Properties

Label 363.3.h.q.251.1
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-4,18,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.1
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.q.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.32956 - 1.08184i) q^{2} +(2.68613 + 1.33594i) q^{3} +(6.67952 + 4.85296i) q^{4} +(-7.51264 + 2.44100i) q^{5} +(-7.49835 - 7.35404i) q^{6} +(-1.46803 - 1.06658i) q^{7} +(-8.75863 - 12.0552i) q^{8} +(5.43055 + 7.17698i) q^{9} +27.6545 q^{10} +(11.4588 + 21.9591i) q^{12} +(0.0219178 - 0.0674561i) q^{13} +(3.73401 + 5.13943i) q^{14} +(-23.4409 - 3.47955i) q^{15} +(5.91516 + 18.2050i) q^{16} +(-3.48121 + 1.13111i) q^{17} +(-10.3170 - 29.7712i) q^{18} +(-21.2992 + 15.4748i) q^{19} +(-62.0269 - 20.1538i) q^{20} +(-2.51842 - 4.82617i) q^{21} -6.84236i q^{23} +(-7.42179 - 44.0828i) q^{24} +(30.2558 - 21.9821i) q^{25} +(-0.145953 + 0.200887i) q^{26} +(4.99916 + 26.5332i) q^{27} +(-4.62964 - 14.2486i) q^{28} +(17.7569 - 24.4403i) q^{29} +(74.2836 + 36.9447i) q^{30} +(13.0523 - 40.1709i) q^{31} -7.40958i q^{32} +12.8146 q^{34} +(13.6323 + 4.42940i) q^{35} +(1.44390 + 74.2931i) q^{36} +(-2.99344 - 2.17486i) q^{37} +(87.6582 - 28.4819i) q^{38} +(0.148991 - 0.151915i) q^{39} +(95.2272 + 69.1866i) q^{40} +(-41.7768 - 57.5009i) q^{41} +(3.16409 + 18.7936i) q^{42} -13.8601 q^{43} +(-58.3168 - 40.6621i) q^{45} +(-7.40233 + 22.7820i) q^{46} +(-16.0807 - 22.1332i) q^{47} +(-8.43183 + 56.8032i) q^{48} +(-14.1243 - 43.4702i) q^{49} +(-124.520 + 40.4589i) q^{50} +(-10.8621 - 1.61236i) q^{51} +(0.473762 - 0.344208i) q^{52} +(-20.6619 - 6.71345i) q^{53} +(12.0596 - 93.7520i) q^{54} +27.0392i q^{56} +(-77.8857 + 13.1128i) q^{57} +(-85.5633 + 62.1654i) q^{58} +(46.9059 - 64.5605i) q^{59} +(-139.688 - 137.000i) q^{60} +(24.4640 + 75.2925i) q^{61} +(-86.9169 + 119.631i) q^{62} +(-0.317340 - 16.3282i) q^{63} +(15.6447 - 48.1493i) q^{64} +0.560274i q^{65} -101.689 q^{67} +(-28.7421 - 9.33887i) q^{68} +(9.14095 - 18.3794i) q^{69} +(-40.5976 - 29.4959i) q^{70} +(-44.1378 + 14.3412i) q^{71} +(38.9559 - 128.327i) q^{72} +(-93.4412 - 67.8890i) q^{73} +(7.61398 + 10.4797i) q^{74} +(110.638 - 18.6270i) q^{75} -217.367 q^{76} +(-0.660422 + 0.344625i) q^{78} +(19.4337 - 59.8107i) q^{79} +(-88.8769 - 122.329i) q^{80} +(-22.0182 + 77.9500i) q^{81} +(76.8918 + 236.649i) q^{82} +(80.3644 - 26.1120i) q^{83} +(6.59936 - 44.4583i) q^{84} +(23.3920 - 16.9953i) q^{85} +(46.1481 + 14.9944i) q^{86} +(80.3481 - 41.9277i) q^{87} +45.3523i q^{89} +(150.179 + 198.476i) q^{90} +(-0.104124 + 0.0756502i) q^{91} +(33.2057 - 45.7037i) q^{92} +(88.7259 - 90.4670i) q^{93} +(29.5971 + 91.0905i) q^{94} +(122.239 - 168.248i) q^{95} +(9.89872 - 19.9031i) q^{96} +(-29.7481 + 91.5551i) q^{97} +160.017i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.32956 1.08184i −1.66478 0.540920i −0.682914 0.730498i \(-0.739288\pi\)
−0.981866 + 0.189579i \(0.939288\pi\)
\(3\) 2.68613 + 1.33594i 0.895376 + 0.445312i
\(4\) 6.67952 + 4.85296i 1.66988 + 1.21324i
\(5\) −7.51264 + 2.44100i −1.50253 + 0.488201i −0.940754 0.339090i \(-0.889881\pi\)
−0.561773 + 0.827291i \(0.689881\pi\)
\(6\) −7.49835 7.35404i −1.24973 1.22567i
\(7\) −1.46803 1.06658i −0.209718 0.152369i 0.477968 0.878377i \(-0.341374\pi\)
−0.687686 + 0.726008i \(0.741374\pi\)
\(8\) −8.75863 12.0552i −1.09483 1.50690i
\(9\) 5.43055 + 7.17698i 0.603395 + 0.797443i
\(10\) 27.6545 2.76545
\(11\) 0 0
\(12\) 11.4588 + 21.9591i 0.954901 + 1.82992i
\(13\) 0.0219178 0.0674561i 0.00168599 0.00518893i −0.950210 0.311610i \(-0.899132\pi\)
0.951896 + 0.306421i \(0.0991317\pi\)
\(14\) 3.73401 + 5.13943i 0.266715 + 0.367102i
\(15\) −23.4409 3.47955i −1.56273 0.231970i
\(16\) 5.91516 + 18.2050i 0.369697 + 1.13781i
\(17\) −3.48121 + 1.13111i −0.204777 + 0.0665361i −0.409610 0.912261i \(-0.634335\pi\)
0.204832 + 0.978797i \(0.434335\pi\)
\(18\) −10.3170 29.7712i −0.573167 1.65395i
\(19\) −21.2992 + 15.4748i −1.12101 + 0.814462i −0.984362 0.176157i \(-0.943633\pi\)
−0.136649 + 0.990620i \(0.543633\pi\)
\(20\) −62.0269 20.1538i −3.10135 1.00769i
\(21\) −2.51842 4.82617i −0.119925 0.229818i
\(22\) 0 0
\(23\) 6.84236i 0.297494i −0.988875 0.148747i \(-0.952476\pi\)
0.988875 0.148747i \(-0.0475240\pi\)
\(24\) −7.42179 44.0828i −0.309241 1.83678i
\(25\) 30.2558 21.9821i 1.21023 0.879284i
\(26\) −0.145953 + 0.200887i −0.00561359 + 0.00772644i
\(27\) 4.99916 + 26.5332i 0.185154 + 0.982709i
\(28\) −4.62964 14.2486i −0.165344 0.508877i
\(29\) 17.7569 24.4403i 0.612308 0.842770i −0.384457 0.923143i \(-0.625611\pi\)
0.996765 + 0.0803733i \(0.0256112\pi\)
\(30\) 74.2836 + 36.9447i 2.47612 + 1.23149i
\(31\) 13.0523 40.1709i 0.421042 1.29583i −0.485691 0.874131i \(-0.661432\pi\)
0.906733 0.421704i \(-0.138568\pi\)
\(32\) 7.40958i 0.231549i
\(33\) 0 0
\(34\) 12.8146 0.376899
\(35\) 13.6323 + 4.42940i 0.389494 + 0.126554i
\(36\) 1.44390 + 74.2931i 0.0401082 + 2.06370i
\(37\) −2.99344 2.17486i −0.0809037 0.0587800i 0.546598 0.837395i \(-0.315923\pi\)
−0.627502 + 0.778615i \(0.715923\pi\)
\(38\) 87.6582 28.4819i 2.30680 0.749523i
\(39\) 0.148991 0.151915i 0.00382028 0.00389525i
\(40\) 95.2272 + 69.1866i 2.38068 + 1.72967i
\(41\) −41.7768 57.5009i −1.01895 1.40246i −0.912939 0.408096i \(-0.866193\pi\)
−0.106008 0.994365i \(-0.533807\pi\)
\(42\) 3.16409 + 18.7936i 0.0753354 + 0.447466i
\(43\) −13.8601 −0.322329 −0.161164 0.986928i \(-0.551525\pi\)
−0.161164 + 0.986928i \(0.551525\pi\)
\(44\) 0 0
\(45\) −58.3168 40.6621i −1.29593 0.903602i
\(46\) −7.40233 + 22.7820i −0.160920 + 0.495262i
\(47\) −16.0807 22.1332i −0.342143 0.470919i 0.602923 0.797799i \(-0.294003\pi\)
−0.945066 + 0.326880i \(0.894003\pi\)
\(48\) −8.43183 + 56.8032i −0.175663 + 1.18340i
\(49\) −14.1243 43.4702i −0.288252 0.887147i
\(50\) −124.520 + 40.4589i −2.49039 + 0.809177i
\(51\) −10.8621 1.61236i −0.212982 0.0316149i
\(52\) 0.473762 0.344208i 0.00911081 0.00661939i
\(53\) −20.6619 6.71345i −0.389846 0.126669i 0.107534 0.994201i \(-0.465705\pi\)
−0.497380 + 0.867533i \(0.665705\pi\)
\(54\) 12.0596 93.7520i 0.223326 1.73615i
\(55\) 0 0
\(56\) 27.0392i 0.482843i
\(57\) −77.8857 + 13.1128i −1.36642 + 0.230050i
\(58\) −85.5633 + 62.1654i −1.47523 + 1.07182i
\(59\) 46.9059 64.5605i 0.795016 1.09425i −0.198450 0.980111i \(-0.563591\pi\)
0.993465 0.114134i \(-0.0364093\pi\)
\(60\) −139.688 137.000i −2.32813 2.28333i
\(61\) 24.4640 + 75.2925i 0.401050 + 1.23430i 0.924149 + 0.382032i \(0.124776\pi\)
−0.523100 + 0.852272i \(0.675224\pi\)
\(62\) −86.9169 + 119.631i −1.40189 + 1.92953i
\(63\) −0.317340 16.3282i −0.00503714 0.259177i
\(64\) 15.6447 48.1493i 0.244448 0.752333i
\(65\) 0.560274i 0.00861961i
\(66\) 0 0
\(67\) −101.689 −1.51775 −0.758874 0.651238i \(-0.774250\pi\)
−0.758874 + 0.651238i \(0.774250\pi\)
\(68\) −28.7421 9.33887i −0.422678 0.137336i
\(69\) 9.14095 18.3794i 0.132478 0.266369i
\(70\) −40.5976 29.4959i −0.579966 0.421370i
\(71\) −44.1378 + 14.3412i −0.621659 + 0.201989i −0.602877 0.797834i \(-0.705979\pi\)
−0.0187823 + 0.999824i \(0.505979\pi\)
\(72\) 38.9559 128.327i 0.541054 1.78232i
\(73\) −93.4412 67.8890i −1.28002 0.929987i −0.280463 0.959865i \(-0.590488\pi\)
−0.999554 + 0.0298780i \(0.990488\pi\)
\(74\) 7.61398 + 10.4797i 0.102892 + 0.141618i
\(75\) 110.638 18.6270i 1.47517 0.248359i
\(76\) −217.367 −2.86009
