Properties

Label 363.3.h.q.245.3
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.3
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.q.323.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.399998 - 0.550550i) q^{2} +(-2.18131 + 2.05958i) q^{3} +(1.09296 - 3.36379i) q^{4} +(3.81474 - 5.25053i) q^{5} +(2.00642 + 0.377094i) q^{6} +(2.89410 - 8.90713i) q^{7} +(-4.87795 + 1.58494i) q^{8} +(0.516261 - 8.98518i) q^{9} -4.41657 q^{10} +(4.54390 + 9.58852i) q^{12} +(3.37472 - 2.45188i) q^{13} +(-6.06145 + 1.96948i) q^{14} +(2.49276 + 19.3098i) q^{15} +(-8.62188 - 6.26416i) q^{16} +(-17.5904 + 24.2111i) q^{17} +(-5.15329 + 3.30982i) q^{18} +(3.18032 + 9.78800i) q^{19} +(-13.4923 - 18.5706i) q^{20} +(12.0320 + 25.3899i) q^{21} -27.8850i q^{23} +(7.37603 - 13.5038i) q^{24} +(-5.29047 - 16.2824i) q^{25} +(-2.69976 - 0.877206i) q^{26} +(17.3796 + 20.6628i) q^{27} +(-26.7986 - 19.4703i) q^{28} +(-15.3590 - 4.99043i) q^{29} +(9.63392 - 9.09627i) q^{30} +(14.2887 - 10.3813i) q^{31} +27.7684i q^{32} +20.3655 q^{34} +(-35.7270 - 49.1739i) q^{35} +(-29.6600 - 11.5570i) q^{36} +(4.49918 - 13.8470i) q^{37} +(4.11666 - 5.66610i) q^{38} +(-2.31149 + 12.2988i) q^{39} +(-10.2863 + 31.6580i) q^{40} +(33.2920 - 10.8172i) q^{41} +(9.16562 - 16.7801i) q^{42} -64.3417 q^{43} +(-45.2076 - 36.9867i) q^{45} +(-15.3521 + 11.1539i) q^{46} +(9.94471 - 3.23123i) q^{47} +(31.7086 - 4.09335i) q^{48} +(-31.3193 - 22.7548i) q^{49} +(-6.84809 + 9.42559i) q^{50} +(-11.4945 - 89.0408i) q^{51} +(-4.55916 - 14.0317i) q^{52} +(-35.5031 - 48.8658i) q^{53} +(4.42410 - 17.8334i) q^{54} +48.0356i q^{56} +(-27.0964 - 14.8006i) q^{57} +(3.39607 + 10.4520i) q^{58} +(38.6761 + 12.5666i) q^{59} +(67.6786 + 12.7198i) q^{60} +(-19.0197 - 13.8186i) q^{61} +(-11.4309 - 3.71411i) q^{62} +(-78.5381 - 30.6024i) q^{63} +(-19.1997 + 13.9494i) q^{64} -27.0724i q^{65} +30.8376 q^{67} +(62.2154 + 85.6321i) q^{68} +(57.4314 + 60.8259i) q^{69} +(-12.7820 + 39.3389i) q^{70} +(-0.585238 + 0.805511i) q^{71} +(11.7227 + 44.6475i) q^{72} +(-28.8838 + 88.8953i) q^{73} +(-9.42314 + 3.06176i) q^{74} +(45.0751 + 24.6209i) q^{75} +36.4007 q^{76} +(7.69570 - 3.64691i) q^{78} +(91.4806 - 66.4645i) q^{79} +(-65.7804 + 21.3733i) q^{80} +(-80.4669 - 9.27740i) q^{81} +(-19.2722 - 14.0020i) q^{82} +(61.1711 - 84.1948i) q^{83} +(98.5567 - 12.7230i) q^{84} +(60.0184 + 184.718i) q^{85} +(25.7365 + 35.4233i) q^{86} +(43.7809 - 20.7473i) q^{87} +20.3993i q^{89} +(-2.28010 + 39.6836i) q^{90} +(-12.0724 - 37.1551i) q^{91} +(-93.7992 - 30.4772i) q^{92} +(-9.78689 + 52.0735i) q^{93} +(-5.75681 - 4.18257i) q^{94} +(63.5243 + 20.6403i) q^{95} +(-57.1912 - 60.5715i) q^{96} +(-153.778 + 111.726i) q^{97} +26.3447i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.399998 0.550550i −0.199999 0.275275i 0.697224 0.716854i \(-0.254418\pi\)
−0.897222 + 0.441579i \(0.854418\pi\)
\(3\) −2.18131 + 2.05958i −0.727105 + 0.686527i
\(4\) 1.09296 3.36379i 0.273240 0.840947i
\(5\) 3.81474 5.25053i 0.762947 1.05011i −0.234016 0.972233i \(-0.575187\pi\)
0.996963 0.0778742i \(-0.0248132\pi\)
\(6\) 2.00642 + 0.377094i 0.334404 + 0.0628491i
\(7\) 2.89410 8.90713i 0.413443 1.27245i −0.500193 0.865914i \(-0.666738\pi\)
0.913636 0.406533i \(-0.133262\pi\)
\(8\) −4.87795 + 1.58494i −0.609744 + 0.198118i
\(9\) 0.516261 8.98518i 0.0573624 0.998353i
\(10\) −4.41657 −0.441657
\(11\) 0 0
\(12\) 4.54390 + 9.58852i 0.378658 + 0.799043i
\(13\) 3.37472 2.45188i 0.259594 0.188606i −0.450374 0.892840i \(-0.648709\pi\)
0.709968 + 0.704234i \(0.248709\pi\)
\(14\) −6.06145 + 1.96948i −0.432961 + 0.140677i
\(15\) 2.49276 + 19.3098i 0.166184 + 1.28732i
\(16\) −8.62188 6.26416i −0.538867 0.391510i
\(17\) −17.5904 + 24.2111i −1.03473 + 1.42418i −0.133391 + 0.991064i \(0.542587\pi\)
−0.901337 + 0.433118i \(0.857413\pi\)
\(18\) −5.15329 + 3.30982i −0.286294 + 0.183879i
\(19\) 3.18032 + 9.78800i 0.167385 + 0.515158i 0.999204 0.0398887i \(-0.0127003\pi\)
