Properties

Label 363.3.h.q.245.5
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.5
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.q.323.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69141 + 2.32802i) q^{2} +(-1.38470 + 2.66132i) q^{3} +(-1.32276 + 4.07105i) q^{4} +(-2.90829 + 4.00292i) q^{5} +(-8.53770 + 1.27775i) q^{6} +(-3.45484 + 10.6329i) q^{7} +(-0.767802 + 0.249474i) q^{8} +(-5.16520 - 7.37026i) q^{9} -14.2380 q^{10} +(-9.00271 - 9.15748i) q^{12} +(13.6720 - 9.93330i) q^{13} +(-30.5972 + 9.94163i) q^{14} +(-6.62591 - 13.2827i) q^{15} +(11.9727 + 8.69868i) q^{16} +(-0.0367864 + 0.0506321i) q^{17} +(8.42167 - 24.4908i) q^{18} +(1.66282 + 5.11764i) q^{19} +(-12.4491 - 17.1347i) q^{20} +(-23.5136 - 23.9178i) q^{21} -8.69537i q^{23} +(0.399248 - 2.38881i) q^{24} +(0.160235 + 0.493153i) q^{25} +(46.2499 + 15.0275i) q^{26} +(26.7668 - 3.54062i) q^{27} +(-38.7171 - 28.1296i) q^{28} +(-47.5106 - 15.4371i) q^{29} +(19.7154 - 37.8918i) q^{30} +(19.8827 - 14.4457i) q^{31} +45.8150i q^{32} -0.180094 q^{34} +(-32.5149 - 44.7530i) q^{35} +(36.8370 - 11.2787i) q^{36} +(-12.1319 + 37.3382i) q^{37} +(-9.10148 + 12.5271i) q^{38} +(7.50398 + 50.1402i) q^{39} +(1.23437 - 3.79899i) q^{40} +(-41.7596 + 13.5685i) q^{41} +(15.9102 - 95.1949i) q^{42} +0.201842 q^{43} +(44.5244 + 0.758975i) q^{45} +(20.2430 - 14.7074i) q^{46} +(14.1766 - 4.60627i) q^{47} +(-39.7286 + 19.8181i) q^{48} +(-61.4808 - 44.6684i) q^{49} +(-0.877048 + 1.20715i) q^{50} +(-0.0838099 - 0.168011i) q^{51} +(22.3541 + 68.7988i) q^{52} +(57.5690 + 79.2369i) q^{53} +(53.5163 + 56.3252i) q^{54} -9.02585i q^{56} +(-15.9222 - 2.66112i) q^{57} +(-44.4218 - 136.716i) q^{58} +(-13.7827 - 4.47826i) q^{59} +(62.8391 - 9.40449i) q^{60} +(-23.7229 - 17.2357i) q^{61} +(67.2596 + 21.8540i) q^{62} +(96.2122 - 29.4580i) q^{63} +(-58.7676 + 42.6972i) q^{64} +83.6168i q^{65} +82.8515 q^{67} +(-0.157466 - 0.216733i) q^{68} +(23.1411 + 12.0405i) q^{69} +(49.1899 - 151.391i) q^{70} +(15.6972 - 21.6053i) q^{71} +(5.80454 + 4.37031i) q^{72} +(4.31706 - 13.2865i) q^{73} +(-107.444 + 34.9108i) q^{74} +(-1.53431 - 0.256434i) q^{75} -23.0337 q^{76} +(-104.035 + 102.277i) q^{78} +(-40.6025 + 29.4994i) q^{79} +(-69.6402 + 22.6275i) q^{80} +(-27.6414 + 76.1377i) q^{81} +(-102.220 - 74.2674i) q^{82} +(-35.4092 + 48.7366i) q^{83} +(128.473 - 64.0873i) q^{84} +(-0.0956907 - 0.294506i) q^{85} +(0.341398 + 0.469894i) q^{86} +(106.871 - 105.065i) q^{87} +40.3489i q^{89} +(73.5420 + 104.938i) q^{90} +(58.3852 + 179.691i) q^{91} +(35.3993 + 11.5019i) q^{92} +(10.9128 + 72.9172i) q^{93} +(34.7020 + 25.2125i) q^{94} +(-25.3215 - 8.22744i) q^{95} +(-121.928 - 63.4402i) q^{96} +(24.9281 - 18.1114i) q^{97} -218.681i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.69141 + 2.32802i 0.845704 + 1.16401i 0.984793 + 0.173732i \(0.0555825\pi\)
−0.139089 + 0.990280i \(0.544417\pi\)
\(3\) −1.38470 + 2.66132i −0.461567 + 0.887105i
\(4\) −1.32276 + 4.07105i −0.330691 + 1.01776i
\(5\) −2.90829 + 4.00292i −0.581658 + 0.800583i −0.993876 0.110502i \(-0.964754\pi\)
0.412218 + 0.911085i \(0.364754\pi\)
\(6\) −8.53770 + 1.27775i −1.42295 + 0.212959i
\(7\) −3.45484 + 10.6329i −0.493548 + 1.51899i 0.325658 + 0.945488i \(0.394414\pi\)
−0.819207 + 0.573498i \(0.805586\pi\)
\(8\) −0.767802 + 0.249474i −0.0959752 + 0.0311842i
\(9\) −5.16520 7.37026i −0.573911 0.818918i
\(10\) −14.2380 −1.42380
\(11\) 0 0
\(12\) −9.00271 9.15748i −0.750226 0.763123i
\(13\) 13.6720 9.93330i 1.05169 0.764100i 0.0791598 0.996862i \(-0.474776\pi\)
0.972534 + 0.232762i \(0.0747763\pi\)
\(14\) −30.5972 + 9.94163i −2.18551 + 0.710116i
\(15\) −6.62591 13.2827i −0.441727 0.885514i
\(16\) 11.9727 + 8.69868i 0.748294 + 0.543668i
\(17\) −0.0367864 + 0.0506321i −0.00216391 + 0.00297836i −0.810098 0.586295i \(-0.800586\pi\)
0.807934 + 0.589273i \(0.200586\pi\)
\(18\) 8.42167 24.4908i 0.467871 1.36060i
\(19\) 1.66282 + 5.11764i 0.0875170 + 0.269350i 0.985231 0.171228i \(-0.0547735\pi\)
−0.897714 + 0.440578i \(0.854774\pi\)
\(20\) −12.4491 17.1347i −0.622454 0.856734i
\(21\) −23.5136 23.9178i −1.11969 1.13894i
\(22\) 0 0
\(23\) 8.69537i 0.378060i −0.981971 0.189030i \(-0.939466\pi\)
0.981971 0.189030i \(-0.0605343\pi\)
\(24\) 0.399248 2.38881i 0.0166353 0.0995337i
\(25\) 0.160235 + 0.493153i 0.00640940 + 0.0197261i
\(26\) 46.2499 + 15.0275i 1.77884 + 0.577981i
\(27\) 26.7668 3.54062i 0.991365 0.131134i
\(28\) −38.7171 28.1296i −1.38275 1.00463i
\(29\) −47.5106 15.4371i −1.63830 0.532315i −0.662139 0.749381i \(-0.730351\pi\)
−0.976157 + 0.217066i \(0.930351\pi\)
\(30\) 19.7154 37.8918i 0.657179 1.26306i
\(31\) 19.8827 14.4457i 0.641379 0.465989i −0.218945 0.975737i \(-0.570261\pi\)
0.860324 + 0.509748i \(0.170261\pi\)
\(32\) 45.8150i 1.43172i
\(33\) 0 0
\(34\) −0.180094 −0.00529687
\(35\) −32.5149 44.7530i −0.928998 1.27866i
\(36\) 36.8370 11.2787i 1.02325 0.313296i
\(37\) −12.1319 + 37.3382i −0.327890 + 1.00914i 0.642229 + 0.766512i \(0.278010\pi\)
−0.970119 + 0.242629i \(0.921990\pi\)
\(38\) −9.10148 + 12.5271i −0.239513 + 0.329661i
\(39\) 7.50398 + 50.1402i 0.192410 + 1.28565i
\(40\) 1.23437 3.79899i 0.0308591 0.0949747i
\(41\) −41.7596 + 13.5685i −1.01853 + 0.330940i −0.770245 0.637748i \(-0.779866\pi\)
−0.248282 + 0.968688i \(0.579866\pi\)
\(42\) 15.9102 95.1949i 0.378814 2.26655i
\(43\) 0.201842 0.00469401 0.00234701 0.999997i \(-0.499253\pi\)
0.00234701 + 0.999997i \(0.499253\pi\)
\(44\) 0 0
\(45\) 44.5244 + 0.758975i 0.989431 + 0.0168661i
\(46\) 20.2430 14.7074i 0.440066 0.319726i
\(47\) 14.1766 4.60627i 0.301631 0.0980058i −0.154291 0.988025i \(-0.549309\pi\)
0.455922 + 0.890020i \(0.349309\pi\)
\(48\) −39.7286 + 19.8181i −0.827679 + 0.412877i
\(49\) −61.4808 44.6684i −1.25471 0.911601i
\(50\) −0.877048 + 1.20715i −0.0175410 + 0.0241431i
\(51\) −0.0838099 0.168011i −0.00164333 0.00329433i
\(52\) 22.3541 + 68.7988i 0.429886 + 1.32305i
\(53\) 57.5690 + 79.2369i 1.08621 + 1.49504i 0.852499 + 0.522729i \(0.175086\pi\)
0.233709 + 0.972307i \(0.424914\pi\)
\(54\) 53.5163 + 56.3252i 0.991042 + 1.04306i
\(55\) 0 0
\(56\) 9.02585i 0.161176i
\(57\) −15.9222 2.66112i −0.279337 0.0466862i
\(58\) −44.4218 136.716i −0.765893 2.35718i
\(59\) −13.7827 4.47826i −0.233605 0.0759028i 0.189875 0.981808i \(-0.439192\pi\)
−0.423480 + 0.905905i \(0.639192\pi\)
\(60\) 62.8391 9.40449i 1.04732 0.156741i
\(61\) −23.7229 17.2357i −0.388900 0.282552i 0.376105 0.926577i \(-0.377263\pi\)
−0.765005 + 0.644025i \(0.777263\pi\)
\(62\) 67.2596 + 21.8540i 1.08483 + 0.352484i
\(63\) 96.2122 29.4580i 1.52718 0.467587i
\(64\) −58.7676 + 42.6972i −0.918244 + 0.667143i
\(65\) 83.6168i 1.28641i
\(66\) 0 0
\(67\) 82.8515 1.23659 0.618294 0.785947i \(-0.287824\pi\)
0.618294 + 0.785947i \(0.287824\pi\)
\(68\) −0.157466 0.216733i −0.00231568 0.00318726i
\(69\) 23.1411 + 12.0405i 0.335379 + 0.174500i
\(70\) 49.1899 151.391i 0.702713 2.16273i
\(71\) 15.6972 21.6053i 0.221087 0.304301i −0.684037 0.729447i \(-0.739777\pi\)
0.905125 + 0.425147i \(0.139777\pi\)
\(72\) 5.80454 + 4.37031i 0.0806186 + 0.0606988i
\(73\) 4.31706 13.2865i 0.0591378 0.182007i −0.917124 0.398603i \(-0.869495\pi\)
0.976261 + 0.216595i \(0.0694952\pi\)
\(74\) −107.444 + 34.9108i −1.45195 + 0.471767i
\(75\) −1.53431 0.256434i −0.0204575 0.00341912i
\(76\) −23.0337 −0.303075
\(77\) 0 0