\(77\) 0 0
\(78\) −0.660422 + 0.344625i −0.00846695 + 0.00441827i
\(79\) 19.4337 59.8107i 0.245996 0.757098i −0.749475 0.662033i \(-0.769694\pi\)
0.995471 0.0950654i \(-0.0303060\pi\)
\(80\) −88.8769 122.329i −1.11096 1.52911i
\(81\) −22.0182 + 77.9500i −0.271830 + 0.962345i
\(82\) 76.8918 + 236.649i 0.937705 + 2.88596i
\(83\) 80.3644 26.1120i 0.968246 0.314602i 0.218138 0.975918i \(-0.430002\pi\)
0.750108 + 0.661316i \(0.230002\pi\)
\(84\) 6.59936 44.4583i 0.0785639 0.529266i
\(85\) 23.3920 16.9953i 0.275200 0.199945i
\(86\) 46.1481 + 14.9944i 0.536606 + 0.174354i
\(87\) 80.3481 41.9277i 0.923541 0.481927i
\(88\) 0 0
\(89\) 45.3523i 0.509577i 0.966997 + 0.254788i \(0.0820058\pi\)
−0.966997 + 0.254788i \(0.917994\pi\)
\(90\) 150.179 + 198.476i 1.66866 + 2.20529i
\(91\) −0.104124 + 0.0756502i −0.00114422 + 0.000831321i
\(92\) 33.2057 45.7037i 0.360931 0.496779i
\(93\) 88.7259 90.4670i 0.954042 0.972764i
\(94\) 29.5971 + 91.0905i 0.314863 + 0.969048i
\(95\) 122.239 168.248i 1.28673 1.77103i
\(96\) 9.89872 19.9031i 0.103112 0.207324i
\(97\) −29.7481 + 91.5551i −0.306681 + 0.943867i 0.672363 + 0.740221i \(0.265279\pi\)
−0.979045 + 0.203646i \(0.934721\pi\)
\(98\) 160.017i 1.63283i
\(99\) 0 0
\(100\) 308.772 3.08772
\(101\) −52.9697 17.2109i −0.524452 0.170405i 0.0348128 0.999394i \(-0.488917\pi\)
−0.559265 + 0.828989i \(0.688917\pi\)
\(102\) 34.4216 + 17.1195i 0.337467 + 0.167838i
\(103\) −105.559 76.6932i −1.02485 0.744594i −0.0575756 0.998341i \(-0.518337\pi\)
−0.967271 + 0.253747i \(0.918337\pi\)
\(104\) −1.00517 + 0.326599i −0.00966507 + 0.00314037i
\(105\) 30.7007 + 30.1098i 0.292387 + 0.286760i
\(106\) 61.5320 + 44.7056i 0.580491 + 0.421751i
\(107\) 34.1736 + 47.0359i 0.319379 + 0.439588i 0.938278 0.345883i \(-0.112421\pi\)
−0.618898 + 0.785471i \(0.712421\pi\)
\(108\) −95.3723 + 201.490i −0.883077 + 1.86564i
\(109\) 49.0112 0.449644 0.224822 0.974400i \(-0.427820\pi\)
0.224822 + 0.974400i \(0.427820\pi\)
\(110\) 0 0
\(111\) −5.13528 9.84099i −0.0462638 0.0886575i
\(112\) 10.7335 33.0344i 0.0958352 0.294950i
\(113\) 30.6859 + 42.2355i 0.271557 + 0.373766i 0.922915 0.385005i \(-0.125800\pi\)
−0.651358 + 0.758771i \(0.725800\pi\)
\(114\) 273.511 + 40.5998i 2.39922 + 0.356139i
\(115\) 16.7022 + 51.4041i 0.145237 + 0.446993i
\(116\) 237.216 77.0761i 2.04496 0.664449i
\(117\) 0.603157 0.209020i 0.00515519 0.00178650i
\(118\) −226.020 + 164.213i −1.91542 + 1.39164i
\(119\) 6.31694 + 2.05250i 0.0530836 + 0.0172479i
\(120\) 163.363 + 313.061i 1.36136 + 2.60884i
\(121\) 0 0
\(122\) 277.157i 2.27178i
\(123\) −35.4004 210.266i −0.287808 1.70948i
\(124\) 282.131 204.980i 2.27525 1.65306i
\(125\) −57.5656 + 79.2323i −0.460525 + 0.633858i
\(126\) −16.6078 + 54.7089i −0.131808 + 0.434198i
\(127\) −18.0690 55.6105i −0.142275 0.437878i 0.854375 0.519656i \(-0.173940\pi\)
−0.996651 + 0.0817783i \(0.973940\pi\)
\(128\) −121.601 + 167.369i −0.950005 + 1.30757i
\(129\) −37.2301 18.5162i −0.288605 0.143537i
\(130\) 0.606127 1.86547i 0.00466252 0.0143497i
\(131\) 147.683i 1.12735i 0.825997 + 0.563675i \(0.190613\pi\)
−0.825997 + 0.563675i \(0.809387\pi\)
\(132\) 0 0
\(133\) 47.7730 0.359196
\(134\) 338.580 + 110.011i 2.52672 + 0.820980i
\(135\) −102.324 187.131i −0.757959 1.38616i
\(136\) 44.1264 + 32.0597i 0.324459 + 0.235733i
\(137\) −157.356 + 51.1281i −1.14858 + 0.373198i −0.820610 0.571489i \(-0.806366\pi\)
−0.327974 + 0.944687i \(0.606366\pi\)
\(138\) −50.3189 + 51.3064i −0.364630 + 0.371786i
\(139\) 42.1468 + 30.6214i 0.303214 + 0.220298i 0.728979 0.684536i \(-0.239995\pi\)
−0.425765 + 0.904834i \(0.639995\pi\)
\(140\) 69.5615 + 95.7433i 0.496868 + 0.683880i
\(141\) −13.6263 80.9353i −0.0966403 0.574009i
\(142\) 162.474 1.14419
\(143\) 0 0
\(144\) −98.5343 + 141.316i −0.684266 + 0.981362i
\(145\) −73.7425 + 226.956i −0.508569 + 1.56521i
\(146\) 237.673 + 327.129i 1.62790 + 2.24061i
\(147\) 20.1337 135.636i 0.136964 0.922692i
\(148\) −9.44023 29.0541i −0.0637854 0.196311i
\(149\) −29.0495 + 9.43876i −0.194963 + 0.0633474i −0.404871 0.914374i \(-0.632684\pi\)
0.209908 + 0.977721i \(0.432684\pi\)
\(150\) −388.526 57.6725i −2.59017 0.384483i
\(151\) 133.712 97.1472i 0.885508 0.643359i −0.0491952 0.998789i \(-0.515666\pi\)
0.934703 + 0.355430i \(0.115666\pi\)
\(152\) 373.104 + 121.229i 2.45463 + 0.797557i
\(153\) −27.0229 18.8420i −0.176620 0.123150i
\(154\) 0 0
\(155\) 333.650i 2.15258i
\(156\) 1.73242 0.291671i 0.0111053 0.00186969i
\(157\) 170.804 124.096i 1.08792 0.790421i 0.108874 0.994056i \(-0.465275\pi\)
0.979047 + 0.203634i \(0.0652754\pi\)
\(158\) −129.411 + 178.119i −0.819059 + 1.12734i
\(159\) −46.5316 45.6361i −0.292652 0.287019i
\(160\) 18.0868 + 55.6655i 0.113043 + 0.347909i
\(161\) −7.29795 + 10.0448i −0.0453289 + 0.0623899i
\(162\) 157.640 235.719i 0.973088 1.45506i
\(163\) −27.0122 + 83.1350i −0.165719 + 0.510031i −0.999089 0.0426855i \(-0.986409\pi\)
0.833370 + 0.552716i \(0.186409\pi\)
\(164\) 586.820i 3.57817i
\(165\) 0 0
\(166\) −295.827 −1.78209
\(167\) 39.3415 + 12.7828i 0.235578 + 0.0765439i 0.424427 0.905462i \(-0.360476\pi\)
−0.188849 + 0.982006i \(0.560476\pi\)
\(168\) −36.1226 + 72.6307i −0.215016 + 0.432326i
\(169\) 136.720 + 99.3328i 0.808993 + 0.587768i
\(170\) −96.2713 + 31.2804i −0.566302 + 0.184003i
\(171\) −226.729 68.8275i −1.32590 0.402500i
\(172\) −92.5791 67.2626i −0.538250 0.391062i
\(173\) −121.574 167.332i −0.702740 0.967238i −0.999923 0.0124175i \(-0.996047\pi\)
0.297183 0.954820i \(-0.403953\pi\)
\(174\) −312.883 + 52.6770i −1.79818 + 0.302741i
\(175\) −67.8621 −0.387784
\(176\) 0 0
\(177\) 212.244 110.754i 1.19912 0.625730i
\(178\) 49.0639 151.003i 0.275640 0.848333i
\(179\) −81.2859 111.880i −0.454111 0.625030i 0.519164 0.854675i \(-0.326244\pi\)
−0.973275 + 0.229645i \(0.926244\pi\)
\(180\) −192.197 554.612i −1.06776 3.08118i
\(181\) −19.1377 58.8999i −0.105733 0.325414i 0.884168 0.467168i \(-0.154726\pi\)
−0.989902 + 0.141754i \(0.954726\pi\)
\(182\) 0.428527 0.139237i 0.00235454 0.000765038i
\(183\) −34.8725 + 234.928i −0.190560 + 1.28376i
\(184\) −82.4861 + 59.9297i −0.448294 + 0.325705i
\(185\) 27.7974 + 9.03194i 0.150256 + 0.0488213i
\(186\) −393.289 + 205.228i −2.11446 + 1.10338i
\(187\) 0 0
\(188\) 225.878i 1.20148i
\(189\) 20.9610 44.2834i 0.110905 0.234304i
\(190\) −589.020 + 427.948i −3.10011 + 2.25236i
\(191\) −14.2774 + 19.6512i −0.0747508 + 0.102886i −0.844755 0.535153i \(-0.820254\pi\)
0.770004 + 0.638039i \(0.220254\pi\)
\(192\) 106.348 108.435i 0.553895 0.564765i
\(193\) 62.3636 + 191.935i 0.323127 + 0.994484i 0.972279 + 0.233825i \(0.0751241\pi\)
−0.649151 + 0.760659i \(0.724876\pi\)
\(194\) 198.096 272.656i 1.02111 1.40544i
\(195\) −0.748490 + 1.50497i −0.00383841 + 0.00771778i
\(196\) 116.615 358.905i 0.594976 1.83115i
\(197\) 64.9088i 0.329486i 0.986337 + 0.164743i \(0.0526795\pi\)
−0.986337 + 0.164743i \(0.947320\pi\)
\(198\) 0 0
\(199\) 136.263 0.684741 0.342370 0.939565i \(-0.388770\pi\)
0.342370 + 0.939565i \(0.388770\pi\)
\(200\) −529.998 172.207i −2.64999 0.861034i
\(201\) −273.150 135.850i −1.35895 0.675871i
\(202\) 157.746 + 114.609i 0.780922 + 0.567373i
\(203\) −52.1353 + 16.9398i −0.256824 + 0.0834473i
\(204\) −64.7287 63.4829i −0.317298 0.311191i
\(205\) 454.214 + 330.006i 2.21568 + 1.60978i
\(206\) 268.496 + 369.553i 1.30338 + 1.79395i