−0.831819 + 0.555047i \(0.812700\pi\)
\(20\) −13.4923 18.5706i −0.674617 0.928530i
\(21\) 12.0320 + 25.3899i 0.572952 + 1.20904i
\(22\) 0 0
\(23\) 27.8850i 1.21239i −0.795316 0.606195i \(-0.792695\pi\)
0.795316 0.606195i \(-0.207305\pi\)
\(24\) 7.37603 13.5038i 0.307335 0.562658i
\(25\) −5.29047 16.2824i −0.211619 0.651296i
\(26\) −2.69976 0.877206i −0.103837 0.0337387i
\(27\) 17.3796 + 20.6628i 0.643688 + 0.765288i
\(28\) −26.7986 19.4703i −0.957092 0.695368i
\(29\) −15.3590 4.99043i −0.529619 0.172084i 0.0319872 0.999488i \(-0.489816\pi\)
−0.561606 + 0.827405i \(0.689816\pi\)
\(30\) 9.63392 9.09627i 0.321131 0.303209i
\(31\) 14.2887 10.3813i 0.460924 0.334881i −0.332969 0.942938i \(-0.608051\pi\)
0.793894 + 0.608057i \(0.208051\pi\)
\(32\) 27.7684i 0.867761i
\(33\) 0 0
\(34\) 20.3655 0.598986
\(35\) −35.7270 49.1739i −1.02077 1.40497i
\(36\) −29.6600 11.5570i −0.823889 0.321029i
\(37\) 4.49918 13.8470i 0.121599 0.374244i −0.871667 0.490099i \(-0.836961\pi\)
0.993266 + 0.115855i \(0.0369607\pi\)
\(38\) 4.11666 5.66610i 0.108333 0.149108i
\(39\) −2.31149 + 12.2988i −0.0592689 + 0.315355i
\(40\) −10.2863 + 31.6580i −0.257158 + 0.791450i
\(41\) 33.2920 10.8172i 0.812001 0.263835i 0.126556 0.991959i \(-0.459608\pi\)
0.685445 + 0.728125i \(0.259608\pi\)
\(42\) 9.16562 16.7801i 0.218229 0.399526i
\(43\) −64.3417 −1.49632 −0.748159 0.663519i \(-0.769062\pi\)
−0.748159 + 0.663519i \(0.769062\pi\)
\(44\) 0 0
\(45\) −45.2076 36.9867i −1.00461 0.821928i
\(46\) −15.3521 + 11.1539i −0.333741 + 0.242477i
\(47\) 9.94471 3.23123i 0.211590 0.0687496i −0.201304 0.979529i \(-0.564518\pi\)
0.412894 + 0.910779i \(0.364518\pi\)
\(48\) 31.7086 4.09335i 0.660595 0.0852780i
\(49\) −31.3193 22.7548i −0.639170 0.464384i
\(50\) −6.84809 + 9.42559i −0.136962 + 0.188512i
\(51\) −11.4945 89.0408i −0.225383 1.74590i
\(52\) −4.55916 14.0317i −0.0876762 0.269840i
\(53\) −35.5031 48.8658i −0.669870 0.921997i 0.329888 0.944020i \(-0.392989\pi\)
−0.999757 + 0.0220234i \(0.992989\pi\)
\(54\) 4.42410 17.8334i 0.0819277 0.330248i
\(55\) 0 0
\(56\) 48.0356i 0.857778i
\(57\) −27.0964 14.8006i −0.475376 0.259660i
\(58\) 3.39607 + 10.4520i 0.0585529 + 0.180207i
\(59\) 38.6761 + 12.5666i 0.655528 + 0.212994i 0.617850 0.786296i \(-0.288004\pi\)
0.0376779 + 0.999290i \(0.488004\pi\)
\(60\) 67.6786 + 12.7198i 1.12798 + 0.211996i
\(61\) −19.0197 13.8186i −0.311798 0.226535i 0.420869 0.907121i \(-0.361725\pi\)
−0.732668 + 0.680586i \(0.761725\pi\)
\(62\) −11.4309 3.71411i −0.184369 0.0599050i
\(63\) −78.5381 30.6024i −1.24664 0.485753i
\(64\) −19.1997 + 13.9494i −0.299995 + 0.217959i
\(65\) 27.0724i 0.416498i
\(66\) 0 0
\(67\) 30.8376 0.460263 0.230132 0.973159i \(-0.426084\pi\)
0.230132 + 0.973159i \(0.426084\pi\)
\(68\) 62.2154 + 85.6321i 0.914932 + 1.25930i
\(69\) 57.4314 + 60.8259i 0.832339 + 0.881535i
\(70\) −12.7820 + 39.3389i −0.182600 + 0.561985i
\(71\) −0.585238 + 0.805511i −0.00824279 + 0.0113452i −0.813118 0.582098i \(-0.802232\pi\)
0.804876 + 0.593443i \(0.202232\pi\)
\(72\) 11.7227 + 44.6475i 0.162815 + 0.620105i
\(73\) −28.8838 + 88.8953i −0.395669 + 1.21774i 0.532771 + 0.846260i \(0.321151\pi\)
−0.928439 + 0.371484i \(0.878849\pi\)
\(74\) −9.42314 + 3.06176i −0.127340 + 0.0413752i
\(75\) 45.0751 + 24.6209i 0.601001 + 0.328278i
\(76\) 36.4007 0.478957
\(77\) 0 0
\(78\) 7.69570 3.64691i 0.0986629 0.0467553i
\(79\) 91.4806 66.4645i 1.15798 0.841323i 0.168460 0.985708i \(-0.446121\pi\)
0.989522 + 0.144385i \(0.0461205\pi\)
\(80\) −65.7804 + 21.3733i −0.822255 + 0.267167i
\(81\) −80.4669 9.27740i −0.993419 0.114536i
\(82\) −19.2722 14.0020i −0.235026 0.170757i
\(83\) 61.1711 84.1948i 0.737001 1.01439i −0.261784 0.965126i \(-0.584311\pi\)
0.998786 0.0492686i \(-0.0156890\pi\)
\(84\) 98.5567 12.7230i 1.17329 0.151464i
\(85\) 60.0184 + 184.718i 0.706099 + 2.17315i
\(86\) 25.7365 + 35.4233i 0.299262 + 0.411899i