\(78\) −104.035 + 102.277i −1.33379 + 1.31124i
\(79\) −40.6025 + 29.4994i −0.513956 + 0.373411i −0.814322 0.580413i \(-0.802891\pi\)
0.300366 + 0.953824i \(0.402891\pi\)
\(80\) −69.6402 + 22.6275i −0.870502 + 0.282843i
\(81\) −27.6414 + 76.1377i −0.341252 + 0.939972i
\(82\) −102.220 74.2674i −1.24659 0.905700i
\(83\) −35.4092 + 48.7366i −0.426617 + 0.587188i −0.967173 0.254120i \(-0.918214\pi\)
0.540556 + 0.841308i \(0.318214\pi\)
\(84\) 128.473 64.0873i 1.52945 0.762944i
\(85\) −0.0956907 0.294506i −0.00112577 0.00346477i
\(86\) 0.341398 + 0.469894i 0.00396974 + 0.00546388i
\(87\) 106.871 105.065i 1.22840 1.20764i
\(88\) 0 0
\(89\) 40.3489i 0.453359i 0.973969 + 0.226679i \(0.0727869\pi\)
−0.973969 + 0.226679i \(0.927213\pi\)
\(90\) 73.5420 + 104.938i 0.817134 + 1.16597i
\(91\) 58.3852 + 179.691i 0.641596 + 1.97463i
\(92\) 35.3993 + 11.5019i 0.384774 + 0.125021i
\(93\) 10.9128 + 72.9172i 0.117342 + 0.784056i
\(94\) 34.7020 + 25.2125i 0.369170 + 0.268218i
\(95\) −25.3215 8.22744i −0.266542 0.0866047i
\(96\) −121.928 63.4402i −1.27009 0.660835i
\(97\) 24.9281 18.1114i 0.256991 0.186715i −0.451828 0.892105i \(-0.649228\pi\)
0.708820 + 0.705390i \(0.249228\pi\)
\(98\) 218.681i 2.23144i
\(99\) 0 0
\(100\) −2.21960 −0.0221960
\(101\) 30.5189 + 42.0057i 0.302167 + 0.415898i 0.932919 0.360087i \(-0.117253\pi\)
−0.630751 + 0.775985i \(0.717253\pi\)
\(102\) 0.249376 0.479286i 0.00244486 0.00469888i
\(103\) −15.8074 + 48.6501i −0.153470 + 0.472331i −0.998003 0.0631724i \(-0.979878\pi\)
0.844533 + 0.535504i \(0.179878\pi\)
\(104\) −8.01930 + 11.0376i −0.0771086 + 0.106131i
\(105\) 164.125 24.5630i 1.56310 0.233933i
\(106\) −87.0927 + 268.044i −0.821630 + 2.52872i
\(107\) 65.0929 21.1500i 0.608345 0.197663i 0.0113861 0.999935i \(-0.496376\pi\)
0.596959 + 0.802272i \(0.296376\pi\)
\(108\) −20.9922 + 113.652i −0.194372 + 1.05234i
\(109\) −125.737 −1.15355 −0.576773 0.816904i \(-0.695688\pi\)
−0.576773 + 0.816904i \(0.695688\pi\)
\(110\) 0 0
\(111\) −82.5697 83.9892i −0.743871 0.756659i
\(112\) −133.856 + 97.2521i −1.19514 + 0.868322i
\(113\) 93.8997 30.5099i 0.830971 0.269999i 0.137516 0.990499i \(-0.456088\pi\)
0.693454 + 0.720501i \(0.256088\pi\)
\(114\) −20.7358 41.5682i −0.181893 0.364634i
\(115\) 34.8068 + 25.2886i 0.302668 + 0.219901i
\(116\) 125.691 172.998i 1.08354 1.49136i
\(117\) −143.830 49.4588i −1.22931 0.422725i
\(118\) −12.8866 39.6610i −0.109209 0.336110i
\(119\) −0.411275 0.566072i −0.00345609 0.00475691i
\(120\) 8.40107 + 8.54550i 0.0700089 + 0.0712125i
\(121\) 0 0
\(122\) 84.3801i 0.691640i
\(123\) 21.7145 129.924i 0.176541 1.05629i
\(124\) 32.5088 + 100.052i 0.262168 + 0.806869i
\(125\) −120.083 39.0173i −0.960662 0.312138i
\(126\) 231.313 + 174.159i 1.83582 + 1.38221i
\(127\) 16.8672 + 12.2547i 0.132813 + 0.0964940i 0.652208 0.758040i \(-0.273843\pi\)
−0.519395 + 0.854534i \(0.673843\pi\)
\(128\) −24.5092 7.96353i −0.191478 0.0622151i
\(129\) −0.279492 + 0.537167i −0.00216660 + 0.00416408i
\(130\) −194.662 + 141.430i −1.49740 + 1.08792i
\(131\) 29.0290i 0.221595i −0.993843 0.110798i \(-0.964659\pi\)
0.993843 0.110798i \(-0.0353405\pi\)
\(132\) 0 0
\(133\) −60.1602 −0.452332
\(134\) 140.136 + 192.880i 1.04579 + 1.43940i
\(135\) −63.6729 + 117.443i −0.471651 + 0.869945i
\(136\) 0.0156133 0.0480527i 0.000114803 0.000353328i
\(137\) −89.1732 + 122.736i −0.650899 + 0.895886i −0.999138 0.0415199i \(-0.986780\pi\)
0.348238 + 0.937406i \(0.386780\pi\)
\(138\) 11.1105 + 74.2385i 0.0805110 + 0.537960i
\(139\) −5.94013 + 18.2818i −0.0427348 + 0.131524i −0.970148 0.242515i \(-0.922028\pi\)
0.927413 + 0.374039i \(0.122028\pi\)
\(140\) 225.201 73.1722i 1.60858 0.522659i
\(141\) −7.37169 + 44.1068i −0.0522815 + 0.312815i
\(142\) 76.8481 0.541184
\(143\) 0 0
\(144\) 2.27009 133.172i 0.0157645 0.924808i
\(145\) 199.968 145.285i 1.37909 1.00197i
\(146\) 38.2333 12.4227i 0.261872 0.0850873i
\(147\) 204.009 101.767i 1.38782 0.692295i
\(148\) −135.958 98.7793i −0.918635 0.667427i
\(149\) 106.781 146.971i 0.716651 0.986385i −0.282978 0.959127i \(-0.591322\pi\)
0.999628 0.0272587i \(-0.00867780\pi\)
\(150\) −1.99817 4.00565i −0.0133211 0.0267043i
\(151\) 43.3216 + 133.330i 0.286898 + 0.882982i 0.985823 + 0.167787i \(0.0536621\pi\)
−0.698925 + 0.715195i \(0.746338\pi\)
\(152\) −2.55344 3.51451i −0.0167989 0.0231217i
\(153\) 0.563181 + 0.00960013i 0.00368092 + 6.27460e-5i
\(154\) 0 0
\(155\) 121.601i 0.784523i
\(156\) −214.049 35.7746i −1.37211 0.229324i
\(157\) −55.5031 170.821i −0.353523 1.08803i −0.956861 0.290547i \(-0.906163\pi\)
0.603338 0.797486i \(-0.293837\pi\)
\(158\) −137.351 44.6280i −0.869309 0.282456i
\(159\) −290.590 + 43.4897i −1.82761 + 0.273520i
\(160\) −183.394 133.243i −1.14621 0.832771i
\(161\) 92.4570 + 30.0411i 0.574267 + 0.186591i
\(162\) −224.003 + 64.4301i −1.38274 + 0.397717i
\(163\) −179.001 + 130.052i −1.09816 + 0.797863i −0.980759 0.195222i \(-0.937457\pi\)
−0.117404 + 0.993084i \(0.537457\pi\)
\(164\) 187.953i 1.14606i
\(165\) 0 0
\(166\) −173.351 −1.04428
\(167\) −108.399 149.198i −0.649095 0.893402i 0.349965 0.936763i \(-0.386194\pi\)
−0.999059 + 0.0433607i \(0.986194\pi\)
\(168\) 24.0206 + 12.4981i 0.142980 + 0.0743935i
\(169\) 36.0297 110.888i 0.213193 0.656142i
\(170\) 0.523764 0.720899i 0.00308096 0.00424058i
\(171\) 29.1295 38.6891i 0.170348 0.226252i
\(172\) −0.266990 + 0.821710i −0.00155227 + 0.00477739i
\(173\) 231.626 75.2598i 1.33888 0.435028i 0.449941 0.893058i \(-0.351445\pi\)
0.888937 + 0.458030i \(0.151445\pi\)
\(174\) 425.356 + 71.0908i 2.44457 + 0.408568i
\(175\) −5.79723 −0.0331270
\(176\) 0 0
\(177\) 31.0030 30.4790i 0.175158 0.172198i
\(178\) −93.9332 + 68.2465i −0.527715 + 0.383407i
\(179\) 301.127 97.8421i 1.68227 0.546604i 0.696923 0.717146i \(-0.254552\pi\)
0.985350 + 0.170542i \(0.0545520\pi\)
\(180\) −61.9851 + 180.257i −0.344362 + 1.00143i
\(181\) 24.9975 + 18.1618i 0.138108 + 0.100341i 0.654694 0.755894i \(-0.272797\pi\)
−0.516586 + 0.856235i \(0.672797\pi\)
\(182\) −319.572 + 439.853i −1.75589 + 2.41678i
\(183\) 78.7188 39.2678i 0.430157 0.214578i
\(184\) 2.16927 + 6.67632i 0.0117895 + 0.0362843i
\(185\) −114.179 157.153i −0.617182 0.849478i
\(186\) −151.295 + 148.738i −0.813413 + 0.799666i
\(187\) 0 0
\(188\) 63.8068i 0.339398i
\(189\) −54.8281 + 296.841i −0.290096 + 1.57059i
\(190\) −23.6752 72.8649i −0.124607 0.383500i
\(191\) 281.437 + 91.4445i 1.47349 + 0.478767i 0.932162 0.362042i \(-0.117920\pi\)
0.541332 + 0.840809i \(0.317920\pi\)
\(192\) −32.2550 215.522i −0.167995 1.12251i
\(193\) 64.3229 + 46.7333i 0.333279 + 0.242142i 0.741821 0.670598i \(-0.233962\pi\)
−0.408541 + 0.912740i \(0.633962\pi\)
\(194\) 84.3273 + 27.3996i 0.434677 + 0.141235i
\(195\) −222.531 115.784i −1.14118 0.593766i
\(196\) 263.172 191.206i 1.34271 0.975539i
\(197\) 360.331i 1.82909i 0.404485 + 0.914544i \(0.367451\pi\)
−0.404485 + 0.914544i \(0.632549\pi\)
\(198\) 0 0
\(199\) 369.874 1.85866 0.929332 0.369245i \(-0.120384\pi\)
0.929332 + 0.369245i \(0.120384\pi\)
\(200\) −0.246058 0.338669i −0.00123029 0.00169335i
\(201\) −114.725 + 220.494i −0.570769 + 1.09698i
\(202\) −46.1703 + 142.097i −0.228566 + 0.703453i
\(203\) 328.283 451.843i 1.61716 2.22583i
\(204\) 0.794840 0.118956i 0.00389627 0.000583116i
\(205\) 67.1353 206.621i 0.327489 1.00791i
\(206\) −139.995 + 45.4872i −0.679589 + 0.220812i