\(207\) 49.1075 37.1578i 0.237234 0.179506i
\(208\) 1.35768 0.00652733
\(209\) 0 0
\(210\) −69.6458 133.466i −0.331647 0.635550i
\(211\) −0.383783 + 1.18116i −0.00181888 + 0.00559793i −0.951962 0.306217i \(-0.900937\pi\)
0.950143 + 0.311815i \(0.100937\pi\)
\(212\) −105.431 145.114i −0.497318 0.684499i
\(213\) −137.719 20.4429i −0.646567 0.0959759i
\(214\) −62.8977 193.579i −0.293915 0.904576i
\(215\) 104.126 33.8326i 0.484307 0.157361i
\(216\) 276.077 292.660i 1.27813 1.35491i
\(217\) −62.0068 + 45.0506i −0.285746 + 0.207606i
\(218\) −163.186 53.0222i −0.748558 0.243221i
\(219\) −160.300 307.190i −0.731962 1.40269i
\(220\) 0 0
\(221\) 0.259620i 0.00117475i
\(222\) 6.45185 + 38.3217i 0.0290624 + 0.172620i
\(223\) −100.528 + 73.0378i −0.450798 + 0.327524i −0.789911 0.613222i \(-0.789873\pi\)
0.339113 + 0.940746i \(0.389873\pi\)
\(224\) −7.90294 + 10.8775i −0.0352810 + 0.0485601i
\(225\) 322.071 + 97.7703i 1.43143 + 0.434535i
\(226\) −56.4785 173.823i −0.249905 0.769128i
\(227\) 28.0418 38.5962i 0.123532 0.170027i −0.742772 0.669545i \(-0.766489\pi\)
0.866304 + 0.499517i \(0.166489\pi\)
\(228\) −583.875 290.388i −2.56086 1.27363i
\(229\) −22.6223 + 69.6244i −0.0987874 + 0.304037i −0.988222 0.153026i \(-0.951098\pi\)
0.889435 + 0.457062i \(0.151098\pi\)
\(230\) 189.222i 0.822706i
\(231\) 0 0
\(232\) −450.160 −1.94034
\(233\) −176.322 57.2904i −0.756745 0.245881i −0.0948641 0.995490i \(-0.530242\pi\)
−0.661881 + 0.749609i \(0.730242\pi\)
\(234\) −2.23437 + 0.0434253i −0.00954860 + 0.000185578i
\(235\) 174.836 + 127.026i 0.743981 + 0.540534i
\(236\) 626.618 203.601i 2.65516 0.862715i
\(237\) 132.105 134.697i 0.557404 0.568342i
\(238\) −18.8122 13.6678i −0.0790427 0.0574279i
\(239\) 206.294 + 283.939i 0.863154 + 1.18803i 0.980808 + 0.194975i \(0.0624624\pi\)
−0.117655 + 0.993055i \(0.537538\pi\)
\(240\) −75.3115 447.324i −0.313798 1.86385i
\(241\) −175.508 −0.728248 −0.364124 0.931351i \(-0.618631\pi\)
−0.364124 + 0.931351i \(0.618631\pi\)
\(242\) 0 0
\(243\) −163.280 + 179.969i −0.671934 + 0.740611i
\(244\) −201.983 + 621.641i −0.827801 + 2.54771i
\(245\) 212.222 + 292.098i 0.866212 + 1.19224i
\(246\) −109.606 + 738.390i −0.445554 + 3.00159i
\(247\) 0.577036 + 1.77593i 0.00233618 + 0.00719002i
\(248\) −598.589 + 194.493i −2.41367 + 0.784247i
\(249\) 250.753 + 37.2216i 1.00704 + 0.149484i
\(250\) 277.385 201.532i 1.10954 0.806128i
\(251\) −132.205 42.9562i −0.526715 0.171140i 0.0335755 0.999436i \(-0.489311\pi\)
−0.560291 + 0.828296i \(0.689311\pi\)
\(252\) 77.1202 110.604i 0.306032 0.438906i
\(253\) 0 0
\(254\) 204.706i 0.805930i
\(255\) 85.5385 14.4013i 0.335445 0.0564756i
\(256\) 422.110 306.681i 1.64887 1.19797i
\(257\) −251.203 + 345.752i −0.977445 + 1.34534i −0.0392507 + 0.999229i \(0.512497\pi\)
−0.938194 + 0.346109i \(0.887503\pi\)
\(258\) 103.928 + 101.928i 0.402822 + 0.395069i
\(259\) 2.07478 + 6.38551i 0.00801072 + 0.0246545i
\(260\) −2.71899 + 3.74237i −0.0104576 + 0.0143937i
\(261\) 271.838 5.28320i 1.04152 0.0202422i
\(262\) 159.769 491.719i 0.609806 1.87679i
\(263\) 201.638i 0.766686i 0.923606 + 0.383343i \(0.125227\pi\)
−0.923606 + 0.383343i \(0.874773\pi\)
\(264\) 0 0
\(265\) 171.613 0.647595
\(266\) −159.063 51.6827i −0.597981 0.194296i
\(267\) −60.5878 + 121.822i −0.226921 + 0.456263i
\(268\) −679.235 493.493i −2.53446 1.84139i
\(269\) −326.260 + 106.008i −1.21286 + 0.394083i −0.844478 0.535590i \(-0.820089\pi\)
−0.368385 + 0.929673i \(0.620089\pi\)
\(270\) 138.250 + 733.762i 0.512035 + 2.71764i
\(271\) −329.745 239.574i −1.21677 0.884035i −0.220942 0.975287i \(-0.570913\pi\)
−0.995828 + 0.0912517i \(0.970913\pi\)
\(272\) −41.1838 56.6847i −0.151411 0.208400i
\(273\) −0.380753 + 0.0641036i −0.00139470 + 0.000234812i
\(274\) 579.239 2.11401
\(275\) 0 0
\(276\) 150.252 78.4053i 0.544391 0.284077i
\(277\) 153.580 472.671i 0.554441 1.70639i −0.142975 0.989726i \(-0.545667\pi\)
0.697416 0.716667i \(-0.254333\pi\)
\(278\) −107.203 147.552i −0.385622 0.530763i
\(279\) 359.187 124.474i 1.28741 0.446143i
\(280\) −66.0028 203.136i −0.235724 0.725485i
\(281\) 368.065 119.591i 1.30984 0.425593i 0.430845 0.902426i \(-0.358215\pi\)
0.878994 + 0.476833i \(0.158215\pi\)
\(282\) −42.1895 + 284.220i −0.149608 + 1.00787i
\(283\) −179.404 + 130.344i −0.633935 + 0.460581i −0.857761 0.514048i \(-0.828145\pi\)
0.223826 + 0.974629i \(0.428145\pi\)
\(284\) −364.417 118.406i −1.28316 0.416923i
\(285\) 553.118 288.631i 1.94077 1.01274i
\(286\) 0 0
\(287\) 128.971i 0.449378i
\(288\) 53.1784 40.2381i 0.184647 0.139716i
\(289\) −222.967 + 161.995i −0.771510 + 0.560535i
\(290\) 491.060 675.886i 1.69331 2.33064i
\(291\) −202.219 + 206.187i −0.694910 + 0.708547i
\(292\) −294.680 906.933i −1.00918 3.10593i
\(293\) −260.247 + 358.200i −0.888216 + 1.22252i 0.0858612 + 0.996307i \(0.472636\pi\)
−0.974077 + 0.226217i \(0.927364\pi\)
\(294\) −213.772 + 429.826i −0.727117 + 1.46199i
\(295\) −194.795 + 599.517i −0.660321 + 2.03226i
\(296\) 55.1353i 0.186268i
\(297\) 0 0
\(298\) 106.933 0.358837
\(299\) −0.461559 0.149969i −0.00154367 0.000501570i
\(300\) 829.402 + 412.500i 2.76467 + 1.37500i
\(301\) 20.3471 + 14.7830i 0.0675982 + 0.0491130i
\(302\) −550.299 + 178.803i −1.82218 + 0.592062i
\(303\) −119.291 116.995i −0.393698 0.386121i
\(304\) −407.706 296.216i −1.34114 0.974395i
\(305\) −367.579 505.929i −1.20518 1.65878i
\(306\) 69.5903 + 91.9701i 0.227419 + 0.300556i
\(307\) −324.906 −1.05832 −0.529162 0.848521i \(-0.677494\pi\)
−0.529162 + 0.848521i \(0.677494\pi\)
\(308\) 0 0
\(309\) −181.088 347.028i −0.586046 1.12307i
\(310\) 360.956 1110.91i 1.16437 3.58357i
\(311\) 68.7732 + 94.6582i 0.221136 + 0.304367i 0.905142 0.425109i \(-0.139764\pi\)
−0.684007 + 0.729476i \(0.739764\pi\)
\(312\) −3.13632 0.465554i −0.0100523 0.00149216i
\(313\) −45.1399 138.926i −0.144217 0.443854i 0.852693 0.522413i \(-0.174968\pi\)
−0.996909 + 0.0785593i \(0.974968\pi\)
\(314\) −702.953 + 228.403i −2.23870 + 0.727399i
\(315\) 42.2411 + 121.893i 0.134099 + 0.386962i
\(316\) 420.067 305.196i 1.32933 0.965811i
\(317\) −64.2560 20.8781i −0.202700 0.0658614i 0.205907 0.978572i \(-0.433986\pi\)
−0.408608 + 0.912710i \(0.633986\pi\)
\(318\) 105.559 + 202.288i 0.331946 + 0.636125i
\(319\) 0 0
\(320\) 399.917i 1.24974i
\(321\) 28.9576 + 171.998i 0.0902107 + 0.535820i
\(322\) 35.1658 25.5495i 0.109211 0.0793461i
\(323\) 56.6433 77.9628i 0.175366 0.241371i
\(324\) −525.359 + 413.815i −1.62148 + 1.27721i
\(325\) −0.819687 2.52274i −0.00252211 0.00776226i
\(326\) 179.878 247.580i 0.551772 0.759448i
\(327\) 131.650 + 65.4758i 0.402600 + 0.200232i
\(328\) −327.278 + 1007.26i −0.997799 + 3.07091i
\(329\) 49.6436i 0.150892i
\(330\) 0 0
\(331\) 303.465 0.916814 0.458407 0.888742i \(-0.348420\pi\)
0.458407 + 0.888742i \(0.348420\pi\)
\(332\) 663.516 + 215.589i 1.99854 + 0.649366i
\(333\) −0.647084 33.2945i −0.00194320 0.0999836i
\(334\) −117.161 85.1224i −0.350781 0.254857i
\(335\) 763.953 248.223i 2.28046 0.740966i
\(336\) 72.9635 74.3954i 0.217153 0.221415i
\(337\) −449.359 326.478i −1.33341 0.968779i −0.999659 0.0261175i \(-0.991686\pi\)
−0.333751 0.942661i \(-0.608314\pi\)
\(338\) −347.755 478.643i −1.02886 1.41610i
\(339\) 26.0023 + 154.444i 0.0767029 + 0.455588i
\(340\) 238.725 0.702132
\(341\) 0 0
\(342\) 680.447 + 474.449i 1.98961 + 1.38728i