\(87\) 43.7809 20.7473i 0.503228 0.238475i
\(88\) 0 0
\(89\) 20.3993i 0.229206i 0.993411 + 0.114603i \(0.0365595\pi\)
−0.993411 + 0.114603i \(0.963440\pi\)
\(90\) −2.28010 + 39.6836i −0.0253345 + 0.440929i
\(91\) −12.0724 37.1551i −0.132664 0.408298i
\(92\) −93.7992 30.4772i −1.01956 0.331274i
\(93\) −9.78689 + 52.0735i −0.105235 + 0.559930i
\(94\) −5.75681 4.18257i −0.0612427 0.0444954i
\(95\) 63.5243 + 20.6403i 0.668677 + 0.217266i
\(96\) −57.1912 60.5715i −0.595741 0.630953i
\(97\) −153.778 + 111.726i −1.58534 + 1.15181i −0.675100 + 0.737726i \(0.735900\pi\)
−0.910237 + 0.414089i \(0.864100\pi\)
\(98\) 26.3447i 0.268824i
\(99\) 0 0
\(100\) −60.5528 −0.605528
\(101\) 27.9808 + 38.5123i 0.277038 + 0.381310i 0.924750 0.380575i \(-0.124274\pi\)
−0.647712 + 0.761885i \(0.724274\pi\)
\(102\) −44.4236 + 41.9444i −0.435525 + 0.411220i
\(103\) 16.2776 50.0973i 0.158035 0.486382i −0.840421 0.541935i \(-0.817692\pi\)
0.998456 + 0.0555527i \(0.0176921\pi\)
\(104\) −12.5756 + 17.3089i −0.120920 + 0.166432i
\(105\) 179.209 + 33.6813i 1.70676 + 0.320774i
\(106\) −12.7019 + 39.0924i −0.119829 + 0.368797i
\(107\) 64.9745 21.1115i 0.607238 0.197304i 0.0107723 0.999942i \(-0.496571\pi\)
0.596466 + 0.802638i \(0.296571\pi\)
\(108\) 88.5004 35.8776i 0.819448 0.332200i
\(109\) 37.7254 0.346105 0.173053 0.984913i \(-0.444637\pi\)
0.173053 + 0.984913i \(0.444637\pi\)
\(110\) 0 0
\(111\) 18.7050 + 39.4711i 0.168513 + 0.355596i
\(112\) −80.7483 + 58.6671i −0.720967 + 0.523813i
\(113\) 161.947 52.6196i 1.43316 0.465661i 0.513399 0.858150i \(-0.328386\pi\)
0.919757 + 0.392489i \(0.128386\pi\)
\(114\) 2.69005 + 20.8381i 0.0235970 + 0.182791i
\(115\) −146.411 106.374i −1.27314 0.924990i
\(116\) −33.5735 + 46.2099i −0.289427 + 0.398361i
\(117\) −20.2883 31.5883i −0.173405 0.269985i
\(118\) −8.55181 26.3198i −0.0724730 0.223049i
\(119\) 164.743 + 226.749i 1.38439 + 1.90545i
\(120\) −42.7645 90.2415i −0.356371 0.752013i
\(121\) 0 0
\(122\) 15.9987i 0.131137i
\(123\) −50.3414 + 92.1634i −0.409280 + 0.749296i
\(124\) −19.3036 59.4104i −0.155674 0.479116i
\(125\) 48.6363 + 15.8029i 0.389090 + 0.126423i
\(126\) 14.5669 + 55.4800i 0.115610 + 0.440317i
\(127\) −117.567 85.4178i −0.925728 0.672581i 0.0192151 0.999815i \(-0.493883\pi\)
−0.944943 + 0.327235i \(0.893883\pi\)
\(128\) 120.997 + 39.3142i 0.945287 + 0.307142i
\(129\) 140.349 132.517i 1.08798 1.02726i
\(130\) −14.9047 + 10.8289i −0.114651 + 0.0832991i
\(131\) 174.147i 1.32936i −0.747126 0.664682i \(-0.768567\pi\)
0.747126 0.664682i \(-0.231433\pi\)
\(132\) 0 0
\(133\) 96.3872 0.724716
\(134\) −12.3350 16.9777i −0.0920521 0.126699i
\(135\) 174.789 12.4290i 1.29473 0.0920664i
\(136\) 47.4319 145.980i 0.348764 1.07338i
\(137\) −47.7841 + 65.7692i −0.348789 + 0.480067i −0.946983 0.321285i \(-0.895885\pi\)
0.598194 + 0.801352i \(0.295885\pi\)
\(138\) 10.5153 55.9490i 0.0761976 0.405428i
\(139\) −0.210449 + 0.647694i −0.00151402 + 0.00465967i −0.951811 0.306686i \(-0.900780\pi\)
0.950297 + 0.311346i \(0.100780\pi\)
\(140\) −204.459 + 66.4327i −1.46042 + 0.474520i
\(141\) −15.0376 + 27.5303i −0.106649 + 0.195250i
\(142\) 0.677567 0.00477160
\(143\) 0 0
\(144\) −60.7358 + 74.2352i −0.421776 + 0.515522i
\(145\) −84.7928 + 61.6055i −0.584778 + 0.424866i
\(146\) 60.4947 19.6559i 0.414347 0.134630i
\(147\) 115.183 14.8692i 0.783555 0.101151i
\(148\) −41.6611 30.2686i −0.281494 0.204517i
\(149\) 116.342 160.131i 0.780817 1.07470i −0.214374 0.976752i \(-0.568771\pi\)
0.995191 0.0979512i \(-0.0312289\pi\)
\(150\) −4.47492 34.6644i −0.0298328 0.231096i
\(151\) −27.4763 84.5632i −0.181962 0.560021i 0.817921 0.575331i \(-0.195127\pi\)
−0.999883 + 0.0153094i \(0.995127\pi\)
\(152\) −31.0269 42.7048i −0.204124 0.280953i
\(153\) 208.460 + 170.552i 1.36248 + 1.11472i
\(154\) 0 0
\(155\) 114.625i 0.739516i
\(156\) 38.8443 + 21.2175i 0.249002 + 0.136010i
\(157\) 20.6228 + 63.4705i 0.131356 + 0.404271i 0.995005 0.0998213i \(-0.0318271\pi\)
