Properties

Label 363.3.h.q.245.4
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-4,18,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.4
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.q.323.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.399998 + 0.550550i) q^{2} +(2.97531 + 0.384091i) q^{3} +(1.09296 - 3.36379i) q^{4} +(-3.81474 + 5.25053i) q^{5} +(0.978656 + 1.79169i) q^{6} +(2.89410 - 8.90713i) q^{7} +(4.87795 - 1.58494i) q^{8} +(8.70495 + 2.28558i) q^{9} -4.41657 q^{10} +(4.54390 - 9.58852i) q^{12} +(3.37472 - 2.45188i) q^{13} +(6.06145 - 1.96948i) q^{14} +(-13.3667 + 14.1568i) q^{15} +(-8.62188 - 6.26416i) q^{16} +(17.5904 - 24.2111i) q^{17} +(2.22363 + 5.70673i) q^{18} +(3.18032 + 9.78800i) q^{19} +(13.4923 + 18.5706i) q^{20} +(12.0320 - 25.3899i) q^{21} +27.8850i q^{23} +(15.1222 - 2.84212i) q^{24} +(-5.29047 - 16.2824i) q^{25} +(2.69976 + 0.877206i) q^{26} +(25.0221 + 10.1438i) q^{27} +(-26.7986 - 19.4703i) q^{28} +(15.3590 + 4.99043i) q^{29} +(-13.1407 - 1.69636i) q^{30} +(14.2887 - 10.3813i) q^{31} -27.7684i q^{32} +20.3655 q^{34} +(35.7270 + 49.1739i) q^{35} +(17.2024 - 26.7836i) q^{36} +(4.49918 - 13.8470i) q^{37} +(-4.11666 + 5.66610i) q^{38} +(10.9826 - 5.99890i) q^{39} +(-10.2863 + 31.6580i) q^{40} +(-33.2920 + 10.8172i) q^{41} +(18.7912 - 3.53168i) q^{42} -64.3417 q^{43} +(-45.2076 + 36.9867i) q^{45} +(-15.3521 + 11.1539i) q^{46} +(-9.94471 + 3.23123i) q^{47} +(-23.2468 - 21.9494i) q^{48} +(-31.3193 - 22.7548i) q^{49} +(6.84809 - 9.42559i) q^{50} +(61.6361 - 65.2792i) q^{51} +(-4.55916 - 14.0317i) q^{52} +(35.5031 + 48.8658i) q^{53} +(4.42410 + 17.8334i) q^{54} -48.0356i q^{56} +(5.70294 + 30.3439i) q^{57} +(3.39607 + 10.4520i) q^{58} +(-38.6761 - 12.5666i) q^{59} +(33.0111 + 60.4356i) q^{60} +(-19.0197 - 13.8186i) q^{61} +(11.4309 + 3.71411i) q^{62} +(45.5510 - 70.9214i) q^{63} +(-19.1997 + 13.9494i) q^{64} +27.0724i q^{65} +30.8376 q^{67} +(-62.2154 - 85.6321i) q^{68} +(-10.7104 + 82.9665i) q^{69} +(-12.7820 + 39.3389i) q^{70} +(0.585238 - 0.805511i) q^{71} +(46.0849 - 2.64790i) q^{72} +(-28.8838 + 88.8953i) q^{73} +(9.42314 - 3.06176i) q^{74} +(-9.48688 - 50.4772i) q^{75} +36.4007 q^{76} +(7.69570 + 3.64691i) q^{78} +(91.4806 - 66.4645i) q^{79} +(65.7804 - 21.3733i) q^{80} +(70.5522 + 39.7917i) q^{81} +(-19.2722 - 14.0020i) q^{82} +(-61.1711 + 84.1948i) q^{83} +(-72.2557 - 68.2233i) q^{84} +(60.0184 + 184.718i) q^{85} +(-25.7365 - 35.4233i) q^{86} +(43.7809 + 20.7473i) q^{87} -20.3993i q^{89} +(-38.4460 - 10.0944i) q^{90} +(-12.0724 - 37.1551i) q^{91} +(93.7992 + 30.4772i) q^{92} +(46.5005 - 25.3995i) q^{93} +(-5.75681 - 4.18257i) q^{94} +(-63.5243 - 20.6403i) q^{95} +(10.6656 - 82.6195i) q^{96} +(-153.778 + 111.726i) q^{97} -26.3447i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.399998 + 0.550550i 0.199999 + 0.275275i 0.897222 0.441579i \(-0.145582\pi\)
−0.697224 + 0.716854i \(0.745582\pi\)
\(3\) 2.97531 + 0.384091i 0.991770 + 0.128030i
\(4\) 1.09296 3.36379i 0.273240 0.840947i
\(5\) −3.81474 + 5.25053i −0.762947 + 1.05011i 0.234016 + 0.972233i \(0.424813\pi\)
−0.996963 + 0.0778742i \(0.975187\pi\)
\(6\) 0.978656 + 1.79169i 0.163109 + 0.298615i
\(7\) 2.89410 8.90713i 0.413443 1.27245i −0.500193 0.865914i \(-0.666738\pi\)
0.913636 0.406533i \(-0.133262\pi\)
\(8\) 4.87795 1.58494i 0.609744 0.198118i
\(9\) 8.70495 + 2.28558i 0.967216 + 0.253953i
\(10\) −4.41657 −0.441657
\(11\) 0 0
\(12\) 4.54390 9.58852i 0.378658 0.799043i
\(13\) 3.37472 2.45188i 0.259594 0.188606i −0.450374 0.892840i \(-0.648709\pi\)
0.709968 + 0.704234i \(0.248709\pi\)
\(14\) 6.06145 1.96948i 0.432961 0.140677i
\(15\) −13.3667 + 14.1568i −0.891114 + 0.943784i
\(16\) −8.62188 6.26416i −0.538867 0.391510i
\(17\) 17.5904 24.2111i 1.03473 1.42418i 0.133391 0.991064i \(-0.457413\pi\)
0.901337 0.433118i \(-0.142587\pi\)
\(18\) 2.22363 + 5.70673i 0.123535 + 0.317041i
\(19\) 3.18032 + 9.78800i 0.167385 + 0.515158i 0.999204 0.0398887i \(-0.0127003\pi\)
−0.831819 + 0.555047i \(0.812700\pi\)
\(20\) 13.4923 + 18.5706i 0.674617 + 0.928530i
\(21\) 12.0320 25.3899i 0.572952 1.20904i
\(22\) 0 0
\(23\) 27.8850i 1.21239i 0.795316 + 0.606195i \(0.207305\pi\)
−0.795316 + 0.606195i \(0.792695\pi\)
\(24\) 15.1222 2.84212i 0.630091 0.118422i
\(25\) −5.29047 16.2824i −0.211619 0.651296i
\(26\) 2.69976 + 0.877206i 0.103837 + 0.0337387i
\(27\) 25.0221 + 10.1438i 0.926743 + 0.375696i
\(28\) −26.7986 19.4703i −0.957092 0.695368i
\(29\) 15.3590 + 4.99043i 0.529619 + 0.172084i 0.561606 0.827405i \(-0.310184\pi\)
−0.0319872 + 0.999488i \(0.510184\pi\)
\(30\) −13.1407 1.69636i −0.438022 0.0565454i
\(31\) 14.2887 10.3813i 0.460924 0.334881i −0.332969 0.942938i \(-0.608051\pi\)
0.793894 + 0.608057i \(0.208051\pi\)
\(32\) 27.7684i 0.867761i
\(33\) 0 0
\(34\) 20.3655 0.598986
\(35\) 35.7270 + 49.1739i 1.02077 + 1.40497i
\(36\) 17.2024 26.7836i 0.477844 0.743988i
\(37\) 4.49918 13.8470i 0.121599 0.374244i −0.871667 0.490099i \(-0.836961\pi\)
0.993266 + 0.115855i \(0.0369607\pi\)
\(38\) −4.11666 + 5.66610i −0.108333 + 0.149108i
\(39\) 10.9826 5.99890i 0.281605 0.153818i
\(40\) −10.2863 + 31.6580i −0.257158 + 0.791450i
\(41\) −33.2920 + 10.8172i −0.812001 + 0.263835i −0.685445 0.728125i \(-0.740392\pi\)
−0.126556 + 0.991959i \(0.540392\pi\)
\(42\) 18.7912 3.53168i 0.447409 0.0840876i
\(43\) −64.3417 −1.49632 −0.748159 0.663519i \(-0.769062\pi\)
−0.748159 + 0.663519i \(0.769062\pi\)
\(44\) 0 0
\(45\) −45.2076 + 36.9867i −1.00461 + 0.821928i
\(46\) −15.3521 + 11.1539i −0.333741 + 0.242477i
\(47\) −9.94471 + 3.23123i −0.211590 + 0.0687496i −0.412894 0.910779i \(-0.635482\pi\)
0.201304 + 0.979529i \(0.435482\pi\)
\(48\) −23.2468 21.9494i −0.484308 0.457279i
\(49\) −31.3193 22.7548i −0.639170 0.464384i
\(50\) 6.84809 9.42559i 0.136962 0.188512i
\(51\) 61.6361 65.2792i 1.20855 1.27998i
\(52\) −4.55916 14.0317i −0.0876762 0.269840i
\(53\) 35.5031 + 48.8658i 0.669870 + 0.921997i 0.999757 0.0220234i \(-0.00701083\pi\)
−0.329888 + 0.944020i \(0.607011\pi\)
\(54\) 4.42410 + 17.8334i 0.0819277 + 0.330248i
\(55\) 0 0
\(56\) 48.0356i 0.857778i
\(57\) 5.70294 + 30.3439i 0.100052 + 0.532349i
\(58\) 3.39607 + 10.4520i 0.0585529 + 0.180207i
\(59\) −38.6761 12.5666i −0.655528 0.212994i −0.0376779 0.999290i \(-0.511996\pi\)
−0.617850 + 0.786296i \(0.711996\pi\)
\(60\) 33.0111 + 60.4356i 0.550185 + 1.00726i
\(61\) −19.0197 13.8186i −0.311798 0.226535i 0.420869 0.907121i \(-0.361725\pi\)
−0.732668 + 0.680586i \(0.761725\pi\)
\(62\) 11.4309 + 3.71411i 0.184369 + 0.0599050i
\(63\) 45.5510 70.9214i 0.723031 1.12574i
\(64\) −19.1997 + 13.9494i −0.299995 + 0.217959i
\(65\) 27.0724i 0.416498i
\(66\) 0 0
\(67\) 30.8376 0.460263 0.230132 0.973159i \(-0.426084\pi\)
0.230132 + 0.973159i \(0.426084\pi\)
\(68\) −62.2154 85.6321i −0.914932 1.25930i
\(69\) −10.7104 + 82.9665i −0.155223 + 1.20241i
\(70\) −12.7820 + 39.3389i −0.182600 + 0.561985i
\(71\) 0.585238 0.805511i 0.00824279 0.0113452i −0.804876 0.593443i \(-0.797768\pi\)
0.813118 + 0.582098i \(0.197768\pi\)
\(72\) 46.0849 2.64790i 0.640067 0.0367763i
\(73\) −28.8838 + 88.8953i −0.395669 + 1.21774i 0.532771 + 0.846260i \(0.321151\pi\)
−0.928439 + 0.371484i \(0.878849\pi\)
\(74\) 9.42314 3.06176i 0.127340 0.0413752i
\(75\) −9.48688 50.4772i −0.126492 0.673030i
\(76\) 36.4007 0.478957
\(77\) 0 0