\(343\) −53.1059 + 163.443i −0.154828 + 0.476510i
\(344\) 121.396 + 167.087i 0.352894 + 0.485718i
\(345\) −23.8084 + 160.391i −0.0690097 + 0.464902i
\(346\) 223.761 + 688.666i 0.646708 + 1.99036i
\(347\) −368.981 + 119.889i −1.06335 + 0.345502i −0.787893 0.615812i \(-0.788828\pi\)
−0.275454 + 0.961314i \(0.588828\pi\)
\(348\) 740.160 + 109.869i 2.12690 + 0.315715i
\(349\) 365.704 265.700i 1.04786 0.761317i 0.0760578 0.997103i \(-0.475767\pi\)
0.971805 + 0.235787i \(0.0757667\pi\)
\(350\) 225.951 + 73.4159i 0.645574 + 0.209760i
\(351\) 1.89939 + 0.244325i 0.00541138 + 0.000696082i
\(352\) 0 0
\(353\) 304.454i 0.862476i −0.902238 0.431238i \(-0.858077\pi\)
0.902238 0.431238i \(-0.141923\pi\)
\(354\) −826.497 + 139.149i −2.33474 + 0.393077i
\(355\) 296.584 215.481i 0.835448 0.606989i
\(356\) −220.093 + 302.932i −0.618239 + 0.850932i
\(357\) 14.2261 + 13.9523i 0.0398490 + 0.0390821i
\(358\) 149.610 + 460.451i 0.417904 + 1.28618i
\(359\) 178.166 245.224i 0.496284 0.683076i −0.485248 0.874377i \(-0.661270\pi\)
0.981532 + 0.191301i \(0.0612705\pi\)
\(360\) 20.5850 + 1059.17i 0.0571806 + 2.94213i
\(361\) 102.632 315.870i 0.284300 0.874986i
\(362\) 216.815i 0.598936i
\(363\) 0 0
\(364\) −1.06262 −0.00291929
\(365\) 867.707 + 281.935i 2.37728 + 0.772425i
\(366\) 370.264 744.479i 1.01165 2.03410i
\(367\) 339.757 + 246.848i 0.925770 + 0.672611i 0.944953 0.327205i \(-0.106107\pi\)
−0.0191838 + 0.999816i \(0.506107\pi\)
\(368\) 124.565 40.4736i 0.338492 0.109983i
\(369\) 185.812 612.093i 0.503555 1.65879i
\(370\) −82.7822 60.1448i −0.223736 0.162553i
\(371\) 23.1717 + 31.8932i 0.0624575 + 0.0859654i
\(372\) 1031.68 173.694i 2.77333 0.466919i
\(373\) 198.795 0.532963 0.266482 0.963840i \(-0.414139\pi\)
0.266482 + 0.963840i \(0.414139\pi\)
\(374\) 0 0
\(375\) −260.478 + 135.924i −0.694608 + 0.362464i
\(376\) −125.975 + 387.713i −0.335041 + 1.03115i
\(377\) −1.25945 1.73349i −0.00334073 0.00459812i
\(378\) −117.698 + 124.768i −0.311371 + 0.330074i
\(379\) 22.3758 + 68.8656i 0.0590390 + 0.181703i 0.976227 0.216752i \(-0.0695463\pi\)
−0.917188 + 0.398455i \(0.869546\pi\)
\(380\) 1633.00 530.594i 4.29737 1.39630i
\(381\) 25.7566 173.516i 0.0676026 0.455422i
\(382\) 68.7969 49.9839i 0.180097 0.130848i
\(383\) −499.215 162.205i −1.30343 0.423511i −0.426659 0.904413i \(-0.640309\pi\)
−0.876775 + 0.480901i \(0.840309\pi\)
\(384\) −550.229 + 287.123i −1.43289 + 0.747717i
\(385\) 0 0
\(386\) 706.528i 1.83038i
\(387\) −75.2682 99.4739i −0.194491 0.257039i
\(388\) −643.016 + 467.179i −1.65726 + 1.20407i
\(389\) 219.197 301.699i 0.563489 0.775576i −0.428276 0.903648i \(-0.640879\pi\)
0.991765 + 0.128072i \(0.0408788\pi\)
\(390\) 4.12028 4.20113i 0.0105648 0.0107721i
\(391\) 7.73949 + 23.8197i 0.0197941 + 0.0609199i
\(392\) −400.333 + 551.011i −1.02126 + 1.40564i
\(393\) −197.295 + 396.695i −0.502022 + 1.00940i
\(394\) 70.2209 216.118i 0.178226 0.548522i
\(395\) 496.774i 1.25766i
\(396\) 0 0
\(397\) −184.584 −0.464947 −0.232474 0.972603i \(-0.574682\pi\)
−0.232474 + 0.972603i \(0.574682\pi\)
\(398\) −453.697 147.415i −1.13994 0.370390i
\(399\) 128.324 + 63.8217i 0.321615 + 0.159954i
\(400\) 579.152 + 420.778i 1.44788 + 1.05195i
\(401\) −86.3473 + 28.0559i −0.215330 + 0.0699649i −0.414695 0.909960i \(-0.636112\pi\)
0.199366 + 0.979925i \(0.436112\pi\)
\(402\) 762.501 + 747.825i 1.89677 + 1.86026i
\(403\) −2.42369 1.76092i −0.00601412 0.00436952i
\(404\) −270.288 372.020i −0.669031 0.920842i
\(405\) −24.8613 639.356i −0.0613860 1.57866i
\(406\) 191.914 0.472694
\(407\) 0 0
\(408\) 75.6995 + 145.067i 0.185538 + 0.355555i
\(409\) −169.936 + 523.008i −0.415490 + 1.27875i 0.496321 + 0.868139i \(0.334684\pi\)
−0.911812 + 0.410609i \(0.865316\pi\)
\(410\) −1155.32 1590.16i −2.81785 3.87844i
\(411\) −490.982 72.8811i −1.19460 0.177326i
\(412\) −332.896 1024.55i −0.808000 2.48677i
\(413\) −137.718 + 44.7474i −0.333459 + 0.108347i
\(414\) −203.705 + 70.5926i −0.492041 + 0.170514i
\(415\) −540.009 + 392.339i −1.30123 + 0.945396i
\(416\) −0.499821 0.162402i −0.00120149 0.000390389i
\(417\) 72.3034 + 138.558i 0.173389 + 0.332275i
\(418\) 0 0
\(419\) 298.402i 0.712176i −0.934452 0.356088i \(-0.884110\pi\)
0.934452 0.356088i \(-0.115890\pi\)
\(420\) 58.9443 + 350.108i 0.140344 + 0.833591i
\(421\) 99.1856 72.0626i 0.235595 0.171170i −0.463723 0.885980i \(-0.653487\pi\)
0.699319 + 0.714810i \(0.253487\pi\)
\(422\) 2.55566 3.51756i 0.00605606 0.00833545i
\(423\) 71.5224 235.606i 0.169084 0.556989i
\(424\) 100.037 + 307.884i 0.235937 + 0.726141i
\(425\) −80.4625 + 110.747i −0.189323 + 0.260581i
\(426\) 436.427 + 217.055i 1.02448 + 0.509519i
\(427\) 44.3920 136.624i 0.103962 0.319964i
\(428\) 480.021i 1.12154i
\(429\) 0 0
\(430\) −383.296 −0.891385
\(431\) −562.102 182.638i −1.30418 0.423754i −0.427147 0.904182i \(-0.640481\pi\)
−0.877034 + 0.480428i \(0.840481\pi\)
\(432\) −453.465 + 247.957i −1.04969 + 0.573976i
\(433\) −519.659 377.554i −1.20014 0.871950i −0.205838 0.978586i \(-0.565992\pi\)
−0.994298 + 0.106636i \(0.965992\pi\)
\(434\) 255.193 82.9172i 0.588002 0.191053i
\(435\) −501.280 + 511.117i −1.15237 + 1.17498i
\(436\) 327.371 + 237.849i 0.750851 + 0.545526i
\(437\) 105.884 + 145.737i 0.242297 + 0.333494i
\(438\) 201.397 + 1196.23i 0.459810 + 2.73111i
\(439\) −476.217 −1.08478 −0.542388 0.840128i \(-0.682480\pi\)
−0.542388 + 0.840128i \(0.682480\pi\)
\(440\) 0 0
\(441\) 235.282 337.437i 0.533520 0.765164i
\(442\) 0.280868 0.864421i 0.000635447 0.00195570i
\(443\) 63.3171 + 87.1485i 0.142928 + 0.196723i 0.874479 0.485063i \(-0.161203\pi\)
−0.731551 + 0.681786i \(0.761203\pi\)
\(444\) 13.4567 90.6544i 0.0303078 0.204177i
\(445\) −110.705 340.716i −0.248776 0.765653i
\(446\) 413.729 134.429i 0.927643 0.301409i
\(447\) −90.6403 13.4546i −0.202775 0.0300997i
\(448\) −74.3221 + 53.9982i −0.165898 + 0.120532i
\(449\) 213.489 + 69.3667i 0.475476 + 0.154491i 0.536945 0.843618i \(-0.319578\pi\)
−0.0614686 + 0.998109i \(0.519578\pi\)
\(450\) −966.582 673.961i −2.14796 1.49769i
\(451\) 0 0
\(452\) 431.031i 0.953608i
\(453\) 488.949 82.3195i 1.07936 0.181721i
\(454\) −135.122 + 98.1716i −0.297625 + 0.216237i
\(455\) 0.597580 0.822498i 0.00131336 0.00180769i
\(456\) 840.250 + 824.078i 1.84265 + 1.80719i
\(457\) −22.0293 67.7991i −0.0482041 0.148357i 0.924057 0.382254i \(-0.124852\pi\)
−0.972261 + 0.233897i \(0.924852\pi\)
\(458\) 150.645 207.345i 0.328919 0.452718i
\(459\) −47.4152 86.7129i −0.103301 0.188917i
\(460\) −137.899 + 424.410i −0.299781 + 0.922631i
\(461\) 876.537i 1.90138i −0.310141 0.950691i \(-0.600376\pi\)
0.310141 0.950691i \(-0.399624\pi\)
\(462\) 0 0
\(463\) −824.691 −1.78119 −0.890595 0.454797i \(-0.849712\pi\)
−0.890595 + 0.454797i \(0.849712\pi\)
\(464\) 549.971 + 178.696i 1.18528 + 0.385121i
\(465\) −445.735 + 896.226i −0.958570 + 1.92737i
\(466\) 525.094 + 381.503i 1.12681 + 0.818677i
\(467\) −305.347 + 99.2132i −0.653847 + 0.212448i −0.617110 0.786877i \(-0.711697\pi\)
−0.0367376 + 0.999325i \(0.511697\pi\)
\(468\) 5.04317 + 1.53094i 0.0107760 + 0.00327124i
\(469\) 149.282 + 108.460i 0.318299 + 0.231258i
\(470\) −444.704 612.083i −0.946180 1.30230i
\(471\) 624.585 105.155i 1.32608 0.223259i
\(472\) −1189.12 −2.51933
\(473\) 0 0
\(474\) −585.571 + 305.566i −1.23538 + 0.644654i
\(475\) −304.256 + 936.403i −0.640539 + 1.97138i