−0.863650 + 0.504092i \(0.831827\pi\)
\(158\) −73.1840 23.7789i −0.463190 0.150500i
\(159\) 178.087 + 33.4702i 1.12004 + 0.210505i
\(160\) 145.799 + 105.929i 0.911242 + 0.662056i
\(161\) −248.375 80.7020i −1.54270 0.501255i
\(162\) 27.0789 + 48.0120i 0.167154 + 0.296370i
\(163\) 113.136 82.1980i 0.694085 0.504282i −0.183915 0.982942i \(-0.558877\pi\)
0.878001 + 0.478660i \(0.158877\pi\)
\(164\) 123.810i 0.754940i
\(165\) 0 0
\(166\) −70.8217 −0.426637
\(167\) −80.7610 111.158i −0.483599 0.665617i 0.495593 0.868555i \(-0.334951\pi\)
−0.979192 + 0.202938i \(0.934951\pi\)
\(168\) −98.9331 104.781i −0.588887 0.623694i
\(169\) −46.8468 + 144.180i −0.277200 + 0.853135i
\(170\) 77.6891 106.930i 0.456994 0.628999i
\(171\) 89.5889 23.5225i 0.523911 0.137559i
\(172\) −70.3230 + 216.432i −0.408855 + 1.25833i
\(173\) 1.00649 0.327028i 0.00581785 0.00189034i −0.306107 0.951997i \(-0.599026\pi\)
0.311924 + 0.950107i \(0.399026\pi\)
\(174\) −28.9347 15.8047i −0.166291 0.0908314i
\(175\) −160.341 −0.916232
\(176\) 0 0
\(177\) −110.247 + 52.2448i −0.622863 + 0.295168i
\(178\) 11.2308 8.15968i 0.0630945 0.0458409i
\(179\) −82.5005 + 26.8060i −0.460897 + 0.149754i −0.530257 0.847837i \(-0.677904\pi\)
0.0693597 + 0.997592i \(0.477904\pi\)
\(180\) −173.826 + 111.644i −0.965699 + 0.620243i
\(181\) 87.5116 + 63.5809i 0.483490 + 0.351276i 0.802675 0.596416i \(-0.203409\pi\)
−0.319185 + 0.947692i \(0.603409\pi\)
\(182\) −15.6268 + 21.5084i −0.0858614 + 0.118178i
\(183\) 69.9485 9.02984i 0.382232 0.0493434i
\(184\) 44.1961 + 136.022i 0.240196 + 0.739248i
\(185\) −55.5412 76.4459i −0.300223 0.413221i
\(186\) 32.5838 15.4411i 0.175182 0.0830168i
\(187\) 0 0
\(188\) 36.9835i 0.196721i
\(189\) 234.344 95.0019i 1.23992 0.502656i
\(190\) −14.0461 43.2294i −0.0739267 0.227523i
\(191\) −27.2489 8.85370i −0.142664 0.0463545i 0.236814 0.971555i \(-0.423897\pi\)
−0.379479 + 0.925200i \(0.623897\pi\)
\(192\) 13.1506 69.9712i 0.0684929 0.364433i
\(193\) −10.2703 7.46178i −0.0532137 0.0386621i 0.560860 0.827910i \(-0.310470\pi\)
−0.614074 + 0.789248i \(0.710470\pi\)
\(194\) 123.021 + 39.9721i 0.634131 + 0.206042i
\(195\) 55.7577 + 59.0533i 0.285937 + 0.302838i
\(196\) −110.773 + 80.4814i −0.565169 + 0.410620i
\(197\) 336.692i 1.70910i 0.519370 + 0.854549i \(0.326166\pi\)
−0.519370 + 0.854549i \(0.673834\pi\)
\(198\) 0 0
\(199\) 183.863 0.923932 0.461966 0.886898i \(-0.347144\pi\)
0.461966 + 0.886898i \(0.347144\pi\)
\(200\) 51.6134 + 71.0397i 0.258067 + 0.355199i
\(201\) −67.2666 + 63.5126i −0.334660 + 0.315983i
\(202\) 10.0107 30.8096i 0.0495577 0.152523i
\(203\) −88.9007 + 122.361i −0.437935 + 0.602765i
\(204\) −312.077 58.6530i −1.52979 0.287515i
\(205\) 70.2040 216.066i 0.342459 1.05398i
\(206\) −34.0921 + 11.0772i −0.165495 + 0.0537727i
\(207\) −250.552 14.3959i −1.21039 0.0695456i
\(208\) −44.4554 −0.213728
\(209\) 0 0
\(210\) −53.1401 112.136i −0.253048 0.533981i
\(211\) 145.630 105.806i 0.690187 0.501450i −0.186534 0.982448i \(-0.559726\pi\)
0.876722 + 0.480998i \(0.159726\pi\)
\(212\) −203.178 + 66.0165i −0.958386 + 0.311399i
\(213\) −0.382426 2.96242i −0.00179543 0.0139081i
\(214\) −37.6126 27.3271i −0.175760 0.127697i
\(215\) −245.447 + 337.828i −1.14161 + 1.57129i
\(216\) −117.526 73.2465i −0.544102 0.339104i
\(217\) −51.1149 157.315i −0.235553 0.724956i
\(218\) −15.0901 20.7697i −0.0692206 0.0952740i
\(219\) −120.082 253.397i −0.548321 1.15706i
\(220\) 0 0
\(221\) 124.835i 0.564865i
\(222\) 14.2489 26.0864i 0.0641841 0.117506i
\(223\) 81.2895 + 250.183i 0.364527 + 1.12190i 0.950277 + 0.311407i \(0.100800\pi\)
−0.585750 + 0.810492i \(0.699200\pi\)
\(224\) 247.336 + 80.3645i 1.10418 + 0.358770i
\(225\) −149.032 + 39.1299i −0.662363 + 0.173911i
\(226\) −93.7480 68.1119i −0.414814 0.301380i
\(227\) 8.58713 + 2.79013i 0.0378288 + 0.0122913i 0.327870 0.944723i \(-0.393669\pi\)
−0.290041 + 0.957014i \(0.593669\pi\)
