118340 + 0.162881i
\(129\) −0.597243 0.0998188i −0.00462979 0.000773789i
\(130\) 74.3542 228.839i 0.571956 1.76030i
\(131\) 29.0290i 0.221595i −0.993843 0.110798i \(-0.964659\pi\)
0.993843 0.110798i \(-0.0353405\pi\)
\(132\) 0 0
\(133\) −60.1602 −0.452332
\(134\) −226.744 73.6736i −1.69212 0.549803i
\(135\) −131.371 24.2648i −0.973115 0.179739i
\(136\) −0.0408760 0.0296982i −0.000300559 0.000218369i
\(137\) 144.285 46.8811i 1.05318 0.342198i 0.269263 0.963067i \(-0.413220\pi\)
0.783915 + 0.620869i \(0.213220\pi\)
\(138\) 34.6477 66.5908i 0.251070 0.482542i
\(139\) 15.5515 + 11.2988i 0.111881 + 0.0812863i 0.642319 0.766437i \(-0.277972\pi\)
−0.530438 + 0.847724i \(0.677972\pi\)
\(140\) 139.182 + 191.567i 0.994156 + 1.36834i
\(141\) −19.9615 40.0162i −0.141571 0.283803i
\(142\) 76.8481 0.541184
\(143\) 0 0
\(144\) 2.27009 133.172i 0.0157645 0.924808i
\(145\) −76.3810 + 235.076i −0.526765 + 1.62122i
\(146\) 23.6295 + 32.5232i 0.161846 + 0.222761i
\(147\) −33.7442 225.472i −0.229552 1.53383i
\(148\) 51.9313 + 159.828i 0.350887 + 1.07992i
\(149\) −172.775 + 56.1381i −1.15957 + 0.376766i −0.824739 0.565514i \(-0.808678\pi\)
−0.334827 + 0.942280i \(0.608678\pi\)
\(150\) −4.42707 + 0.662554i −0.0295138 + 0.00441703i
\(151\) −113.418 + 82.4026i −0.751109 + 0.545713i −0.896171 0.443710i \(-0.853662\pi\)
0.145061 + 0.989423i \(0.453662\pi\)
\(152\) 4.13155 + 1.34242i 0.0271812 + 0.00883172i
\(153\) 0.563181 + 0.00960013i 0.00368092 + 6.27460e-5i
\(154\) 0 0
\(155\) 121.601i 0.784523i
\(156\) 194.197 96.8727i 1.24485 0.620979i
\(157\) 145.309 105.573i 0.925536 0.672441i −0.0193599 0.999813i \(-0.506163\pi\)
0.944896 + 0.327371i \(0.106163\pi\)
\(158\) −84.8875 + 116.838i −0.537262 + 0.739478i
\(159\) 260.655 + 135.621i 1.63934 + 0.852961i
\(160\) 70.0501 + 215.592i 0.437813 + 1.34745i
\(161\) 57.1416 78.6486i 0.354917 0.488501i
\(162\) −130.497 193.130i −0.805540 1.19216i
\(163\) 68.3722 210.428i 0.419461 1.29097i −0.488738 0.872431i \(-0.662543\pi\)
0.908199 0.418538i \(-0.137457\pi\)
\(164\) 187.953i 1.14606i
\(165\) 0 0
\(166\) −173.351 −1.04428
\(167\) 175.393 + 56.9886i 1.05026 + 0.341249i 0.782769 0.622312i \(-0.213806\pi\)
0.267488 + 0.963561i \(0.413806\pi\)
\(168\) −4.46363 + 26.7071i −0.0265692 + 0.158971i
\(169\) −94.3269 68.5325i −0.558148 0.405518i
\(170\) −0.847468 + 0.275359i −0.00498510 + 0.00161976i
\(171\) −46.3072 + 14.1782i −0.270802 + 0.0829136i
\(172\) 0.698988 + 0.507845i 0.00406389 + 0.00295259i
\(173\) 143.153 + 197.033i 0.827472 + 1.13892i 0.988388 + 0.151950i \(0.0485552\pi\)
−0.160916 + 0.986968i \(0.551445\pi\)
\(174\) −385.906 + 192.504i −2.21785 + 1.10635i
\(175\) −5.79723 −0.0331270
\(176\) 0 0
\(177\) 31.0030 30.4790i 0.175158 0.172198i
\(178\) 35.8793 110.425i 0.201569 0.620366i
\(179\) 186.107 + 256.154i 1.03970 + 1.43103i 0.897407 + 0.441203i \(0.145448\pi\)
0.142295 + 0.989824i \(0.454552\pi\)
\(180\) 152.280 + 114.654i 0.846001 + 0.636965i
\(181\) −9.54820 29.3863i −0.0527525 0.162355i 0.921209 0.389067i \(-0.127203\pi\)
−0.973962 + 0.226712i \(0.927203\pi\)
\(182\) 517.078 168.009i 2.84109 0.923126i
\(183\) −13.0205 87.0004i −0.0711502 0.475412i
\(184\) −5.67922 + 4.12619i −0.0308653 + 0.0224250i
\(185\) 184.745 + 60.0272i 0.998621 + 0.324472i
\(186\) −151.295 + 148.738i −0.813413 + 0.799666i
\(187\) 0 0
\(188\) 63.8068i 0.339398i
\(189\) −130.122 272.377i −0.688477 1.44115i
\(190\) 61.9826 45.0330i 0.326224 0.237016i
\(191\) 173.938 239.405i 0.910669 1.25343i −0.0562681 0.998416i \(-0.517920\pi\)
0.966938 0.255013i \(-0.0820798\pi\)
\(192\) −100.586 + 193.320i −0.523884 + 1.00687i
\(193\) −24.5692 75.6161i −0.127301 0.391793i 0.867012 0.498287i \(-0.166038\pi\)
−0.994313 + 0.106494i \(0.966038\pi\)
\(194\) 52.1171 71.7331i 0.268645 0.369758i
\(195\) 41.3517 247.419i 0.212060 1.26881i
\(196\) −100.523 + 309.377i −0.512871 + 1.57845i
\(197\) 360.331i 1.82909i 0.404485 + 0.914544i \(0.367451\pi\)
−0.404485 + 0.914544i \(0.632549\pi\)
\(198\) 0 0
\(199\) 369.874 1.85866 0.929332 0.369245i \(-0.120384\pi\)
0.929332 + 0.369245i \(0.120384\pi\)
\(200\) 0.398129 + 0.129360i 0.00199065 + 0.000646800i
\(201\) −245.154 40.9732i −1.21967 0.203847i
\(202\) 120.875 + 87.8211i 0.598393 + 0.434758i
\(203\) −531.173 + 172.588i −2.61661 + 0.850190i
\(204\) −0.712959 0.370958i −0.00349490 0.00181842i
\(205\) −175.763 127.699i −0.857379 0.622922i
\(206\) −86.5219 119.087i −0.420009 0.578093i
\(207\) 25.4482 74.0051i 0.122938 0.357513i
\(208\) 250.098 1.20239
\(209\) 0 0
\(210\) 334.786 + 340.541i 1.59422 + 1.62163i
\(211\) −47.8204 + 147.176i −0.226637 + 0.697517i 0.771484 + 0.636248i \(0.219515\pi\)
−0.998121 + 0.0612686i \(0.980485\pi\)
\(212\) −246.427 339.178i −1.16239 1.59989i
\(213\) 79.2346 11.8582i 0.371993 0.0556725i
\(214\) −60.8610 187.311i −0.284397 0.875285i
\(215\) 0.949812 0.308613i 0.00441773 0.00143541i
\(216\) 2.85839 + 21.6093i 0.0132333 + 0.100043i
\(217\) −222.291 + 161.504i −1.02438 + 0.744257i
\(218\) 344.110 + 111.808i 1.57849 + 0.512882i
\(219\) 29.3818 + 29.8870i 0.134164 + 0.136470i
\(220\) 0 0
\(221\) 1.05765i 0.00478576i
\(222\) 151.288 + 303.281i 0.681476 + 1.36613i
\(223\) 289.076 210.026i 1.29631 0.941821i 0.296393 0.955066i \(-0.404216\pi\)
0.999912 + 0.0132452i \(0.00421621\pi\)
\(224\) −301.073 + 414.392i −1.34408 + 1.84996i
\(225\) −4.46231 + 1.36626i −0.0198325 + 0.00607226i
\(226\) −87.7950 270.205i −0.388473 1.19560i
\(227\) 60.2830 82.9725i 0.265564 0.365517i −0.655322 0.755350i \(-0.727467\pi\)
0.920886 + 0.389832i \(0.127467\pi\)
\(228\) 68.1557 + 11.3910i 0.298929 + 0.0499607i
\(229\) −114.140 + 351.286i −0.498426 + 1.53400i 0.313122 + 0.949713i \(0.398625\pi\)
−0.811548 + 0.584285i \(0.801375\pi\)
\(230\) 123.804i 0.538280i
\(231\) 0 0
\(232\) 40.3299 0.173836
\(233\) −16.4775 5.35387i −0.0707190 0.0229780i 0.273444 0.961888i \(-0.411837\pi\)
−0.344163 + 0.938910i \(0.611837\pi\)
\(234\) 358.416 251.184i 1.53169 1.07344i
\(235\) 59.6683 + 43.3516i 0.253908 + 0.184475i
\(236\) −58.9975 + 19.1694i −0.249989 + 0.0812264i