\(476\) 32.2335 + 44.3656i 0.0677174 + 0.0932050i
\(477\) −64.0230 184.748i −0.134220 0.387311i
\(478\) −379.691 1168.57i −0.794332 2.44470i
\(479\) −412.015 + 133.872i −0.860157 + 0.279482i −0.705694 0.708517i \(-0.749365\pi\)
−0.154463 + 0.987999i \(0.549365\pi\)
\(480\) −25.7820 + 173.687i −0.0537126 + 0.361849i
\(481\) −0.212317 + 0.154257i −0.000441408 + 0.000320701i
\(482\) 584.363 + 189.871i 1.21237 + 0.393924i
\(483\) −33.0224 + 17.2319i −0.0683694 + 0.0356769i
\(484\) 0 0
\(485\) 760.436i 1.56791i
\(486\) 738.347 422.574i 1.51923 0.869493i
\(487\) 285.224 207.228i 0.585676 0.425519i −0.255090 0.966917i \(-0.582105\pi\)
0.840766 + 0.541399i \(0.182105\pi\)
\(488\) 693.396 954.378i 1.42089 1.95569i
\(489\) −183.621 + 187.225i −0.375504 + 0.382872i
\(490\) −390.602 1202.15i −0.797147 2.45337i
\(491\) −262.378 + 361.133i −0.534375 + 0.735505i −0.987789 0.155795i \(-0.950206\pi\)
0.453414 + 0.891300i \(0.350206\pi\)
\(492\) 783.954 1576.27i 1.59340 3.20381i
\(493\) −34.1708 + 105.167i −0.0693120 + 0.213321i
\(494\) 6.53734i 0.0132335i
\(495\) 0 0
\(496\) 808.517 1.63007
\(497\) 80.0917 + 26.0234i 0.161150 + 0.0523609i
\(498\) −794.629 395.206i −1.59564 0.793586i
\(499\) −72.6250 52.7651i −0.145541 0.105742i 0.512632 0.858608i \(-0.328671\pi\)
−0.658173 + 0.752867i \(0.728671\pi\)
\(500\) −769.022 + 249.870i −1.53804 + 0.499741i
\(501\) 88.5992 + 86.8940i 0.176845 + 0.173441i
\(502\) 393.714 + 286.050i 0.784292 + 0.569821i
\(503\) 573.691 + 789.618i 1.14054 + 1.56982i 0.766297 + 0.642487i \(0.222097\pi\)
0.374242 + 0.927331i \(0.377903\pi\)
\(504\) −194.060 + 146.838i −0.385040 + 0.291345i
\(505\) 439.954 0.871195
\(506\) 0 0
\(507\) 234.545 + 449.469i 0.462612 + 0.886527i
\(508\) 149.184 459.140i 0.293668 0.903818i
\(509\) 189.070 + 260.232i 0.371454 + 0.511262i 0.953295 0.302040i \(-0.0976676\pi\)
−0.581842 + 0.813302i \(0.697668\pi\)
\(510\) −300.386 44.5890i −0.588991 0.0874295i
\(511\) 64.7649 + 199.326i 0.126742 + 0.390070i
\(512\) −950.204 + 308.740i −1.85587 + 0.603007i
\(513\) −517.073 487.774i −1.00794 0.950827i
\(514\) 1210.44 879.440i 2.35495 1.71097i
\(515\) 980.236 + 318.498i 1.90337 + 0.618443i
\(516\) −158.821 304.356i −0.307792 0.589836i
\(517\) 0 0
\(518\) 23.5055i 0.0453774i
\(519\) −103.018 611.890i −0.198493 1.17898i
\(520\) 6.75423 4.90723i 0.0129889 0.00943699i
\(521\) 180.087 247.868i 0.345656 0.475755i −0.600426 0.799680i \(-0.705002\pi\)
0.946083 + 0.323925i \(0.105002\pi\)
\(522\) −910.816 276.494i −1.74486 0.529682i
\(523\) 207.538 + 638.736i 0.396822 + 1.22129i 0.927533 + 0.373740i \(0.121925\pi\)
−0.530711 + 0.847553i \(0.678075\pi\)
\(524\) −716.699 + 986.451i −1.36775 + 1.88254i
\(525\) −182.286 90.6594i −0.347212 0.172685i
\(526\) 218.140 671.367i 0.414715 1.27636i
\(527\) 154.607i 0.293372i
\(528\) 0 0
\(529\) 482.182 0.911497
\(530\) −571.394 185.657i −1.07810 0.350297i
\(531\) 718.074 13.9559i 1.35231 0.0262823i
\(532\) 319.101 + 231.840i 0.599814 + 0.435790i
\(533\) −4.79444 + 1.55781i −0.00899520 + 0.00292272i
\(534\) 333.523 340.068i 0.624574 0.636831i
\(535\) −371.549 269.946i −0.694484 0.504572i
\(536\) 890.657 + 1225.88i 1.66167 + 2.28710i
\(537\) −68.8791 409.118i −0.128267 0.761858i
\(538\) 1200.99 2.23232
\(539\) 0 0
\(540\) 224.661 1746.52i 0.416038 3.23430i
\(541\) −56.8905 + 175.091i −0.105158 + 0.323643i −0.989767 0.142690i \(-0.954425\pi\)
0.884610 + 0.466332i \(0.154425\pi\)
\(542\) 838.725 + 1154.41i 1.54746 + 2.12990i
\(543\) 27.2801 183.779i 0.0502396 0.338452i
\(544\) 8.38108 + 25.7943i 0.0154064 + 0.0474160i
\(545\) −368.203 + 119.636i −0.675602 + 0.219516i
\(546\) 1.33709 + 0.198477i 0.00244888 + 0.000363510i
\(547\) −491.170 + 356.856i −0.897934 + 0.652387i −0.937934 0.346812i \(-0.887264\pi\)
0.0400006 + 0.999200i \(0.487264\pi\)
\(548\) −1299.19 422.131i −2.37078 0.770312i
\(549\) −407.520 + 584.458i −0.742295 + 1.06459i
\(550\) 0 0
\(551\) 795.344i 1.44346i
\(552\) −301.630 + 50.7825i −0.546432 + 0.0919973i
\(553\) −92.3224 + 67.0762i −0.166948 + 0.121295i
\(554\) −1022.71 + 1407.64i −1.84604 + 2.54086i
\(555\) 62.6014 + 61.3965i 0.112795 + 0.110624i
\(556\) 132.916 + 409.073i 0.239057 + 0.735743i
\(557\) 238.714 328.561i 0.428570 0.589876i −0.539054 0.842271i \(-0.681218\pi\)
0.967624 + 0.252395i \(0.0812182\pi\)
\(558\) −1330.60 + 25.8603i −2.38458 + 0.0463446i
\(559\) −0.303784 + 0.934950i −0.000543441 + 0.00167254i
\(560\) 274.376i 0.489958i
\(561\) 0 0
\(562\) −1354.87 −2.41081
\(563\) 306.504 + 99.5891i 0.544412 + 0.176890i 0.568295 0.822825i \(-0.307603\pi\)
−0.0238835 + 0.999715i \(0.507603\pi\)
\(564\) 301.759 606.737i 0.535033 1.07578i
\(565\) −333.629 242.396i −0.590494 0.429019i
\(566\) 738.347 239.903i 1.30450 0.423857i
\(567\) 115.464 90.9485i 0.203640 0.160403i
\(568\) 559.473 + 406.481i 0.984988 + 0.715636i
\(569\) −256.283 352.744i −0.450410 0.619936i 0.522075 0.852899i \(-0.325158\pi\)
−0.972486 + 0.232963i \(0.925158\pi\)
\(570\) −2153.89 + 362.630i −3.77876 + 0.636193i
\(571\) 155.637 0.272569 0.136284 0.990670i \(-0.456484\pi\)
0.136284 + 0.990670i \(0.456484\pi\)
\(572\) 0 0
\(573\) −64.6036 + 33.7118i −0.112746 + 0.0588339i
\(574\) 139.526 429.418i 0.243077 0.748115i
\(575\) −150.409 207.021i −0.261582 0.360036i
\(576\) 430.526 149.196i 0.747441 0.259021i
\(577\) 259.039 + 797.241i 0.448942 + 1.38170i 0.878103 + 0.478472i \(0.158809\pi\)
−0.429161 + 0.903228i \(0.641191\pi\)
\(578\) 917.633 298.157i 1.58760 0.515842i
\(579\) −88.8968 + 598.876i −0.153535 + 1.03433i
\(580\) −1593.97 + 1158.09i −2.74823 + 1.99670i
\(581\) −145.828 47.3823i −0.250994 0.0815531i
\(582\) 896.361 467.744i 1.54014 0.803684i
\(583\) 0 0
\(584\) 1721.07i 2.94704i
\(585\) −4.02108 + 3.04260i −0.00687364 + 0.00520102i
\(586\) 1254.02 911.101i 2.13997 1.55478i
\(587\) 358.686 493.689i 0.611050 0.841038i −0.385613 0.922660i \(-0.626010\pi\)
0.996663 + 0.0816225i \(0.0260102\pi\)
\(588\) 792.718 808.274i 1.34816 1.37462i
\(589\) 343.632 + 1057.59i 0.583416 + 1.79557i
\(590\) 1297.16 1785.39i 2.19858 3.02609i
\(591\) −86.7139 + 174.353i −0.146724 + 0.295014i
\(592\) 21.8866 67.3601i 0.0369707 0.113784i
\(593\) 626.517i 1.05652i −0.849083 0.528260i \(-0.822845\pi\)
0.849083 0.528260i \(-0.177155\pi\)
\(594\) 0 0
\(595\) −52.4671 −0.0881799
\(596\) −239.843 77.9297i −0.402421 0.130755i
\(597\) 366.021 + 182.039i 0.613100 + 0.304923i
\(598\) 1.37454 + 0.998665i 0.00229857 + 0.00167001i
\(599\) 1090.50 354.326i 1.82054 0.591529i 0.820745 0.571295i \(-0.193559\pi\)
0.999795 0.0202344i \(-0.00644123\pi\)
\(600\) −1193.58 1170.61i −1.98931 1.95102i
\(601\) −494.787 359.484i −0.823273 0.598143i 0.0943748 0.995537i \(-0.469915\pi\)
−0.917648 + 0.397394i \(0.869915\pi\)
\(602\) −51.7539 71.2331i −0.0859699 0.118327i
\(603\) −552.228 729.821i −0.915801 1.21032i
\(604\) 1364.58 2.25924
\(605\) 0 0
\(606\) 270.616 + 518.594i 0.446560 + 0.855766i
\(607\) −34.4711 + 106.091i −0.0567893 + 0.174780i −0.975428 0.220320i \(-0.929290\pi\)
0.918638 + 0.395099i \(0.129290\pi\)
\(608\) 114.662 + 157.818i 0.188588 + 0.259569i
\(609\) −162.673 24.1470i −0.267114 0.0396503i
\(610\) 676.541 + 2082.18i 1.10908 + 3.41341i
\(611\) −1.84547 + 0.599630i −0.00302041 + 0.000981391i
\(612\) −89.0604 256.997i −0.145524 0.419929i