\(78\) 7.69570 + 3.64691i 0.0986629 + 0.0467553i
\(79\) 91.4806 66.4645i 1.15798 0.841323i 0.168460 0.985708i \(-0.446121\pi\)
0.989522 + 0.144385i \(0.0461205\pi\)
\(80\) 65.7804 21.3733i 0.822255 0.267167i
\(81\) 70.5522 + 39.7917i 0.871015 + 0.491256i
\(82\) −19.2722 14.0020i −0.235026 0.170757i
\(83\) −61.1711 + 84.1948i −0.737001 + 1.01439i 0.261784 + 0.965126i \(0.415689\pi\)
−0.998786 + 0.0492686i \(0.984311\pi\)
\(84\) −72.2557 68.2233i −0.860187 0.812182i
\(85\) 60.0184 + 184.718i 0.706099 + 2.17315i
\(86\) −25.7365 35.4233i −0.299262 0.411899i
\(87\) 43.7809 + 20.7473i 0.503228 + 0.238475i
\(88\) 0 0
\(89\) 20.3993i 0.229206i −0.993411 0.114603i \(-0.963440\pi\)
0.993411 0.114603i \(-0.0365595\pi\)
\(90\) −38.4460 10.0944i −0.427178 0.112160i
\(91\) −12.0724 37.1551i −0.132664 0.408298i
\(92\) 93.7992 + 30.4772i 1.01956 + 0.331274i
\(93\) 46.5005 25.3995i 0.500006 0.273113i
\(94\) −5.75681 4.18257i −0.0612427 0.0444954i
\(95\) −63.5243 20.6403i −0.668677 0.217266i
\(96\) 10.6656 82.6195i 0.111100 0.860620i
\(97\) −153.778 + 111.726i −1.58534 + 1.15181i −0.675100 + 0.737726i \(0.735900\pi\)
−0.910237 + 0.414089i \(0.864100\pi\)
\(98\) 26.3447i 0.268824i
\(99\) 0 0
\(100\) −60.5528 −0.605528
\(101\) −27.9808 38.5123i −0.277038 0.381310i 0.647712 0.761885i \(-0.275726\pi\)
−0.924750 + 0.380575i \(0.875726\pi\)
\(102\) 60.5937 + 7.82221i 0.594056 + 0.0766883i
\(103\) 16.2776 50.0973i 0.158035 0.486382i −0.840421 0.541935i \(-0.817692\pi\)
0.998456 + 0.0555527i \(0.0176921\pi\)
\(104\) 12.5756 17.3089i 0.120920 0.166432i
\(105\) 87.4115 + 160.030i 0.832491 + 1.52410i
\(106\) −12.7019 + 39.0924i −0.119829 + 0.368797i
\(107\) −64.9745 + 21.1115i −0.607238 + 0.197304i −0.596466 0.802638i \(-0.703429\pi\)
−0.0107723 + 0.999942i \(0.503429\pi\)
\(108\) 61.4697 73.0821i 0.569164 0.676686i
\(109\) 37.7254 0.346105 0.173053 0.984913i \(-0.444637\pi\)
0.173053 + 0.984913i \(0.444637\pi\)
\(110\) 0 0
\(111\) 18.7050 39.4711i 0.168513 0.355596i
\(112\) −80.7483 + 58.6671i −0.720967 + 0.523813i
\(113\) −161.947 + 52.6196i −1.43316 + 0.465661i −0.919757 0.392489i \(-0.871614\pi\)
−0.513399 + 0.858150i \(0.671614\pi\)
\(114\) −14.4247 + 15.2772i −0.126532 + 0.134011i
\(115\) −146.411 106.374i −1.27314 0.924990i
\(116\) 33.5735 46.2099i 0.289427 0.398361i
\(117\) 34.9807 13.6303i 0.298981 0.116498i
\(118\) −8.55181 26.3198i −0.0724730 0.223049i
\(119\) −164.743 226.749i −1.38439 1.90545i
\(120\) −42.7645 + 90.2415i −0.356371 + 0.752013i
\(121\) 0 0
\(122\) 15.9987i 0.131137i
\(123\) −103.209 + 19.3975i −0.839097 + 0.157703i
\(124\) −19.3036 59.4104i −0.155674 0.479116i
\(125\) −48.6363 15.8029i −0.389090 0.126423i
\(126\) 57.2660 3.29033i 0.454492 0.0261138i
\(127\) −117.567 85.4178i −0.925728 0.672581i 0.0192151 0.999815i \(-0.493883\pi\)
−0.944943 + 0.327235i \(0.893883\pi\)
\(128\) −120.997 39.3142i −0.945287 0.307142i
\(129\) −191.437 24.7131i −1.48400 0.191574i
\(130\) −14.9047 + 10.8289i −0.114651 + 0.0832991i
\(131\) 174.147i 1.32936i 0.747126 + 0.664682i \(0.231433\pi\)
−0.747126 + 0.664682i \(0.768567\pi\)
\(132\) 0 0
\(133\) 96.3872 0.724716
\(134\) 12.3350 + 16.9777i 0.0920521 + 0.126699i
\(135\) −148.713 + 92.6832i −1.10158 + 0.686542i
\(136\) 47.4319 145.980i 0.348764 1.07338i
\(137\) 47.7841 65.7692i 0.348789 0.480067i −0.598194 0.801352i \(-0.704115\pi\)
0.946983 + 0.321285i \(0.104115\pi\)
\(138\) −49.9613 + 27.2898i −0.362038 + 0.197752i
\(139\) −0.210449 + 0.647694i −0.00151402 + 0.00465967i −0.951811 0.306686i \(-0.900780\pi\)
0.950297 + 0.311346i \(0.100780\pi\)
\(140\) 204.459 66.4327i 1.46042 0.474520i
\(141\) −30.8297 + 5.79425i −0.218650 + 0.0410939i
\(142\) 0.677567 0.00477160
\(143\) 0 0
\(144\) −60.7358 74.2352i −0.421776 0.515522i
\(145\) −84.7928 + 61.6055i −0.584778 + 0.424866i
\(146\) −60.4947 + 19.6559i −0.414347 + 0.134630i
\(147\) −84.4448 79.7321i −0.574454 0.542395i
\(148\) −41.6611 30.2686i −0.281494 0.204517i
\(149\) −116.342 + 160.131i −0.780817 + 1.07470i 0.214374 + 0.976752i \(0.431229\pi\)
−0.995191 + 0.0979512i \(0.968771\pi\)
\(150\) 23.9955 25.4138i 0.159970 0.169425i
\(151\) −27.4763 84.5632i −0.181962 0.560021i 0.817921 0.575331i \(-0.195127\pi\)
−0.999883 + 0.0153094i \(0.995127\pi\)
\(152\) 31.0269 + 42.7048i 0.204124 + 0.280953i
\(153\) 208.460 170.552i 1.36248 1.11472i
\(154\) 0 0
\(155\) 114.625i 0.739516i
\(156\) −8.17549 43.4997i −0.0524070 0.278844i
\(157\) 20.6228 + 63.4705i 0.131356 + 0.404271i 0.995005 0.0998213i \(-0.0318271\pi\)
−0.863650 + 0.504092i \(0.831827\pi\)
\(158\) 73.1840 + 23.7789i 0.463190 + 0.150500i
\(159\) 86.8638 + 159.027i 0.546314 + 1.00017i
\(160\) 145.799 + 105.929i 0.911242 + 0.662056i
\(161\) 248.375 + 80.7020i 1.54270 + 0.501255i
\(162\) 6.31343 + 54.7591i 0.0389718 + 0.338019i
\(163\) 113.136 82.1980i 0.694085 0.504282i −0.183915 0.982942i \(-0.558877\pi\)
0.878001 + 0.478660i \(0.158877\pi\)
\(164\) 123.810i 0.754940i
\(165\) 0 0
\(166\) −70.8217 −0.426637
\(167\) 80.7610 + 111.158i 0.483599 + 0.665617i 0.979192 0.202938i \(-0.0650491\pi\)
−0.495593 + 0.868555i \(0.665049\pi\)
\(168\) 18.4500 142.921i 0.109822 0.850719i
\(169\) −46.8468 + 144.180i −0.277200 + 0.853135i
\(170\) −77.6891 + 106.930i −0.456994 + 0.628999i
\(171\) 5.31321 + 92.4729i 0.0310714 + 0.540777i
\(172\) −70.3230 + 216.432i −0.408855 + 1.25833i
\(173\) −1.00649 + 0.327028i −0.00581785 + 0.00189034i −0.311924 0.950107i \(-0.600974\pi\)
0.306107 + 0.951997i \(0.400974\pi\)
\(174\) 6.08983 + 32.4024i 0.0349990 + 0.186221i
\(175\) −160.341 −0.916232
\(176\) 0 0
\(177\) −110.247 52.2448i −0.622863 0.295168i
\(178\) 11.2308 8.15968i 0.0630945 0.0458409i
\(179\) 82.5005 26.8060i 0.460897 0.149754i −0.0693597 0.997592i \(-0.522096\pi\)
0.530257 + 0.847837i \(0.322096\pi\)
\(180\) 75.0055 + 192.494i 0.416697 + 1.06941i
\(181\) 87.5116 + 63.5809i 0.483490 + 0.351276i 0.802675 0.596416i \(-0.203409\pi\)
−0.319185 + 0.947692i \(0.603409\pi\)
\(182\) 15.6268 21.5084i 0.0858614 0.118178i
\(183\) −51.2819 48.4200i −0.280229 0.264590i
\(184\) 44.1961 + 136.022i 0.240196 + 0.739248i
\(185\) 55.5412 + 76.4459i 0.300223 + 0.413221i
\(186\) 32.5838 + 15.4411i 0.175182 + 0.0830168i
\(187\) 0 0
\(188\) 36.9835i 0.196721i
\(189\) 162.769 193.518i 0.861209 1.02390i
\(190\) −14.0461 43.2294i −0.0739267 0.227523i
\(191\) 27.2489 + 8.85370i 0.142664 + 0.0463545i 0.379479 0.925200i \(-0.376103\pi\)
−0.236814 + 0.971555i \(0.576103\pi\)
\(192\) −62.4828 + 34.1293i −0.325431 + 0.177757i
\(193\) −10.2703 7.46178i −0.0532137 0.0386621i 0.560860 0.827910i \(-0.310470\pi\)
−0.614074 + 0.789248i \(0.710470\pi\)
\(194\) −123.021 39.9721i −0.634131 0.206042i
\(195\) −10.3983 + 80.5487i −0.0533244 + 0.413070i
\(196\) −110.773 + 80.4814i −0.565169 + 0.410620i
\(197\) 336.692i 1.70910i −0.519370 0.854549i \(-0.673834\pi\)
0.519370 0.854549i \(-0.326166\pi\)
\(198\) 0 0
\(199\) 183.863 0.923932 0.461966 0.886898i \(-0.347144\pi\)
0.461966 + 0.886898i \(0.347144\pi\)
\(200\) −51.6134 71.0397i −0.258067 0.355199i
\(201\) 91.7516 + 11.8445i 0.456476 + 0.0589277i
\(202\) 10.0107 30.8096i 0.0495577 0.152523i
\(203\) 88.9007 122.361i 0.437935 0.602765i
\(204\) −152.220 278.678i −0.746174 1.36607i
\(205\) 70.2040 216.066i 0.342459 1.05398i
\(206\) 34.0921 11.0772i 0.165495 0.0537727i