\(207\) −64.0871 + 44.9133i −0.309600 + 0.216973i
\(208\) 250.098 1.20239
\(209\) 0 0
\(210\) 334.786 + 340.541i 1.59422 + 1.62163i
\(211\) 125.195 90.9598i 0.593343 0.431089i −0.250167 0.968203i \(-0.580485\pi\)
0.843510 + 0.537114i \(0.180485\pi\)
\(212\) −398.727 + 129.554i −1.88079 + 0.611105i
\(213\) 35.7627 + 71.6922i 0.167900 + 0.336583i
\(214\) 159.336 + 115.765i 0.744562 + 0.540956i
\(215\) −0.587016 + 0.807958i −0.00273031 + 0.00375795i
\(216\) −19.6683 + 9.39612i −0.0910571 + 0.0435006i
\(217\) 84.9076 + 261.319i 0.391279 + 1.20423i
\(218\) −212.672 292.718i −0.975559 1.34274i
\(219\) 29.3818 + 29.8870i 0.134164 + 0.136470i
\(220\) 0 0
\(221\) 1.05765i 0.00478576i
\(222\) 55.8698 334.284i 0.251666 1.50578i
\(223\) −110.417 339.829i −0.495145 1.52390i −0.816731 0.577018i \(-0.804216\pi\)
0.321587 0.946880i \(-0.395784\pi\)
\(224\) −487.147 158.284i −2.17476 0.706623i
\(225\) 2.80702 3.72821i 0.0124756 0.0165698i
\(226\) 229.850 + 166.996i 1.01704 + 0.738920i
\(227\) 97.5400 + 31.6927i 0.429692 + 0.139615i 0.515875 0.856664i \(-0.327467\pi\)
−0.0861831 + 0.996279i \(0.527467\pi\)
\(228\) 31.8948 61.2999i 0.139889 0.268859i
\(229\) 298.821 217.106i 1.30490 0.948063i 0.304906 0.952382i \(-0.401375\pi\)
0.999991 + 0.00431926i \(0.00137487\pi\)
\(230\) 123.804i 0.538280i
\(231\) 0 0
\(232\) 40.3299 0.173836
\(233\) 10.1837 + 14.0166i 0.0437067 + 0.0601571i 0.830311 0.557300i \(-0.188163\pi\)
−0.786604 + 0.617457i \(0.788163\pi\)
\(234\) −128.133 418.494i −0.547579 1.78844i
\(235\) −22.7913 + 70.1443i −0.0969841 + 0.298486i
\(236\) 36.4624 50.1862i 0.154502 0.212654i
\(237\) −22.2850 148.904i −0.0940294 0.628287i
\(238\) 0.622194 1.91492i 0.00261426 0.00804587i
\(239\) −208.117 + 67.6212i −0.870781 + 0.282934i −0.710124 0.704077i \(-0.751361\pi\)
−0.160657 + 0.987010i \(0.551361\pi\)
\(240\) 36.2121 216.667i 0.150884 0.902778i
\(241\) 118.033 0.489765 0.244883 0.969553i \(-0.421251\pi\)
0.244883 + 0.969553i \(0.421251\pi\)
\(242\) 0 0
\(243\) −164.351 178.991i −0.676343 0.736587i
\(244\) 101.547 73.7783i 0.416177 0.302370i
\(245\) 357.608 116.194i 1.45962 0.474261i
\(246\) 339.194 169.202i 1.37884 0.687814i
\(247\) 73.5693 + 53.4512i 0.297851 + 0.216402i
\(248\) −11.6622 + 16.0516i −0.0470249 + 0.0647243i
\(249\) −80.6722 161.721i −0.323985 0.649481i
\(250\) −112.276 345.550i −0.449103 1.38220i
\(251\) 94.3753 + 129.896i 0.375997 + 0.517516i 0.954519 0.298151i \(-0.0963700\pi\)
−0.578521 + 0.815667i \(0.696370\pi\)
\(252\) −7.34098 + 430.650i −0.0291309 + 1.70893i
\(253\) 0 0
\(254\) 59.9950i 0.236201i
\(255\) 0.916275 + 0.153139i 0.00359324 + 0.000600547i
\(256\) 66.8731 + 205.814i 0.261223 + 0.803962i
\(257\) −24.9007 8.09071i −0.0968897 0.0314814i 0.260171 0.965563i \(-0.416221\pi\)
−0.357061 + 0.934081i \(0.616221\pi\)
\(258\) −1.72327 + 0.257905i −0.00667934 + 0.000999630i
\(259\) −355.100 257.995i −1.37104 0.996120i
\(260\) −340.408 110.605i −1.30926 0.425405i
\(261\) 131.626 + 429.901i 0.504315 + 1.64713i
\(262\) 67.5801 49.0998i 0.257939 0.187404i
\(263\) 221.020i 0.840378i −0.907437 0.420189i \(-0.861964\pi\)
0.907437 0.420189i \(-0.138036\pi\)
\(264\) 0 0
\(265\) −484.606 −1.82870
\(266\) −101.755 140.054i −0.382539 0.526520i
\(267\) −107.381 55.8712i −0.402177 0.209256i
\(268\) −109.593 + 337.292i −0.408929 + 1.25855i
\(269\) −73.7314 + 101.483i −0.274094 + 0.377259i −0.923767 0.382956i \(-0.874906\pi\)
0.649672 + 0.760214i \(0.274906\pi\)
\(270\) −381.106 + 50.4112i −1.41150 + 0.186708i
\(271\) 123.585 380.355i 0.456032 1.40352i −0.413887 0.910328i \(-0.635829\pi\)
0.869919 0.493195i \(-0.164171\pi\)
\(272\) −0.880865 + 0.286211i −0.00323848 + 0.00105224i
\(273\) −559.061 93.4373i −2.04784 0.342261i
\(274\) −436.561 −1.59329
\(275\) 0 0
\(276\) −79.6276 + 78.2819i −0.288506 + 0.283630i
\(277\) −59.5551 + 43.2693i −0.215000 + 0.156207i −0.690073 0.723740i \(-0.742422\pi\)
0.475073 + 0.879946i \(0.342422\pi\)
\(278\) −52.6077 + 17.0933i −0.189236 + 0.0614866i
\(279\) −209.167 71.9262i −0.749701 0.257800i
\(280\) 36.1297 + 26.2498i 0.129035 + 0.0937492i
\(281\) −246.506 + 339.286i −0.877244 + 1.20742i 0.0999321 + 0.994994i \(0.468137\pi\)
−0.977176 + 0.212429i \(0.931863\pi\)
\(282\) −115.150 + 57.4412i −0.408334 + 0.203692i
\(283\) −81.9963 252.359i −0.289739 0.891726i −0.984938 0.172909i \(-0.944683\pi\)
0.695198 0.718818i \(-0.255317\pi\)
\(284\) 67.1927 + 92.4828i 0.236594 + 0.325644i
\(285\) 56.9585 55.9959i 0.199854 0.196477i
\(286\) 0 0
\(287\) 490.903i 1.71046i
\(288\) 337.669 236.644i 1.17246 0.821680i
\(289\) 89.3047 + 274.852i 0.309013 + 0.951044i
\(290\) 676.455 + 219.793i 2.33260 + 0.757908i
\(291\) 13.6820 + 91.4205i 0.0470171 + 0.314160i
\(292\) 48.3797 + 35.1499i 0.165684 + 0.120376i
\(293\) 181.199 + 58.8752i 0.618427 + 0.200939i 0.601442 0.798917i \(-0.294593\pi\)
0.0169852 + 0.999856i \(0.494593\pi\)
\(294\) 581.980 + 302.809i 1.97952 + 1.02996i
\(295\) 58.0101 42.1468i 0.196644 0.142871i
\(296\) 31.6949i 0.107078i
\(297\) 0 0
\(298\) 522.763 1.75424
\(299\) −86.3737 118.883i −0.288875 0.397603i
\(300\) 3.07349 5.90706i 0.0102450 0.0196902i
\(301\) −0.697333 + 2.14617i −0.00231672 + 0.00713014i
\(302\) −237.121 + 326.370i −0.785170 + 1.08069i
\(303\) −154.050 + 23.0551i −0.508416 + 0.0760895i
\(304\) −24.6083 + 75.7365i −0.0809482 + 0.249133i
\(305\) 137.986 44.8344i 0.452413 0.146998i
\(306\) 0.930219 + 1.32734i 0.00303993 + 0.00433770i
\(307\) −285.254 −0.929166 −0.464583 0.885530i \(-0.653796\pi\)
−0.464583 + 0.885530i \(0.653796\pi\)
\(308\) 0 0
\(309\) −107.585 109.434i −0.348171 0.354156i
\(310\) −283.090 + 205.677i −0.913194 + 0.663474i
\(311\) −480.177 + 156.019i −1.54398 + 0.501669i −0.952470 0.304631i \(-0.901467\pi\)
−0.591507 + 0.806300i \(0.701467\pi\)
\(312\) −18.2702 36.6257i −0.0585585 0.117390i
\(313\) −64.8592 47.1229i −0.207218 0.150553i 0.479336 0.877631i \(-0.340877\pi\)
−0.686554 + 0.727079i \(0.740877\pi\)
\(314\) 303.797 418.141i 0.967507 1.33166i
\(315\) −161.895 + 470.801i −0.513952 + 1.49461i
\(316\) −66.3861 204.315i −0.210083 0.646568i
\(317\) −5.08824 7.00336i −0.0160512 0.0220926i 0.800916 0.598777i \(-0.204346\pi\)
−0.816967 + 0.576684i \(0.804346\pi\)
\(318\) −592.752 602.942i −1.86400 1.89604i
\(319\) 0 0
\(320\) 359.417i 1.12318i
\(321\) −33.8475 + 202.519i −0.105444 + 0.630901i
\(322\) 86.4461 + 266.054i 0.268466 + 0.826254i
\(323\) −0.320286 0.104067i −0.000991599 0.000322190i
\(324\) −273.397 213.242i −0.843818 0.658153i
\(325\) 7.08937 + 5.15073i 0.0218135 + 0.0158484i
\(326\) −605.526 196.747i −1.85744 0.603520i
\(327\) 174.108 334.625i 0.532440 1.02332i
\(328\) 28.6781 20.8359i 0.0874333 0.0635240i
\(329\) 166.653i 0.506544i
\(330\) 0 0
\(331\) 28.2554 0.0853638 0.0426819 0.999089i \(-0.486410\pi\)
0.0426819 + 0.999089i \(0.486410\pi\)
\(332\) −151.571 208.619i −0.456539 0.628372i
\(333\) 337.856 103.444i 1.01458 0.310643i
\(334\) 163.990 504.710i 0.490989 1.51111i
\(335\) −240.956 + 331.647i −0.719271 + 0.989992i
\(336\) −73.4678 490.898i −0.218654 1.46101i
\(337\) −89.1584 + 274.401i −0.264565 + 0.814247i 0.727228 + 0.686396i \(0.240808\pi\)
−0.991793 + 0.127851i \(0.959192\pi\)
\(338\) 319.091 103.679i 0.944055 0.306742i
\(339\) −48.8267 + 292.144i −0.144032 + 0.861781i
\(340\) 1.32552 0.00389859
\(341\) 0 0
\(342\) 139.339 + 2.37521i 0.407424 + 0.00694506i