\(613\) 585.747 425.570i 0.955542 0.694242i 0.00343063 0.999994i \(-0.498908\pi\)
0.952111 + 0.305752i \(0.0989080\pi\)
\(614\) 1081.79 + 351.496i 1.76188 + 0.572469i
\(615\) 779.210 + 1493.24i 1.26701 + 2.42803i
\(616\) 0 0
\(617\) 305.723i 0.495499i −0.968824 0.247749i \(-0.920309\pi\)
0.968824 0.247749i \(-0.0796910\pi\)
\(618\) 227.515 + 1351.36i 0.368147 + 2.18666i
\(619\) −801.760 + 582.513i −1.29525 + 0.941054i −0.999897 0.0143342i \(-0.995437\pi\)
−0.295353 + 0.955388i \(0.595437\pi\)
\(620\) −1619.19 + 2228.62i −2.61160 + 3.59455i
\(621\) 181.549 34.2060i 0.292350 0.0550822i
\(622\) −126.579 389.572i −0.203504 0.626321i
\(623\) 48.3721 66.5785i 0.0776438 0.106868i
\(624\) 3.64691 + 1.81378i 0.00584441 + 0.00290670i
\(625\) −49.8536 + 153.434i −0.0797658 + 0.245494i
\(626\) 511.397i 0.816928i
\(627\) 0 0
\(628\) 1743.12 2.77567
\(629\) 12.8808 + 4.18523i 0.0204782 + 0.00665378i
\(630\) −8.77589 451.548i −0.0139300 0.716742i
\(631\) 437.234 + 317.669i 0.692922 + 0.503437i 0.877619 0.479358i \(-0.159131\pi\)
−0.184698 + 0.982795i \(0.559131\pi\)
\(632\) −891.244 + 289.583i −1.41020 + 0.458200i
\(633\) −2.60885 + 2.66004i −0.00412140 + 0.00420228i
\(634\) 191.358 + 139.029i 0.301826 + 0.219289i
\(635\) 271.491 + 373.675i 0.427545 + 0.588465i
\(636\) −89.3392 530.643i −0.140470 0.834345i
\(637\) −3.24190 −0.00508933
\(638\) 0 0
\(639\) −342.619 238.895i −0.536181 0.373858i
\(640\) 504.993 1554.21i 0.789052 2.42845i
\(641\) −167.415 230.427i −0.261178 0.359481i 0.658209 0.752835i \(-0.271314\pi\)
−0.919387 + 0.393355i \(0.871314\pi\)
\(642\) 89.6582 604.006i 0.139655 0.940819i
\(643\) 50.1585 + 154.372i 0.0780071 + 0.240081i 0.982454 0.186505i \(-0.0597161\pi\)
−0.904447 + 0.426586i \(0.859716\pi\)
\(644\) −97.4937 + 31.6776i −0.151388 + 0.0491889i
\(645\) 324.894 + 48.2271i 0.503712 + 0.0747707i
\(646\) −272.940 + 198.303i −0.422509 + 0.306970i
\(647\) −264.676 85.9983i −0.409081 0.132919i 0.0972452 0.995260i \(-0.468997\pi\)
−0.506326 + 0.862342i \(0.668997\pi\)
\(648\) 1132.55 417.300i 1.74777 0.643982i
\(649\) 0 0
\(650\) 9.28637i 0.0142867i
\(651\) −226.743 + 38.1745i −0.348299 + 0.0586397i
\(652\) −583.879 + 424.213i −0.895521 + 0.650634i
\(653\) 351.286 483.504i 0.537957 0.740435i −0.450360 0.892847i \(-0.648704\pi\)
0.988317 + 0.152412i \(0.0487042\pi\)
\(654\) −367.503 360.430i −0.561931 0.551116i
\(655\) −360.494 1109.49i −0.550373 1.69387i
\(656\) 799.686 1100.67i 1.21903 1.67786i
\(657\) −20.1990 1039.30i −0.0307442 1.58189i
\(658\) 53.7064 165.291i 0.0816206 0.251202i
\(659\) 187.267i 0.284169i −0.989855 0.142085i \(-0.954620\pi\)
0.989855 0.142085i \(-0.0453805\pi\)
\(660\) 0 0
\(661\) 218.982 0.331289 0.165645 0.986186i \(-0.447030\pi\)
0.165645 + 0.986186i \(0.447030\pi\)
\(662\) −1010.41 328.301i −1.52629 0.495923i
\(663\) −0.346836 + 0.697373i −0.000523131 + 0.00105184i
\(664\) −1018.67 740.105i −1.53414 1.11462i
\(665\) −358.901 + 116.614i −0.539701 + 0.175360i
\(666\) −33.8648 + 111.556i −0.0508481 + 0.167502i
\(667\) −167.229 121.499i −0.250719 0.182158i
\(668\) 200.748 + 276.306i 0.300521 + 0.413632i
\(669\) −367.604 + 61.8899i −0.549483 + 0.0925111i
\(670\) −2812.17 −4.19726
\(671\) 0 0
\(672\) −35.7599 + 18.6604i −0.0532141 + 0.0277685i
\(673\) 189.780 584.082i 0.281991 0.867878i −0.705294 0.708915i \(-0.749185\pi\)
0.987285 0.158963i \(-0.0508151\pi\)
\(674\) 1142.97 + 1573.16i 1.69580 + 2.33407i
\(675\) 734.508 + 692.889i 1.08816 + 1.02650i
\(676\) 431.165 + 1326.99i 0.637819 + 1.96300i
\(677\) 775.510 251.979i 1.14551 0.372199i 0.326060 0.945349i \(-0.394279\pi\)
0.819450 + 0.573150i \(0.194279\pi\)
\(678\) 80.5079 542.362i 0.118743 0.799944i
\(679\) 141.322 102.677i 0.208133 0.151217i
\(680\) −409.764 133.140i −0.602594 0.195795i
\(681\) 126.886 66.2122i 0.186323 0.0972279i
\(682\) 0 0
\(683\) 95.9038i 0.140416i −0.997532 0.0702078i \(-0.977634\pi\)
0.997532 0.0702078i \(-0.0223662\pi\)
\(684\) −1180.42 1560.04i −1.72576 2.28076i
\(685\) 1057.35 768.213i 1.54358 1.12148i
\(686\) 353.638 486.741i 0.515508 0.709535i
\(687\) −153.780 + 156.798i −0.223843 + 0.228236i
\(688\) −81.9849 252.323i −0.119164 0.366749i
\(689\) −0.905725 + 1.24662i −0.00131455 + 0.00180932i
\(690\) 252.789 508.275i 0.366361 0.736630i
\(691\) 91.5341 281.713i 0.132466 0.407689i −0.862721 0.505680i \(-0.831242\pi\)
0.995187 + 0.0979912i \(0.0312417\pi\)
\(692\) 1707.69i 2.46776i
\(693\) 0 0
\(694\) 1358.25 1.95713
\(695\) −391.381 127.167i −0.563138 0.182974i
\(696\) −1209.19 601.384i −1.73734 0.864058i
\(697\) 210.474 + 152.918i 0.301971 + 0.219395i
\(698\) −1505.08 + 489.029i −2.15627 + 0.700615i
\(699\) −397.086 389.444i −0.568077 0.557144i
\(700\) −453.287 329.332i −0.647552 0.470474i
\(701\) 437.413 + 602.048i 0.623985 + 0.858841i 0.997635 0.0687283i \(-0.0218942\pi\)
−0.373651 + 0.927569i \(0.621894\pi\)
\(702\) −6.05982 2.86833i −0.00863223 0.00408594i
\(703\) 97.4133 0.138568
\(704\) 0 0
\(705\) 299.933 + 574.776i 0.425436 + 0.815285i
\(706\) −329.371 + 1013.70i −0.466530 + 1.43583i
\(707\) 59.4041 + 81.7627i 0.0840227 + 0.115647i
\(708\) 1955.17 + 290.225i 2.76154 + 0.409922i
\(709\) −243.404 749.120i −0.343306 1.05659i −0.962484 0.271337i \(-0.912534\pi\)
0.619179 0.785250i \(-0.287466\pi\)
\(710\) −1220.61 + 396.600i −1.71917 + 0.558592i
\(711\) 534.796 185.330i 0.752175 0.260661i
\(712\) 546.732 397.224i 0.767882 0.557899i
\(713\) −274.864 89.3086i −0.385503 0.125257i
\(714\) −32.2725 61.8454i −0.0451996 0.0866182i
\(715\) 0 0
\(716\) 1141.78i 1.59467i
\(717\) 174.807 + 1038.29i 0.243803 + 1.44810i
\(718\) −858.508 + 623.742i −1.19569 + 0.868722i
\(719\) −287.294 + 395.426i −0.399574 + 0.549967i −0.960637 0.277806i \(-0.910393\pi\)
0.561063 + 0.827773i \(0.310393\pi\)
\(720\) 395.299 1302.18i 0.549027 1.80858i
\(721\) 73.1640 + 225.176i 0.101476 + 0.312310i
\(722\) −683.441 + 940.676i −0.946594 + 1.30288i
\(723\) −471.436 234.467i −0.652055 0.324297i
\(724\) 158.008 486.298i 0.218243 0.671683i
\(725\) 1129.80i 1.55834i
\(726\) 0 0
\(727\) 270.772 0.372452 0.186226 0.982507i \(-0.440374\pi\)
0.186226 + 0.982507i \(0.440374\pi\)
\(728\) 1.82396 + 0.592640i 0.00250544 + 0.000814066i
\(729\) −679.017 + 265.287i −0.931436 + 0.363905i
\(730\) −2584.07 1877.44i −3.53983 2.57184i
\(731\) 48.2500 15.6774i 0.0660055 0.0214465i
\(732\) −1373.03 + 1399.97i −1.87572 + 1.91253i
\(733\) 328.669 + 238.792i 0.448388 + 0.325773i 0.788959 0.614446i \(-0.210620\pi\)
−0.340571 + 0.940219i \(0.610620\pi\)
\(734\) −864.192 1189.46i −1.17737 1.62052i
\(735\) 179.830 + 1068.13i 0.244667 + 1.45324i
\(736\) −50.6990 −0.0688845
\(737\) 0 0
\(738\) −1280.86 + 1836.98i −1.73558 + 2.48914i
\(739\) 287.094 883.586i 0.388490 1.19565i −0.545426 0.838159i \(-0.683632\pi\)
0.933916 0.357492i \(-0.116368\pi\)
\(740\) 141.842 + 195.229i 0.191678 + 0.263823i
\(741\) −0.822542 + 5.54127i −0.00111004 + 0.00747809i
\(742\) −42.6484 131.258i −0.0574776 0.176898i
\(743\) −690.050 + 224.211i −0.928734 + 0.301764i −0.734045 0.679101i \(-0.762370\pi\)
−0.194689 + 0.980865i \(0.562370\pi\)
\(744\) −1867.72 277.243i −2.51037 0.372638i
\(745\) 195.198 141.820i 0.262011 0.190362i
\(746\) −661.901 215.065i −0.887267 0.288290i
\(747\) 623.828 + 434.972i 0.835111 + 0.582291i
\(748\) 0 0
\(749\) 105.499i 0.140853i
\(750\) 1014.32 170.772i 1.35243 0.227696i