\(207\) −63.7334 + 242.737i −0.307891 + 1.17264i
\(208\) −44.4554 −0.213728
\(209\) 0 0
\(210\) −53.1401 + 112.136i −0.253048 + 0.533981i
\(211\) 145.630 105.806i 0.690187 0.501450i −0.186534 0.982448i \(-0.559726\pi\)
0.876722 + 0.480998i \(0.159726\pi\)
\(212\) 203.178 66.0165i 0.958386 0.311399i
\(213\) 2.05065 2.17186i 0.00962748 0.0101965i
\(214\) −37.6126 27.3271i −0.175760 0.127697i
\(215\) 245.447 337.828i 1.14161 1.57129i
\(216\) 138.134 + 9.82246i 0.639508 + 0.0454744i
\(217\) −51.1149 157.315i −0.235553 0.724956i
\(218\) 15.0901 + 20.7697i 0.0692206 + 0.0952740i
\(219\) −120.082 + 253.397i −0.548321 + 1.15706i
\(220\) 0 0
\(221\) 124.835i 0.564865i
\(222\) 29.2128 5.49036i 0.131589 0.0247313i
\(223\) 81.2895 + 250.183i 0.364527 + 1.12190i 0.950277 + 0.311407i \(0.100800\pi\)
−0.585750 + 0.810492i \(0.699200\pi\)
\(224\) −247.336 80.3645i −1.10418 0.358770i
\(225\) −8.83856 153.829i −0.0392825 0.683686i
\(226\) −93.7480 68.1119i −0.414814 0.301380i
\(227\) −8.58713 2.79013i −0.0378288 0.0122913i 0.290041 0.957014i \(-0.406331\pi\)
−0.327870 + 0.944723i \(0.606331\pi\)
\(228\) 108.304 + 13.9812i 0.475015 + 0.0613210i
\(229\) 285.121 207.153i 1.24507 0.904597i 0.247145 0.968979i \(-0.420508\pi\)
0.997925 + 0.0643820i \(0.0205076\pi\)
\(230\) 123.156i 0.535460i
\(231\) 0 0
\(232\) 82.8298 0.357025
\(233\) 20.8090 + 28.6411i 0.0893089 + 0.122923i 0.851333 0.524625i \(-0.175794\pi\)
−0.762025 + 0.647548i \(0.775794\pi\)
\(234\) 21.4964 + 13.8066i 0.0918648 + 0.0590024i
\(235\) 20.9708 64.5413i 0.0892373 0.274644i
\(236\) −84.5431 + 116.364i −0.358233 + 0.493066i
\(237\) 297.712 162.616i 1.25617 0.686142i
\(238\) 58.9399 181.398i 0.247647 0.762178i
\(239\) −124.397 + 40.4191i −0.520491 + 0.169118i −0.557468 0.830198i \(-0.688227\pi\)
0.0369772 + 0.999316i \(0.488227\pi\)
\(240\) 203.926 38.3267i 0.849693 0.159695i
\(241\) −134.526 −0.558198 −0.279099 0.960262i \(-0.590036\pi\)
−0.279099 + 0.960262i \(0.590036\pi\)
\(242\) 0 0
\(243\) 194.631 + 145.491i 0.800952 + 0.598729i
\(244\) −67.2707 + 48.8750i −0.275700 + 0.200308i
\(245\) 238.950 77.6395i 0.975306 0.316896i
\(246\) −51.9626 49.0627i −0.211230 0.199442i
\(247\) 34.7317 + 25.2340i 0.140614 + 0.102162i
\(248\) 53.2456 73.2863i 0.214700 0.295509i
\(249\) −214.341 + 227.010i −0.860809 + 0.911688i
\(250\) −10.7541 33.0978i −0.0430165 0.132391i
\(251\) 237.797 + 327.300i 0.947399 + 1.30398i 0.952673 + 0.303997i \(0.0983213\pi\)
−0.00527361 + 0.999986i \(0.501679\pi\)
\(252\) −188.779 230.738i −0.749124 0.915628i
\(253\) 0 0
\(254\) 98.8936i 0.389345i
\(255\) 107.625 + 572.645i 0.422059 + 2.24567i
\(256\) 2.58048 + 7.94189i 0.0100800 + 0.0310230i
\(257\) −130.624 42.4423i −0.508265 0.165145i 0.0436481 0.999047i \(-0.486102\pi\)
−0.551913 + 0.833902i \(0.686102\pi\)
\(258\) −62.9684 115.281i −0.244064 0.446824i
\(259\) −110.316 80.1495i −0.425932 0.309457i
\(260\) 91.0657 + 29.5891i 0.350253 + 0.113804i
\(261\) 122.293 + 78.5455i 0.468555 + 0.300941i
\(262\) −95.8764 + 69.6583i −0.365941 + 0.265871i
\(263\) 138.001i 0.524720i −0.964970 0.262360i \(-0.915499\pi\)
0.964970 0.262360i \(-0.0845008\pi\)
\(264\) 0 0
\(265\) −392.007 −1.47927
\(266\) 38.5547 + 53.0659i 0.144942 + 0.199496i
\(267\) 7.83519 60.6943i 0.0293453 0.227319i
\(268\) 33.7044 103.731i 0.125763 0.387057i
\(269\) −18.1588 + 24.9935i −0.0675049 + 0.0929125i −0.841434 0.540359i \(-0.818288\pi\)
0.773930 + 0.633272i \(0.218288\pi\)
\(270\) −110.512 44.8008i −0.409302 0.165929i
\(271\) 61.9531 190.672i 0.228609 0.703587i −0.769296 0.638893i \(-0.779393\pi\)
0.997905 0.0646943i \(-0.0206072\pi\)
\(272\) −303.324 + 98.5560i −1.11516 + 0.362338i
\(273\) −21.6483 115.185i −0.0792977 0.421922i
\(274\) 55.3227 0.201908
\(275\) 0 0
\(276\) 267.376 + 126.707i 0.968753 + 0.459082i
\(277\) 129.127 93.8163i 0.466162 0.338687i −0.329781 0.944057i \(-0.606975\pi\)
0.795944 + 0.605370i \(0.206975\pi\)
\(278\) −0.440767 + 0.143214i −0.00158549 + 0.000515158i
\(279\) 148.109 57.7109i 0.530858 0.206849i
\(280\) 252.212 + 183.243i 0.900758 + 0.654439i
\(281\) −233.485 + 321.364i −0.830907 + 1.14365i 0.156847 + 0.987623i \(0.449867\pi\)
−0.987754 + 0.156022i \(0.950133\pi\)
\(282\) −15.5218 14.6556i −0.0550419 0.0519702i
\(283\) 20.8866 + 64.2824i 0.0738043 + 0.227146i 0.981153 0.193233i \(-0.0618972\pi\)
−0.907349 + 0.420379i \(0.861897\pi\)
\(284\) −2.06993 2.84901i −0.00728847 0.0100317i
\(285\) −181.077 85.8104i −0.635357 0.301089i
\(286\) 0 0
\(287\) 327.843i 1.14231i
\(288\) 63.4668 241.722i 0.220371 0.839313i
\(289\) −187.449 576.909i −0.648613 1.99622i
\(290\) −67.8338 22.0405i −0.233910 0.0760019i
\(291\) −500.449 + 273.355i −1.71976 + 0.939364i
\(292\) 267.456 + 194.318i 0.915945 + 0.665473i
\(293\) 347.720 + 112.981i 1.18676 + 0.385601i 0.834873 0.550442i \(-0.185541\pi\)
0.351885 + 0.936043i \(0.385541\pi\)
\(294\) 10.1188 78.3837i 0.0344176 0.266611i
\(295\) 213.521 155.132i 0.723800 0.525871i
\(296\) 74.6761i 0.252284i
\(297\) 0 0
\(298\) −134.696 −0.452001
\(299\) 68.3706 + 94.1041i 0.228664 + 0.314729i
\(300\) −180.164 23.2578i −0.600545 0.0775260i
\(301\) −186.211 + 573.100i −0.618643 + 1.90399i
\(302\) 35.5658 48.9521i 0.117768 0.162093i
\(303\) −68.4594 125.333i −0.225938 0.413641i
\(304\) 33.8933 104.313i 0.111491 0.343135i
\(305\) 145.110 47.1492i 0.475771 0.154588i
\(306\) 177.281 + 46.5470i 0.579349 + 0.152114i
\(307\) 484.160 1.57707 0.788534 0.614992i \(-0.210841\pi\)
0.788534 + 0.614992i \(0.210841\pi\)
\(308\) 0 0
\(309\) 67.6729 142.803i 0.219006 0.462146i
\(310\) −63.1068 + 45.8498i −0.203570 + 0.147902i
\(311\) −319.700 + 103.877i −1.02797 + 0.334009i −0.773989 0.633199i \(-0.781741\pi\)
−0.253985 + 0.967208i \(0.581741\pi\)
\(312\) 44.0647 46.6692i 0.141233 0.149581i
\(313\) 395.686 + 287.483i 1.26417 + 0.918475i 0.998955 0.0457136i \(-0.0145562\pi\)
0.265218 + 0.964189i \(0.414556\pi\)
\(314\) −26.6946 + 36.7420i −0.0850146 + 0.117013i
\(315\) 198.610 + 509.713i 0.630509 + 1.61814i
\(316\) −123.588 380.364i −0.391101 1.20368i
\(317\) 91.8833 + 126.467i 0.289853 + 0.398948i 0.928966 0.370164i \(-0.120699\pi\)
−0.639114 + 0.769112i \(0.720699\pi\)
\(318\) −52.8072 + 111.433i −0.166060 + 0.350420i
\(319\) 0 0
\(320\) 154.022i 0.481318i
\(321\) −201.428 + 37.8571i −0.627502 + 0.117935i
\(322\) 54.9191 + 169.024i 0.170556 + 0.524918i
\(323\) 292.921 + 95.1758i 0.906877 + 0.294662i
\(324\) 210.962 193.832i 0.651117 0.598247i
\(325\) −57.7764 41.9770i −0.177773 0.129160i
\(326\) 90.5082 + 29.4079i 0.277633 + 0.0902083i
\(327\) 112.245 + 14.4900i 0.343257 + 0.0443119i
\(328\) −145.252 + 105.532i −0.442842 + 0.321744i
\(329\) 97.9303i 0.297661i
\(330\) 0 0
\(331\) 40.2792 0.121689 0.0608447 0.998147i \(-0.480621\pi\)
0.0608447 + 0.998147i \(0.480621\pi\)
\(332\) 216.356 + 297.788i 0.651674 + 0.896953i
\(333\) 70.8136 110.255i 0.212653 0.331095i
\(334\) −28.8938 + 88.9259i −0.0865083 + 0.266245i
\(335\) −117.638 + 161.914i −0.351157 + 0.483326i
\(336\) −262.785 + 143.538i −0.782098 + 0.427197i
\(337\) −3.68219 + 11.3326i −0.0109264 + 0.0336279i −0.956371 0.292155i \(-0.905628\pi\)
0.945445 + 0.325783i \(0.105628\pi\)
\(338\) −98.1167 + 31.8801i −0.290286 + 0.0943197i
\(339\) −502.052 + 94.3576i −1.48098 + 0.278341i
\(340\) 686.950 2.02044
\(341\) 0 0
\(342\) −48.7857 + 39.9142i −0.142648 + 0.116708i