\(237\) −69.4947 + 133.565i −0.293226 + 0.563564i
\(238\) −1.62893 1.18348i −0.00684422 0.00497262i
\(239\) −128.623 177.035i −0.538172 0.740730i 0.450176 0.892940i \(-0.351361\pi\)
−0.988348 + 0.152209i \(0.951361\pi\)
\(240\) 98.0574 + 196.572i 0.408572 + 0.819050i
\(241\) 118.033 0.489765 0.244883 0.969553i \(-0.421251\pi\)
0.244883 + 0.969553i \(0.421251\pi\)
\(242\) 0 0
\(243\) −164.351 178.991i −0.676343 0.736587i
\(244\) −38.7876 + 119.376i −0.158965 + 0.489245i
\(245\) 221.014 + 304.199i 0.902097 + 1.24163i
\(246\) −56.1043 374.879i −0.228066 1.52390i
\(247\) −28.1010 86.4859i −0.113769 0.350145i
\(248\) 18.8698 6.13117i 0.0760880 0.0247225i
\(249\) −178.735 + 26.7494i −0.717810 + 0.107427i
\(250\) 293.942 213.561i 1.17577 0.854246i
\(251\) −152.702 49.6160i −0.608376 0.197673i −0.0114036 0.999935i \(-0.503630\pi\)
−0.596973 + 0.802262i \(0.703630\pi\)
\(252\) −7.34098 + 430.650i −0.0291309 + 1.70893i
\(253\) 0 0
\(254\) 59.9950i 0.236201i
\(255\) −0.831295 + 0.414681i −0.00325998 + 0.00162620i
\(256\) −175.076 + 127.200i −0.683891 + 0.496876i
\(257\) −15.3895 + 21.1818i −0.0598811 + 0.0824193i −0.837907 0.545813i \(-0.816221\pi\)
0.778026 + 0.628232i \(0.216221\pi\)
\(258\) 1.54575 + 0.804264i 0.00599127 + 0.00311730i
\(259\) 135.636 + 417.445i 0.523691 + 1.61176i
\(260\) −210.384 + 289.568i −0.809168 + 1.11372i
\(261\) −368.186 + 258.031i −1.41067 + 0.988623i
\(262\) −25.8133 + 79.4451i −0.0985240 + 0.303226i
\(263\) 221.020i 0.840378i −0.907437 0.420189i \(-0.861964\pi\)
0.907437 0.420189i \(-0.138036\pi\)
\(264\) 0 0
\(265\) −484.606 −1.82870
\(266\) 164.644 + 53.4960i 0.618961 + 0.201113i
\(267\) 19.9541 119.391i 0.0747344 0.447156i
\(268\) 286.918 + 208.458i 1.07059 + 0.777828i
\(269\) 119.300 38.7629i 0.443494 0.144100i −0.0787531 0.996894i \(-0.525094\pi\)
0.522247 + 0.852794i \(0.325094\pi\)
\(270\) 337.952 + 183.225i 1.25167 + 0.678611i
\(271\) −323.549 235.072i −1.19391 0.867425i −0.200236 0.979748i \(-0.564171\pi\)
−0.993672 + 0.112323i \(0.964171\pi\)
\(272\) −0.544405 0.749309i −0.00200149 0.00275481i
\(273\) 507.211 253.015i 1.85792 0.926796i
\(274\) −436.561 −1.59329
\(275\) 0 0
\(276\) −79.6276 + 78.2819i −0.288506 + 0.283630i
\(277\) 22.7480 70.0112i 0.0821228 0.252748i −0.901562 0.432651i \(-0.857578\pi\)
0.983684 + 0.179903i \(0.0575783\pi\)
\(278\) −32.5134 44.7508i −0.116955 0.160974i
\(279\) −133.042 + 176.703i −0.476853 + 0.633343i
\(280\) −13.8003 42.4730i −0.0492869 0.151689i
\(281\) 398.855 129.596i 1.41941 0.461195i 0.503996 0.863706i \(-0.331863\pi\)
0.915415 + 0.402511i \(0.131863\pi\)
\(282\) 19.0464 + 127.265i 0.0675405 + 0.451293i
\(283\) 214.669 155.966i 0.758548 0.551117i −0.139917 0.990163i \(-0.544683\pi\)
0.898465 + 0.439046i \(0.144683\pi\)
\(284\) −108.720 35.3253i −0.382817 0.124385i
\(285\) 56.9585 55.9959i 0.199854 0.196477i
\(286\) 0 0
\(287\) 490.903i 1.71046i
\(288\) −134.084 + 389.925i −0.465569 + 1.35391i
\(289\) −233.803 + 169.868i −0.809006 + 0.587777i
\(290\) 418.072 575.427i 1.44163 1.98423i
\(291\) 42.6667 82.0028i 0.146621 0.281797i
\(292\) −18.4794 56.8737i −0.0632856 0.194773i
\(293\) 111.987 154.137i 0.382209 0.526065i −0.573959 0.818884i \(-0.694593\pi\)
0.956168 + 0.292819i \(0.0945932\pi\)
\(294\) −108.146 + 647.069i −0.367844 + 2.20091i
\(295\) −22.1579 + 68.1950i −0.0751115 + 0.231169i
\(296\) 31.6949i 0.107078i
\(297\) 0 0
\(298\) 522.763 1.75424
\(299\) 139.756 + 45.4094i 0.467410 + 0.151871i
\(300\) 6.56771 + 1.09768i 0.0218924 + 0.00365893i
\(301\) 1.82564 + 1.32641i 0.00606526 + 0.00440667i
\(302\) 383.671 124.662i 1.27043 0.412788i
\(303\) 138.180 + 71.8963i 0.456041 + 0.237282i
\(304\) 64.4253 + 46.8077i 0.211925 + 0.153973i
\(305\) 85.2801 + 117.378i 0.279607 + 0.384846i
\(306\) −1.53275 0.527068i −0.00500899 0.00172244i
\(307\) −285.254 −0.929166 −0.464583 0.885530i \(-0.653796\pi\)
−0.464583 + 0.885530i \(0.653796\pi\)
\(308\) 0 0
\(309\) −107.585 109.434i −0.348171 0.354156i
\(310\) 108.131 332.792i 0.348809 1.07352i
\(311\) −296.766 408.463i −0.954230 1.31339i −0.949623 0.313396i \(-0.898533\pi\)
−0.00460774 0.999989i \(-0.501467\pi\)
\(312\) −40.4789 + 6.05807i −0.129740 + 0.0194169i
\(313\) 24.7740 + 76.2465i 0.0791501 + 0.243599i 0.982800 0.184673i \(-0.0591225\pi\)
−0.903650 + 0.428272i \(0.859123\pi\)
\(314\) −491.554 + 159.716i −1.56546 + 0.508648i
\(315\) 397.731 + 299.457i 1.26264 + 0.950656i
\(316\) 173.801 126.274i 0.550004 0.399601i
\(317\) 8.23294 + 2.67505i 0.0259714 + 0.00843863i 0.321974 0.946749i \(-0.395654\pi\)
−0.296002 + 0.955187i \(0.595654\pi\)
\(318\) −592.752 602.942i −1.86400 1.89604i
\(319\) 0 0
\(320\) 359.417i 1.12318i
\(321\) −91.6545 183.736i −0.285528 0.572388i
\(322\) −226.319 + 164.430i −0.702854 + 0.510653i
\(323\) −0.197948 + 0.272452i −0.000612842 + 0.000843504i
\(324\) 95.8427 + 333.215i 0.295811 + 1.02844i
\(325\) −2.70790 8.33406i −0.00833200 0.0256433i
\(326\) −374.236 + 515.091i −1.14796 + 1.58003i
\(327\) 372.049 + 62.1816i 1.13777 + 0.190158i
\(328\) −10.9541 + 33.7131i −0.0333965 + 0.102784i
\(329\) 166.653i 0.506544i
\(330\) 0 0
\(331\) 28.2554 0.0853638 0.0426819 0.999089i \(-0.486410\pi\)
0.0426819 + 0.999089i \(0.486410\pi\)
\(332\) 245.247 + 79.6856i 0.738696 + 0.240017i
\(333\) 202.784 + 289.354i 0.608962 + 0.868932i
\(334\) −429.332 311.928i −1.28542 0.933916i
\(335\) 389.875 126.678i 1.16381 0.378143i
\(336\) −229.106 + 440.328i −0.681863 + 1.31050i
\(337\) 233.420 + 169.589i 0.692640 + 0.503232i 0.877527 0.479527i \(-0.159192\pi\)
−0.184887 + 0.982760i \(0.559192\pi\)
\(338\) 197.209 + 271.435i 0.583458 + 0.803061i
\(339\) −132.216 265.049i −0.390018 0.781855i
\(340\) 1.32552 0.00389859
\(341\) 0 0
\(342\) 139.339 + 2.37521i 0.407424 + 0.00694506i
\(343\) −93.2616 + 287.030i −0.271900 + 0.836821i
\(344\) −0.0957798 0.131830i −0.000278430 0.000383226i
\(345\) 19.1040 + 127.649i 0.0553738 + 0.369998i
\(346\) −216.567 666.526i −0.625917 1.92637i
\(347\) −250.710 + 81.4606i −0.722507 + 0.234757i −0.647110 0.762397i \(-0.724023\pi\)