\(343\) 244.162 177.394i 0.711843 0.517184i
\(344\) −0.154975 + 0.0503544i −0.000450509 + 0.000146379i
\(345\) −115.498 + 57.6147i −0.334777 + 0.166999i
\(346\) 566.980 + 411.935i 1.63867 + 1.19056i
\(347\) 154.947 213.267i 0.446534 0.614602i −0.525114 0.851032i \(-0.675977\pi\)
0.971648 + 0.236430i \(0.0759774\pi\)
\(348\) 286.359 + 574.053i 0.822870 + 1.64958i
\(349\) −150.777 464.043i −0.432025 1.32964i −0.896105 0.443842i \(-0.853615\pi\)
0.464080 0.885793i \(-0.346385\pi\)
\(350\) −9.80548 13.4961i −0.0280157 0.0385603i
\(351\) 330.787 314.291i 0.942412 0.895415i
\(352\) 0 0
\(353\) 437.345i 1.23894i 0.785021 + 0.619469i \(0.212652\pi\)
−0.785021 + 0.619469i \(0.787348\pi\)
\(354\) 123.394 + 20.6232i 0.348572 + 0.0582577i
\(355\) 40.8324 + 125.669i 0.115021 + 0.353997i
\(356\) −164.262 53.3721i −0.461411 0.149922i
\(357\) 2.07599 0.310692i 0.00581510 0.000870287i
\(358\) 737.107 + 535.540i 2.05896 + 1.49592i
\(359\) 233.007 + 75.7087i 0.649046 + 0.210888i 0.614993 0.788532i \(-0.289159\pi\)
0.0340525 + 0.999420i \(0.489159\pi\)
\(360\) −34.3753 + 10.5249i −0.0954868 + 0.0292359i
\(361\) 268.630 195.171i 0.744127 0.540640i
\(362\) 88.9137i 0.245618i
\(363\) 0 0
\(364\) −808.761 −2.22187
\(365\) 40.6296 + 55.9219i 0.111314 + 0.153211i
\(366\) 224.562 + 116.841i 0.613557 + 0.319238i
\(367\) 69.5602 214.084i 0.189537 0.583336i −0.810460 0.585795i \(-0.800783\pi\)
0.999997 + 0.00245833i \(0.000782511\pi\)
\(368\) 75.6383 104.107i 0.205539 0.282900i
\(369\) 315.700 + 237.695i 0.855556 + 0.644160i
\(370\) 172.734 531.621i 0.466849 1.43681i
\(371\) −1041.41 + 338.375i −2.80703 + 0.912061i
\(372\) −311.284 52.0257i −0.836786 0.139854i
\(373\) −283.156 −0.759131 −0.379566 0.925165i \(-0.623927\pi\)
−0.379566 + 0.925165i \(0.623927\pi\)
\(374\) 0 0
\(375\) 270.116 265.551i 0.720310 0.708136i
\(376\) −9.73571 + 7.07341i −0.0258928 + 0.0188123i
\(377\) −802.907 + 260.880i −2.12973 + 0.691990i
\(378\) −783.791 + 374.439i −2.07352 + 0.990579i
\(379\) 369.384 + 268.373i 0.974627 + 0.708108i 0.956501 0.291727i \(-0.0942300\pi\)
0.0181260 + 0.999836i \(0.494230\pi\)
\(380\) 66.9886 92.2019i 0.176286 0.242637i
\(381\) −55.9698 + 27.9198i −0.146902 + 0.0732803i
\(382\) 263.140 + 809.863i 0.688849 + 2.12006i
\(383\) 188.834 + 259.908i 0.493040 + 0.678611i 0.980945 0.194285i \(-0.0622388\pi\)
−0.487905 + 0.872897i \(0.662239\pi\)
\(384\) 55.1314 54.1997i 0.143571 0.141145i
\(385\) 0 0
\(386\) 228.790i 0.592721i
\(387\) −1.04256 1.48763i −0.00269395 0.00384401i
\(388\) 40.7581 + 125.441i 0.105047 + 0.323301i
\(389\) 299.994 + 97.4741i 0.771194 + 0.250576i 0.668076 0.744093i \(-0.267118\pi\)
0.103118 + 0.994669i \(0.467118\pi\)
\(390\) −106.842 713.895i −0.273953 1.83050i
\(391\) 0.440265 + 0.319871i 0.00112600 + 0.000818085i
\(392\) 58.3487 + 18.9586i 0.148849 + 0.0483639i
\(393\) 77.2552 + 40.1964i 0.196578 + 0.102281i
\(394\) −838.858 + 609.466i −2.12908 + 1.54687i
\(395\) 248.321i 0.628661i
\(396\) 0 0
\(397\) −338.199 −0.851885 −0.425943 0.904750i \(-0.640057\pi\)
−0.425943 + 0.904750i \(0.640057\pi\)
\(398\) 625.608 + 861.076i 1.57188 + 2.16351i
\(399\) 83.3039 160.105i 0.208782 0.401266i
\(400\) −2.37133 + 7.29821i −0.00592833 + 0.0182455i
\(401\) 212.161 292.015i 0.529080 0.728216i −0.457910 0.888999i \(-0.651402\pi\)
0.986990 + 0.160782i \(0.0514017\pi\)
\(402\) −707.361 + 105.864i −1.75960 + 0.263342i
\(403\) 128.344 395.002i 0.318472 0.980155i
\(404\) −211.376 + 68.6803i −0.523209 + 0.170001i
\(405\) −224.384 332.077i −0.554034 0.819942i
\(406\) 1607.16 3.95852
\(407\) 0 0
\(408\) 0.106264 + 0.108090i 0.000260450 + 0.000264928i
\(409\) −356.891 + 259.297i −0.872595 + 0.633978i −0.931282 0.364299i \(-0.881309\pi\)
0.0586868 + 0.998276i \(0.481309\pi\)
\(410\) 594.572 193.188i 1.45018 0.471191i
\(411\) −203.162 407.271i −0.494311 0.990928i
\(412\) −177.147 128.705i −0.429970 0.312391i
\(413\) 95.2338 131.078i 0.230590 0.317380i
\(414\) −212.957 73.2295i −0.514388 0.176883i
\(415\) −92.1083 283.480i −0.221948 0.683085i
\(416\) 455.094 + 626.384i 1.09398 + 1.50573i
\(417\) −40.4284 41.1235i −0.0969507 0.0986174i
\(418\) 0 0
\(419\) 393.180i 0.938377i 0.883098 + 0.469188i \(0.155453\pi\)
−0.883098 + 0.469188i \(0.844547\pi\)
\(420\) −117.102 + 700.653i −0.278814 + 1.66822i
\(421\) −217.358 668.959i −0.516289 1.58898i −0.780924 0.624627i \(-0.785251\pi\)
0.264634 0.964349i \(-0.414749\pi\)
\(422\) 423.513 + 137.608i 1.00359 + 0.326085i
\(423\) −107.175 80.6932i −0.253368 0.190764i
\(424\) −63.9691 46.4763i −0.150871 0.109614i
\(425\) −0.0308638 0.0100283i −7.26208e−5 2.35959e-5i
\(426\) −106.412 + 204.517i −0.249793 + 0.480087i
\(427\) 265.224 192.697i 0.621134 0.451280i
\(428\) 292.973i 0.684515i
\(429\) 0 0
\(430\) −2.87383 −0.00668332
\(431\) 88.9050 + 122.367i 0.206276 + 0.283915i 0.899603 0.436708i \(-0.143856\pi\)
−0.693327 + 0.720623i \(0.743856\pi\)
\(432\) 351.270 + 190.446i 0.813126 + 0.440846i
\(433\) −145.735 + 448.525i −0.336569 + 1.03585i 0.629375 + 0.777102i \(0.283311\pi\)
−0.965944 + 0.258752i \(0.916689\pi\)
\(434\) −464.742 + 639.663i −1.07084 + 1.47388i
\(435\) 109.754 + 733.355i 0.252308 + 1.68587i
\(436\) 166.320 511.880i 0.381467 1.17404i
\(437\) 44.4998 14.4589i 0.101830 0.0330866i
\(438\) −19.8809 + 118.953i −0.0453901 + 0.271581i
\(439\) 506.417 1.15357 0.576784 0.816897i \(-0.304307\pi\)
0.576784 + 0.816897i \(0.304307\pi\)
\(440\) 0 0
\(441\) −11.6571 + 683.851i −0.0264334 + 1.55068i
\(442\) −2.46224 + 1.78892i −0.00557068 + 0.00404734i
\(443\) 607.289 197.320i 1.37086 0.445418i 0.471203 0.882025i \(-0.343820\pi\)
0.899652 + 0.436607i \(0.143820\pi\)
\(444\) 451.144 225.047i 1.01609 0.506863i
\(445\) −161.513 117.346i −0.362951 0.263699i
\(446\) 604.370 831.844i 1.35509 1.86512i
\(447\) 243.277 + 487.689i 0.544245 + 1.09103i
\(448\) −250.962 772.382i −0.560183 1.72407i
\(449\) 194.835 + 268.168i 0.433931 + 0.597255i 0.968850 0.247648i \(-0.0796577\pi\)
−0.534919 + 0.844904i \(0.679658\pi\)
\(450\) 13.4272 + 0.228883i 0.0298381 + 0.000508629i
\(451\) 0 0
\(452\) 422.627i 0.935016i
\(453\) −414.821 69.3302i −0.915721 0.153047i
\(454\) 91.1986 + 280.681i 0.200878 + 0.618239i
\(455\) −889.089 288.883i −1.95404 0.634907i
\(456\) 12.8890 1.92896i 0.0282653 0.00423018i
\(457\) 69.5244 + 50.5125i 0.152132 + 0.110531i 0.661248 0.750168i \(-0.270027\pi\)
−0.509115 + 0.860698i \(0.670027\pi\)
\(458\) 1010.86 + 328.448i 2.20711 + 0.717134i
\(459\) −0.805387 + 1.48551i −0.00175465 + 0.00323640i
\(460\) −148.992 + 108.249i −0.323897 + 0.235325i
\(461\) 65.3245i 0.141702i 0.997487 + 0.0708508i \(0.0225714\pi\)
−0.997487 + 0.0708508i \(0.977429\pi\)
\(462\) 0 0
\(463\) 535.374 1.15632 0.578158 0.815925i \(-0.303772\pi\)
0.578158 + 0.815925i \(0.303772\pi\)
\(464\) −434.548 598.104i −0.936525 1.28902i
\(465\) −323.619 168.381i −0.695954 0.362110i
\(466\) −15.4063 + 47.4156i −0.0330607 + 0.101750i
\(467\) 292.723 402.899i 0.626817 0.862739i −0.371010 0.928629i \(-0.620989\pi\)
0.997827 + 0.0658897i \(0.0209886\pi\)
\(468\) 391.602 520.115i 0.836756 1.11136i
\(469\) −286.238 + 880.951i −0.610317 + 1.87836i
\(470\) −201.847 + 65.5840i −0.429461 + 0.139540i
\(471\) 531.464 + 88.8250i 1.12837 + 0.188588i
\(472\) 11.6996 0.0247872
\(473\) 0 0
\(474\) 308.959 303.737i 0.651812 0.640796i
\(475\) −2.25734 + 1.64005i −0.00475229 + 0.00345274i