\(343\) 77.9447 56.6301i 0.227244 0.165102i
\(344\) −313.856 + 101.978i −0.912372 + 0.296448i
\(345\) −394.761 372.731i −1.14424 1.08038i
\(346\) −0.582638 0.423311i −0.00168393 0.00122344i
\(347\) 353.427 486.450i 1.01852 1.40187i 0.105285 0.994442i \(-0.466425\pi\)
0.913236 0.407431i \(-0.133575\pi\)
\(348\) 117.640 124.594i 0.338047 0.358028i
\(349\) 41.0865 + 126.451i 0.117726 + 0.362324i 0.992506 0.122197i \(-0.0389939\pi\)
−0.874780 + 0.484521i \(0.838994\pi\)
\(350\) −64.1359 88.2755i −0.183245 0.252216i
\(351\) 109.314 27.1185i 0.311435 0.0772608i
\(352\) 0 0
\(353\) 172.864i 0.489699i −0.969561 0.244850i \(-0.921261\pi\)
0.969561 0.244850i \(-0.0787386\pi\)
\(354\) −15.3351 81.5942i −0.0433195 0.230492i
\(355\) 1.99683 + 6.14562i 0.00562488 + 0.0173116i
\(356\) −68.6190 22.2957i −0.192750 0.0626282i
\(357\) −403.069 737.925i −1.12904 2.06702i
\(358\) 47.7581 + 34.6983i 0.133402 + 0.0969226i
\(359\) −573.248 186.259i −1.59679 0.518829i −0.630479 0.776206i \(-0.717142\pi\)
−0.966311 + 0.257377i \(0.917142\pi\)
\(360\) −161.899 + 252.071i −0.449719 + 0.700198i
\(361\) 206.365 149.933i 0.571647 0.415326i
\(362\) 73.6117i 0.203347i
\(363\) 0 0
\(364\) −138.177 −0.379606
\(365\) −356.564 490.768i −0.976886 1.34457i
\(366\) 6.14496 47.6011i 0.0167895 0.130058i
\(367\) 76.9025 236.681i 0.209543 0.644909i −0.789953 0.613168i \(-0.789895\pi\)
0.999496 0.0317407i \(-0.0101051\pi\)
\(368\) 174.676 240.421i 0.474663 0.653318i
\(369\) −314.529 + 18.0719i −0.852382 + 0.0489753i
\(370\) −19.8709 + 61.1563i −0.0537051 + 0.165287i
\(371\) 538.004 174.808i 1.45015 0.471181i
\(372\) −34.6152 184.179i −0.0930517 0.495104i
\(373\) −677.639 −1.81673 −0.908364 0.418181i \(-0.862668\pi\)
−0.908364 + 0.418181i \(0.862668\pi\)
\(374\) 0 0
\(375\) −138.638 65.6992i −0.369702 0.175198i
\(376\) −43.3885 + 31.5236i −0.115395 + 0.0838394i
\(377\) 64.0681 20.8170i 0.169942 0.0552175i
\(378\) 171.648 + 12.2056i 0.454095 + 0.0322900i
\(379\) 92.0872 + 66.9053i 0.242974 + 0.176531i 0.702607 0.711578i \(-0.252019\pi\)
−0.459633 + 0.888109i \(0.652019\pi\)
\(380\) −138.859 + 191.123i −0.365419 + 0.502956i
\(381\) −316.992 299.301i −0.831999 0.785567i
\(382\) 6.02509 + 18.5433i 0.0157725 + 0.0485428i
\(383\) −354.229 487.554i −0.924880 1.27299i −0.961824 0.273670i \(-0.911762\pi\)
0.0369437 0.999317i \(-0.488238\pi\)
\(384\) −344.903 163.446i −0.898184 0.425640i
\(385\) 0 0
\(386\) 8.63898i 0.0223808i
\(387\) −560.091 147.058i −1.44726 0.379995i
\(388\) 207.750 + 639.388i 0.535437 + 1.64791i
\(389\) 432.894 + 140.656i 1.11284 + 0.361583i 0.807030 0.590510i \(-0.201073\pi\)
0.305808 + 0.952093i \(0.401073\pi\)
\(390\) −48.5053 + 26.4945i −0.124373 + 0.0679347i
\(391\) 675.126 + 490.508i 1.72666 + 1.25450i
\(392\) −188.839 61.3576i −0.481733 0.156524i
\(393\) −66.8882 + 518.141i −0.170199 + 1.31842i
\(394\) 185.366 134.676i 0.470472 0.341818i
\(395\) 733.867i 1.85789i
\(396\) 0 0
\(397\) 327.783 0.825649 0.412824 0.910811i \(-0.364542\pi\)
0.412824 + 0.910811i \(0.364542\pi\)
\(398\) 73.5446 + 101.225i 0.184785 + 0.254335i
\(399\) 286.782 + 37.0214i 0.718752 + 0.0927856i
\(400\) −56.3818 + 173.525i −0.140954 + 0.433813i
\(401\) −148.146 + 203.906i −0.369442 + 0.508494i −0.952749 0.303758i \(-0.901759\pi\)
0.583307 + 0.812252i \(0.301759\pi\)
\(402\) 30.1795 + 55.2516i 0.0750733 + 0.137442i
\(403\) 22.7665 70.0681i 0.0564926 0.173866i
\(404\) −160.129 + 52.0291i −0.396359 + 0.128785i
\(405\) −478.066 + 218.642i −1.18041 + 0.539857i
\(406\) 102.926 0.253513
\(407\) 0 0
\(408\) 197.194 416.119i 0.483319 1.01990i
\(409\) −367.117 + 266.726i −0.897595 + 0.652141i −0.937847 0.347048i \(-0.887184\pi\)
0.0402518 + 0.999190i \(0.487184\pi\)
\(410\) 147.036 47.7750i 0.358625 0.116524i
\(411\) 167.434 177.330i 0.407382 0.431461i
\(412\) −150.726 109.509i −0.365840 0.265798i
\(413\) −223.865 + 308.124i −0.542047 + 0.746064i
\(414\) −159.132 + 62.0060i −0.384377 + 0.149773i
\(415\) −208.716 642.362i −0.502930 1.54786i
\(416\) −68.0847 93.7105i −0.163665 0.225266i
\(417\) −0.874924 + 1.84626i −0.00209814 + 0.00442748i
\(418\) 0 0
\(419\) 295.753i 0.705855i 0.935651 + 0.352927i \(0.114814\pi\)
−0.935651 + 0.352927i \(0.885186\pi\)
\(420\) 633.845 119.127i 1.50916 0.283636i
\(421\) 70.7602 + 217.778i 0.168077 + 0.517286i 0.999250 0.0387271i \(-0.0123303\pi\)
−0.831173 + 0.556013i \(0.812330\pi\)
\(422\) 116.503 + 37.8541i 0.276073 + 0.0897017i
\(423\) −93.9534 + 5.39828i −0.222112 + 0.0127619i
\(424\) 250.632 + 182.095i 0.591113 + 0.429469i
\(425\) −487.276 158.326i −1.14653 0.372531i
\(426\) 2.01597 + 0.260248i 0.00473233 + 0.000610910i
\(427\) −178.129 + 129.418i −0.417164 + 0.303088i
\(428\) 241.635i 0.564567i
\(429\) 0 0
\(430\) 284.169 0.660859
\(431\) −328.552 452.213i −0.762301 1.04922i −0.997019 0.0771542i \(-0.975417\pi\)
0.234718 0.972064i \(-0.424583\pi\)
\(432\) −152.195 244.201i −0.352303 0.565280i
\(433\) 89.0813 274.164i 0.205730 0.633173i −0.793952 0.607980i \(-0.791980\pi\)
0.999683 0.0251929i \(-0.00802000\pi\)
\(434\) 66.1641 91.0671i 0.152452 0.209832i
\(435\) −275.947 + 150.728i −0.634361 + 0.346500i
\(436\) 41.2325 126.900i 0.0945698 0.291056i
\(437\) −272.938 + 88.6831i −0.624573 + 0.202936i
\(438\) −187.540 + 35.2470i −0.428174 + 0.0804726i
\(439\) 179.800 0.409567 0.204784 0.978807i \(-0.434351\pi\)
0.204784 + 0.978807i \(0.434351\pi\)
\(440\) 0 0
\(441\) −220.625 269.662i −0.500284 0.611479i
\(442\) 68.7279 49.9338i 0.155493 0.112972i
\(443\) 267.511 86.9195i 0.603862 0.196207i 0.00889983 0.999960i \(-0.497167\pi\)
0.594962 + 0.803754i \(0.297167\pi\)
\(444\) −112.329 106.060i −0.252993 0.238874i
\(445\) 107.107 + 77.8180i 0.240690 + 0.174872i
\(446\) −105.223 + 144.827i −0.235925 + 0.324724i
\(447\) −407.658 + 431.753i −0.911986 + 0.965890i
\(448\) 68.6831 + 211.385i 0.153310 + 0.471841i
\(449\) −163.228 224.664i −0.363536 0.500365i 0.587593 0.809156i \(-0.300075\pi\)
−0.951130 + 0.308791i \(0.900075\pi\)
\(450\) 81.1552 66.3974i 0.180345 0.147550i
\(451\) 0 0
\(452\) 602.265i 1.33245i
\(453\) −49.2704 262.155i −0.108765 0.578709i
\(454\) −1.89873 5.84368i −0.00418222 0.0128716i
\(455\) 241.137 + 78.3502i 0.529972 + 0.172198i
\(456\) 75.9120 + 138.977i 0.166474 + 0.304775i
\(457\) −280.102 203.506i −0.612915 0.445309i 0.237525 0.971381i \(-0.423664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(458\) 228.096 + 74.1127i 0.498025 + 0.161818i
\(459\) 685.740 427.378i 1.49399 0.931106i
\(460\) −517.841 + 376.234i −1.12574 + 0.817899i
\(461\) 67.1487i 0.145659i 0.997344 + 0.0728294i \(0.0232029\pi\)
−0.997344 + 0.0728294i \(0.976797\pi\)
\(462\) 0 0
\(463\) −754.683 −1.62999 −0.814993 0.579471i \(-0.803259\pi\)
−0.814993 + 0.579471i \(0.803259\pi\)
\(464\) −101.162 139.238i −0.218022 0.300081i
\(465\) −44.0264 + 341.045i −0.0946805 + 0.733430i
\(466\) −7.44480 + 22.9127i −0.0159760 + 0.0491690i
\(467\) 170.090 234.109i 0.364218 0.501303i −0.587100 0.809515i \(-0.699730\pi\)
0.951318 + 0.308211i \(0.0997304\pi\)
\(468\) −7.61680 132.565i −0.0162752 0.283259i
\(469\) 89.2473 274.675i 0.190293 0.585661i
\(470\) 43.9215 14.2709i 0.0934499 0.0303637i
\(471\) 36.9809 + 196.766i 0.0785156 + 0.417761i
\(472\) −208.578 −0.441902
\(473\) 0 0
\(474\) 208.612 + 98.8590i 0.440110 + 0.208563i
\(475\) 142.547 103.566i 0.300099 0.218034i