−0.0753975 + 0.997154i \(0.524023\pi\)
\(348\) 634.447 94.9512i 1.82312 0.272848i
\(349\) 394.738 286.794i 1.13106 0.821760i 0.145207 0.989401i \(-0.453615\pi\)
0.985848 + 0.167641i \(0.0536150\pi\)
\(350\) 15.8656 + 5.15505i 0.0453303 + 0.0147287i
\(351\) 330.787 314.291i 0.942412 0.895415i
\(352\) 0 0
\(353\) 437.345i 1.23894i 0.785021 + 0.619469i \(0.212652\pi\)
−0.785021 + 0.619469i \(0.787348\pi\)
\(354\) −111.950 + 55.8449i −0.316244 + 0.157754i
\(355\) −106.901 + 77.6678i −0.301128 + 0.218782i
\(356\) −101.520 + 139.730i −0.285168 + 0.392500i
\(357\) −1.86213 0.968881i −0.00521605 0.00271395i
\(358\) −281.550 866.521i −0.786452 2.42045i
\(359\) 144.007 198.208i 0.401132 0.552111i −0.559895 0.828563i \(-0.689159\pi\)
0.961028 + 0.276452i \(0.0891587\pi\)
\(360\) −20.6323 29.4404i −0.0573121 0.0817790i
\(361\) −102.607 + 315.793i −0.284231 + 0.874774i
\(362\) 88.9137i 0.245618i
\(363\) 0 0
\(364\) −808.761 −2.22187
\(365\) −65.7402 21.3603i −0.180110 0.0585213i
\(366\) −41.7292 + 249.677i −0.114014 + 0.682178i
\(367\) −182.111 132.311i −0.496216 0.360522i 0.311354 0.950294i \(-0.399217\pi\)
−0.807570 + 0.589772i \(0.799217\pi\)
\(368\) −122.385 + 39.7654i −0.332569 + 0.108058i
\(369\) −115.693 377.863i −0.313532 1.02402i
\(370\) −452.224 328.560i −1.22223 0.887999i
\(371\) −643.627 885.876i −1.73484 2.38781i
\(372\) 282.414 140.879i 0.759178 0.378706i
\(373\) −283.156 −0.759131 −0.379566 0.925165i \(-0.623927\pi\)
−0.379566 + 0.925165i \(0.623927\pi\)
\(374\) 0 0
\(375\) 270.116 265.551i 0.720310 0.708136i
\(376\) 3.71871 11.4450i 0.00989019 0.0304389i
\(377\) −496.224 682.994i −1.31624 1.81165i
\(378\) 113.908 + 861.137i 0.301344 + 2.27814i
\(379\) −141.092 434.237i −0.372275 1.14574i −0.945299 0.326205i \(-0.894230\pi\)
0.573024 0.819538i \(-0.305770\pi\)
\(380\) −108.390 + 35.2180i −0.285236 + 0.0926789i
\(381\) 9.25768 + 61.8581i 0.0242984 + 0.162357i
\(382\) −688.910 + 500.523i −1.80343 + 1.31027i
\(383\) −305.540 99.2761i −0.797755 0.259206i −0.118352 0.992972i \(-0.537761\pi\)
−0.679403 + 0.733765i \(0.737761\pi\)
\(384\) 55.1314 54.1997i 0.143571 0.141145i
\(385\) 0 0
\(386\) 228.790i 0.592721i
\(387\) 1.71785 + 0.590719i 0.00443890 + 0.00152641i
\(388\) −106.706 + 77.5266i −0.275016 + 0.199811i
\(389\) 185.407 255.190i 0.476624 0.656017i −0.501228 0.865315i \(-0.667118\pi\)
0.977852 + 0.209299i \(0.0671181\pi\)
\(390\) −333.181 + 640.353i −0.854309 + 1.64193i
\(391\) −0.168166 0.517562i −0.000430093 0.00132369i
\(392\) 36.0615 49.6344i 0.0919936 0.126618i
\(393\) −14.3559 + 85.8954i −0.0365291 + 0.218563i
\(394\) 320.415 986.136i 0.813236 2.50288i
\(395\) 248.321i 0.628661i
\(396\) 0 0
\(397\) −338.199 −0.851885 −0.425943 0.904750i \(-0.640057\pi\)
−0.425943 + 0.904750i \(0.640057\pi\)
\(398\) −1012.25 328.902i −2.54335 0.826386i
\(399\) 178.011 + 29.7515i 0.446144 + 0.0745652i
\(400\) 6.20823 + 4.51054i 0.0155206 + 0.0112764i
\(401\) −343.284 + 111.540i −0.856070 + 0.278154i −0.703986 0.710214i \(-0.748598\pi\)
−0.152084 + 0.988368i \(0.548598\pi\)
\(402\) 634.492 + 330.131i 1.57834 + 0.821221i
\(403\) −336.009 244.125i −0.833770 0.605769i
\(404\) −130.638 179.807i −0.323361 0.445068i
\(405\) 376.720 + 136.766i 0.930173 + 0.337694i
\(406\) 1607.16 3.95852
\(407\) 0 0
\(408\) 0.106264 + 0.108090i 0.000260450 + 0.000264928i
\(409\) 136.320 419.551i 0.333302 1.02580i −0.634251 0.773127i \(-0.718691\pi\)
0.967553 0.252670i \(-0.0813087\pi\)
\(410\) 367.466 + 505.774i 0.896259 + 1.23359i
\(411\) −450.119 + 67.3647i −1.09518 + 0.163904i
\(412\) 67.6643 + 208.249i 0.164234 + 0.505460i
\(413\) −154.092 + 50.0674i −0.373103 + 0.121229i
\(414\) −135.453 + 179.905i −0.327180 + 0.434552i
\(415\) 241.143 175.200i 0.581066 0.422169i
\(416\) −736.358 239.257i −1.77009 0.575138i
\(417\) −40.4284 41.1235i −0.0969507 0.0986174i
\(418\) 0 0
\(419\) 393.180i 0.938377i 0.883098 + 0.469188i \(0.155453\pi\)
−0.883098 + 0.469188i \(0.844547\pi\)
\(420\) −317.096 635.671i −0.754990 1.51350i
\(421\) 569.050 413.439i 1.35166 0.982041i 0.352737 0.935723i \(-0.385251\pi\)
0.998927 0.0463181i \(-0.0147488\pi\)
\(422\) 261.745 360.262i 0.620250 0.853701i
\(423\) 39.2758 + 128.278i 0.0928506 + 0.303257i
\(424\) 24.4340 + 75.2002i 0.0576274 + 0.177359i
\(425\) −0.0190749 + 0.0262544i −4.48821e−5 + 6.17749e-5i
\(426\) −227.390 38.0043i −0.533780 0.0892120i
\(427\) −101.307 + 311.790i −0.237252 + 0.730187i
\(428\) 292.973i 0.684515i
\(429\) 0 0
\(430\) −2.87383 −0.00668332
\(431\) −143.851 46.7401i −0.333762 0.108446i 0.137342 0.990524i \(-0.456144\pi\)
−0.471103 + 0.882078i \(0.656144\pi\)
\(432\) −72.5759 + 392.929i −0.168000 + 0.909558i
\(433\) 381.538 + 277.204i 0.881150 + 0.640193i 0.933555 0.358433i \(-0.116689\pi\)
−0.0524055 + 0.998626i \(0.516689\pi\)
\(434\) 751.969 244.330i 1.73265 0.562971i
\(435\) 342.262 657.808i 0.786810 1.51220i
\(436\) −435.431 316.359i −0.998695 0.725594i
\(437\) 27.5024 + 37.8538i 0.0629345 + 0.0866220i
\(438\) −53.8347 107.920i −0.122910 0.246394i
\(439\) 506.417 1.15357 0.576784 0.816897i \(-0.304307\pi\)
0.576784 + 0.816897i \(0.304307\pi\)
\(440\) 0 0
\(441\) −11.6571 + 683.851i −0.0264334 + 1.55068i
\(442\) 0.940493 2.89454i 0.00212781 0.00654873i
\(443\) 375.325 + 516.591i 0.847235 + 1.16612i 0.984465 + 0.175580i \(0.0561801\pi\)
−0.137230 + 0.990539i \(0.543820\pi\)
\(444\) −74.6215 498.607i −0.168066 1.12299i
\(445\) 61.6926 + 189.870i 0.138635 + 0.426675i
\(446\) −977.891 + 317.736i −2.19258 + 0.712413i
\(447\) 538.997 80.6663i 1.20581 0.180461i
\(448\) 657.027 477.358i 1.46658 1.06553i
\(449\) −315.250 102.431i −0.702116 0.228131i −0.0638637 0.997959i \(-0.520342\pi\)
−0.638252 + 0.769827i \(0.720342\pi\)
\(450\) 13.4272 + 0.228883i 0.0298381 + 0.000508629i
\(451\) 0 0
\(452\) 422.627i 0.935016i
\(453\) 376.349 187.737i 0.830792 0.414430i
\(454\) −238.761 + 173.470i −0.525906 + 0.382093i
\(455\) −549.487 + 756.305i −1.20766 + 1.66221i
\(456\) −11.5612 6.01538i −0.0253535 0.0131916i
\(457\) −26.5560 81.7309i −0.0581094 0.178842i 0.917789 0.397069i \(-0.129973\pi\)