\(476\) 2.84852 0.925542i 0.00598430 0.00194442i
\(477\) 286.641 833.573i 0.600925 1.74753i
\(478\) −509.434 370.125i −1.06576 0.774321i
\(479\) −510.599 + 702.779i −1.06597 + 1.46718i −0.191875 + 0.981419i \(0.561457\pi\)
−0.874093 + 0.485759i \(0.838543\pi\)
\(480\) 608.548 303.566i 1.26781 0.632429i
\(481\) 205.024 + 630.999i 0.426245 + 1.31185i
\(482\) 199.643 + 274.784i 0.414196 + 0.570092i
\(483\) −207.974 + 204.459i −0.430588 + 0.423311i
\(484\) 0 0
\(485\) 152.458i 0.314347i
\(486\) 138.709 685.360i 0.285409 1.41021i
\(487\) 74.5091 + 229.315i 0.152996 + 0.470873i 0.997952 0.0639620i \(-0.0203736\pi\)
−0.844956 + 0.534835i \(0.820374\pi\)
\(488\) 22.5143 + 7.31535i 0.0461359 + 0.0149905i
\(489\) −98.2457 656.460i −0.200912 1.34245i
\(490\) 875.363 + 635.988i 1.78645 + 1.29794i
\(491\) −475.575 154.524i −0.968585 0.314712i −0.218340 0.975873i \(-0.570064\pi\)
−0.750245 + 0.661160i \(0.770064\pi\)
\(492\) 500.203 + 260.259i 1.01667 + 0.528982i
\(493\) 2.52936 1.83769i 0.00513054 0.00372756i
\(494\) 261.679i 0.529714i
\(495\) 0 0
\(496\) 363.708 0.733283
\(497\) 175.496 + 241.550i 0.353111 + 0.486016i
\(498\) 240.040 461.343i 0.482008 0.926391i
\(499\) −171.447 + 527.660i −0.343582 + 1.05744i 0.618757 + 0.785582i \(0.287637\pi\)
−0.962339 + 0.271853i \(0.912363\pi\)
\(500\) 317.682 437.252i 0.635364 0.874504i
\(501\) 547.163 81.8884i 1.09214 0.163450i
\(502\) −142.775 + 439.416i −0.284412 + 0.875330i
\(503\) 639.571 207.809i 1.27151 0.413140i 0.405929 0.913904i \(-0.366948\pi\)
0.865583 + 0.500765i \(0.166948\pi\)
\(504\) −66.5229 + 46.6203i −0.131990 + 0.0925007i
\(505\) −256.903 −0.508719
\(506\) 0 0
\(507\) 245.217 + 249.433i 0.483664 + 0.491979i
\(508\) −72.2010 + 52.4571i −0.142128 + 0.103262i
\(509\) −612.141 + 198.897i −1.20264 + 0.390760i −0.840730 0.541455i \(-0.817874\pi\)
−0.361906 + 0.932215i \(0.617874\pi\)
\(510\) 1.19328 + 2.39213i 0.00233977 + 0.00469045i
\(511\) 126.360 + 91.8057i 0.247279 + 0.179659i
\(512\) −426.621 + 587.193i −0.833243 + 1.14686i
\(513\) 62.6282 + 131.096i 0.122082 + 0.255547i
\(514\) −23.2818 71.6540i −0.0452953 0.139405i
\(515\) −148.770 204.764i −0.288874 0.397600i
\(516\) −1.81713 1.84837i −0.00352157 0.00358211i
\(517\) 0 0
\(518\) 1263.06i 2.43833i
\(519\) −120.443 + 720.642i −0.232067 + 1.38852i
\(520\) −20.8602 64.2011i −0.0401158 0.123464i
\(521\) 507.873 + 165.018i 0.974803 + 0.316733i 0.752753 0.658303i \(-0.228725\pi\)
0.222050 + 0.975035i \(0.428725\pi\)
\(522\) −778.186 + 1033.57i −1.49078 + 1.98001i
\(523\) −805.063 584.913i −1.53932 1.11838i −0.950761 0.309924i \(-0.899696\pi\)
−0.588557 0.808456i \(-0.700304\pi\)
\(524\) 118.178 + 38.3984i 0.225531 + 0.0732794i
\(525\) 8.02744 15.4283i 0.0152904 0.0293872i
\(526\) 514.539 373.834i 0.978210 0.710711i
\(527\) 1.53811i 0.00291861i
\(528\) 0 0
\(529\) 453.391 0.857071
\(530\) −819.666 1128.17i −1.54654 2.12863i
\(531\) 38.1843 + 124.713i 0.0719102 + 0.234864i
\(532\) 79.5777 244.915i 0.149582 0.460366i
\(533\) −436.158 + 600.320i −0.818307 + 1.12630i
\(534\) −51.5559 344.487i −0.0965466 0.645107i
\(535\) −104.647 + 322.071i −0.195603 + 0.602003i
\(536\) −63.6135 + 20.6693i −0.118682 + 0.0385621i
\(537\) −156.582 + 936.876i −0.291587 + 1.74465i
\(538\) −360.964 −0.670936
\(539\) 0 0
\(540\) −393.890 414.564i −0.729426 0.767711i
\(541\) −558.792 + 405.986i −1.03289 + 0.750436i −0.968884 0.247513i \(-0.920387\pi\)
−0.0640026 + 0.997950i \(0.520387\pi\)
\(542\) 1094.51 355.627i 2.01939 0.656138i
\(543\) −82.9482 + 41.3776i −0.152759 + 0.0762019i
\(544\) −2.31971 1.68537i −0.00426418 0.00309811i
\(545\) 365.678 503.313i 0.670969 0.923510i
\(546\) −728.076 1459.55i −1.33347 2.67316i
\(547\) 26.8715 + 82.7020i 0.0491253 + 0.151192i 0.972610 0.232443i \(-0.0746720\pi\)
−0.923485 + 0.383635i \(0.874672\pi\)
\(548\) −381.711 525.380i −0.696552 0.958722i
\(549\) −4.49800 + 263.870i −0.00819307 + 0.480637i
\(550\) 0 0
\(551\) 268.812i 0.487861i
\(552\) −20.7716 3.47161i −0.0376297 0.00628914i
\(553\) −173.390 533.638i −0.313544 0.964988i
\(554\) −201.464 65.4595i −0.363653 0.118158i
\(555\) 576.338 86.2547i 1.03845 0.155414i
\(556\) −66.5688 48.3651i −0.119728 0.0869876i
\(557\) −699.473 227.272i −1.25579 0.408029i −0.395795 0.918339i \(-0.629531\pi\)
−0.859991 + 0.510309i \(0.829531\pi\)
\(558\) −186.340 608.601i −0.333943 1.09068i
\(559\) 2.75959 2.00496i 0.00493666 0.00358669i
\(560\) 818.651i 1.46188i
\(561\) 0 0
\(562\) −1206.81 −2.14734
\(563\) 335.019 + 461.115i 0.595061 + 0.819031i 0.995245 0.0974037i \(-0.0310538\pi\)
−0.400184 + 0.916435i \(0.631054\pi\)
\(564\) −169.810 88.3534i −0.301082 0.156655i
\(565\) −150.959 + 464.604i −0.267184 + 0.822308i
\(566\) 448.807 617.730i 0.792946 1.09140i
\(567\) −714.068 556.952i −1.25938 0.982279i
\(568\) −6.66237 + 20.5047i −0.0117295 + 0.0360997i
\(569\) 540.055 175.474i 0.949130 0.308391i 0.206768 0.978390i \(-0.433706\pi\)
0.742362 + 0.669999i \(0.233706\pi\)
\(570\) 226.700 + 37.8889i 0.397719 + 0.0664718i
\(571\) 229.442 0.401825 0.200912 0.979609i \(-0.435609\pi\)
0.200912 + 0.979609i \(0.435609\pi\)
\(572\) 0 0
\(573\) −633.070 + 622.370i −1.10483 + 1.08616i
\(574\) 1142.83 830.317i 1.99100 1.44655i
\(575\) 4.28815 1.39330i 0.00745765 0.00242314i
\(576\) 618.235 + 212.593i 1.07333 + 0.369085i
\(577\) 581.714 + 422.640i 1.00817 + 0.732479i 0.963825 0.266538i \(-0.0858797\pi\)
0.0443458 + 0.999016i \(0.485880\pi\)
\(578\) −488.810 + 672.790i −0.845692 + 1.16400i
\(579\) −213.440 + 106.472i −0.368636 + 0.183889i
\(580\) 326.953 + 1006.26i 0.563712 + 1.73493i
\(581\) −395.878 544.880i −0.681374 0.937831i
\(582\) −189.687 + 186.481i −0.325923 + 0.320415i
\(583\) 0 0
\(584\) 11.2784i 0.0193124i
\(585\) 616.278 431.898i 1.05347 0.738287i
\(586\) 169.419 + 521.418i 0.289111 + 0.889791i
\(587\) −486.604 158.107i −0.828968 0.269348i −0.136358 0.990660i \(-0.543540\pi\)
−0.692611 + 0.721312i \(0.743540\pi\)
\(588\) 144.444 + 965.146i 0.245653 + 1.64141i
\(589\) 106.989 + 77.7322i 0.181646 + 0.131973i
\(590\) 196.237 + 63.7614i 0.332606 + 0.108070i
\(591\) −958.953 498.950i −1.62259 0.844248i
\(592\) −470.045 + 341.508i −0.793996 + 0.576872i
\(593\) 241.775i 0.407715i −0.979001 0.203858i \(-0.934652\pi\)
0.979001 0.203858i \(-0.0653480\pi\)
\(594\) 0 0
\(595\) 3.46204 0.00581856
\(596\) 457.081 + 629.119i 0.766915 + 1.05557i
\(597\) −512.165 + 984.352i −0.857899 + 1.64883i
\(598\) 130.670 402.160i 0.218511 0.672508i
\(599\) −284.669 + 391.813i −0.475240 + 0.654112i −0.977582 0.210557i \(-0.932472\pi\)
0.502341 + 0.864669i \(0.332472\pi\)
\(600\) 1.24202 0.185881i 0.00207004 0.000309801i
\(601\) 149.380 459.745i 0.248553 0.764966i −0.746479 0.665409i \(-0.768257\pi\)
0.995032 0.0995576i \(-0.0317428\pi\)
\(602\) −6.17581 + 2.00664i −0.0102588 + 0.00333329i
\(603\) −427.944 610.637i −0.709692 1.01266i
\(604\) −600.098 −0.993540
\(605\) 0 0
\(606\) −314.234 319.636i −0.518538 0.527453i
\(607\) 402.569 292.483i 0.663211 0.481851i −0.204535 0.978859i \(-0.565568\pi\)
0.867746 + 0.497009i \(0.165568\pi\)
\(608\) −234.465 + 76.1823i −0.385633 + 0.125300i
\(609\) 747.922 + 1499.33i 1.22811 + 2.46196i
\(610\) 337.766 + 245.402i 0.553715 + 0.402298i
\(611\) 148.068 203.798i 0.242337 0.333548i
\(612\) −0.784038 + 2.28004i −0.00128111 + 0.00372555i