\(228\) −79.4015 + 74.9702i −0.348252 + 0.328817i
\(229\) 285.121 207.153i 1.24507 0.904597i 0.247145 0.968979i \(-0.420508\pi\)
0.997925 + 0.0643820i \(0.0205076\pi\)
\(230\) 123.156i 0.535460i
\(231\) 0 0
\(232\) 82.8298 0.357025
\(233\) −20.8090 28.6411i −0.0893089 0.122923i 0.762025 0.647548i \(-0.224206\pi\)
−0.851333 + 0.524625i \(0.824206\pi\)
\(234\) −9.27564 + 23.8050i −0.0396395 + 0.101731i
\(235\) 20.9708 64.5413i 0.0892373 0.274644i
\(236\) 84.5431 116.364i 0.358233 0.493066i
\(237\) −62.6588 + 333.392i −0.264383 + 1.40672i
\(238\) 58.9399 181.398i 0.247647 0.762178i
\(239\) 124.397 40.4191i 0.520491 0.169118i −0.0369772 0.999316i \(-0.511773\pi\)
0.557468 + 0.830198i \(0.311773\pi\)
\(240\) 99.4676 182.102i 0.414448 0.758758i
\(241\) −134.526 −0.558198 −0.279099 0.960262i \(-0.590036\pi\)
−0.279099 + 0.960262i \(0.590036\pi\)
\(242\) 0 0
\(243\) 194.631 145.491i 0.800952 0.598729i
\(244\) −67.2707 + 48.8750i −0.275700 + 0.200308i
\(245\) −238.950 + 77.6395i −0.975306 + 0.316896i
\(246\) 70.8770 9.14970i 0.288118 0.0371939i
\(247\) 34.7317 + 25.2340i 0.140614 + 0.102162i
\(248\) −53.2456 + 73.2863i −0.214700 + 0.295509i
\(249\) 39.9725 + 309.642i 0.160532 + 1.24354i
\(250\) −10.7541 33.0978i −0.0430165 0.132391i
\(251\) −237.797 327.300i −0.947399 1.30398i −0.952673 0.303997i \(-0.901679\pi\)
0.00527361 0.999986i \(-0.498321\pi\)
\(252\) −188.779 + 230.738i −0.749124 + 0.915628i
\(253\) 0 0
\(254\) 98.8936i 0.389345i
\(255\) −511.360 279.315i −2.00533 1.09535i
\(256\) 2.58048 + 7.94189i 0.0100800 + 0.0310230i
\(257\) 130.624 + 42.4423i 0.508265 + 0.165145i 0.551913 0.833902i \(-0.313898\pi\)
−0.0436481 + 0.999047i \(0.513898\pi\)
\(258\) −129.097 24.2629i −0.500374 0.0940422i
\(259\) −110.316 80.1495i −0.425932 0.309457i
\(260\) −91.0657 29.5891i −0.350253 0.113804i
\(261\) −52.7691 + 135.427i −0.202180 + 0.518876i
\(262\) −95.8764 + 69.6583i −0.365941 + 0.265871i
\(263\) 138.001i 0.524720i 0.964970 + 0.262360i \(0.0845008\pi\)
−0.964970 + 0.262360i \(0.915499\pi\)
\(264\) 0 0
\(265\) −392.007 −1.47927
\(266\) −38.5547 53.0659i −0.144942 0.199496i
\(267\) −42.0140 44.4973i −0.157356 0.166657i
\(268\) 33.7044 103.731i 0.125763 0.387057i
\(269\) 18.1588 24.9935i 0.0675049 0.0929125i −0.773930 0.633272i \(-0.781712\pi\)
0.841434 + 0.540359i \(0.181712\pi\)
\(270\) −76.7580 91.2585i −0.284289 0.337995i
\(271\) 61.9531 190.672i 0.228609 0.703587i −0.769296 0.638893i \(-0.779393\pi\)
0.997905 0.0646943i \(-0.0206072\pi\)
\(272\) 303.324 98.5560i 1.11516 0.362338i
\(273\) 102.858 + 56.1828i 0.376768 + 0.205798i
\(274\) 55.3227 0.201908
\(275\) 0 0
\(276\) 267.376 126.707i 0.968753 0.459082i
\(277\) 129.127 93.8163i 0.466162 0.338687i −0.329781 0.944057i \(-0.606975\pi\)
0.795944 + 0.605370i \(0.206975\pi\)
\(278\) 0.440767 0.143214i 0.00158549 0.000515158i
\(279\) −85.9013 133.746i −0.307890 0.479375i
\(280\) 252.212 + 183.243i 0.900758 + 0.654439i
\(281\) 233.485 321.364i 0.830907 1.14365i −0.156847 0.987623i \(-0.550133\pi\)
0.987754 0.156022i \(-0.0498672\pi\)
\(282\) 21.1718 2.73312i 0.0750772 0.00969191i
\(283\) 20.8866 + 64.2824i 0.0738043 + 0.227146i 0.981153 0.193233i \(-0.0618972\pi\)
−0.907349 + 0.420379i \(0.861897\pi\)
\(284\) 2.06993 + 2.84901i 0.00728847 + 0.0100317i
\(285\) −181.077 + 85.8104i −0.635357 + 0.301089i
\(286\) 0 0
\(287\) 327.843i 1.14231i
\(288\) 249.504 + 14.3357i 0.866332 + 0.0497768i
\(289\) −187.449 576.909i −0.648613 1.99622i
\(290\) 67.8338 + 22.0405i 0.233910 + 0.0760019i
\(291\) 105.329 560.427i 0.361954 1.92587i
\(292\) 267.456 + 194.318i 0.915945 + 0.665473i
\(293\) −347.720 112.981i −1.18676 0.385601i −0.351885 0.936043i \(-0.614459\pi\)
−0.834873 + 0.550442i \(0.814459\pi\)
\(294\) −54.2590 57.4661i −0.184555 0.195463i
\(295\) 213.521 155.132i 0.723800 0.525871i
\(296\) 74.6761i 0.252284i
\(297\) 0 0
\(298\) −134.696 −0.452001
\(299\) −68.3706 94.1041i −0.228664 0.314729i