\(476\) −942.794 + 306.332i −1.98066 + 0.643555i
\(477\) 197.366 + 506.520i 0.413765 + 1.06189i
\(478\) −72.0114 52.3193i −0.150651 0.109455i
\(479\) 97.6527 134.407i 0.203868 0.280600i −0.694825 0.719179i \(-0.744518\pi\)
0.898693 + 0.438579i \(0.144518\pi\)
\(480\) 393.110 + 371.172i 0.818980 + 0.773274i
\(481\) −18.7678 57.7613i −0.0390183 0.120086i
\(482\) −53.8100 74.0631i −0.111639 0.153658i
\(483\) 707.997 + 335.512i 1.46583 + 0.694642i
\(484\) 0 0
\(485\) 1233.62i 2.54355i
\(486\) −2.24807 + 165.350i −0.00462566 + 0.340227i
\(487\) −6.35332 19.5535i −0.0130458 0.0401510i 0.944322 0.329024i \(-0.106720\pi\)
−0.957368 + 0.288873i \(0.906720\pi\)
\(488\) −114.679 37.2614i −0.234998 0.0763554i
\(489\) 368.186 201.110i 0.752937 0.411268i
\(490\) 138.324 + 100.498i 0.282293 + 0.205098i
\(491\) 455.169 + 147.893i 0.927024 + 0.301209i 0.733345 0.679856i \(-0.237958\pi\)
0.193679 + 0.981065i \(0.437958\pi\)
\(492\) −47.5544 + 368.374i −0.0966552 + 0.748727i
\(493\) 390.993 284.073i 0.793090 0.576214i
\(494\) 29.2151i 0.0591398i
\(495\) 0 0
\(496\) −188.225 −0.379486
\(497\) −5.48105 7.54402i −0.0110283 0.0151791i
\(498\) −210.717 27.2020i −0.423126 0.0546224i
\(499\) −78.7852 + 242.476i −0.157886 + 0.485924i −0.998442 0.0558013i \(-0.982229\pi\)
0.840556 + 0.541725i \(0.182229\pi\)
\(500\) −106.315 + 146.330i −0.212630 + 0.292660i
\(501\) 197.594 + 361.749i 0.394400 + 0.722054i
\(502\) −85.0764 + 261.838i −0.169475 + 0.521590i
\(503\) 243.035 78.9669i 0.483171 0.156992i −0.0572955 0.998357i \(-0.518248\pi\)
0.540467 + 0.841365i \(0.318248\pi\)
\(504\) 109.789 418.147i 0.217836 0.829657i
\(505\) 308.949 0.611781
\(506\) 0 0
\(507\) −194.762 + 410.986i −0.384146 + 0.810623i
\(508\) −415.824 + 302.114i −0.818551 + 0.594712i
\(509\) 50.3488 16.3593i 0.0989171 0.0321401i −0.259140 0.965840i \(-0.583439\pi\)
0.358057 + 0.933700i \(0.383439\pi\)
\(510\) −272.220 + 288.310i −0.533764 + 0.565313i
\(511\) 708.209 + 514.544i 1.38593 + 1.00694i
\(512\) −302.461 + 416.301i −0.590743 + 0.813089i
\(513\) −19.7096 + 277.176i −0.0384202 + 0.540305i
\(514\) −28.8827 88.8919i −0.0561921 0.172941i
\(515\) 200.943 + 276.574i 0.390181 + 0.537037i
\(516\) −292.362 + 616.942i −0.566594 + 1.19562i
\(517\) 0 0
\(518\) 92.7942i 0.179139i
\(519\) −3.12023 + 0.586427i −0.00601199 + 0.00112992i
\(520\) 42.9082 + 132.058i 0.0825157 + 0.253957i
\(521\) −829.134 269.402i −1.59143 0.517086i −0.626460 0.779454i \(-0.715497\pi\)
−0.964968 + 0.262367i \(0.915497\pi\)
\(522\) 5.67366 + 98.7463i 0.0108691 + 0.189169i
\(523\) −573.820 416.904i −1.09717 0.797140i −0.116574 0.993182i \(-0.537191\pi\)
−0.980596 + 0.196042i \(0.937191\pi\)
\(524\) 585.793 + 190.336i 1.11793 + 0.363236i
\(525\) −477.063 61.5854i −0.908692 0.117306i
\(526\) 75.9766 55.2002i 0.144442 0.104943i
\(527\) 528.555i 1.00295i
\(528\) 0 0
\(529\) −248.573 −0.469892
\(530\) −156.802 215.819i −0.295852 0.407206i
\(531\) −307.952 197.789i −0.579947 0.372485i
\(532\) 105.347 324.226i 0.198022 0.609448i
\(533\) −85.8288 + 118.133i −0.161030 + 0.221638i
\(534\) 36.5493 19.9639i 0.0684443 0.0373856i
\(535\) 137.014 421.686i 0.256101 0.788198i
\(536\) 150.425 48.8759i 0.280643 0.0911864i
\(537\) 255.761 48.0686i 0.476277 0.0895133i
\(538\) −21.0236 −0.0390774
\(539\) 0 0
\(540\) 149.229 + 601.538i 0.276351 + 1.11396i
\(541\) 138.021 100.278i 0.255122 0.185357i −0.452872 0.891576i \(-0.649600\pi\)
0.707994 + 0.706219i \(0.249600\pi\)
\(542\) 129.756 42.1601i 0.239401 0.0777862i
\(543\) 235.953 + 222.785i 0.434537 + 0.410286i
\(544\) −672.302 488.456i −1.23585 0.897897i
\(545\) −143.913 + 198.079i −0.264060 + 0.363447i
\(546\) 54.7557 57.9921i 0.100285 0.106213i
\(547\) −32.7797 100.886i −0.0599264 0.184434i 0.916612 0.399778i \(-0.130913\pi\)
−0.976538 + 0.215344i \(0.930913\pi\)
\(548\) −169.008 232.619i −0.308408 0.424487i
\(549\) −133.982 163.761i −0.244047 0.298290i
\(550\) 0 0
\(551\) 166.205i 0.301642i
\(552\) 79.2525 + 421.682i 0.143573 + 0.763917i
\(553\) −327.254 1007.18i −0.591779 1.82131i
\(554\) 103.301 + 33.5645i 0.186464 + 0.0605858i
\(555\) 135.890 + 248.783i 0.244847 + 0.448258i
\(556\) 1.94870 + 1.41581i 0.00350485 + 0.00254642i
\(557\) −697.965 226.782i −1.25308 0.407150i −0.394055 0.919087i \(-0.628928\pi\)
−0.859023 + 0.511937i \(0.828928\pi\)
\(558\) 91.0161 + 58.4573i 0.163111 + 0.104762i
\(559\) −217.135 + 157.758i −0.388435 + 0.282215i
\(560\) 647.771i 1.15673i
\(561\) 0 0
\(562\) −270.320 −0.480997
\(563\) 583.990 + 803.794i 1.03728 + 1.42770i 0.899336 + 0.437258i \(0.144050\pi\)
0.137947 + 0.990440i \(0.455950\pi\)
\(564\) −14.2050 + 110.037i −0.0251862 + 0.195102i
\(565\) 341.502 1051.04i 0.604429 1.86024i
\(566\) −27.0360 + 37.2119i −0.0477669 + 0.0657455i
\(567\) 558.615 513.257i 0.985212 0.905215i
\(568\) 1.57807 4.85681i 0.00277830 0.00855073i
\(569\) −1014.04 + 329.482i −1.78215 + 0.579055i −0.999080 0.0428814i \(-0.986346\pi\)
−0.783068 + 0.621936i \(0.786346\pi\)
\(570\) −25.1874 134.016i −0.0441885 0.235115i
\(571\) −409.079 −0.716425 −0.358213 0.933640i \(-0.616614\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(572\) 0 0
\(573\) 77.6733 + 36.8086i 0.135556 + 0.0642384i
\(574\) −180.494 + 131.136i −0.314449 + 0.228460i
\(575\) 454.035 147.525i 0.789625 0.256565i
\(576\) −199.014 + 77.5462i −0.345511 + 0.134629i
\(577\) −371.961 270.246i −0.644647 0.468363i 0.216797 0.976217i \(-0.430439\pi\)
−0.861444 + 0.507853i \(0.830439\pi\)
\(578\) 242.638 333.962i 0.419788 0.577789i
\(579\) −27.6912 26.1458i −0.0478259 0.0451568i
\(580\) 114.553 + 352.557i 0.197505 + 0.607858i
\(581\) 572.899 + 788.527i 0.986056 + 1.35719i
\(582\) −350.674 166.181i −0.602533 0.285534i
\(583\) 0 0
\(584\) 479.406i 0.820901i
\(585\) −61.8761 + 235.664i −0.105771 + 0.402844i
\(586\) 76.8856 + 236.629i 0.131204 + 0.403804i
\(587\) −55.9862 18.1910i −0.0953768 0.0309898i 0.260940 0.965355i \(-0.415968\pi\)
−0.356317 + 0.934365i \(0.615968\pi\)
\(588\) −360.497 + 196.910i −0.613090 + 0.334881i
\(589\) 147.055 + 106.842i 0.249669 + 0.181395i
\(590\) 170.816 + 55.5014i 0.289518 + 0.0940702i
\(591\) 129.321 1001.76i 0.218816 1.69503i
\(592\) −125.531 + 91.2039i −0.212046 + 0.154061i
\(593\) 149.728i 0.252493i −0.991999 0.126247i \(-0.959707\pi\)
0.991999 0.126247i \(-0.0402931\pi\)
\(594\) 0 0
\(595\) 1819.01 3.05715
\(596\) 411.489 + 566.366i 0.690418 + 0.950278i
\(597\) 547.048 + 70.6199i 0.916328 + 0.118291i
\(598\) −24.4609 + 75.2828i −0.0409045 + 0.125891i
\(599\) 260.728 358.862i 0.435273 0.599102i −0.533881 0.845560i \(-0.679267\pi\)
0.969153 + 0.246458i \(0.0792668\pi\)
\(600\) −126.280 231.189i −0.210467 0.385316i
\(601\) −127.932 + 393.733i −0.212864 + 0.655129i 0.786434 + 0.617674i \(0.211925\pi\)
−0.999298 + 0.0374549i \(0.988075\pi\)
\(602\) −390.004 + 126.720i −0.647847 + 0.210498i
\(603\) 268.440 + 70.4819i 0.445174 + 0.116885i
\(604\) −314.483 −0.520668
\(605\) 0 0
\(606\) 41.6185 87.8232i 0.0686774 0.144923i
\(607\) 308.111 223.856i 0.507597 0.368791i −0.304314 0.952572i \(-0.598427\pi\)
0.811911 + 0.583781i \(0.198427\pi\)
\(608\) 271.797 88.3121i 0.447034 0.145250i
\(609\) 311.505 329.917i 0.511503 0.541736i
\(610\) 84.0017 + 61.0308i 0.137708 + 0.100051i
\(611\) −25.6380 + 35.2877i −0.0419608 + 0.0577541i
\(612\) −345.862 887.621i −0.565135 1.45036i