\(613\) −323.828 996.640i −0.528267 1.62584i −0.757763 0.652530i \(-0.773708\pi\)
0.229496 0.973310i \(-0.426292\pi\)
\(614\) −482.481 664.078i −0.785799 1.08156i
\(615\) 456.922 + 464.777i 0.742963 + 0.755735i
\(616\) 0 0
\(617\) 322.739i 0.523078i 0.965193 + 0.261539i \(0.0842301\pi\)
−0.965193 + 0.261539i \(0.915770\pi\)
\(618\) 72.7959 435.558i 0.117793 0.704786i
\(619\) 166.334 + 511.925i 0.268715 + 0.827019i 0.990814 + 0.135230i \(0.0431773\pi\)
−0.722099 + 0.691789i \(0.756823\pi\)
\(620\) −495.044 160.849i −0.798457 0.259435i
\(621\) −30.7870 232.748i −0.0495764 0.374795i
\(622\) −1175.39 853.971i −1.88970 1.37294i
\(623\) −429.026 139.399i −0.688645 0.223754i
\(624\) −346.311 + 665.589i −0.554985 + 1.06665i
\(625\) 494.931 359.588i 0.791889 0.575341i
\(626\) 230.698i 0.368527i
\(627\) 0 0
\(628\) 768.838 1.22426
\(629\) −1.44422 1.98780i −0.00229606 0.00316026i
\(630\) −1369.87 + 419.423i −2.17439 + 0.665750i
\(631\) 272.965 840.101i 0.432591 1.33138i −0.462943 0.886388i \(-0.653207\pi\)
0.895535 0.444992i \(-0.146793\pi\)
\(632\) 23.8153 32.7790i 0.0376825 0.0518655i
\(633\) 68.7144 + 459.137i 0.108554 + 0.725335i
\(634\) 7.69770 23.6911i 0.0121415 0.0373676i
\(635\) −98.1094 + 31.8777i −0.154503 + 0.0502011i
\(636\) 207.334 1240.53i 0.325996 1.95052i
\(637\) −1284.27 −2.01613
\(638\) 0 0
\(639\) −240.316 4.09649i −0.376082 0.00641079i
\(640\) 103.157 74.9481i 0.161183 0.117106i
\(641\) −280.561 + 91.1597i −0.437692 + 0.142215i −0.519571 0.854427i \(-0.673908\pi\)
0.0818783 + 0.996642i \(0.473908\pi\)
\(642\) −528.719 + 263.745i −0.823550 + 0.410817i
\(643\) −675.938 491.098i −1.05123 0.763760i −0.0787805 0.996892i \(-0.525103\pi\)
−0.972445 + 0.233132i \(0.925103\pi\)
\(644\) −244.597 + 336.659i −0.379810 + 0.522763i
\(645\) −1.33739 2.68102i −0.00207347 0.00415662i
\(646\) −0.299464 0.921655i −0.000463566 0.00142671i
\(647\) −480.606 661.498i −0.742823 1.02241i −0.998451 0.0556327i \(-0.982282\pi\)
0.255629 0.966775i \(-0.417718\pi\)
\(648\) 2.22875 65.3545i 0.00343943 0.100856i
\(649\) 0 0
\(650\) 25.2162i 0.0387942i
\(651\) −813.023 135.883i −1.24888 0.208729i
\(652\) −292.671 900.748i −0.448881 1.38151i
\(653\) −262.841 85.4023i −0.402514 0.130785i 0.100762 0.994911i \(-0.467872\pi\)
−0.503276 + 0.864126i \(0.667872\pi\)
\(654\) 1073.50 160.660i 1.64144 0.245658i
\(655\) 116.200 + 84.4246i 0.177405 + 0.128892i
\(656\) −618.004 200.802i −0.942079 0.306100i
\(657\) −120.224 + 36.8098i −0.182989 + 0.0560271i
\(658\) −387.972 + 281.878i −0.589623 + 0.428386i
\(659\) 881.372i 1.33744i −0.743515 0.668719i \(-0.766843\pi\)
0.743515 0.668719i \(-0.233157\pi\)
\(660\) 0 0
\(661\) −501.036 −0.757997 −0.378999 0.925397i \(-0.623731\pi\)
−0.378999 + 0.925397i \(0.623731\pi\)
\(662\) 47.7915 + 65.7793i 0.0721925 + 0.0993645i
\(663\) −2.81475 1.46453i −0.00424547 0.00220895i
\(664\) 15.0287 46.2537i 0.0226336 0.0696592i
\(665\) 174.963 240.816i 0.263103 0.362130i
\(666\) 812.272 + 611.571i 1.21963 + 0.918275i
\(667\) −134.231 + 413.122i −0.201247 + 0.619373i
\(668\) 750.779 243.943i 1.12392 0.365184i
\(669\) 1057.29 + 176.707i 1.58040 + 0.264136i
\(670\) −1179.64 −1.76065
\(671\) 0 0
\(672\) 1095.80 1077.28i 1.63065 1.60309i
\(673\) 3.60405 2.61850i 0.00535520 0.00389078i −0.585104 0.810958i \(-0.698946\pi\)
0.590460 + 0.807067i \(0.298946\pi\)
\(674\) −789.616 + 256.562i −1.17154 + 0.380655i
\(675\) 6.03505 + 12.6328i 0.00894082 + 0.0187153i
\(676\) 403.771 + 293.357i 0.597295 + 0.433960i
\(677\) 10.1571 13.9800i 0.0150031 0.0206500i −0.801450 0.598062i \(-0.795938\pi\)
0.816453 + 0.577412i \(0.195938\pi\)
\(678\) −762.703 + 380.464i −1.12493 + 0.561157i
\(679\) 106.454 + 327.630i 0.156780 + 0.482519i
\(680\) 0.146943 + 0.202250i 0.000216092 + 0.000297426i
\(681\) −219.408 + 215.700i −0.322185 + 0.316740i
\(682\) 0 0
\(683\) 1085.69i 1.58958i −0.606882 0.794792i \(-0.707580\pi\)
0.606882 0.794792i \(-0.292420\pi\)
\(684\) 118.974 + 169.764i 0.173938 + 0.248193i
\(685\) −231.962 713.906i −0.338631 1.04220i
\(686\) 825.955 + 268.369i 1.20402 + 0.391209i
\(687\) 164.010 + 1095.89i 0.238734 + 1.59518i
\(688\) 2.41660 + 1.75576i 0.00351250 + 0.00255198i
\(689\) 1574.17 + 511.478i 2.28471 + 0.742349i
\(690\) −329.483 171.432i −0.477511 0.248453i
\(691\) 163.068 118.476i 0.235988 0.171456i −0.463506 0.886094i \(-0.653409\pi\)
0.699494 + 0.714638i \(0.253409\pi\)
\(692\) 1042.51i 1.50652i
\(693\) 0 0
\(694\) 758.569 1.09304
\(695\) −55.9050 76.9467i −0.0804389 0.110715i
\(696\) −55.8448 + 107.330i −0.0802368 + 0.154210i
\(697\) 0.849182 2.61351i 0.00121834 0.00374966i
\(698\) 825.278 1135.90i 1.18235 1.62736i
\(699\) −51.4040 + 7.69311i −0.0735393 + 0.0110059i
\(700\) 7.66836 23.6008i 0.0109548 0.0337154i
\(701\) 408.672 132.785i 0.582984 0.189423i −0.00265309 0.999996i \(-0.500845\pi\)
0.585637 + 0.810574i \(0.300845\pi\)
\(702\) 1291.17 + 238.486i 1.83927 + 0.339723i
\(703\) −211.257 −0.300508
\(704\) 0 0
\(705\) −155.117 157.784i −0.220024 0.223807i
\(706\) −1018.15 + 739.729i −1.44214 + 1.04777i
\(707\) −552.080 + 179.382i −0.780877 + 0.253722i
\(708\) 83.0718 + 166.531i 0.117333 + 0.235213i
\(709\) −606.394 440.571i −0.855281 0.621398i 0.0713162 0.997454i \(-0.477280\pi\)
−0.926597 + 0.376056i \(0.877280\pi\)
\(710\) −223.496 + 307.616i −0.314784 + 0.433263i
\(711\) 427.139 + 146.880i 0.600758 + 0.206583i
\(712\) −10.0660 30.9800i −0.0141376 0.0435112i
\(713\) −125.610 172.888i −0.176172 0.242479i
\(714\) 4.23464 + 4.30744i 0.00593087 + 0.00603283i
\(715\) 0 0
\(716\) 1355.32i 1.89291i
\(717\) 108.218 647.499i 0.150932 0.903067i
\(718\) 217.859 + 670.501i 0.303425 + 0.933845i
\(719\) −429.113 139.427i −0.596820 0.193919i −0.00499824 0.999988i \(-0.501591\pi\)
−0.591822 + 0.806069i \(0.701591\pi\)
\(720\) 526.476 + 396.391i 0.731216 + 0.550543i
\(721\) −462.680 336.157i −0.641720 0.466237i
\(722\) 908.725 + 295.263i 1.25862 + 0.408951i
\(723\) −163.441 + 314.124i −0.226060 + 0.434473i
\(724\) −107.003 + 77.7423i −0.147794 + 0.107379i
\(725\) 25.9035i 0.0357290i
\(726\) 0 0
\(727\) 300.631 0.413523 0.206761 0.978391i \(-0.433708\pi\)
0.206761 + 0.978391i \(0.433708\pi\)
\(728\) −89.6565 123.402i −0.123155 0.169508i
\(729\) 703.928 189.542i 0.965608 0.260003i
\(730\) −61.4662 + 189.174i −0.0842003 + 0.259142i
\(731\) −0.00742506 + 0.0102197i −1.01574e−5 + 1.39805e-5i
\(732\) 55.7348 + 372.410i 0.0761405 + 0.508757i
\(733\) 412.036 1268.12i 0.562122 1.73003i −0.114228 0.993455i \(-0.536439\pi\)
0.676350 0.736580i \(-0.263561\pi\)
\(734\) 616.048 200.166i 0.839303 0.272706i
\(735\) −185.952 + 1112.60i −0.252996 + 1.51374i
\(736\) 398.379 0.541275
\(737\) 0 0
\(738\) −19.3815 + 1137.00i −0.0262623 + 1.54065i
\(739\) 854.307 620.691i 1.15603 0.839906i 0.166760 0.985997i \(-0.446669\pi\)
0.989271 + 0.146091i \(0.0466693\pi\)
\(740\) 790.810 256.950i 1.06866 0.347229i
\(741\) −244.122 + 121.777i −0.329449 + 0.164341i
\(742\) −2549.19 1852.10i −3.43557 2.49609i
\(743\) −593.078 + 816.301i −0.798220 + 1.09866i 0.194815 + 0.980840i \(0.437589\pi\)
−0.993035 + 0.117816i \(0.962411\pi\)
\(744\) −26.5698 53.2635i −0.0357121 0.0715907i
\(745\) 277.764 + 854.870i 0.372838 + 1.14748i
\(746\) −478.932 659.193i −0.642000 0.883637i
\(747\) 542.097 + 9.24073i 0.725699 + 0.0123705i
\(748\) 0 0
\(749\) 765.196i 1.02162i
\(750\) 1075.09 + 179.682i 1.43345 + 0.239576i