\(751\) −890.002 + 646.624i −1.18509 + 0.861018i −0.992737 0.120308i \(-0.961612\pi\)
−0.192352 + 0.981326i \(0.561612\pi\)
\(752\) 307.814 423.670i 0.409328 0.563391i
\(753\) −297.734 292.004i −0.395397 0.387787i
\(754\) 2.31807 + 7.13429i 0.00307437 + 0.00946192i
\(755\) −767.390 + 1056.22i −1.01641 + 1.39897i
\(756\) 354.915 194.070i 0.469464 0.256706i
\(757\) −389.757 + 1199.55i −0.514871 + 1.58461i 0.268646 + 0.963239i \(0.413424\pi\)
−0.783517 + 0.621370i \(0.786576\pi\)
\(758\) 253.499i 0.334431i
\(759\) 0 0
\(760\) −3098.91 −4.07752
\(761\) 110.930 + 36.0434i 0.145769 + 0.0473632i 0.380993 0.924578i \(-0.375582\pi\)
−0.235224 + 0.971941i \(0.575582\pi\)
\(762\) −273.474 + 549.867i −0.358890 + 0.721610i
\(763\) −71.9498 52.2746i −0.0942985 0.0685119i
\(764\) −190.733 + 61.9728i −0.249650 + 0.0811162i
\(765\) 249.007 + 75.5903i 0.325499 + 0.0988109i
\(766\) 1486.69 + 1080.14i 1.94084 + 1.41011i
\(767\) −3.32692 4.57911i −0.00433758 0.00597016i
\(768\) 1543.55 259.872i 2.00983 0.338375i
\(769\) −1252.94 −1.62930 −0.814652 0.579949i \(-0.803072\pi\)
−0.814652 + 0.579949i \(0.803072\pi\)
\(770\) 0 0
\(771\) −1136.67 + 593.142i −1.47428 + 0.769315i
\(772\) −514.895 + 1584.68i −0.666963 + 2.05270i
\(773\) −686.689 945.147i −0.888343 1.22270i −0.974039 0.226378i \(-0.927311\pi\)
0.0856964 0.996321i \(-0.472689\pi\)
\(774\) 142.995 + 412.632i 0.184748 + 0.533117i
\(775\) −488.133 1502.32i −0.629849 1.93848i
\(776\) 1364.27 443.278i 1.75808 0.571234i
\(777\) −2.95751 + 19.9241i −0.00380632 + 0.0256423i
\(778\) −1056.22 + 767.389i −1.35761 + 0.986361i
\(779\) 1779.63 + 578.236i 2.28450 + 0.742280i
\(780\) −12.3031 + 6.42008i −0.0157732 + 0.00823087i
\(781\) 0 0
\(782\) 87.6820i 0.112125i
\(783\) 737.249 + 348.966i 0.941569 + 0.445679i
\(784\) 707.827 514.266i 0.902841 0.655952i
\(785\) −980.267 + 1349.22i −1.24875 + 1.71875i
\(786\) 1086.06 1107.38i 1.38176 1.40888i
\(787\) −342.029 1052.66i −0.434598 1.33756i −0.893498 0.449068i \(-0.851756\pi\)
0.458899 0.888488i \(-0.348244\pi\)
\(788\) −315.000 + 433.560i −0.399746 + 0.550203i
\(789\) −269.376 + 541.626i −0.341414 + 0.686472i
\(790\) 537.430 1654.04i 0.680291 2.09372i
\(791\) 94.7321i 0.119762i
\(792\) 0 0
\(793\) 5.61513 0.00708088
\(794\) 614.584 + 199.690i 0.774035 + 0.251499i
\(795\) 460.973 + 229.263i 0.579840 + 0.288382i
\(796\) 910.174 + 661.280i 1.14344 + 0.830754i
\(797\) 61.7682 20.0697i 0.0775009 0.0251816i −0.270010 0.962858i \(-0.587027\pi\)
0.347511 + 0.937676i \(0.387027\pi\)
\(798\) −358.219 351.324i −0.448896 0.440256i
\(799\) 81.0155 + 58.8612i 0.101396 + 0.0736686i
\(800\) −162.878 224.183i −0.203598 0.280228i
\(801\) −325.493 + 246.288i −0.406358 + 0.307476i
\(802\) 317.851 0.396322
\(803\) 0 0
\(804\) −1165.24 2233.00i −1.44930 2.77736i
\(805\) 30.3076 93.2771i 0.0376491 0.115872i
\(806\) 6.16480 + 8.48512i 0.00764863 + 0.0105274i
\(807\) −1018.00 151.111i −1.26146 0.187250i
\(808\) 256.461 + 789.304i 0.317402 + 0.976862i
\(809\) 610.865 198.482i 0.755087 0.245343i 0.0939183 0.995580i \(-0.470061\pi\)
0.661169 + 0.750237i \(0.270061\pi\)
\(810\) −608.904 + 2155.67i −0.751733 + 2.66132i
\(811\) 73.8187 53.6324i 0.0910218 0.0661312i −0.541344 0.840802i \(-0.682084\pi\)
0.632365 + 0.774670i \(0.282084\pi\)
\(812\) −430.447 139.861i −0.530108 0.172242i
\(813\) −565.681 1084.04i −0.695795 1.33339i
\(814\) 0 0
\(815\) 690.500i 0.847239i
\(816\) −34.8979 207.281i −0.0427670 0.254021i
\(817\) 295.210 214.482i 0.361334 0.262524i
\(818\) 1131.62 1557.54i 1.38340 1.90409i
\(819\) −1.10839 0.336471i −0.00135334 0.000410831i
\(820\) 1432.43 + 4408.56i 1.74687 + 5.37630i
\(821\) 532.043 732.295i 0.648043 0.891955i −0.350969 0.936387i \(-0.614148\pi\)
0.999012 + 0.0444321i \(0.0141478\pi\)
\(822\) 1555.91 + 773.826i 1.89283 + 0.941394i
\(823\) 193.305 594.932i 0.234879 0.722883i −0.762259 0.647273i \(-0.775910\pi\)
0.997137 0.0756101i \(-0.0240904\pi\)
\(824\) 1944.27i 2.35955i
\(825\) 0 0
\(826\) 506.951 0.613742
\(827\) −864.024 280.738i −1.04477 0.339466i −0.264156 0.964480i \(-0.585093\pi\)
−0.780613 + 0.625014i \(0.785093\pi\)
\(828\) 508.340 9.87965i 0.613937 0.0119319i
\(829\) 474.666 + 344.865i 0.572577 + 0.416001i 0.836040 0.548668i \(-0.184865\pi\)
−0.263464 + 0.964669i \(0.584865\pi\)
\(830\) 2222.44 722.115i 2.67764 0.870018i
\(831\) 1043.99 1064.48i 1.25631 1.28096i
\(832\) −2.90507 2.11065i −0.00349167 0.00253684i
\(833\) 98.3395 + 135.353i 0.118055 + 0.162488i
\(834\) −90.8403 539.559i −0.108921 0.646954i
\(835\) −326.761 −0.391331
\(836\) 0 0
\(837\) 1131.11 + 145.498i 1.35139 + 0.173833i
\(838\) −322.823 + 993.547i −0.385230 + 1.18562i
\(839\) −601.835 828.355i −0.717325 0.987313i −0.999608 0.0279817i \(-0.991092\pi\)
0.282284 0.959331i \(-0.408908\pi\)
\(840\) 94.0844 633.824i 0.112005 0.754552i
\(841\) −22.1373 68.1317i −0.0263226 0.0810127i
\(842\) −408.204 + 132.634i −0.484803 + 0.157522i
\(843\) 1148.44 + 170.473i 1.36232 + 0.202222i
\(844\) −8.29562 + 6.02712i −0.00982893 + 0.00714114i
\(845\) −1269.60 412.517i −1.50248 0.488186i
\(846\) −493.027 + 707.090i −0.582774 + 0.835803i
\(847\) 0 0
\(848\) 415.860i 0.490401i
\(849\) −656.032 + 110.450i −0.772712 + 0.130094i
\(850\) 387.715 281.692i 0.456136 0.331402i
\(851\) −14.8812 + 20.4822i −0.0174867 + 0.0240684i
\(852\) −820.687 804.892i −0.963247 0.944708i
\(853\) 121.995 + 375.463i 0.143019 + 0.440168i 0.996751 0.0805454i \(-0.0256662\pi\)
−0.853732 + 0.520713i \(0.825666\pi\)
\(854\) −295.612 + 406.874i −0.346149 + 0.476434i
\(855\) 1871.34 36.3697i 2.18870 0.0425377i
\(856\) 267.714 823.940i 0.312750 0.962547i
\(857\) 1.34510i 0.00156955i 1.00000 0.000784774i \(0.000249801\pi\)
−1.00000 0.000784774i \(0.999750\pi\)
\(858\) 0 0
\(859\) 847.638 0.986772 0.493386 0.869810i \(-0.335759\pi\)
0.493386 + 0.869810i \(0.335759\pi\)
\(860\) 859.701 + 279.334i 0.999652 + 0.324807i
\(861\) −172.298 + 346.434i −0.200113 + 0.402362i
\(862\) 1673.97 + 1216.21i 1.94196 + 1.41091i
\(863\) −442.630 + 143.819i −0.512897 + 0.166650i −0.554019 0.832504i \(-0.686907\pi\)
0.0411222 + 0.999154i \(0.486907\pi\)
\(864\) 196.600 37.0417i 0.227546 0.0428723i
\(865\) 1321.80 + 960.343i 1.52809 + 1.11022i
\(866\) 1321.78 + 1819.28i 1.52631 + 2.10078i
\(867\) −815.331 + 137.269i −0.940404 + 0.158327i
\(868\) −632.804 −0.729037
\(869\) 0 0
\(870\) 2221.99 1159.49i 2.55401 1.33275i
\(871\) −2.22880 + 6.85955i −0.00255890 + 0.00787549i
\(872\) −429.271 590.840i −0.492283 0.677569i
\(873\) −818.638 + 283.694i −0.937730 + 0.324964i
\(874\) −194.883 599.789i −0.222979 0.686257i
\(875\) 169.016 54.9166i 0.193161 0.0627618i
\(876\) 420.055 2829.81i 0.479515 3.23038i
\(877\) −421.449 + 306.200i −0.480557 + 0.349145i −0.801541 0.597939i \(-0.795986\pi\)
0.320984 + 0.947085i \(0.395986\pi\)
\(878\) 1585.59 + 515.190i 1.80591 + 0.586777i
\(879\) −1177.59 + 614.496i −1.33969 + 0.699085i
\(880\) 0 0
\(881\) 606.759i 0.688717i −0.938838 0.344358i \(-0.888096\pi\)
0.938838 0.344358i \(-0.111904\pi\)
\(882\) −1148.44 + 868.980i −1.30209 + 0.985238i
\(883\) 90.4194 65.6935i 0.102400 0.0743981i −0.535407 0.844594i \(-0.679842\pi\)
0.637807 + 0.770196i \(0.279842\pi\)
\(884\) −1.25993 + 1.73414i −0.00142526 + 0.00196170i
\(885\) −1324.16 + 1350.14i −1.49623 + 1.52559i
\(886\) −116.537 358.665i −0.131532 0.404814i