\(613\) 34.9041 + 107.424i 0.0569399 + 0.175243i 0.975482 0.220081i \(-0.0706323\pi\)
−0.918542 + 0.395324i \(0.870632\pi\)
\(614\) 193.663 + 266.554i 0.315412 + 0.434127i
\(615\) 291.868 615.898i 0.474582 1.00146i
\(616\) 0 0
\(617\) 378.251i 0.613049i −0.951863 0.306524i \(-0.900834\pi\)
0.951863 0.306524i \(-0.0991661\pi\)
\(618\) 105.689 19.8636i 0.171018 0.0321418i
\(619\) −9.05390 27.8651i −0.0146267 0.0450162i 0.943477 0.331439i \(-0.107534\pi\)
−0.958103 + 0.286422i \(0.907534\pi\)
\(620\) 385.574 + 125.281i 0.621894 + 0.202066i
\(621\) −282.860 + 697.740i −0.455491 + 1.12357i
\(622\) −185.069 134.460i −0.297538 0.216174i
\(623\) −181.699 59.0377i −0.291652 0.0947635i
\(624\) −132.269 17.0749i −0.211969 0.0273637i
\(625\) 614.774 446.660i 0.983639 0.714655i
\(626\) 332.837i 0.531689i
\(627\) 0 0
\(628\) 236.041 0.375862
\(629\) −256.110 352.505i −0.407169 0.560421i
\(630\) −201.179 + 313.229i −0.319331 + 0.497189i
\(631\) −300.638 + 925.267i −0.476446 + 1.46635i 0.367551 + 0.930003i \(0.380196\pi\)
−0.843997 + 0.536347i \(0.819804\pi\)
\(632\) 340.895 469.202i 0.539392 0.742409i
\(633\) 473.932 258.871i 0.748708 0.408959i
\(634\) −32.8730 + 101.173i −0.0518501 + 0.159578i
\(635\) 896.978 291.446i 1.41256 0.458970i
\(636\) 629.874 118.381i 0.990367 0.186133i
\(637\) −161.486 −0.253510
\(638\) 0 0
\(639\) 6.93552 5.67432i 0.0108537 0.00888000i
\(640\) 667.991 485.324i 1.04374 0.758319i
\(641\) 831.582 270.198i 1.29732 0.421525i 0.422672 0.906283i \(-0.361092\pi\)
0.874648 + 0.484758i \(0.161092\pi\)
\(642\) −101.413 95.7534i −0.157964 0.149149i
\(643\) −590.727 429.188i −0.918704 0.667477i 0.0244973 0.999700i \(-0.492202\pi\)
−0.943201 + 0.332223i \(0.892202\pi\)
\(644\) 542.929 747.278i 0.843058 1.16037i
\(645\) 860.037 910.871i 1.33339 1.41220i
\(646\) 64.7688 + 199.338i 0.100261 + 0.308572i
\(647\) −436.536 600.841i −0.674708 0.928656i 0.325147 0.945663i \(-0.394586\pi\)
−0.999855 + 0.0170072i \(0.994586\pi\)
\(648\) 407.218 + 82.2808i 0.628423 + 0.126977i
\(649\) 0 0
\(650\) 48.5994i 0.0747684i
\(651\) −91.6592 487.695i −0.140798 0.749148i
\(652\) −152.844 470.405i −0.234423 0.721479i
\(653\) −1057.97 343.757i −1.62018 0.526427i −0.648192 0.761477i \(-0.724475\pi\)
−0.971983 + 0.235050i \(0.924475\pi\)
\(654\) 36.9202 + 67.5924i 0.0564530 + 0.103352i
\(655\) −914.364 664.324i −1.39598 1.01424i
\(656\) 354.801 + 115.282i 0.540855 + 0.175734i
\(657\) −454.609 + 707.812i −0.691947 + 1.07734i
\(658\) −53.9155 + 39.1719i −0.0819385 + 0.0595318i
\(659\) 829.020i 1.25800i −0.777407 0.628998i \(-0.783465\pi\)
0.777407 0.628998i \(-0.216535\pi\)
\(660\) 0 0
\(661\) −1040.95 −1.57480 −0.787402 0.616439i \(-0.788575\pi\)
−0.787402 + 0.616439i \(0.788575\pi\)
\(662\) 16.1116 + 22.1757i 0.0243378 + 0.0334981i
\(663\) 47.9481 371.423i 0.0723198 0.560216i
\(664\) −164.946 + 507.651i −0.248412 + 0.764535i
\(665\) −367.692 + 506.084i −0.552920 + 0.761029i
\(666\) 89.0259 5.11516i 0.133672 0.00768041i
\(667\) −139.158 + 428.284i −0.208633 + 0.642105i
\(668\) 462.181 150.172i 0.691887 0.224808i
\(669\) 145.768 + 775.596i 0.217890 + 1.15934i
\(670\) −136.196 −0.203278
\(671\) 0 0
\(672\) −705.035 334.109i −1.04916 0.497186i
\(673\) −205.745 + 149.482i −0.305713 + 0.222113i −0.730055 0.683389i \(-0.760505\pi\)
0.424342 + 0.905502i \(0.360505\pi\)
\(674\) −7.71203 + 2.50579i −0.0114422 + 0.00371779i
\(675\) 32.7870 461.085i 0.0485733 0.683088i
\(676\) 433.788 + 315.166i 0.641699 + 0.466221i
\(677\) 595.961 820.270i 0.880297 1.21163i −0.0960413 0.995377i \(-0.530618\pi\)
0.976339 0.216248i \(-0.0693819\pi\)
\(678\) −252.768 238.662i −0.372815 0.352009i
\(679\) 550.110 + 1693.06i 0.810177 + 2.49347i
\(680\) 585.534 + 805.919i 0.861080 + 1.18518i
\(681\) −24.4777 11.5997i −0.0359438 0.0170334i
\(682\) 0 0
\(683\) 561.211i 0.821685i 0.911706 + 0.410842i \(0.134765\pi\)
−0.911706 + 0.410842i \(0.865235\pi\)
\(684\) 316.867 + 83.1968i 0.463255 + 0.121633i
\(685\) 163.040 + 501.784i 0.238014 + 0.732532i
\(686\) 62.3554 + 20.2605i 0.0908970 + 0.0295342i
\(687\) 927.889 506.831i 1.35064 0.737745i
\(688\) 554.746 + 403.047i 0.806318 + 0.585824i
\(689\) 239.626 + 77.8593i 0.347788 + 0.113003i
\(690\) 47.3031 366.427i 0.0685552 0.531054i
\(691\) −462.234 + 335.833i −0.668935 + 0.486010i −0.869668 0.493636i \(-0.835667\pi\)
0.200734 + 0.979646i \(0.435667\pi\)
\(692\) 3.74304i 0.00540902i
\(693\) 0 0
\(694\) 409.185 0.589603
\(695\) −2.59794 3.57575i −0.00373804 0.00514497i
\(696\) 246.444 + 31.8142i 0.354087 + 0.0457100i
\(697\) −323.722 + 996.315i −0.464451 + 1.42943i
\(698\) −53.1831 + 73.2003i −0.0761936 + 0.104871i
\(699\) 50.9124 + 93.2087i 0.0728360 + 0.133346i
\(700\) −175.246 + 539.352i −0.250352 + 0.770503i
\(701\) 672.521 218.515i 0.959373 0.311719i 0.212855 0.977084i \(-0.431724\pi\)
0.746519 + 0.665365i \(0.231724\pi\)
\(702\) 58.6554 + 49.3353i 0.0835547 + 0.0702783i
\(703\) 149.844 0.213149
\(704\) 0 0
\(705\) 87.1843 183.976i 0.123666 0.260959i
\(706\) 95.1701 69.1451i 0.134802 0.0979393i
\(707\) −424.013 + 137.770i −0.599736 + 0.194866i
\(708\) −296.236 + 313.745i −0.418413 + 0.443143i
\(709\) −739.545 537.311i −1.04308 0.757843i −0.0721966 0.997390i \(-0.523001\pi\)
−0.970885 + 0.239548i \(0.923001\pi\)
\(710\) −2.58474 + 3.55759i −0.00364048 + 0.00501069i
\(711\) 948.244 369.484i 1.33368 0.519668i
\(712\) −32.3317 99.5069i −0.0454098 0.139757i
\(713\) 289.483 + 398.439i 0.406007 + 0.558820i
\(714\) 245.038 517.078i 0.343190 0.724199i
\(715\) 0 0
\(716\) 306.812i 0.428509i
\(717\) −385.645 + 72.4796i −0.537860 + 0.101087i
\(718\) −126.753 390.105i −0.176536 0.543321i
\(719\) 801.511 + 260.427i 1.11476 + 0.362207i 0.807765 0.589505i \(-0.200677\pi\)
0.306993 + 0.951712i \(0.400677\pi\)
\(720\) 621.465 35.7075i 0.863146 0.0495938i
\(721\) −399.114 289.974i −0.553557 0.402183i
\(722\) 165.091 + 53.6412i 0.228657 + 0.0742953i
\(723\) −400.256 51.6701i −0.553604 0.0714663i
\(724\) 309.520 224.879i 0.427513 0.310607i
\(725\) 276.482i 0.381355i
\(726\) 0 0
\(727\) 958.596 1.31856 0.659282 0.751895i \(-0.270860\pi\)
0.659282 + 0.751895i \(0.270860\pi\)
\(728\) −117.777 162.107i −0.161782 0.222674i
\(729\) 523.207 + 507.638i 0.717704 + 0.696348i
\(730\) 127.567 392.612i 0.174750 0.537824i
\(731\) −1131.80 + 1557.78i −1.54828 + 2.13103i
\(732\) −218.924 + 119.580i −0.299076 + 0.163361i
\(733\) −311.526 + 958.778i −0.425001 + 1.30802i 0.477992 + 0.878364i \(0.341365\pi\)
−0.902993 + 0.429655i \(0.858635\pi\)
\(734\) 161.066 52.3334i 0.219436 0.0712989i
\(735\) 740.771 139.223i 1.00785 0.189419i
\(736\) 774.320 1.05207
\(737\) 0 0
\(738\) −135.760 165.935i −0.183957 0.224844i
\(739\) 916.677 666.005i 1.24043 0.901224i 0.242802 0.970076i \(-0.421933\pi\)
0.997627 + 0.0688515i \(0.0219335\pi\)
\(740\) 317.852 103.276i 0.429530 0.139563i
\(741\) 93.6454 + 88.4193i 0.126377 + 0.119324i
\(742\) 311.441 + 226.275i 0.419732 + 0.304953i
\(743\) −7.44321 + 10.2447i −0.0100178 + 0.0137883i −0.813997 0.580870i \(-0.802713\pi\)
0.803979 + 0.594658i \(0.202713\pi\)
\(744\) 186.571 197.598i 0.250767 0.265589i
\(745\) −396.959 1221.71i −0.532830 1.63988i
\(746\) −271.054 373.074i −0.363343 0.500099i
\(747\) −724.925 + 593.100i −0.970449 + 0.793976i
\(748\) 0 0
\(749\) 639.835i 0.854253i
\(750\) −19.2843 102.607i −0.0257124 0.136809i