−0.975898 + 0.218227i \(0.929973\pi\)
\(458\) 624.744 859.887i 1.36407 1.87748i
\(459\) −1.66168 0.306921i −0.00362022 0.000668673i
\(460\) 56.9100 175.151i 0.123717 0.380763i
\(461\) 65.3245i 0.141702i 0.997487 + 0.0708508i \(0.0225714\pi\)
−0.997487 + 0.0708508i \(0.977429\pi\)
\(462\) 0 0
\(463\) 535.374 1.15632 0.578158 0.815925i \(-0.303772\pi\)
0.578158 + 0.815925i \(0.303772\pi\)
\(464\) 703.113 + 228.455i 1.51533 + 0.492361i
\(465\) 60.1364 359.812i 0.129326 0.773790i
\(466\) 40.3341 + 29.3045i 0.0865539 + 0.0628851i
\(467\) −473.636 + 153.894i −1.01421 + 0.329537i −0.768530 0.639814i \(-0.779011\pi\)
−0.245681 + 0.969351i \(0.579011\pi\)
\(468\) −622.528 + 190.604i −1.33019 + 0.407274i
\(469\) 749.382 + 544.458i 1.59783 + 1.16089i
\(470\) −124.748 171.701i −0.265422 0.365322i
\(471\) −482.174 + 240.526i −1.02372 + 0.510671i
\(472\) 11.6996 0.0247872
\(473\) 0 0
\(474\) 308.959 303.737i 0.651812 0.640796i
\(475\) 0.862227 2.65366i 0.00181521 0.00558665i
\(476\) 1.76048 + 2.42310i 0.00369850 + 0.00509055i
\(477\) −704.198 530.200i −1.47631 1.11153i
\(478\) 194.586 + 598.875i 0.407084 + 1.25288i
\(479\) 826.166 268.438i 1.72477 0.560412i 0.732094 0.681204i \(-0.238543\pi\)
0.992678 + 0.120791i \(0.0385432\pi\)
\(480\) −100.657 672.571i −0.209702 1.40119i
\(481\) −536.760 + 389.979i −1.11592 + 0.810767i
\(482\) −323.029 104.958i −0.670184 0.217756i
\(483\) −207.974 + 204.459i −0.430588 + 0.423311i
\(484\) 0 0
\(485\) 152.458i 0.314347i
\(486\) 290.626 + 635.999i 0.597997 + 1.30864i
\(487\) −195.067 + 141.725i −0.400549 + 0.291016i −0.769764 0.638328i \(-0.779626\pi\)
0.369216 + 0.929344i \(0.379626\pi\)
\(488\) 13.9146 19.1518i 0.0285136 0.0392456i
\(489\) −306.375 + 588.835i −0.626534 + 1.20416i
\(490\) −334.359 1029.05i −0.682365 2.10010i
\(491\) −293.922 + 404.549i −0.598619 + 0.823928i −0.995581 0.0939071i \(-0.970064\pi\)
0.396962 + 0.917835i \(0.370064\pi\)
\(492\) −92.9501 + 556.146i −0.188923 + 1.13038i
\(493\) −0.966128 + 2.97344i −0.00195969 + 0.00603131i
\(494\) 261.679i 0.529714i
\(495\) 0 0
\(496\) 363.708 0.733283
\(497\) −283.959 92.2638i −0.571346 0.185641i
\(498\) 512.939 + 85.7288i 1.03000 + 0.172146i
\(499\) 448.855 + 326.112i 0.899509 + 0.653531i 0.938340 0.345715i \(-0.112363\pi\)
−0.0388311 + 0.999246i \(0.512363\pi\)
\(500\) −514.021 + 167.015i −1.02804 + 0.334031i
\(501\) −490.797 255.365i −0.979635 0.509712i
\(502\) 373.789 + 271.574i 0.744600 + 0.540984i
\(503\) 395.277 + 544.051i 0.785838 + 1.08161i 0.994614 + 0.103650i \(0.0330521\pi\)
−0.208776 + 0.977964i \(0.566948\pi\)
\(504\) 26.4154 76.8178i 0.0524115 0.152416i
\(505\) −256.903 −0.508719
\(506\) 0 0
\(507\) 245.217 + 249.433i 0.483664 + 0.491979i
\(508\) 27.5783 84.8773i 0.0542880 0.167081i
\(509\) −378.324 520.719i −0.743270 1.02302i −0.998424 0.0561224i \(-0.982126\pi\)
0.255154 0.966900i \(-0.417874\pi\)
\(510\) 2.64380 0.395670i 0.00518392 0.000775824i
\(511\) −48.2651 148.545i −0.0944523 0.290694i
\(512\) 690.287 224.288i 1.34822 0.438062i
\(513\) 144.033 19.0521i 0.280765 0.0371386i
\(514\) 60.9525 44.2846i 0.118585 0.0861568i
\(515\) 240.715 + 78.2130i 0.467407 + 0.151870i
\(516\) −1.81713 1.84837i −0.00352157 0.00358211i
\(517\) 0 0
\(518\) 1263.06i 2.43833i
\(519\) −326.143 653.806i −0.628406 1.25974i
\(520\) 54.6127 39.6785i 0.105025 0.0763048i
\(521\) 313.882 432.022i 0.602462 0.829217i −0.393469 0.919338i \(-0.628725\pi\)
0.995931 + 0.0901206i \(0.0287252\pi\)
\(522\) 1237.08 378.767i 2.36989 0.725606i
\(523\) 307.507 + 946.409i 0.587967 + 1.80958i 0.587013 + 0.809577i \(0.300304\pi\)
0.000954046 1.00000i \(0.499696\pi\)
\(524\) 73.0382 100.528i 0.139386 0.191848i
\(525\) 17.1538 + 2.86695i 0.0326738 + 0.00546086i
\(526\) −196.536 + 604.876i −0.373643 + 1.14996i
\(527\) 1.53811i 0.00291861i
\(528\) 0 0
\(529\) 453.391 0.857071
\(530\) 1326.25 + 430.924i 2.50235 + 0.813064i
\(531\) −106.810 + 74.8539i −0.201148 + 0.140968i
\(532\) −208.337 151.366i −0.391611 0.284522i
\(533\) 705.718 229.302i 1.32405 0.430210i
\(534\) −160.775 + 309.000i −0.301076 + 0.578651i
\(535\) 273.970 + 199.051i 0.512094 + 0.372058i
\(536\) −39.3153 54.1129i −0.0733494 0.100957i
\(537\) −424.004 849.985i −0.789579 1.58284i
\(538\) −360.964 −0.670936
\(539\) 0 0
\(540\) −393.890 414.564i −0.729426 0.767711i
\(541\) 213.440 656.899i 0.394528 1.21423i −0.534801 0.844978i \(-0.679613\pi\)
0.929329 0.369254i \(-0.120387\pi\)
\(542\) 676.442 + 931.043i 1.24805 + 1.71779i
\(543\) 13.7201 + 91.6749i 0.0252671 + 0.168830i
\(544\) 0.886051 + 2.72698i 0.00162877 + 0.00501284i
\(545\) −591.680 + 192.248i −1.08565 + 0.352749i
\(546\) −1613.10 + 241.416i −2.95440 + 0.442155i
\(547\) −70.3505 + 51.1127i −0.128612 + 0.0934418i −0.650231 0.759736i \(-0.725328\pi\)
0.521620 + 0.853178i \(0.325328\pi\)
\(548\) 617.621 + 200.677i 1.12705 + 0.366199i
\(549\) −4.49800 + 263.870i −0.00819307 + 0.480637i
\(550\) 0 0
\(551\) 268.812i 0.487861i
\(552\) 18.8451 9.40064i 0.0341397 0.0170301i
\(553\) 453.940 329.807i 0.820868 0.596395i
\(554\) −124.511 + 171.375i −0.224750 + 0.309342i
\(555\) −516.966 268.981i −0.931471 0.484651i
\(556\) 25.4270 + 78.2564i 0.0457321 + 0.140749i
\(557\) −432.298 + 595.007i −0.776118 + 1.06824i 0.219581 + 0.975594i \(0.429531\pi\)
−0.995700 + 0.0926409i \(0.970469\pi\)
\(558\) 521.232 365.288i 0.934107 0.654638i
\(559\) −1.05407 + 3.24410i −0.00188564 + 0.00580339i
\(560\) 818.651i 1.46188i
\(561\) 0 0
\(562\) −1206.81 −2.14734
\(563\) −542.073 176.130i −0.962829 0.312842i −0.214911 0.976634i \(-0.568946\pi\)
−0.747918 + 0.663792i \(0.768946\pi\)
\(564\) 31.5549 188.802i 0.0559484 0.334755i
\(565\) 395.216 + 287.141i 0.699497 + 0.508214i
\(566\) −726.186 + 235.952i −1.28301 + 0.416876i
\(567\) 250.325 + 870.302i 0.441491 + 1.53492i
\(568\) 17.4423 + 12.6726i 0.0307083 + 0.0223109i
\(569\) 333.772 + 459.398i 0.586594 + 0.807378i 0.994399 0.105691i \(-0.0337055\pi\)
−0.407805 + 0.913069i \(0.633706\pi\)
\(570\) −205.674 + 102.598i −0.360832 + 0.179996i
\(571\) 229.442 0.401825 0.200912 0.979609i \(-0.435609\pi\)