\(887\) −6.70027 + 9.22213i −0.00755386 + 0.0103970i −0.812777 0.582575i \(-0.802045\pi\)
0.805223 + 0.592972i \(0.202045\pi\)
\(888\) −73.6572 + 148.100i −0.0829473 + 0.166780i
\(889\) −32.7876 + 100.910i −0.0368814 + 0.113509i
\(890\) 1254.20i 1.40921i
\(891\) 0 0
\(892\) −1025.93 −1.15014
\(893\) 685.012 + 222.574i 0.767091 + 0.249243i
\(894\) 287.237 + 142.856i 0.321294 + 0.159794i
\(895\) 883.772 + 642.098i 0.987454 + 0.717428i
\(896\) 357.026 116.005i 0.398467 0.129470i
\(897\) −1.03946 1.01945i −0.00115881 0.00113651i
\(898\) −635.780 461.921i −0.707995 0.514389i
\(899\) −750.020 1032.31i −0.834283 1.14829i
\(900\) 1676.80 + 2216.06i 1.86312 + 2.46228i
\(901\) 79.5220 0.0882597
\(902\) 0 0
\(903\) 34.9056 + 66.8914i 0.0386552 + 0.0740768i
\(904\) 240.392 739.851i 0.265920 0.818419i
\(905\) 287.550 + 395.778i 0.317735 + 0.437324i
\(906\) −1717.04 254.876i −1.89519 0.281321i
\(907\) 492.982 + 1517.24i 0.543531 + 1.67282i 0.724458 + 0.689319i \(0.242090\pi\)
−0.180927 + 0.983496i \(0.557910\pi\)
\(908\) 374.611 121.719i 0.412567 0.134051i
\(909\) −164.132 473.627i −0.180563 0.521042i
\(910\) −2.87949 + 2.09207i −0.00316427 + 0.00229898i
\(911\) −575.802 187.089i −0.632055 0.205367i −0.0245695 0.999698i \(-0.507822\pi\)
−0.607485 + 0.794331i \(0.707822\pi\)
\(912\) −699.425 1340.34i −0.766914 1.46967i
\(913\) 0 0
\(914\) 249.573i 0.273056i
\(915\) −311.475 1850.05i −0.340409 2.02191i
\(916\) −488.990 + 355.272i −0.533832 + 0.387852i
\(917\) 157.516 216.803i 0.171773 0.236426i
\(918\) 64.0622 + 340.011i 0.0697845 + 0.370383i
\(919\) −113.582 349.570i −0.123593 0.380381i 0.870049 0.492965i \(-0.164087\pi\)
−0.993642 + 0.112585i \(0.964087\pi\)
\(920\) 473.400 651.579i 0.514565 0.708238i
\(921\) −872.738 434.053i −0.947598 0.471284i
\(922\) −948.272 + 2918.48i −1.02849 + 3.16538i
\(923\) 3.29169i 0.00356630i
\(924\) 0 0
\(925\) −138.377 −0.149597
\(926\) 2745.86 + 892.183i 2.96529 + 0.963481i
\(927\) −22.8185 1174.08i −0.0246154 1.26654i
\(928\) −181.092 131.571i −0.195143 0.141780i
\(929\) 1589.96 516.611i 1.71148 0.556093i 0.720900 0.693039i \(-0.243729\pi\)
0.990579 + 0.136946i \(0.0437286\pi\)
\(930\) 2453.67 2501.82i 2.63836 2.69013i
\(931\) 973.529 + 707.310i 1.04568 + 0.759732i
\(932\) −899.717 1238.35i −0.965361 1.32871i
\(933\) 58.2763 + 346.140i 0.0624612 + 0.370997i
\(934\) 1124.00 1.20343
\(935\) 0 0
\(936\) −7.80261 5.44046i −0.00833612 0.00581246i
\(937\) 309.287 951.889i 0.330083 1.01589i −0.639011 0.769197i \(-0.720656\pi\)
0.969094 0.246692i \(-0.0793437\pi\)
\(938\) −379.708 522.624i −0.404806 0.557168i
\(939\) 64.3451 433.477i 0.0685251 0.461637i
\(940\) 551.369 + 1696.94i 0.586563 + 1.80526i
\(941\) −335.079 + 108.874i −0.356088 + 0.115700i −0.481598 0.876392i \(-0.659943\pi\)
0.125510 + 0.992092i \(0.459943\pi\)
\(942\) −2193.35 325.580i −2.32840 0.345626i
\(943\) −393.442 + 285.852i −0.417223 + 0.303131i
\(944\) 1452.78 + 472.036i 1.53896 + 0.500038i
\(945\) −49.3760 + 383.851i −0.0522497 + 0.406192i
\(946\) 0 0
\(947\) 1536.20i 1.62217i 0.584927 + 0.811086i \(0.301123\pi\)
−0.584927 + 0.811086i \(0.698877\pi\)
\(948\) 1536.08 258.614i 1.62033 0.272800i
\(949\) −6.62755 + 4.81520i −0.00698372 + 0.00507397i
\(950\) 2026.08 2788.65i 2.13271 2.93543i
\(951\) −144.708 141.923i −0.152164 0.149236i
\(952\) −30.5844 94.1292i −0.0321265 0.0988752i
\(953\) −527.449 + 725.972i −0.553462 + 0.761775i −0.990477 0.137679i \(-0.956036\pi\)
0.437015 + 0.899454i \(0.356036\pi\)
\(954\) 13.3012 + 684.391i 0.0139426 + 0.717391i
\(955\) 59.2924 182.483i 0.0620863 0.191082i
\(956\) 2897.71i 3.03108i
\(957\) 0 0
\(958\) 1516.66 1.58315
\(959\) 285.535 + 92.7761i 0.297743 + 0.0967425i
\(960\) −534.263 + 1074.23i −0.556524 + 1.11899i
\(961\) −665.871 483.784i −0.692894 0.503417i
\(962\) 0.873804 0.283916i 0.000908320 0.000295131i
\(963\) −151.995 + 500.694i −0.157834 + 0.519932i
\(964\) −1172.31 851.731i −1.21609 0.883539i
\(965\) −937.030 1289.71i −0.971015 1.33649i
\(966\) 128.592 21.6498i 0.133118 0.0224118i
\(967\) 1717.58 1.77620 0.888099 0.459652i \(-0.152026\pi\)
0.888099 + 0.459652i \(0.152026\pi\)
\(968\) 0 0
\(969\) 256.304 133.746i 0.264504 0.138025i
\(970\) −822.669 + 2531.92i −0.848113 + 2.61022i
\(971\) −880.936 1212.50i −0.907246 1.24872i −0.968099 0.250570i \(-0.919382\pi\)
0.0608528 0.998147i \(-0.480618\pi\)
\(972\) −1964.01 + 409.714i −2.02059 + 0.421517i
\(973\) −29.2123 89.9063i −0.0300229 0.0924011i
\(974\) −1173.86 + 381.410i −1.20519 + 0.391591i
\(975\) 1.16843 7.87144i 0.00119839 0.00807327i
\(976\) −1225.99 + 890.734i −1.25614 + 0.912638i
\(977\) 53.6767 + 17.4406i 0.0549404 + 0.0178512i 0.336358 0.941734i \(-0.390805\pi\)
−0.281418 + 0.959585i \(0.590805\pi\)
\(978\) 813.925 424.727i 0.832234 0.434281i
\(979\) 0 0
\(980\) 2980.98i 3.04182i
\(981\) 266.158 + 351.752i 0.271313 + 0.358565i
\(982\) 1264.29 918.562i 1.28747 0.935399i
\(983\) −27.9524 + 38.4732i −0.0284358 + 0.0391385i −0.822998 0.568044i \(-0.807700\pi\)
0.794562 + 0.607183i \(0.207700\pi\)
\(984\) −2224.74 + 2268.40i −2.26092 + 2.30528i
\(985\) −158.443 487.636i −0.160855 0.495062i
\(986\) 227.548 313.192i 0.230779 0.317639i
\(987\) −66.3206 + 133.349i −0.0671941 + 0.135105i
\(988\) −4.76421 + 14.6627i −0.00482207 + 0.0148408i
\(989\) 94.8360i 0.0958908i
\(990\) 0 0
\(991\) −218.685 −0.220671 −0.110336 0.993894i \(-0.535193\pi\)
−0.110336 + 0.993894i \(0.535193\pi\)
\(992\) −297.649 96.7121i −0.300050 0.0974921i
\(993\) 815.146 + 405.410i 0.820893 + 0.408268i
\(994\) −238.517 173.293i −0.239957 0.174339i
\(995\) −1023.70 + 332.619i −1.02884 + 0.334291i
\(996\) 1494.27 + 1465.52i 1.50028 + 1.47140i
\(997\) −532.052 386.558i −0.533653 0.387721i 0.288070 0.957609i \(-0.406987\pi\)
−0.821722 + 0.569888i \(0.806987\pi\)
\(998\) 184.726 + 254.253i 0.185096 + 0.254763i
\(999\) 42.7412 90.2978i 0.0427840 0.0903882i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.251.1 24
3.2 odd 2 inner 363.3.h.q.251.6 24
11.2 odd 10 363.3.h.p.245.1 24
11.3 even 5 inner 363.3.h.q.323.1 24
11.4 even 5 363.3.b.j.122.1 6
11.5 even 5 inner 363.3.h.q.269.6 24
11.6 odd 10 363.3.h.p.269.1 24
11.7 odd 10 363.3.b.k.122.6 yes 6
11.8 odd 10 363.3.h.p.323.6 24
11.9 even 5 inner 363.3.h.q.245.6 24
11.10 odd 2 363.3.h.p.251.6 24
33.2 even 10 363.3.h.p.245.6 24
33.5 odd 10 inner 363.3.h.q.269.1 24
33.8 even 10 363.3.h.p.323.1 24
33.14 odd 10 inner 363.3.h.q.323.6 24
33.17 even 10 363.3.h.p.269.6 24
33.20 odd 10 inner 363.3.h.q.245.1 24
33.26 odd 10 363.3.b.j.122.6 yes 6
33.29 even 10 363.3.b.k.122.1 yes 6
33.32 even 2 363.3.h.p.251.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.1 6 11.4 even 5
363.3.b.j.122.6 yes 6 33.26 odd 10
363.3.b.k.122.1 yes 6 33.29 even 10
363.3.b.k.122.6 yes 6 11.7 odd 10
363.3.h.p.245.1 24 11.2 odd 10
363.3.h.p.245.6 24 33.2 even 10
363.3.h.p.251.1 24 33.32 even 2
363.3.h.p.251.6 24 11.10 odd 2
363.3.h.p.269.1 24 11.6 odd 10
363.3.h.p.269.6 24 33.17 even 10
363.3.h.p.323.1 24 33.8 even 10
363.3.h.p.323.6 24 11.8 odd 10
363.3.h.q.245.1 24 33.20 odd 10 inner
363.3.h.q.245.6 24 11.9 even 5 inner
363.3.h.q.251.1 24 1.1 even 1 trivial
363.3.h.q.251.6 24 3.2 odd 2 inner
363.3.h.q.269.1 24 33.5 odd 10 inner
363.3.h.q.269.6 24 11.5 even 5 inner
363.3.h.q.323.1 24 11.3 even 5 inner
363.3.h.q.323.6 24 33.14 odd 10 inner