\(751\) −59.2741 182.427i −0.0789270 0.242912i 0.903806 0.427943i \(-0.140762\pi\)
−0.982733 + 0.185031i \(0.940762\pi\)
\(752\) 105.983 + 34.4360i 0.140935 + 0.0457925i
\(753\) 581.808 + 1065.15i 0.772653 + 1.41455i
\(754\) 37.0879 + 26.9459i 0.0491882 + 0.0357373i
\(755\) 548.817 + 178.321i 0.726910 + 0.236187i
\(756\) −473.052 759.026i −0.625731 1.00400i
\(757\) −417.065 + 303.015i −0.550944 + 0.400284i −0.828133 0.560531i \(-0.810597\pi\)
0.277189 + 0.960815i \(0.410597\pi\)
\(758\) 77.4605i 0.102191i
\(759\) 0 0
\(760\) −342.582 −0.450766
\(761\) 605.245 + 833.048i 0.795328 + 1.09468i 0.993424 + 0.114493i \(0.0365242\pi\)
−0.198096 + 0.980183i \(0.563476\pi\)
\(762\) 37.9841 294.239i 0.0498480 0.386141i
\(763\) 109.181 336.025i 0.143095 0.440400i
\(764\) 59.5640 81.9828i 0.0779633 0.107307i
\(765\) 100.270 + 1745.14i 0.131072 + 2.28122i
\(766\) 126.732 390.041i 0.165447 0.509192i
\(767\) −161.333 + 52.4203i −0.210343 + 0.0683446i
\(768\) 4.62731 + 24.6207i 0.00602514 + 0.0320582i
\(769\) −1094.35 −1.42308 −0.711539 0.702647i \(-0.752001\pi\)
−0.711539 + 0.702647i \(0.752001\pi\)
\(770\) 0 0
\(771\) −372.346 176.451i −0.482938 0.228860i
\(772\) −36.3248 + 26.3915i −0.0470529 + 0.0341859i
\(773\) −490.859 + 159.490i −0.635005 + 0.206326i −0.608791 0.793331i \(-0.708345\pi\)
−0.0262141 + 0.999656i \(0.508345\pi\)
\(774\) −143.072 367.181i −0.184848 0.474394i
\(775\) −244.626 177.732i −0.315647 0.229331i
\(776\) −573.041 + 788.723i −0.738455 + 1.01640i
\(777\) −297.441 280.841i −0.382806 0.361443i
\(778\) 95.7186 + 294.592i 0.123032 + 0.378653i
\(779\) −211.758 291.460i −0.271833 0.374147i
\(780\) 259.584 + 123.014i 0.332800 + 0.157710i
\(781\) 0 0
\(782\) 567.892i 0.726205i
\(783\) 333.691 + 280.669i 0.426169 + 0.358453i
\(784\) 127.491 + 392.378i 0.162617 + 0.500483i
\(785\) −411.925 133.843i −0.524745 0.170500i
\(786\) −312.017 + 170.430i −0.396969 + 0.216832i
\(787\) −587.721 427.004i −0.746786 0.542572i 0.148043 0.988981i \(-0.452703\pi\)
−0.894829 + 0.446409i \(0.852703\pi\)
\(788\) −1132.56 367.992i −1.43726 0.466995i
\(789\) 53.0051 410.597i 0.0671800 0.520401i
\(790\) −404.030 + 293.545i −0.511430 + 0.371576i
\(791\) 1594.77i 2.01614i
\(792\) 0 0
\(793\) −98.0678 −0.123667
\(794\) 131.112 + 180.461i 0.165129 + 0.227280i
\(795\) −1166.34 150.566i −1.46710 0.189392i
\(796\) 200.955 618.475i 0.252456 0.776978i
\(797\) 862.522 1187.16i 1.08221 1.48954i 0.225147 0.974325i \(-0.427714\pi\)
0.857064 0.515211i \(-0.172286\pi\)
\(798\) 94.3299 + 172.696i 0.118208 + 0.216411i
\(799\) −96.6996 + 297.611i −0.121026 + 0.372479i
\(800\) −452.136 + 146.908i −0.565170 + 0.183635i
\(801\) 46.6242 177.575i 0.0582075 0.221692i
\(802\) −171.519 −0.213864
\(803\) 0 0
\(804\) 140.123 295.687i 0.174283 0.367770i
\(805\) −1371.21 + 996.246i −1.70337 + 1.23757i
\(806\) 47.6825 15.4930i 0.0591594 0.0192221i
\(807\) −63.6279 + 67.3887i −0.0788449 + 0.0835052i
\(808\) −197.529 143.513i −0.244466 0.177615i
\(809\) 15.0886 20.7677i 0.0186510 0.0256709i −0.799590 0.600547i \(-0.794950\pi\)
0.818241 + 0.574876i \(0.194950\pi\)
\(810\) −311.599 175.743i −0.384690 0.216966i
\(811\) 203.045 + 624.909i 0.250364 + 0.770541i 0.994708 + 0.102744i \(0.0327624\pi\)
−0.744344 + 0.667797i \(0.767238\pi\)
\(812\) −314.433 432.780i −0.387233 0.532980i
\(813\) 257.565 543.513i 0.316808 0.668528i
\(814\) 0 0
\(815\) 907.588i 1.11360i
\(816\) −940.338 + 176.731i −1.15238 + 0.216582i
\(817\) −204.627 629.777i −0.250461 0.770841i
\(818\) −293.692 95.4262i −0.359036 0.116658i
\(819\) −20.1689 351.026i −0.0246262 0.428603i
\(820\) −650.070 472.303i −0.792768 0.575979i
\(821\) 895.899 + 291.095i 1.09123 + 0.354562i 0.798721 0.601701i \(-0.205510\pi\)
0.292508 + 0.956263i \(0.405510\pi\)
\(822\) 164.602 + 21.2490i 0.200246 + 0.0258503i
\(823\) 165.283 120.085i 0.200830 0.145912i −0.482825 0.875717i \(-0.660389\pi\)
0.683655 + 0.729805i \(0.260389\pi\)
\(824\) 270.172i 0.327878i
\(825\) 0 0
\(826\) −259.183 −0.313781
\(827\) −68.2953 94.0004i −0.0825820 0.113664i 0.765727 0.643165i \(-0.222379\pi\)
−0.848309 + 0.529501i \(0.822379\pi\)
\(828\) 746.859 + 479.688i 0.902004 + 0.579334i
\(829\) 468.065 1440.56i 0.564614 1.73770i −0.104482 0.994527i \(-0.533319\pi\)
0.669096 0.743176i \(-0.266681\pi\)
\(830\) 270.166 371.852i 0.325501 0.448014i
\(831\) 420.227 229.536i 0.505688 0.276217i
\(832\) −30.5913 + 94.1505i −0.0367684 + 0.113162i
\(833\) −1101.84 + 358.009i −1.32273 + 0.429782i
\(834\) −1.36643 + 0.256811i −0.00163840 + 0.000307927i
\(835\) −891.721 −1.06793
\(836\) 0 0
\(837\) 462.837 114.821i 0.552972 0.137181i
\(838\) −162.827 + 118.301i −0.194304 + 0.141170i
\(839\) −800.614 + 260.135i −0.954248 + 0.310054i −0.744441 0.667689i \(-0.767284\pi\)
−0.209807 + 0.977743i \(0.567284\pi\)
\(840\) 680.028 + 642.077i 0.809557 + 0.764378i
\(841\) −469.390 341.032i −0.558133 0.405508i
\(842\) −91.5934 + 126.068i −0.108781 + 0.149724i
\(843\) −818.123 + 866.479i −0.970490 + 1.02785i
\(844\) −196.742 605.509i −0.233106 0.717428i
\(845\) −578.312 795.979i −0.684393 0.941987i
\(846\) −40.5532 49.5667i −0.0479352 0.0585895i
\(847\) 0 0
\(848\) 643.713i 0.759095i
\(849\) 37.4539 + 199.282i 0.0441153 + 0.234726i
\(850\) −107.743 331.599i −0.126757 0.390117i
\(851\) 386.125 + 125.459i 0.453730 + 0.147426i
\(852\) −5.06439 9.27173i −0.00594412 0.0108823i
\(853\) 292.677 + 212.642i 0.343115 + 0.249287i 0.745975 0.665974i \(-0.231984\pi\)
−0.402860 + 0.915262i \(0.631984\pi\)
\(854\) −142.503 46.3019i −0.166865 0.0542177i
\(855\) −505.801 324.863i −0.591580 0.379956i
\(856\) −283.482 + 205.962i −0.331171 + 0.240610i
\(857\) 519.778i 0.606509i 0.952910 + 0.303254i \(0.0980732\pi\)
−0.952910 + 0.303254i \(0.901927\pi\)
\(858\) 0 0
\(859\) −1258.77 −1.46538 −0.732692 0.680560i \(-0.761737\pi\)
−0.732692 + 0.680560i \(0.761737\pi\)
\(860\) −868.120 1194.86i −1.00944 1.38938i
\(861\) −125.921 + 975.434i −0.146250 + 1.13291i
\(862\) 117.546 361.768i 0.136364 0.419685i
\(863\) 667.030 918.087i 0.772920 1.06383i −0.223109 0.974794i \(-0.571620\pi\)
0.996028 0.0890389i \(-0.0283796\pi\)
\(864\) 281.677 694.821i 0.326015 0.804191i
\(865\) 2.12242 6.53213i 0.00245366 0.00755159i
\(866\) 186.573 60.6213i 0.215442 0.0700015i
\(867\) −336.134 1788.48i −0.387697 2.06284i
\(868\) −585.043 −0.674012
\(869\) 0 0
\(870\) −193.361 91.6318i −0.222254 0.105324i
\(871\) 104.068 75.6102i 0.119482 0.0868085i
\(872\) 184.023 59.7927i 0.211036 0.0685696i
\(873\) −1593.99 + 621.098i −1.82587 + 0.711453i
\(874\) −157.999 114.793i −0.180777 0.131342i
\(875\) −281.517 + 387.474i −0.321733 + 0.442828i
\(876\) 721.129 + 680.884i 0.823207 + 0.777265i
\(877\) 451.922 + 1390.87i 0.515304 + 1.58594i 0.782728 + 0.622364i \(0.213828\pi\)
−0.267423 + 0.963579i \(0.586172\pi\)
\(878\) 71.9196 + 98.9888i 0.0819130 + 0.112744i
\(879\) 991.181 + 469.710i 1.12762 + 0.534369i
\(880\) 0 0
\(881\) 1493.59i 1.69534i −0.530526 0.847668i \(-0.678006\pi\)
0.530526 0.847668i \(-0.321994\pi\)
\(882\) 60.2129 229.329i 0.0682686 0.260011i
\(883\) 410.383 + 1263.03i 0.464760 + 1.43038i 0.859285 + 0.511498i \(0.170909\pi\)
−0.394525 + 0.918885i \(0.629091\pi\)
\(884\) −419.919 136.440i −0.475022 0.154344i
\(885\) 694.876 379.555i 0.785170 0.428875i
\(886\) 154.857 + 112.510i 0.174782 + 0.126987i