0.200912 + 0.979609i \(0.435609\pi\)
\(572\) 0 0
\(573\) −633.070 + 622.370i −1.10483 + 1.08616i
\(574\) −436.523 + 1343.48i −0.760494 + 2.34056i
\(575\) 2.65022 + 3.64771i 0.00460908 + 0.00634385i
\(576\) 393.233 522.282i 0.682696 0.906740i
\(577\) −222.195 683.846i −0.385087 1.18518i −0.936417 0.350888i \(-0.885880\pi\)
0.551331 0.834287i \(-0.314120\pi\)
\(578\) 790.912 256.983i 1.36836 0.444607i
\(579\) 35.3041 + 235.895i 0.0609742 + 0.407419i
\(580\) −855.973 + 621.901i −1.47582 + 1.07224i
\(581\) 640.544 + 208.125i 1.10249 + 0.358219i
\(582\) −189.687 + 186.481i −0.325923 + 0.320415i
\(583\) 0 0
\(584\) 11.2784i 0.0193124i
\(585\) −244.716 + 711.651i −0.418318 + 1.21650i
\(586\) −443.544 + 322.254i −0.756902 + 0.549921i
\(587\) −300.738 + 413.930i −0.512331 + 0.705162i −0.984310 0.176447i \(-0.943540\pi\)
0.471980 + 0.881609i \(0.343540\pi\)
\(588\) 450.441 865.722i 0.766057 1.47232i
\(589\) −40.8662 125.773i −0.0693824 0.213537i
\(590\) 121.281 166.930i 0.205562 0.282931i
\(591\) 178.197 1066.20i 0.301518 1.80407i
\(592\) 179.541 552.571i 0.303279 0.933398i
\(593\) 241.775i 0.407715i −0.979001 0.203858i \(-0.934652\pi\)
0.979001 0.203858i \(-0.0653480\pi\)
\(594\) 0 0
\(595\) 3.46204 0.00581856
\(596\) −739.573 240.302i −1.24089 0.403191i
\(597\) −1094.44 182.917i −1.83324 0.306393i
\(598\) −342.098 248.549i −0.572070 0.415633i
\(599\) 460.604 149.659i 0.768955 0.249849i 0.101837 0.994801i \(-0.467528\pi\)
0.667118 + 0.744952i \(0.267528\pi\)
\(600\) −1.11407 0.579661i −0.00185679 0.000966102i
\(601\) −391.082 284.138i −0.650719 0.472775i 0.212797 0.977096i \(-0.431743\pi\)
−0.863516 + 0.504321i \(0.831743\pi\)
\(602\) −3.81686 5.25346i −0.00634030 0.00872668i
\(603\) 705.138 + 242.476i 1.16938 + 0.402116i
\(604\) −600.098 −0.993540
\(605\) 0 0
\(606\) −314.234 319.636i −0.518538 0.527453i
\(607\) −153.768 + 473.248i −0.253324 + 0.779651i 0.740831 + 0.671691i \(0.234432\pi\)
−0.994155 + 0.107960i \(0.965568\pi\)
\(608\) −144.907 199.448i −0.238334 0.328039i
\(609\) 1657.07 247.997i 2.72097 0.407220i
\(610\) −129.015 397.068i −0.211500 0.650931i
\(611\) −239.579 + 77.8439i −0.392109 + 0.127404i
\(612\) 1.92616 + 1.45023i 0.00314733 + 0.00236966i
\(613\) 847.792 615.957i 1.38302 1.00482i 0.386431 0.922318i \(-0.373708\pi\)
0.996591 0.0825060i \(-0.0262924\pi\)
\(614\) 780.670 + 253.655i 1.27145 + 0.413119i
\(615\) 456.922 + 464.777i 0.742963 + 0.755735i
\(616\) 0 0
\(617\) 322.739i 0.523078i 0.965193 + 0.261539i \(0.0842301\pi\)
−0.965193 + 0.261539i \(0.915770\pi\)
\(618\) 197.121 + 395.162i 0.318967 + 0.639421i
\(619\) −435.469 + 316.387i −0.703504 + 0.511126i −0.881072 0.472983i \(-0.843177\pi\)
0.177567 + 0.984109i \(0.443177\pi\)
\(620\) −305.954 + 421.109i −0.493474 + 0.679208i
\(621\) −111.898 + 206.393i −0.180191 + 0.332356i
\(622\) 448.959 + 1381.75i 0.721799 + 2.22147i
\(623\) −265.153 + 364.951i −0.425606 + 0.585797i
\(624\) −740.029 123.683i −1.18594 0.198210i
\(625\) −189.047 + 581.826i −0.302475 + 0.930921i
\(626\) 230.698i 0.368527i
\(627\) 0 0
\(628\) 768.838 1.22426
\(629\) 2.33680 + 0.759273i 0.00371511 + 0.00120711i
\(630\) −822.207 1173.21i −1.30509 1.86224i
\(631\) −714.632 519.211i −1.13254 0.822838i −0.146477 0.989214i \(-0.546793\pi\)
−0.986062 + 0.166376i \(0.946793\pi\)
\(632\) −38.5340 + 12.5205i −0.0609715 + 0.0198109i
\(633\) 214.283 411.839i 0.338519 0.650614i
\(634\) −20.1528 14.6419i −0.0317868 0.0230945i
\(635\) −60.6349 83.4568i −0.0954881 0.131428i
\(636\) 561.431 + 1125.48i 0.882753 + 1.76962i
\(637\) −1284.27 −2.01613
\(638\) 0 0
\(639\) −240.316 4.09649i −0.376082 0.00641079i
\(640\) −39.4025 + 121.269i −0.0615665 + 0.189482i
\(641\) −173.396 238.659i −0.270509 0.372323i 0.652053 0.758174i \(-0.273908\pi\)
−0.922561 + 0.385850i \(0.873908\pi\)
\(642\) 87.4528 + 584.343i 0.136219 + 0.910192i
\(643\) 258.185 + 794.613i 0.401532 + 1.23579i 0.923756 + 0.382981i \(0.125103\pi\)
−0.522224 + 0.852809i \(0.674897\pi\)
\(644\) 395.767 128.592i 0.614545 0.199678i
\(645\) −2.96307 + 0.443453i −0.00459391 + 0.000687525i
\(646\) 0.784006 0.569614i 0.00121363 0.000881755i
\(647\) 777.637 + 252.670i 1.20191 + 0.390525i 0.840464 0.541867i \(-0.182282\pi\)
0.361448 + 0.932392i \(0.382282\pi\)
\(648\) 2.22875 65.3545i 0.00343943 0.100856i
\(649\) 0 0
\(650\) 25.2162i 0.0387942i
\(651\) 737.619 367.952i 1.13306 0.565210i
\(652\) 766.222 556.693i 1.17519 0.853823i
\(653\) −162.445 + 223.586i −0.248767 + 0.342399i −0.915079 0.403275i \(-0.867872\pi\)
0.666312 + 0.745673i \(0.267872\pi\)
\(654\) −962.915 501.012i −1.47235 0.766073i
\(655\) −44.3846 136.602i −0.0677628 0.208552i
\(656\) −381.947 + 525.706i −0.582237 + 0.801380i
\(657\) −72.1594 102.965i −0.109832 0.156719i
\(658\) 148.192 456.088i 0.225216 0.693143i
\(659\) 881.372i 1.33744i −0.743515 0.668719i \(-0.766843\pi\)
0.743515 0.668719i \(-0.233157\pi\)
\(660\) 0 0
\(661\) −501.036 −0.757997 −0.378999 0.925397i \(-0.623731\pi\)
−0.378999 + 0.925397i \(0.623731\pi\)
\(662\) −77.3282 25.1255i −0.116810 0.0379539i
\(663\) 0.523050 3.12955i 0.000788914 0.00472029i
\(664\) −39.3458 28.5864i −0.0592557 0.0430518i
\(665\) −283.096 + 91.9836i −0.425709 + 0.138321i
\(666\) −297.670 972.213i −0.446952 1.45978i
\(667\) 351.423 + 255.323i 0.526870 + 0.382794i
\(668\) 464.007 + 638.650i 0.694621 + 0.956064i
\(669\) −959.230 + 478.499i −1.43383 + 0.715245i
\(670\) −1179.64 −1.76065
\(671\) 0 0
\(672\) 1095.80 1077.28i 1.63065 1.60309i
\(673\) −1.37662 + 4.23681i −0.00204550 + 0.00629541i −0.952074 0.305868i \(-0.901054\pi\)
0.950029 + 0.312163i \(0.101054\pi\)
\(674\) −488.009 671.687i −0.724049 0.996568i
\(675\) 13.8795 1.83592i 0.0205622 0.00271988i
\(676\) −154.227 474.662i −0.228146 0.702162i
\(677\) −16.4345 + 5.33989i −0.0242755 + 0.00788758i −0.321130 0.947035i \(-0.604062\pi\)
0.296854 + 0.954923i \(0.404062\pi\)
\(678\) 126.155 + 842.944i 0.186069 + 1.24328i
\(679\) −278.699 + 202.487i −0.410455 + 0.298213i
\(680\) −0.237759 0.0772525i −0.000349645 0.000113607i