\(751\) −15.5397 47.8263i −0.0206920 0.0636836i 0.940177 0.340686i \(-0.110659\pi\)
−0.960869 + 0.277002i \(0.910659\pi\)
\(752\) 209.801 + 68.1686i 0.278991 + 0.0906497i
\(753\) −476.377 + 71.2946i −0.632639 + 0.0946807i
\(754\) −1965.38 1427.93i −2.60660 1.89381i
\(755\) −659.702 214.350i −0.873777 0.283907i
\(756\) −1135.93 615.859i −1.50255 0.814628i
\(757\) −256.265 + 186.187i −0.338527 + 0.245954i −0.744040 0.668135i \(-0.767093\pi\)
0.405513 + 0.914089i \(0.367093\pi\)
\(758\) 1313.86i 1.73333i
\(759\) 0 0
\(760\) 21.4944 0.0282821
\(761\) −41.9533 57.7438i −0.0551292 0.0758788i 0.780562 0.625078i \(-0.214933\pi\)
−0.835692 + 0.549199i \(0.814933\pi\)
\(762\) −159.666 83.0752i −0.209535 0.109023i
\(763\) 434.400 1336.94i 0.569331 1.75222i
\(764\) −744.550 + 1024.79i −0.974542 + 1.34134i
\(765\) −1.67632 + 2.22645i −0.00219127 + 0.00291039i
\(766\) −285.676 + 879.221i −0.372945 + 1.14781i
\(767\) −232.921 + 75.6806i −0.303678 + 0.0986709i
\(768\) −640.336 107.021i −0.833771 0.139350i
\(769\) 634.282 0.824814 0.412407 0.911000i \(-0.364688\pi\)
0.412407 + 0.911000i \(0.364688\pi\)
\(770\) 0 0
\(771\) 56.0119 55.0653i 0.0726484 0.0714206i
\(772\) −275.338 + 200.045i −0.356655 + 0.259125i
\(773\) 821.374 266.881i 1.06258 0.345253i 0.274986 0.961448i \(-0.411327\pi\)
0.787593 + 0.616195i \(0.211327\pi\)
\(774\) 1.69985 4.94329i 0.00219619 0.00638668i
\(775\) 10.3098 + 7.49053i 0.0133030 + 0.00966520i
\(776\) −14.6216 + 20.1248i −0.0188422 + 0.0259341i
\(777\) 1178.31 587.786i 1.51649 0.756482i
\(778\) 280.491 + 863.262i 0.360528 + 1.10959i
\(779\) −138.878 191.149i −0.178277 0.245377i
\(780\) 765.719 752.778i 0.981691 0.965100i
\(781\) 0 0
\(782\) 1.56598i 0.00200253i
\(783\) −1326.37 244.986i −1.69395 0.312882i
\(784\) −347.536 1069.60i −0.443285 1.36429i
\(785\) 845.202 + 274.623i 1.07669 + 0.349838i
\(786\) 37.0918 + 247.840i 0.0471906 + 0.315319i
\(787\) 973.760 + 707.478i 1.23731 + 0.898956i 0.997416 0.0718441i \(-0.0228884\pi\)
0.239891 + 0.970800i \(0.422888\pi\)
\(788\) −1466.92 476.632i −1.86158 0.604863i
\(789\) 588.203 + 306.046i 0.745504 + 0.387891i
\(790\) 578.098 420.013i 0.731769 0.531661i
\(791\) 1103.83i 1.39549i
\(792\) 0 0
\(793\) −495.547 −0.624902
\(794\) −572.032 787.334i −0.720443 0.991604i
\(795\) 671.035 1289.69i 0.844069 1.62225i
\(796\) −489.256 + 1505.77i −0.614643 + 1.89168i
\(797\) −368.331 + 506.965i −0.462147 + 0.636091i −0.974952 0.222414i \(-0.928606\pi\)
0.512805 + 0.858505i \(0.328606\pi\)
\(798\) 513.630 76.8698i 0.643646 0.0963280i
\(799\) −0.288282 + 0.887242i −0.000360804 + 0.00111044i
\(800\) −22.5938 + 7.34117i −0.0282423 + 0.00917647i
\(801\) 297.382 208.410i 0.371263 0.260188i
\(802\) 1038.67 1.29510
\(803\) 0 0
\(804\) −745.887 758.710i −0.927721 0.943670i
\(805\) −389.144 + 282.729i −0.483408 + 0.351217i
\(806\) 1136.66 369.322i 1.41024 0.458216i
\(807\) −167.981 336.746i −0.208155 0.417281i
\(808\) −33.9118 24.6384i −0.0419700 0.0304930i
\(809\) 236.367 325.331i 0.292171 0.402139i −0.637547 0.770412i \(-0.720051\pi\)
0.929718 + 0.368272i \(0.120051\pi\)
\(810\) 393.558 1084.05i 0.485874 1.33833i
\(811\) −171.141 526.717i −0.211024 0.649466i −0.999412 0.0342874i \(-0.989084\pi\)
0.788388 0.615179i \(-0.210916\pi\)
\(812\) 1405.23 + 1934.14i 1.73058 + 2.38194i
\(813\) 841.116 + 855.576i 1.03458 + 1.05237i
\(814\) 0 0
\(815\) 1094.75i 1.34325i
\(816\) 0.458040 2.74058i 0.000561323 0.00335855i
\(817\) 0.335628 + 1.03296i 0.000410806 + 0.00126433i
\(818\) −1207.30 392.275i −1.47591 0.479554i
\(819\) 1022.80 1358.45i 1.24884 1.65867i
\(820\) 752.361 + 546.622i 0.917513 + 0.666612i
\(821\) −210.185 68.2932i −0.256011 0.0831829i 0.178200 0.983994i \(-0.442973\pi\)
−0.434211 + 0.900811i \(0.642973\pi\)
\(822\) 604.508 1161.83i 0.735411 1.41342i
\(823\) −581.483 + 422.472i −0.706541 + 0.513332i −0.882056 0.471145i \(-0.843841\pi\)
0.175515 + 0.984477i \(0.443841\pi\)
\(824\) 41.2972i 0.0501179i
\(825\) 0 0
\(826\) 466.232 0.564446
\(827\) 377.587 + 519.704i 0.456574 + 0.628421i 0.973794 0.227432i \(-0.0730329\pi\)
−0.517220 + 0.855853i \(0.673033\pi\)
\(828\) −98.0722 320.311i −0.118445 0.386849i
\(829\) 253.712 780.846i 0.306046 0.941913i −0.673239 0.739425i \(-0.735097\pi\)
0.979285 0.202488i \(-0.0649027\pi\)
\(830\) 504.156 693.911i 0.607416 0.836037i
\(831\) −32.6872 218.410i −0.0393348 0.262828i
\(832\) −379.348 + 1167.51i −0.455947 + 1.40326i
\(833\) 4.52332 1.46971i 0.00543015 0.00176436i
\(834\) 27.3554 163.675i 0.0328002 0.196253i
\(835\) 912.483 1.09279
\(836\) 0 0
\(837\) 481.052 457.062i 0.574733 0.546071i
\(838\) −915.332 + 665.027i −1.09228 + 0.793589i
\(839\) 327.020 106.255i 0.389774 0.126645i −0.107573 0.994197i \(-0.534308\pi\)
0.497346 + 0.867552i \(0.334308\pi\)
\(840\) −119.888 + 59.8045i −0.142724 + 0.0711958i
\(841\) 1338.57 + 972.526i 1.59164 + 1.15639i
\(842\) 1189.71 1637.50i 1.41296 1.94477i
\(843\) −561.610 1125.84i −0.666204 1.33552i
\(844\) 204.698 + 629.995i 0.242533 + 0.746439i
\(845\) 339.090 + 466.718i 0.401290 + 0.552329i
\(846\) 6.57969 385.990i 0.00777741 0.456253i
\(847\) 0 0
\(848\) 1449.45i 1.70926i
\(849\) 785.146 + 131.223i 0.924789 + 0.154562i
\(850\) −0.0288573 0.0888136i −3.39498e−5 0.000104487i
\(851\) 324.670 + 105.492i 0.381515 + 0.123962i
\(852\) −339.168 + 50.7598i −0.398084 + 0.0595772i
\(853\) 276.697 + 201.032i 0.324381 + 0.235677i 0.738043 0.674754i \(-0.235750\pi\)
−0.413661 + 0.910431i \(0.635750\pi\)
\(854\) 897.205 + 291.520i 1.05059 + 0.341358i
\(855\) 70.1521 + 229.122i 0.0820492 + 0.267979i
\(856\) −44.7021 + 32.4780i −0.0522220 + 0.0379415i
\(857\) 1404.79i 1.63920i −0.572937 0.819600i \(-0.694196\pi\)
0.572937 0.819600i \(-0.305804\pi\)
\(858\) 0 0
\(859\) 759.128 0.883735 0.441867 0.897080i \(-0.354316\pi\)
0.441867 + 0.897080i \(0.354316\pi\)
\(860\) −2.51275 3.45851i −0.00292181 0.00402152i
\(861\) 1306.45 + 679.754i 1.51736 + 0.789494i
\(862\) −134.499 + 413.946i −0.156031 + 0.480215i
\(863\) 232.529 320.049i 0.269443 0.370856i −0.652759 0.757566i \(-0.726388\pi\)
0.922202 + 0.386710i \(0.126388\pi\)
\(864\) 162.213 + 1226.32i 0.187747 + 1.41936i
\(865\) −372.376 + 1146.06i −0.430493 + 1.32492i
\(866\) −1290.67 + 419.365i −1.49038 + 0.484255i
\(867\) −855.127 142.920i −0.986306 0.164844i
\(868\) −1176.15 −1.35501
\(869\) 0 0
\(870\) −1521.63 + 1495.91i −1.74900 + 1.71944i
\(871\) 1132.75 822.989i 1.30051 0.944878i
\(872\) 96.5408 31.3680i 0.110712 0.0359725i
\(873\) −262.244 90.1781i −0.300394 0.103297i
\(874\) 108.928 + 79.1407i 0.124631 + 0.0905501i
\(875\) 829.733 1142.03i 0.948267 1.30518i
\(876\) −160.536 + 80.0815i −0.183261 + 0.0914172i
\(877\) 350.305 + 1078.13i 0.399436 + 1.22934i 0.925453 + 0.378863i \(0.123685\pi\)
−0.526017 + 0.850474i \(0.676315\pi\)
\(878\) 856.557 + 1178.95i 0.975577 + 1.34277i
\(879\) −407.592 + 400.703i −0.463700 + 0.455863i
\(880\) 0 0
\(881\) 894.628i 1.01547i −0.861514 0.507735i \(-0.830483\pi\)
0.861514 0.507735i \(-0.169517\pi\)
\(882\) −1611.74 + 1129.53i −1.82737 + 1.28065i
\(883\) 9.80769 + 30.1850i 0.0111072 + 0.0341846i 0.956457 0.291875i \(-0.0942791\pi\)
−0.945349 + 0.326059i \(0.894279\pi\)
\(884\) −4.30576 1.39903i −0.00487077 0.00158261i
\(885\) 31.8392 + 212.744i 0.0359765 + 0.240389i
\(886\) 1486.54 + 1080.03i 1.67781 + 1.21900i