\(887\) −792.059 257.356i −0.892964 0.290142i −0.173634 0.984810i \(-0.555551\pi\)
−0.719330 + 0.694668i \(0.755551\pi\)
\(888\) 28.6824 222.185i 0.0323000 0.250208i
\(889\) −1101.08 + 799.981i −1.23856 + 0.899866i
\(890\) 90.0949i 0.101230i
\(891\) 0 0
\(892\) 930.411 1.04306
\(893\) −63.2546 87.0625i −0.0708339 0.0974944i
\(894\) −400.764 51.7357i −0.448281 0.0578699i
\(895\) −173.972 + 535.430i −0.194382 + 0.598246i
\(896\) −700.354 + 963.954i −0.781645 + 1.07584i
\(897\) 167.279 + 306.249i 0.186488 + 0.341415i
\(898\) 58.3978 179.730i 0.0650310 0.200145i
\(899\) 271.266 88.1396i 0.301742 0.0980419i
\(900\) −527.109 138.398i −0.585677 0.153776i
\(901\) 1807.61 2.00622
\(902\) 0 0
\(903\) −774.160 + 1633.63i −0.857320 + 1.80911i
\(904\) −706.569 + 513.352i −0.781603 + 0.567868i
\(905\) −667.668 + 216.938i −0.737754 + 0.239711i
\(906\) 124.621 131.987i 0.137551 0.145681i
\(907\) −442.323 321.366i −0.487677 0.354318i 0.316614 0.948555i \(-0.397454\pi\)
−0.804290 + 0.594237i \(0.797454\pi\)
\(908\) −18.7708 + 25.8358i −0.0206727 + 0.0284535i
\(909\) −155.549 399.200i −0.171121 0.439164i
\(910\) 53.3186 + 164.098i 0.0585919 + 0.180327i
\(911\) 32.7594 + 45.0894i 0.0359598 + 0.0494944i 0.826618 0.562763i \(-0.190262\pi\)
−0.790658 + 0.612257i \(0.790262\pi\)
\(912\) 140.909 297.345i 0.154505 0.326037i
\(913\) 0 0
\(914\) 235.612i 0.257781i
\(915\) 449.858 84.5479i 0.491648 0.0924021i
\(916\) −385.191 1185.50i −0.420515 1.29421i
\(917\) 1551.15 + 503.999i 1.69155 + 0.549617i
\(918\) 509.587 + 206.584i 0.555106 + 0.225037i
\(919\) 864.120 + 627.820i 0.940283 + 0.683155i 0.948489 0.316811i \(-0.102612\pi\)
−0.00820611 + 0.999966i \(0.502612\pi\)
\(920\) −882.783 286.834i −0.959547 0.311776i
\(921\) 1440.53 + 185.961i 1.56409 + 0.201912i
\(922\) −36.9687 + 26.8593i −0.0400962 + 0.0291316i
\(923\) 4.15331i 0.00449979i
\(924\) 0 0
\(925\) −249.266 −0.269477
\(926\) −301.872 415.491i −0.325995 0.448694i
\(927\) 256.197 398.891i 0.276372 0.430303i
\(928\) 138.576 426.493i 0.149328 0.459583i
\(929\) 494.520 680.648i 0.532314 0.732667i −0.455167 0.890406i \(-0.650420\pi\)
0.987481 + 0.157739i \(0.0504204\pi\)
\(930\) −205.373 + 112.179i −0.220831 + 0.120622i
\(931\) 123.119 378.921i 0.132244 0.407004i
\(932\) 119.086 38.6934i 0.127775 0.0415165i
\(933\) −991.104 + 186.272i −1.06228 + 0.199648i
\(934\) 196.924 0.210839
\(935\) 0 0
\(936\) 149.031 121.930i 0.159221 0.130268i
\(937\) 1014.10 736.790i 1.08229 0.786329i 0.104208 0.994556i \(-0.466769\pi\)
0.978081 + 0.208227i \(0.0667693\pi\)
\(938\) 186.921 60.7343i 0.199276 0.0647487i
\(939\) 1066.87 + 1007.33i 1.13618 + 1.07277i
\(940\) −194.183 141.082i −0.206578 0.150088i
\(941\) −802.302 + 1104.27i −0.852605 + 1.17351i 0.130677 + 0.991425i \(0.458285\pi\)
−0.983283 + 0.182086i \(0.941715\pi\)
\(942\) −93.5370 + 99.0656i −0.0992962 + 0.105165i
\(943\) −301.638 928.348i −0.319871 0.984462i
\(944\) 254.742 + 350.622i 0.269853 + 0.371421i
\(945\) 395.151 + 1592.84i 0.418149 + 1.68555i
\(946\) 0 0
\(947\) 1289.80i 1.36199i −0.732289 0.680994i \(-0.761548\pi\)
0.732289 0.680994i \(-0.238452\pi\)
\(948\) −221.618 1179.17i −0.233774 1.24385i
\(949\) 120.486 + 370.816i 0.126961 + 0.390744i
\(950\) 114.037 + 37.0528i 0.120039 + 0.0390030i
\(951\) 224.807 + 411.569i 0.236390 + 0.432775i
\(952\) −1162.99 844.964i −1.22163 0.887567i
\(953\) −630.883 204.986i −0.661997 0.215096i −0.0413004 0.999147i \(-0.513150\pi\)
−0.620696 + 0.784051i \(0.713150\pi\)
\(954\) −199.918 + 311.266i −0.209558 + 0.326275i
\(955\) −150.434 + 109.297i −0.157523 + 0.114447i
\(956\) 462.623i 0.483915i
\(957\) 0 0
\(958\) 113.059 0.118015
\(959\) −447.523 615.962i −0.466656 0.642296i
\(960\) 59.1583 458.262i 0.0616232 0.477356i
\(961\) −200.571 + 617.295i −0.208711 + 0.642347i
\(962\) 24.2934 33.4370i 0.0252530 0.0347578i
\(963\) −613.852 + 35.2701i −0.637437 + 0.0366252i
\(964\) −147.031 + 452.516i −0.152522 + 0.469415i
\(965\) 78.3566 25.4596i 0.0811986 0.0263830i
\(966\) 98.4809 + 523.991i 0.101947 + 0.542434i
\(967\) 101.038 0.104486 0.0522428 0.998634i \(-0.483363\pi\)
0.0522428 + 0.998634i \(0.483363\pi\)
\(968\) 0 0
\(969\) 834.975 + 395.686i 0.861687 + 0.408345i
\(970\) 679.169 493.445i 0.700174 0.508706i
\(971\) −611.753 + 198.771i −0.630024 + 0.204707i −0.606586 0.795018i \(-0.707461\pi\)
−0.0234383 + 0.999725i \(0.507461\pi\)
\(972\) 702.126 495.682i 0.722352 0.509961i
\(973\) 5.16004 + 3.74899i 0.00530323 + 0.00385302i
\(974\) 8.22387 11.3192i 0.00844340 0.0116213i
\(975\) −155.780 147.086i −0.159774 0.150857i
\(976\) 77.4235 + 238.285i 0.0793273 + 0.244144i
\(977\) −882.805 1215.08i −0.903588 1.24368i −0.969309 0.245844i \(-0.920935\pi\)
0.0657216 0.997838i \(-0.479065\pi\)
\(978\) 257.995 + 122.261i 0.263798 + 0.125011i
\(979\) 0 0
\(980\) 888.634i 0.906769i
\(981\) 328.398 + 86.2245i 0.334758 + 0.0878945i
\(982\) 100.644 + 309.750i 0.102489 + 0.315428i
\(983\) 693.417 + 225.305i 0.705409 + 0.229201i 0.639686 0.768637i \(-0.279065\pi\)
0.0657234 + 0.997838i \(0.479065\pi\)
\(984\) −472.704 + 258.200i −0.480391 + 0.262399i
\(985\) 1767.82 + 1284.39i 1.79474 + 1.30395i
\(986\) 312.793 + 101.633i 0.317234 + 0.103076i
\(987\) −37.6142 + 291.373i −0.0381096 + 0.295211i
\(988\) 122.842 89.2502i 0.124334 0.0903342i
\(989\) 1794.17i 1.81412i
\(990\) 0 0
\(991\) 1823.31 1.83987 0.919936 0.392069i \(-0.128241\pi\)
0.919936 + 0.392069i \(0.128241\pi\)
\(992\) −288.272 396.772i −0.290597 0.399972i
\(993\) 119.843 + 15.4709i 0.120688 + 0.0155799i
\(994\) 1.96095 6.03518i 0.00197279 0.00607161i
\(995\) −701.387 + 965.376i −0.704912 + 0.970228i
\(996\) 529.348 + 969.113i 0.531474 + 0.973005i
\(997\) 3.39072 10.4356i 0.00340093 0.0104670i −0.949342 0.314246i \(-0.898248\pi\)
0.952743 + 0.303779i \(0.0982484\pi\)
\(998\) −165.009 + 53.6147i −0.165340 + 0.0537221i
\(999\) 253.040 300.843i 0.253294 0.301144i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.245.4 24
3.2 odd 2 inner 363.3.h.q.245.3 24
11.2 odd 10 363.3.b.k.122.4 yes 6
11.3 even 5 inner 363.3.h.q.269.4 24
11.4 even 5 inner 363.3.h.q.323.3 24
11.5 even 5 inner 363.3.h.q.251.3 24
11.6 odd 10 363.3.h.p.251.4 24
11.7 odd 10 363.3.h.p.323.4 24
11.8 odd 10 363.3.h.p.269.3 24
11.9 even 5 363.3.b.j.122.3 6
11.10 odd 2 363.3.h.p.245.3 24
33.2 even 10 363.3.b.k.122.3 yes 6
33.5 odd 10 inner 363.3.h.q.251.4 24
33.8 even 10 363.3.h.p.269.4 24
33.14 odd 10 inner 363.3.h.q.269.3 24
33.17 even 10 363.3.h.p.251.3 24
33.20 odd 10 363.3.b.j.122.4 yes 6
33.26 odd 10 inner 363.3.h.q.323.4 24
33.29 even 10 363.3.h.p.323.3 24
33.32 even 2 363.3.h.p.245.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.3 6 11.9 even 5
363.3.b.j.122.4 yes 6 33.20 odd 10
363.3.b.k.122.3 yes 6 33.2 even 10
363.3.b.k.122.4 yes 6 11.2 odd 10
363.3.h.p.245.3 24 11.10 odd 2
363.3.h.p.245.4 24 33.32 even 2
363.3.h.p.251.3 24 33.17 even 10
363.3.h.p.251.4 24 11.6 odd 10
363.3.h.p.269.3 24 11.8 odd 10
363.3.h.p.269.4 24 33.8 even 10
363.3.h.p.323.3 24 33.29 even 10
363.3.h.p.323.4 24 11.7 odd 10
363.3.h.q.245.3 24 3.2 odd 2 inner
363.3.h.q.245.4 24 1.1 even 1 trivial
363.3.h.q.251.3 24 11.5 even 5 inner
363.3.h.q.251.4 24 33.5 odd 10 inner
363.3.h.q.269.3 24 33.14 odd 10 inner
363.3.h.q.269.4 24 11.3 even 5 inner
363.3.h.q.323.3 24 11.4 even 5 inner
363.3.h.q.323.4 24 33.26 odd 10 inner