\(681\) −219.408 + 215.700i −0.322185 + 0.316740i
\(682\) 0 0
\(683\) 1085.69i 1.58958i −0.606882 0.794792i \(-0.707580\pi\)
0.606882 0.794792i \(-0.292420\pi\)
\(684\) −196.037 67.4112i −0.286603 0.0985544i
\(685\) 607.284 441.218i 0.886547 0.644114i
\(686\) 510.468 702.600i 0.744123 1.02420i
\(687\) 511.458 982.993i 0.744481 1.43085i
\(688\) −0.923060 2.84089i −0.00134166 0.00412919i
\(689\) 972.890 1339.07i 1.41203 1.94349i
\(690\) 61.2260 366.332i 0.0887334 0.530916i
\(691\) −62.2864 + 191.698i −0.0901395 + 0.277421i −0.985957 0.167002i \(-0.946591\pi\)
0.895817 + 0.444423i \(0.146591\pi\)
\(692\) 1042.51i 1.50652i
\(693\) 0 0
\(694\) 758.569 1.09304
\(695\) 90.4563 + 29.3910i 0.130153 + 0.0422892i
\(696\) −119.334 19.9447i −0.171457 0.0286561i
\(697\) −2.22319 1.61524i −0.00318965 0.00231742i
\(698\) −1335.33 + 433.874i −1.91308 + 0.621596i
\(699\) 46.1086 + 23.9906i 0.0659637 + 0.0343214i
\(700\) −20.0760 14.5861i −0.0286801 0.0208373i
\(701\) 252.573 + 347.637i 0.360304 + 0.495916i 0.950233 0.311539i \(-0.100845\pi\)
−0.589930 + 0.807455i \(0.700845\pi\)
\(702\) −1184.76 + 565.992i −1.68769 + 0.806257i
\(703\) −211.257 −0.300508
\(704\) 0 0
\(705\) −155.117 157.784i −0.220024 0.223807i
\(706\) 388.899 1196.91i 0.550848 1.69534i
\(707\) −341.204 469.627i −0.482609 0.664254i
\(708\) 184.051 27.5451i 0.259959 0.0389054i
\(709\) 231.622 + 712.859i 0.326688 + 1.00544i 0.970673 + 0.240404i \(0.0772801\pi\)
−0.643985 + 0.765038i \(0.722720\pi\)
\(710\) 361.625 117.499i 0.509331 0.165492i
\(711\) 271.685 360.844i 0.382116 0.507517i
\(712\) 26.3531 19.1467i 0.0370128 0.0268914i
\(713\) 203.242 + 66.0372i 0.285052 + 0.0926189i
\(714\) 4.23464 + 4.30744i 0.00593087 + 0.00603283i
\(715\) 0 0
\(716\) 1355.32i 1.89291i
\(717\) 293.040 + 587.447i 0.408703 + 0.819312i
\(718\) −570.362 + 414.392i −0.794376 + 0.577148i
\(719\) −265.207 + 365.026i −0.368855 + 0.507685i −0.952589 0.304260i \(-0.901591\pi\)
0.583734 + 0.811945i \(0.301591\pi\)
\(720\) −192.935 630.141i −0.267966 0.875197i
\(721\) 176.728 + 543.913i 0.245115 + 0.754387i
\(722\) 561.623 773.008i 0.777871 1.07065i
\(723\) −349.256 58.3720i −0.483065 0.0807359i
\(724\) 40.8716 125.790i 0.0564524 0.173743i
\(725\) 25.9035i 0.0357290i
\(726\) 0 0
\(727\) 300.631 0.413523 0.206761 0.978391i \(-0.433708\pi\)
0.206761 + 0.978391i \(0.433708\pi\)
\(728\) 145.067 + 47.1352i 0.199268 + 0.0647462i
\(729\) 397.791 + 610.904i 0.545667 + 0.838002i
\(730\) 160.921 + 116.916i 0.220439 + 0.160158i
\(731\) 0.0120140 0.00390358i 1.64350e−5 5.34006e-6i
\(732\) 173.807 334.046i 0.237441 0.456347i
\(733\) −1078.72 783.739i −1.47166 1.06922i −0.980130 0.198357i \(-0.936439\pi\)
−0.491526 0.870863i \(-0.663561\pi\)
\(734\) 380.739 + 524.042i 0.518718 + 0.713954i
\(735\) −503.532 1009.41i −0.685078 1.37335i
\(736\) 398.379 0.541275
\(737\) 0 0
\(738\) −19.3815 + 1137.00i −0.0262623 + 1.54065i
\(739\) −326.316 + 1004.30i −0.441565 + 1.35900i 0.444643 + 0.895708i \(0.353331\pi\)
−0.886207 + 0.463289i \(0.846669\pi\)
\(740\) 488.747 + 672.703i 0.660469 + 0.909058i
\(741\) 40.3790 + 269.805i 0.0544926 + 0.364109i
\(742\) 973.705 + 2996.76i 1.31227 + 4.03875i
\(743\) 959.620 311.799i 1.29155 0.419649i 0.418914 0.908026i \(-0.362411\pi\)
0.872633 + 0.488377i \(0.162411\pi\)
\(744\) −58.8671 + 8.81004i −0.0791224 + 0.0118415i
\(745\) −727.196 + 528.339i −0.976102 + 0.709180i
\(746\) 774.928 + 251.789i 1.03878 + 0.337519i
\(747\) 542.097 + 9.24073i 0.725699 + 0.0123705i
\(748\) 0 0
\(749\) 765.196i 1.02162i
\(750\) −975.376 + 486.554i −1.30050 + 0.648738i
\(751\) 40.6835 29.5583i 0.0541725 0.0393586i −0.560369 0.828243i \(-0.689341\pi\)
0.614542 + 0.788884i \(0.289341\pi\)
\(752\) 129.664 178.468i 0.172426 0.237324i
\(753\) 427.303 + 222.329i 0.567468 + 0.295258i
\(754\) 750.708 + 2310.44i 0.995634 + 3.06425i
\(755\) −407.718 + 561.176i −0.540024 + 0.743279i
\(756\) 234.695 1270.65i 0.310443 1.68075i
\(757\) 97.8844 301.257i 0.129306 0.397962i −0.865355 0.501159i \(-0.832907\pi\)
0.994661 + 0.103197i \(0.0329072\pi\)
\(758\) 1313.86i 1.73333i
\(759\) 0 0
\(760\) 21.4944 0.0282821
\(761\) 67.8819 + 22.0562i 0.0892009 + 0.0289831i 0.353277 0.935519i \(-0.385067\pi\)
−0.264077 + 0.964502i \(0.585067\pi\)
\(762\) 29.6698 177.523i 0.0389368 0.232969i
\(763\) −1137.27 826.277i −1.49053 1.08293i
\(764\) 1204.71 391.433i 1.57684 0.512347i
\(765\) 2.66484 0.815915i 0.00348346 0.00106656i
\(766\) 747.910 + 543.389i 0.976384 + 0.709384i
\(767\) −143.953 198.134i −0.187683 0.258324i
\(768\) 580.948 289.798i 0.756443 0.377341i
\(769\) 634.282 0.824814 0.412407 0.911000i \(-0.364688\pi\)
0.412407 + 0.911000i \(0.364688\pi\)
\(770\) 0 0
\(771\) 56.0119 55.0653i 0.0726484 0.0714206i
\(772\) 105.170 323.679i 0.136230 0.419273i
\(773\) 507.637 + 698.702i 0.656710 + 0.903884i 0.999367 0.0355767i \(-0.0113268\pi\)
−0.342657 + 0.939461i \(0.611327\pi\)
\(774\) −4.17606 3.14421i −0.00539543 0.00406229i
\(775\) −3.93800 12.1199i −0.00508130 0.0156386i
\(776\) 23.6582 7.68701i 0.0304873 0.00990594i
\(777\) −194.899 1302.28i −0.250835 1.67603i
\(778\) −734.335 + 533.525i −0.943875 + 0.685765i
\(779\) 224.709 + 73.0123i 0.288458 + 0.0937257i
\(780\) 765.719 752.778i 0.981691 0.965100i
\(781\) 0 0
\(782\) 1.56598i 0.00200253i
\(783\) 1217.05 581.420i 1.55434 0.742554i
\(784\) 909.860 661.052i 1.16054 0.843179i
\(785\) 522.363 718.971i 0.665431 0.915887i
\(786\) 115.669 222.309i 0.147162 0.282836i
\(787\) −371.943 1144.72i −0.472609 1.45454i −0.849155 0.528143i \(-0.822888\pi\)
0.376546 0.926398i \(-0.377112\pi\)
\(788\) −906.608 + 1247.84i −1.15052 + 1.58355i
\(789\) −109.303 + 653.987i −0.138533 + 0.828881i
\(790\) −220.814 + 679.595i −0.279511 + 0.860246i
\(791\) 1103.83i 1.39549i
\(792\) 0 0
\(793\) −495.547 −0.624902
\(794\) 925.567 + 300.735i 1.16570 + 0.378759i
\(795\) 1433.93 + 239.656i 1.80368 + 0.301454i
\(796\) 1280.89 + 930.620i 1.60916 + 1.16912i
\(797\) 595.973 193.643i 0.747770 0.242965i 0.0897487 0.995964i \(-0.471394\pi\)
0.658021 + 0.752999i \(0.271394\pi\)