\(887\) 1289.18 + 418.881i 1.45342 + 0.472244i 0.926053 0.377394i \(-0.123180\pi\)
0.527366 + 0.849638i \(0.323180\pi\)
\(888\) 84.3503 + 43.8881i 0.0949890 + 0.0494235i
\(889\) −188.577 + 137.009i −0.212123 + 0.154116i
\(890\) 574.487i 0.645491i
\(891\) 0 0
\(892\) 1529.52 1.71470
\(893\) 47.1465 + 64.8916i 0.0527957 + 0.0726670i
\(894\) −723.871 + 1391.24i −0.809699 + 1.55619i
\(895\) −484.110 + 1489.94i −0.540905 + 1.66474i
\(896\) 169.351 233.091i 0.189008 0.260147i
\(897\) 435.988 65.2499i 0.486051 0.0727423i
\(898\) −294.755 + 907.162i −0.328235 + 1.01020i
\(899\) −1167.64 + 379.389i −1.29882 + 0.422012i
\(900\) 11.4647 + 16.3590i 0.0127385 + 0.0181767i
\(901\) −6.12969 −0.00680321
\(902\) 0 0
\(903\) −4.74604 4.82763i −0.00525586 0.00534621i
\(904\) −64.4849 + 46.8510i −0.0713329 + 0.0518264i
\(905\) −145.400 + 47.2433i −0.160663 + 0.0522025i
\(906\) −540.230 1082.98i −0.596280 1.19534i
\(907\) −728.063 528.968i −0.802715 0.583207i 0.108994 0.994042i \(-0.465237\pi\)
−0.911709 + 0.410836i \(0.865237\pi\)
\(908\) −258.045 + 355.168i −0.284190 + 0.391154i
\(909\) 151.956 441.900i 0.167169 0.486139i
\(910\) −831.287 2558.44i −0.913502 2.81147i
\(911\) 188.025 + 258.794i 0.206394 + 0.284077i 0.899648 0.436617i \(-0.143823\pi\)
−0.693254 + 0.720694i \(0.743823\pi\)
\(912\) −167.483 170.363i −0.183644 0.186801i
\(913\) 0 0
\(914\) 247.292i 0.270560i
\(915\) −71.7511 + 429.307i −0.0784165 + 0.469188i
\(916\) 488.581 + 1503.70i 0.533385 + 1.64159i
\(917\) 308.662 + 100.290i 0.336600 + 0.109368i
\(918\) −4.82054 + 0.637642i −0.00525113 + 0.000694599i
\(919\) 362.706 + 263.522i 0.394675 + 0.286748i 0.767369 0.641206i \(-0.221566\pi\)
−0.372693 + 0.927955i \(0.621566\pi\)
\(920\) −33.0336 10.7333i −0.0359061 0.0116666i
\(921\) 394.992 759.151i 0.428873 0.824268i
\(922\) −152.077 + 110.490i −0.164942 + 0.119838i
\(923\) 451.314i 0.488964i
\(924\) 0 0
\(925\) −20.3574 −0.0220080
\(926\) 905.536 + 1246.36i 0.977901 + 1.34597i
\(927\) 440.212 134.783i 0.474878 0.145397i
\(928\) 707.252 2176.70i 0.762125 2.34558i
\(929\) −172.146 + 236.939i −0.185303 + 0.255047i −0.891554 0.452914i \(-0.850385\pi\)
0.706252 + 0.707961i \(0.250385\pi\)
\(930\) −155.376 1038.19i −0.167071 1.11634i
\(931\) 126.365 388.913i 0.135731 0.417737i
\(932\) −70.5329 + 22.9175i −0.0756791 + 0.0245896i
\(933\) 249.686 1493.94i 0.267617 1.60122i
\(934\) 1433.07 1.53434
\(935\) 0 0
\(936\) 122.771 + 2.09279i 0.131166 + 0.00223589i
\(937\) −119.433 + 86.7730i −0.127463 + 0.0926073i −0.649690 0.760199i \(-0.725101\pi\)
0.522227 + 0.852806i \(0.325101\pi\)
\(938\) −2535.02 + 823.678i −2.70258 + 0.878122i
\(939\) 215.220 107.359i 0.229201 0.114334i
\(940\) −255.413 185.569i −0.271716 0.197413i
\(941\) 20.5137 28.2347i 0.0217999 0.0300049i −0.797978 0.602687i \(-0.794097\pi\)
0.819778 + 0.572682i \(0.194097\pi\)
\(942\) 692.136 + 1387.50i 0.734752 + 1.47293i
\(943\) 117.983 + 363.115i 0.125115 + 0.385064i
\(944\) −126.061 173.508i −0.133539 0.183801i
\(945\) −1028.78 1082.77i −1.08865 1.14579i
\(946\) 0 0
\(947\) 867.513i 0.916064i −0.888936 0.458032i \(-0.848554\pi\)
0.888936 0.458032i \(-0.151446\pi\)
\(948\) 635.673 + 106.242i 0.670541 + 0.112069i
\(949\) −72.9563 224.536i −0.0768771 0.236603i
\(950\) −7.63616 2.48114i −0.00803806 0.00261172i
\(951\) 25.6838 3.84384i 0.0270072 0.00404190i
\(952\) 0.456998 + 0.332028i 0.000480040 + 0.000348769i
\(953\) −1236.76 401.847i −1.29775 0.421666i −0.422954 0.906151i \(-0.639007\pi\)
−0.874799 + 0.484485i \(0.839007\pi\)
\(954\) 2425.40 742.604i 2.54235 0.778411i
\(955\) −1184.55 + 860.623i −1.24036 + 0.901176i
\(956\) 936.699i 0.979811i
\(957\) 0 0
\(958\) −2499.72 −2.60931
\(959\) −996.965 1372.20i −1.03959 1.43087i
\(960\) 956.523 + 497.686i 0.996378 + 0.518423i
\(961\) −110.319 + 339.527i −0.114796 + 0.353306i
\(962\) −1122.20 + 1544.58i −1.16653 + 1.60559i
\(963\) −492.099 370.508i −0.511006 0.384743i
\(964\) −156.130 + 480.520i −0.161961 + 0.498464i
\(965\) −374.139 + 121.565i −0.387709 + 0.125974i
\(966\) −827.755 138.345i −0.856889 0.143214i
\(967\) −1422.62 −1.47117 −0.735585 0.677433i \(-0.763093\pi\)
−0.735585 + 0.677433i \(0.763093\pi\)
\(968\) 0 0
\(969\) 0.720457 0.708281i 0.000743506 0.000730940i
\(970\) −354.926 + 257.869i −0.365903 + 0.265844i
\(971\) −330.282 + 107.315i −0.340146 + 0.110520i −0.474109 0.880466i \(-0.657230\pi\)
0.133963 + 0.990986i \(0.457230\pi\)
\(972\) 946.077 432.320i 0.973330 0.444774i
\(973\) −173.867 126.322i −0.178691 0.129827i
\(974\) −407.826 + 561.325i −0.418713 + 0.576309i
\(975\) −23.5244 + 11.7348i −0.0241276 + 0.0120357i
\(976\) −134.100 412.716i −0.137397 0.422865i
\(977\) 274.257 + 377.482i 0.280713 + 0.386369i 0.925970 0.377597i \(-0.123250\pi\)
−0.645257 + 0.763966i \(0.723250\pi\)
\(978\) 1362.08 1339.06i 1.39272 1.36918i
\(979\) 0 0
\(980\) 1609.54i 1.64238i
\(981\) 649.455 + 926.711i 0.662033 + 0.944660i
\(982\) −444.657 1368.51i −0.452807 1.39360i
\(983\) 963.856 + 313.176i 0.980525 + 0.318592i 0.755057 0.655659i \(-0.227609\pi\)
0.225467 + 0.974251i \(0.427609\pi\)
\(984\) 15.7402 + 105.173i 0.0159961 + 0.106883i
\(985\) −1442.37 1047.94i −1.46434 1.06390i
\(986\) 8.55635 + 2.78013i 0.00867784 + 0.00281960i
\(987\) −443.516 230.765i −0.449357 0.233804i
\(988\) −314.917 + 228.801i −0.318742 + 0.231580i
\(989\) 1.75510i 0.00177462i
\(990\) 0 0
\(991\) −1208.63 −1.21960 −0.609802 0.792554i \(-0.708751\pi\)
−0.609802 + 0.792554i \(0.708751\pi\)
\(992\) 661.828 + 910.928i 0.667165 + 0.918274i
\(993\) −39.1254 + 75.1966i −0.0394012 + 0.0757267i
\(994\) −265.498 + 817.118i −0.267100 + 0.822050i
\(995\) −1075.70 + 1480.57i −1.08111 + 1.48801i
\(996\) 765.083 114.502i 0.768155 0.114962i
\(997\) 44.6144 137.309i 0.0447486 0.137722i −0.926186 0.377067i \(-0.876933\pi\)
0.970935 + 0.239345i \(0.0769326\pi\)
\(998\) −1518.39 + 493.356i −1.52144 + 0.494344i
\(999\) −192.533 + 1042.38i −0.192726 + 1.04342i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.245.5 24
3.2 odd 2 inner 363.3.h.q.245.2 24
11.2 odd 10 363.3.b.k.122.5 yes 6
11.3 even 5 inner 363.3.h.q.269.5 24
11.4 even 5 inner 363.3.h.q.323.2 24
11.5 even 5 inner 363.3.h.q.251.2 24
11.6 odd 10 363.3.h.p.251.5 24
11.7 odd 10 363.3.h.p.323.5 24
11.8 odd 10 363.3.h.p.269.2 24
11.9 even 5 363.3.b.j.122.2 6
11.10 odd 2 363.3.h.p.245.2 24
33.2 even 10 363.3.b.k.122.2 yes 6
33.5 odd 10 inner 363.3.h.q.251.5 24
33.8 even 10 363.3.h.p.269.5 24
33.14 odd 10 inner 363.3.h.q.269.2 24
33.17 even 10 363.3.h.p.251.2 24
33.20 odd 10 363.3.b.j.122.5 yes 6
33.26 odd 10 inner 363.3.h.q.323.5 24
33.29 even 10 363.3.h.p.323.2 24
33.32 even 2 363.3.h.p.245.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.2 6 11.9 even 5
363.3.b.j.122.5 yes 6 33.20 odd 10
363.3.b.k.122.2 yes 6 33.2 even 10
363.3.b.k.122.5 yes 6 11.2 odd 10
363.3.h.p.245.2 24 11.10 odd 2
363.3.h.p.245.5 24 33.32 even 2
363.3.h.p.251.2 24 33.17 even 10
363.3.h.p.251.5 24 11.6 odd 10
363.3.h.p.269.2 24 11.8 odd 10
363.3.h.p.269.5 24 33.8 even 10
363.3.h.p.323.2 24 33.29 even 10
363.3.h.p.323.5 24 11.7 odd 10
363.3.h.q.245.2 24 3.2 odd 2 inner
363.3.h.q.245.5 24 1.1 even 1 trivial
363.3.h.q.251.2 24 11.5 even 5 inner
363.3.h.q.251.5 24 33.5 odd 10 inner
363.3.h.q.269.2 24 33.14 odd 10 inner
363.3.h.q.269.5 24 11.3 even 5 inner
363.3.h.q.323.2 24 11.4 even 5 inner
363.3.h.q.323.5 24 33.26 odd 10 inner