\(300\) 132.085 124.713i 0.440283 0.415711i
\(301\) −186.211 + 573.100i −0.618643 + 1.90399i
\(302\) −35.5658 + 48.9521i −0.117768 + 0.162093i
\(303\) −140.354 26.3787i −0.463215 0.0870583i
\(304\) 33.8933 104.313i 0.111491 0.343135i
\(305\) −145.110 + 47.1492i −0.475771 + 0.154588i
\(306\) 10.5139 182.988i 0.0343592 0.597999i
\(307\) 484.160 1.57707 0.788534 0.614992i \(-0.210841\pi\)
0.788534 + 0.614992i \(0.210841\pi\)
\(308\) 0 0
\(309\) 67.6729 + 142.803i 0.219006 + 0.462146i
\(310\) −63.1068 + 45.8498i −0.203570 + 0.147902i
\(311\) 319.700 103.877i 1.02797 0.334009i 0.253985 0.967208i \(-0.418259\pi\)
0.773989 + 0.633199i \(0.218259\pi\)
\(312\) −8.21762 63.6567i −0.0263385 0.204028i
\(313\) 395.686 + 287.483i 1.26417 + 0.918475i 0.998955 0.0457136i \(-0.0145562\pi\)
0.265218 + 0.964189i \(0.414556\pi\)
\(314\) 26.6946 36.7420i 0.0850146 0.117013i
\(315\) −460.281 + 295.627i −1.46121 + 0.938497i
\(316\) −123.588 380.364i −0.391101 1.20368i
\(317\) −91.8833 126.467i −0.289853 0.398948i 0.639114 0.769112i \(-0.279301\pi\)
−0.928966 + 0.370164i \(0.879301\pi\)
\(318\) −52.8072 111.433i −0.166060 0.350420i
\(319\) 0 0
\(320\) 154.022i 0.481318i
\(321\) −98.2490 + 179.871i −0.306072 + 0.560346i
\(322\) 54.9191 + 169.024i 0.170556 + 0.524918i
\(323\) −292.921 95.1758i −0.906877 0.294662i
\(324\) −119.154 + 260.534i −0.367761 + 0.804117i
\(325\) −57.7764 41.9770i −0.177773 0.129160i
\(326\) −90.5082 29.4079i −0.277633 0.0902083i
\(327\) −82.2910 + 77.6986i −0.251655 + 0.237610i
\(328\) −145.252 + 105.532i −0.442842 + 0.321744i
\(329\) 97.9303i 0.297661i
\(330\) 0 0
\(331\) 40.2792 0.121689 0.0608447 0.998147i \(-0.480621\pi\)
0.0608447 + 0.998147i \(0.480621\pi\)
\(332\) −216.356 297.788i −0.651674 0.896953i
\(333\) −122.095 47.5746i −0.366653 0.142867i
\(334\) −28.8938 + 88.9259i −0.0865083 + 0.266245i
\(335\) 117.638 161.914i 0.351157 0.483326i
\(336\) 55.3079 294.279i 0.164607 0.875830i
\(337\) −3.68219 + 11.3326i −0.0109264 + 0.0336279i −0.956371 0.292155i \(-0.905628\pi\)
0.945445 + 0.325783i \(0.105628\pi\)
\(338\) 98.1167 31.8801i 0.290286 0.0943197i
\(339\) −244.882 + 448.322i −0.722366 + 1.32248i
\(340\) 686.950 2.02044
\(341\) 0 0
\(342\) −48.7857 39.9142i −0.142648 0.116708i
\(343\) 77.9447 56.6301i 0.227244 0.165102i
\(344\) 313.856 101.978i 0.912372 0.296448i
\(345\) 538.454 69.5105i 1.56074 0.201480i
\(346\) −0.582638 0.423311i −0.00168393 0.00122344i
\(347\) −353.427 + 486.450i −1.01852 + 1.40187i −0.105285 + 0.994442i \(0.533575\pi\)
−0.913236 + 0.407431i \(0.866425\pi\)
\(348\) −21.9387 169.946i −0.0630424 0.488350i
\(349\) 41.0865 + 126.451i 0.117726 + 0.362324i 0.992506 0.122197i \(-0.0389939\pi\)
−0.874780 + 0.484521i \(0.838994\pi\)
\(350\) 64.1359 + 88.2755i 0.183245 + 0.252216i
\(351\) 109.314 + 27.1185i 0.311435 + 0.0772608i
\(352\) 0 0
\(353\) 172.864i 0.489699i 0.969561 + 0.244850i \(0.0787386\pi\)
−0.969561 + 0.244850i \(0.921261\pi\)
\(354\) 72.8618 + 39.7985i 0.205824 + 0.112425i
\(355\) 1.99683 + 6.14562i 0.00562488 + 0.0173116i
\(356\) 68.6190 + 22.2957i 0.192750 + 0.0626282i
\(357\) −826.364 155.310i −2.31474 0.435042i
\(358\) 47.7581 + 34.6983i 0.133402 + 0.0969226i
\(359\) 573.248 + 186.259i 1.59679 + 0.518829i 0.966311 0.257377i \(-0.0828583\pi\)
0.630479 + 0.776206i \(0.282858\pi\)
\(360\) 279.143 + 108.768i 0.775396 + 0.302134i
\(361\) 206.365 149.933i 0.571647 0.415326i
\(362\) 73.6117i 0.203347i
\(363\) 0 0
\(364\) −138.177 −0.379606
\(365\) 356.564 + 490.768i 0.976886 + 1.34457i
\(366\) −32.9506 34.8982i −0.0900290 0.0953503i
\(367\) 76.9025 236.681i 0.209543 0.644909i −0.789953 0.613168i \(-0.789895\pi\)
0.999496 0.0317407i \(-0.0101051\pi\)
\(368\) −174.676 + 240.421i −0.474663 + 0.653318i
\(369\) −80.0074 304.719i −0.216822 0.825798i
\(370\) −19.8709 + 61.1563i −0.0537051 + 0.165287i
\(371\) −538.004 + 174.808i −1.45015 + 0.471181i
\(372\) 164.468 + 89.8354i 0.442117 + 0.241493i