\(798\) −460.718 239.715i −0.577341 0.300395i
\(799\) 0.754733 + 0.548346i 0.000944597 + 0.000686290i
\(800\) −13.9637 19.2194i −0.0174547 0.0240243i
\(801\) −118.087 + 343.404i −0.147424 + 0.428719i
\(802\) 1038.67 1.29510
\(803\) 0 0
\(804\) −745.887 758.710i −0.927721 0.943670i
\(805\) 148.640 457.466i 0.184645 0.568280i
\(806\) 702.493 + 966.898i 0.871579 + 1.19963i
\(807\) −372.173 + 55.6994i −0.461181 + 0.0690203i
\(808\) 12.9532 + 39.8657i 0.0160311 + 0.0493387i
\(809\) −382.449 + 124.265i −0.472743 + 0.153604i −0.535692 0.844413i \(-0.679949\pi\)
0.0629493 + 0.998017i \(0.479949\pi\)
\(810\) −909.374 709.285i −1.12268 0.875660i
\(811\) 448.052 325.529i 0.552469 0.401392i −0.276226 0.961093i \(-0.589084\pi\)
0.828695 + 0.559701i \(0.189084\pi\)
\(812\) −2273.71 738.774i −2.80014 0.909820i
\(813\) 841.116 + 855.576i 1.03458 + 1.05237i
\(814\) 0 0
\(815\) 1094.75i 1.34325i
\(816\) 1.24031 + 2.48640i 0.00151999 + 0.00304706i
\(817\) −0.878687 + 0.638403i −0.00107550 + 0.000781399i
\(818\) −746.151 + 1026.99i −0.912165 + 1.25549i
\(819\) −1625.94 + 497.827i −1.98528 + 0.607847i
\(820\) −287.376 884.453i −0.350459 1.07860i
\(821\) −129.901 + 178.794i −0.158223 + 0.217776i −0.880767 0.473549i \(-0.842973\pi\)
0.722544 + 0.691325i \(0.242973\pi\)
\(822\) 1291.77 + 215.896i 1.57149 + 0.262648i
\(823\) 222.107 683.574i 0.269875 0.830589i −0.720656 0.693293i \(-0.756159\pi\)
0.990530 0.137295i \(-0.0438409\pi\)
\(824\) 41.2972i 0.0501179i
\(825\) 0 0
\(826\) 466.232 0.564446
\(827\) −610.949 198.509i −0.738753 0.240035i −0.0846182 0.996413i \(-0.526967\pi\)
−0.654135 + 0.756378i \(0.726967\pi\)
\(828\) 274.328 192.254i 0.331314 0.232191i
\(829\) −664.227 482.589i −0.801239 0.582134i 0.110038 0.993927i \(-0.464903\pi\)
−0.911277 + 0.411793i \(0.864903\pi\)
\(830\) −815.741 + 265.050i −0.982820 + 0.319338i
\(831\) −101.934 + 195.910i −0.122664 + 0.235753i
\(832\) 993.145 + 721.562i 1.19368 + 0.867262i
\(833\) 2.79556 + 3.84776i 0.00335602 + 0.00461916i
\(834\) 74.0747 + 148.495i 0.0888186 + 0.178051i
\(835\) 912.483 1.09279
\(836\) 0 0
\(837\) 481.052 457.062i 0.574733 0.546071i
\(838\) 349.626 1076.04i 0.417214 1.28405i
\(839\) 202.110 + 278.180i 0.240894 + 0.331562i 0.912296 0.409531i \(-0.134308\pi\)
−0.671402 + 0.741093i \(0.734308\pi\)
\(840\) 19.8300 + 132.501i 0.0236072 + 0.157739i
\(841\) −511.287 1573.58i −0.607952 1.87108i
\(842\) −1924.99 + 625.468i −2.28621 + 0.742836i
\(843\) −1244.28 + 186.219i −1.47602 + 0.220901i
\(844\) −535.906 + 389.358i −0.634959 + 0.461325i
\(845\) −548.660 178.270i −0.649302 0.210971i
\(846\) 6.57969 385.990i 0.00777741 0.456253i
\(847\) 0 0
\(848\) 1449.45i 1.70926i
\(849\) −712.328 + 355.335i −0.839020 + 0.418534i
\(850\) 0.0755494 0.0548898i 8.88816e−5 6.45763e-5i
\(851\) 200.657 276.180i 0.235789 0.324536i
\(852\) 304.228 + 158.292i 0.357075 + 0.185789i
\(853\) −105.689 325.277i −0.123903 0.381333i 0.869797 0.493410i \(-0.164250\pi\)
−0.993700 + 0.112077i \(0.964250\pi\)
\(854\) 554.503 763.208i 0.649301 0.893686i
\(855\) −196.230 + 137.521i −0.229509 + 0.160844i
\(856\) 17.0747 52.5504i 0.0199470 0.0613907i
\(857\) 1404.79i 1.63920i −0.572937 0.819600i \(-0.694196\pi\)
0.572937 0.819600i \(-0.305804\pi\)
\(858\) 0 0
\(859\) 759.128 0.883735 0.441867 0.897080i \(-0.354316\pi\)
0.441867 + 0.897080i \(0.354316\pi\)
\(860\) 4.06572 + 1.32103i 0.00472758 + 0.00153608i
\(861\) −242.770 + 1452.56i −0.281963 + 1.68706i
\(862\) 352.123 + 255.832i 0.408496 + 0.296789i
\(863\) −376.240 + 122.248i −0.435968 + 0.141655i −0.518775 0.854911i \(-0.673612\pi\)
0.0828067 + 0.996566i \(0.473612\pi\)
\(864\) 589.582 1087.46i 0.682386 1.25864i
\(865\) 974.894 + 708.302i 1.12704 + 0.818846i
\(866\) −797.679 1097.91i −0.921108 1.26780i
\(867\) 775.819 387.007i 0.894831 0.446375i
\(868\) −1176.15 −1.35501
\(869\) 0 0
\(870\) −1521.63 + 1495.91i −1.74900 + 1.71944i
\(871\) −432.671 + 1331.62i −0.496752 + 1.52884i
\(872\) 59.6655 + 82.1225i 0.0684237 + 0.0941772i
\(873\) −166.802 + 221.543i −0.191068 + 0.253772i
\(874\) −41.6068 128.052i −0.0476050 0.146513i
\(875\) −1342.54 + 436.217i −1.53433 + 0.498533i
\(876\) 26.5535 + 177.426i 0.0303122 + 0.202541i
\(877\) −917.111 + 666.320i −1.04574 + 0.759772i −0.971397 0.237461i \(-0.923685\pi\)
−0.0743391 + 0.997233i \(0.523685\pi\)
\(878\) −1385.94 450.319i −1.57852 0.512891i
\(879\) −407.592 + 400.703i −0.463700 + 0.455863i
\(880\) 0 0
\(881\) 894.628i 1.01547i −0.861514 0.507735i \(-0.830483\pi\)
0.861514 0.507735i \(-0.169517\pi\)
\(882\) 640.001 1861.17i 0.725624 2.11017i
\(883\) −25.6769 + 18.6553i −0.0290791 + 0.0211272i −0.602230 0.798323i \(-0.705721\pi\)
0.573151 + 0.819450i \(0.305721\pi\)
\(884\) −2.66110 + 3.66270i −0.00301030 + 0.00414332i
\(885\) 99.2893 190.828i 0.112191 0.215625i
\(886\) −567.807 1747.53i −0.640866 1.97238i
\(887\) 796.758 1096.64i 0.898262 1.23635i −0.0727570 0.997350i \(-0.523180\pi\)
0.971019 0.239002i \(-0.0768202\pi\)
\(888\) −15.6744 + 93.7840i −0.0176513 + 0.105613i
\(889\) 72.0300 221.686i 0.0810236 0.249365i
\(890\) 574.487i 0.645491i
\(891\) 0 0
\(892\) 1529.52 1.71470
\(893\) −76.2847 24.7864i −0.0854252 0.0277563i
\(894\) −1546.83 258.526i −1.73024 0.289179i
\(895\) 1267.42 + 920.833i 1.41611 + 1.02886i
\(896\) −274.015 + 89.0330i −0.305821 + 0.0993672i
\(897\) −391.074 203.479i −0.435980 0.226844i
\(898\) 771.678 + 560.657i 0.859330 + 0.624339i
\(899\) −721.641 993.254i −0.802715 1.10484i
\(900\) −18.8907 6.49596i −0.0209897 0.00721774i
\(901\) −6.12969 −0.00680321
\(902\) 0 0
\(903\) −4.74604 4.82763i −0.00525586 0.00534621i
\(904\) 24.6310 75.8066i 0.0272467 0.0838568i
\(905\) −89.8621 123.685i −0.0992951 0.136668i
\(906\) −1196.92 + 179.130i −1.32110 + 0.197715i
\(907\) 278.095 + 855.889i 0.306610 + 0.943648i 0.979072 + 0.203516i \(0.0652370\pi\)
−0.672462 + 0.740132i \(0.734763\pi\)
\(908\) 417.525 135.662i 0.459829 0.149408i
\(909\) −373.315 281.074i −0.410687 0.309212i
\(910\) 2176.34 1581.20i 2.39158 1.73758i
\(911\) −304.231 98.8506i −0.333953 0.108508i 0.137241 0.990538i \(-0.456177\pi\)
−0.471193 + 0.882030i \(0.656177\pi\)
\(912\) −167.483 170.363i −0.183644 0.186801i
\(913\) 0 0
\(914\) 247.292i 0.270560i
\(915\) −194.292 389.491i −0.212341 0.425673i
\(916\) −1279.12 + 929.335i −1.39642 + 1.01456i
\(917\) 190.764 262.564i 0.208030 0.286329i
\(918\) 4.27469 + 2.31758i 0.00465653 + 0.00252459i
\(919\) −138.542 426.387i −0.150752 0.463968i 0.846953 0.531667i \(-0.178434\pi\)
−0.997706 + 0.0676988i \(0.978434\pi\)
\(920\) −20.4159 + 28.1001i −0.0221912 + 0.0305435i
\(921\) 844.054 + 141.069i 0.916454 + 0.153169i
\(922\) 58.0882 178.777i 0.0630024 0.193901i
\(923\) 451.314i 0.488964i
\(924\) 0 0
\(925\) −20.3574 −0.0220080
\(926\) −1465.19 476.069i −1.58228 0.514113i
\(927\) 264.219 + 377.016i 0.285026 + 0.406706i
\(928\) −1851.61 1345.27i −1.99527 1.44965i
\(929\) 278.538 90.5026i 0.299826 0.0974193i −0.155241 0.987877i \(-0.549615\pi\)
0.455067 + 0.890457i \(0.349615\pi\)
\(930\) −484.533 + 931.244i −0.521003 + 1.00134i
\(931\) −330.829 240.361i −0.355348 0.258175i
\(932\) −43.5917 59.9988i −0.0467722 0.0643764i
\(933\) 676.117 + 1355.39i 0.724669 + 1.45272i
\(934\) 1433.07 1.53434
\(935\) 0 0
\(936\) 122.771 + 2.09279i 0.131166 + 0.00223589i
\(937\) 45.6193 140.402i 0.0486865 0.149842i −0.923758 0.382978i \(-0.874899\pi\)
0.972444 + 0.233136i \(0.0748987\pi\)
\(938\) −1566.73 2156.42i −1.67029 2.29895i
\(939\) −35.5984 237.862i −0.0379110 0.253314i
\(940\) 97.5592 + 300.256i 0.103786 + 0.319422i
\(941\) −33.1918 + 10.7847i −0.0352729 + 0.0114609i −0.326600 0.945163i \(-0.605903\pi\)
0.291327 + 0.956623i \(0.405903\pi\)
\(942\) 1533.47 229.499i 1.62789 0.243630i
\(943\) −308.884 + 224.418i −0.327555 + 0.237983i
\(944\) 203.971 + 66.2742i 0.216071 + 0.0702057i
\(945\) −1028.78 1082.77i −1.08865 1.14579i
\(946\) 0 0
\(947\) 867.513i 0.916064i −0.888936 0.458032i \(-0.848554\pi\)
0.888936 0.458032i \(-0.151446\pi\)
\(948\) −576.717 + 287.688i −0.608352 + 0.303468i
\(949\) 191.002 138.771i 0.201267 0.146229i
\(950\) −4.71941 + 6.49571i −0.00496780 + 0.00683758i
\(951\) −23.0380 11.9869i −0.0242251 0.0126045i
\(952\) −0.174558 0.537233i −0.000183359 0.000564321i
\(953\) −764.359 + 1052.05i −0.802056 + 1.10394i 0.190445 + 0.981698i \(0.439007\pi\)
−0.992501 + 0.122237i \(0.960993\pi\)
\(954\) 1455.75 + 2077.22i 1.52594 + 2.17738i
\(955\) 452.456 1392.52i 0.473776 1.45813i
\(956\) 936.699i 0.979811i
\(957\) 0 0
\(958\) −2499.72 −2.60931
\(959\) 1613.12 + 524.135i 1.68209 + 0.546544i
\(960\) −177.746 + 1063.50i −0.185152 + 1.10781i
\(961\) 288.819 + 209.839i 0.300540 + 0.218355i
\(962\) 1815.76 589.976i 1.88748 0.613280i
\(963\) 180.337 + 588.995i 0.187266 + 0.611625i
\(964\) 408.754 + 296.977i 0.424019 + 0.308068i
\(965\) −231.231 318.262i −0.239617 0.329805i
\(966\) 750.985 374.619i 0.777417 0.387804i
\(967\) −1422.62 −1.47117 −0.735585 0.677433i \(-0.763093\pi\)
−0.735585 + 0.677433i \(0.763093\pi\)
\(968\) 0 0
\(969\) 0.720457 0.708281i 0.000743506 0.000730940i
\(970\) 135.570 417.241i 0.139763 0.430145i
\(971\) −204.126 280.955i −0.210222 0.289346i 0.690865 0.722984i \(-0.257230\pi\)
−0.901087 + 0.433638i \(0.857230\pi\)
\(972\) −118.807 1033.37i −0.122229 1.06313i
\(973\) 66.4112 + 204.393i 0.0682541 + 0.210064i
\(974\) 659.877 214.407i 0.677491 0.220130i
\(975\) 3.89105 + 25.9993i 0.00399082 + 0.0266659i
\(976\) 351.077 255.073i 0.359710 0.261345i
\(977\) −443.757 144.185i −0.454204 0.147580i 0.0729757 0.997334i \(-0.476750\pi\)
−0.527180 + 0.849754i \(0.676750\pi\)
\(978\) 1362.08 1339.06i 1.39272 1.36918i
\(979\) 0 0
\(980\) 1609.54i 1.64238i
\(981\) −1070.13 367.985i −1.09085 0.375112i
\(982\) 1164.13 845.788i 1.18547 0.861291i
\(983\) 595.696 819.905i 0.605998 0.834084i −0.390243 0.920712i \(-0.627609\pi\)
0.996241 + 0.0866277i \(0.0276091\pi\)
\(984\) 49.0850 94.3385i 0.0498832 0.0958725i
\(985\) 550.937 + 1695.61i 0.559327 + 1.72143i
\(986\) 5.28811 7.27846i 0.00536320 0.00738181i
\(987\) 82.4162 493.119i 0.0835017 0.499614i
\(988\) 120.288 370.207i 0.121749 0.374704i
\(989\) 1.75510i 0.00177462i
\(990\) 0 0
\(991\) −1208.63 −1.21960 −0.609802 0.792554i \(-0.708751\pi\)
−0.609802 + 0.792554i \(0.708751\pi\)
\(992\) −1070.86 347.944i −1.07950 0.350750i
\(993\) −83.6066 13.9734i −0.0841960 0.0140719i
\(994\) 695.082 + 505.007i 0.699278 + 0.508055i
\(995\) 1740.52 565.529i 1.74927 0.568371i
\(996\) −686.268 357.070i −0.689024 0.358504i
\(997\) −116.802 84.8616i −0.117153 0.0851170i 0.527666 0.849452i \(-0.323067\pi\)
−0.644819 + 0.764335i \(0.723067\pi\)
\(998\) −938.418 1291.62i −0.940299 1.29421i
\(999\) −456.934 956.472i −0.457391 0.957429i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.251.2 24
3.2 odd 2 inner 363.3.h.q.251.5 24
11.2 odd 10 363.3.h.p.245.2 24
11.3 even 5 inner 363.3.h.q.323.2 24
11.4 even 5 363.3.b.j.122.2 6
11.5 even 5 inner 363.3.h.q.269.5 24
11.6 odd 10 363.3.h.p.269.2 24
11.7 odd 10 363.3.b.k.122.5 yes 6
11.8 odd 10 363.3.h.p.323.5 24
11.9 even 5 inner 363.3.h.q.245.5 24
11.10 odd 2 363.3.h.p.251.5 24
33.2 even 10 363.3.h.p.245.5 24
33.5 odd 10 inner 363.3.h.q.269.2 24
33.8 even 10 363.3.h.p.323.2 24
33.14 odd 10 inner 363.3.h.q.323.5 24
33.17 even 10 363.3.h.p.269.5 24
33.20 odd 10 inner 363.3.h.q.245.2 24
33.26 odd 10 363.3.b.j.122.5 yes 6
33.29 even 10 363.3.b.k.122.2 yes 6
33.32 even 2 363.3.h.p.251.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.2 6 11.4 even 5
363.3.b.j.122.5 yes 6 33.26 odd 10
363.3.b.k.122.2 yes 6 33.29 even 10
363.3.b.k.122.5 yes 6 11.7 odd 10
363.3.h.p.245.2 24 11.2 odd 10
363.3.h.p.245.5 24 33.2 even 10
363.3.h.p.251.2 24 33.32 even 2
363.3.h.p.251.5 24 11.10 odd 2
363.3.h.p.269.2 24 11.6 odd 10
363.3.h.p.269.5 24 33.17 even 10
363.3.h.p.323.2 24 33.8 even 10
363.3.h.p.323.5 24 11.8 odd 10
363.3.h.q.245.2 24 33.20 odd 10 inner
363.3.h.q.245.5 24 11.9 even 5 inner
363.3.h.q.251.2 24 1.1 even 1 trivial
363.3.h.q.251.5 24 3.2 odd 2 inner
363.3.h.q.269.2 24 33.5 odd 10 inner
363.3.h.q.269.5 24 11.5 even 5 inner
363.3.h.q.323.2 24 11.3 even 5 inner
363.3.h.q.323.5 24 33.14 odd 10 inner