\(373\) −677.639 −1.81673 −0.908364 0.418181i \(-0.862668\pi\)
−0.908364 + 0.418181i \(0.862668\pi\)
\(374\) 0 0
\(375\) −138.638 + 65.6992i −0.369702 + 0.175198i
\(376\) −43.3885 + 31.5236i −0.115395 + 0.0838394i
\(377\) −64.0681 + 20.8170i −0.169942 + 0.0552175i
\(378\) −146.040 91.0176i −0.386350 0.240787i
\(379\) 92.0872 + 66.9053i 0.242974 + 0.176531i 0.702607 0.711578i \(-0.252019\pi\)
−0.459633 + 0.888109i \(0.652019\pi\)
\(380\) 138.859 191.123i 0.365419 0.502956i
\(381\) 432.376 55.8166i 1.13485 0.146500i
\(382\) 6.02509 + 18.5433i 0.0157725 + 0.0485428i
\(383\) 354.229 + 487.554i 0.924880 + 1.27299i 0.961824 + 0.273670i \(0.0882378\pi\)
−0.0369437 + 0.999317i \(0.511762\pi\)
\(384\) −344.903 + 163.446i −0.898184 + 0.425640i
\(385\) 0 0
\(386\) 8.63898i 0.0223808i
\(387\) −33.2171 + 578.122i −0.0858324 + 1.49386i
\(388\) 207.750 + 639.388i 0.535437 + 1.64791i
\(389\) −432.894 140.656i −1.11284 0.361583i −0.305808 0.952093i \(-0.598927\pi\)
−0.807030 + 0.590510i \(0.798927\pi\)
\(390\) 10.2088 54.3186i 0.0261765 0.139278i
\(391\) 675.126 + 490.508i 1.72666 + 1.25450i
\(392\) 188.839 + 61.3576i 0.481733 + 0.156524i
\(393\) 358.669 + 379.869i 0.912644 + 0.966587i
\(394\) 185.366 134.676i 0.470472 0.341818i
\(395\) 733.867i 1.85789i
\(396\) 0 0
\(397\) 327.783 0.825649 0.412824 0.910811i \(-0.364542\pi\)
0.412824 + 0.910811i \(0.364542\pi\)
\(398\) −73.5446 101.225i −0.184785 0.254335i
\(399\) −210.251 + 198.517i −0.526944 + 0.497537i
\(400\) −56.3818 + 173.525i −0.140954 + 0.433813i
\(401\) 148.146 203.906i 0.369442 0.508494i −0.583307 0.812252i \(-0.698241\pi\)
0.952749 + 0.303758i \(0.0982414\pi\)
\(402\) 61.8733 + 11.6287i 0.153914 + 0.0289271i
\(403\) 22.7665 70.0681i 0.0564926 0.173866i
\(404\) 160.129 52.0291i 0.396359 0.128785i
\(405\) −355.672 + 387.104i −0.878201 + 0.955812i
\(406\) 102.926 0.253513
\(407\) 0 0
\(408\) 197.194 + 416.119i 0.483319 + 1.01990i
\(409\) −367.117 + 266.726i −0.897595 + 0.652141i −0.937847 0.347048i \(-0.887184\pi\)
0.0402518 + 0.999190i \(0.487184\pi\)
\(410\) −147.036 + 47.7750i −0.358625 + 0.116524i
\(411\) −31.2248 241.878i −0.0759726 0.588512i
\(412\) −150.726 109.509i −0.365840 0.265798i
\(413\) 223.865 308.124i 0.542047 0.746064i
\(414\) 92.2944 + 143.699i 0.222933 + 0.347100i
\(415\) −208.716 642.362i −0.502930 1.54786i
\(416\) 68.0847 + 93.7105i 0.163665 + 0.225266i
\(417\) −0.874924 1.84626i −0.00209814 0.00442748i
\(418\) 0 0
\(419\) 295.753i 0.705855i −0.935651 0.352927i \(-0.885186\pi\)
0.935651 0.352927i \(-0.114814\pi\)
\(420\) 309.166 566.010i 0.736109 1.34764i
\(421\) 70.7602 + 217.778i 0.168077 + 0.517286i 0.999250 0.0387271i \(-0.0123303\pi\)
−0.831173 + 0.556013i \(0.812330\pi\)
\(422\) −116.503 37.8541i −0.276073 0.0897017i
\(423\) −23.8991 91.0232i −0.0564991 0.215185i
\(424\) 250.632 + 182.095i 0.591113 + 0.429469i
\(425\) 487.276 + 158.326i 1.14653 + 0.372531i
\(426\) −1.47799 + 1.39550i −0.00346945 + 0.00327583i
\(427\) −178.129 + 129.418i −0.417164 + 0.303088i
\(428\) 241.635i 0.564567i
\(429\) 0 0
\(430\) 284.169 0.660859
\(431\) 328.552 + 452.213i 0.762301 + 1.04922i 0.997019 + 0.0771542i \(0.0245834\pi\)
−0.234718 + 0.972064i \(0.575417\pi\)
\(432\) −20.4095 287.020i −0.0472443 0.664399i
\(433\) 89.0813 274.164i 0.205730 0.633173i −0.793952 0.607980i \(-0.791980\pi\)
0.999683 0.0251929i \(-0.00802000\pi\)
\(434\) −66.1641 + 91.0671i −0.152452 + 0.209832i
\(435\) 58.0781 309.019i 0.133513 0.710387i
\(436\) 41.2325 126.900i 0.0945698 0.291056i
\(437\) 272.938 88.6831i 0.624573 0.202936i
\(438\) −91.4750 + 167.469i −0.208847 + 0.382350i
\(439\) 179.800 0.409567 0.204784 0.978807i \(-0.434351\pi\)
0.204784 + 0.978807i \(0.434351\pi\)
\(440\) 0 0
\(441\) −220.625 + 269.662i −0.500284 + 0.611479i
\(442\) 68.7279 49.9338i 0.155493 0.112972i
\(443\) −267.511 + 86.9195i −0.603862 + 0.196207i −0.594962 0.803754i \(-0.702833\pi\)
−0.00889983 + 0.999960i \(0.502833\pi\)
\(444\) 153.216 19.7791i 0.345082 0.0445476i
\(445\) 107.107 + 77.8180i 0.240690 + 0.174872i
\(446\) 105.223 144.827i 0.235925 0.324724i
\(447\) 76.0241 + 588.911i 0.170076 + 1.31747i
\(448\) 68.6831 + 211.385i 0.153310 + 0.471841i
\(449\) 163.228 + 224.664i 0.363536 + 0.500365i 0.951130 0.308791i \(-0.0999245\pi\)
−0.587593 + 0.809156i \(0.699925\pi\)
\(450\) 81.1552 + 66.3974i 0.180345 + 0.147550i
\(451\) 0 0
\(452\) 602.265i 1.33245i
\(453\) 234.099 + 127.869i 0.516775 + 0.282272i
\(454\) −1.89873 5.84368i −0.00418222 0.0128716i
\(455\) −241.137 78.3502i −0.529972 0.172198i
\(456\) 155.633 + 29.2503i 0.341301 + 0.0641454i
\(457\) −280.102 203.506i −0.612915 0.445309i 0.237525 0.971381i \(-0.423664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(458\) −228.096 74.1127i −0.498025 0.161818i
\(459\) −805.981 + 57.3120i −1.75595 + 0.124863i
\(460\) −517.841 + 376.234i −1.12574 + 0.817899i
\(461\) 67.1487i 0.145659i −0.997344 0.0728294i \(-0.976797\pi\)
0.997344 0.0728294i \(-0.0232029\pi\)
\(462\) 0 0
\(463\) −754.683 −1.62999 −0.814993 0.579471i \(-0.803259\pi\)
−0.814993 + 0.579471i \(0.803259\pi\)
\(464\) 101.162 + 139.238i 0.218022 + 0.300081i
\(465\) 236.079 + 250.033i 0.507698 + 0.537706i
\(466\) −7.44480 + 22.9127i −0.0159760 + 0.0491690i
\(467\) −170.090 + 234.109i −0.364218 + 0.501303i −0.951318 0.308211i \(-0.900270\pi\)
0.587100 + 0.809515i \(0.300270\pi\)
\(468\) −128.431 + 33.7209i −0.274425 + 0.0720532i
\(469\) 89.2473 274.675i 0.190293 0.585661i
\(470\) −43.9215 + 14.2709i −0.0934499 + 0.0303637i
\(471\) −175.708 95.9748i −0.373052 0.203768i
\(472\) −208.578 −0.441902
\(473\) 0 0
\(474\) 208.612 98.8590i 0.440110 0.208563i
\(475\) 142.547 103.566i 0.300099 0.218034i
\(476\) 942.794 306.332i 1.98066 0.643555i
\(477\) −457.397 + 293.774i −0.958904 + 0.615879i
\(478\) −72.0114 52.3193i −0.150651 0.109455i
\(479\) −97.6527 + 134.407i −0.203868 + 0.280600i −0.898693 0.438579i \(-0.855482\pi\)
0.694825 + 0.719179i \(0.255482\pi\)
\(480\) −536.202 + 69.2198i −1.11709 + 0.144208i
\(481\) −18.7678 57.7613i −0.0390183 0.120086i
\(482\) 53.8100 + 74.0631i 0.111639 + 0.153658i
\(483\) 707.997 335.512i 1.46583 0.694642i
\(484\) 0 0
\(485\) 1233.62i 2.54355i
\(486\) −157.952 48.9580i −0.325004 0.100737i
\(487\) −6.35332 19.5535i −0.0130458 0.0401510i 0.944322 0.329024i \(-0.106720\pi\)
−0.957368 + 0.288873i \(0.906720\pi\)
\(488\) 114.679 + 37.2614i 0.234998 + 0.0763554i
\(489\) −77.4915 + 412.312i −0.158469 + 0.843174i
\(490\) 138.324 + 100.498i 0.282293 + 0.205098i
\(491\) −455.169 147.893i −0.927024 0.301209i −0.193679 0.981065i \(-0.562042\pi\)
−0.733345 + 0.679856i \(0.762042\pi\)
\(492\) 254.997 + 270.069i 0.518286 + 0.548920i
\(493\) 390.993 284.073i 0.793090 0.576214i
\(494\) 29.2151i 0.0591398i
\(495\) 0 0
\(496\) −188.225 −0.379486
\(497\) 5.48105 + 7.54402i 0.0110283 + 0.0151791i
\(498\) 154.484 145.863i 0.310210 0.292897i
\(499\) −78.7852 + 242.476i −0.157886 + 0.485924i −0.998442 0.0558013i \(-0.982229\pi\)
0.840556 + 0.541725i \(0.182229\pi\)
\(500\) 106.315 146.330i 0.212630 0.292660i
\(501\) 405.104 + 76.1368i 0.808591 + 0.151970i
\(502\) −85.0764 + 261.838i −0.169475 + 0.521590i
\(503\) −243.035 + 78.9669i −0.483171 + 0.156992i −0.540467 0.841365i \(-0.681752\pi\)
0.0572955 + 0.998357i \(0.481752\pi\)
\(504\) 431.608 + 24.7989i 0.856365 + 0.0492042i
\(505\) 308.949 0.611781
\(506\) 0 0
\(507\) −194.762 410.986i −0.384146 0.810623i
\(508\) −415.824 + 302.114i −0.818551 + 0.594712i
\(509\) −50.3488 + 16.3593i −0.0989171 + 0.0321401i −0.358057 0.933700i \(-0.616561\pi\)
0.259140 + 0.965840i \(0.416561\pi\)
\(510\) 50.7663 + 393.254i 0.0995417 + 0.771087i
\(511\) 708.209 + 514.544i 1.38593 + 1.00694i
\(512\) 302.461 416.301i 0.590743 0.813089i
\(513\) −146.975 + 235.825i −0.286501 + 0.459699i
\(514\) −28.8827 88.8919i −0.0561921 0.172941i
\(515\) −200.943 276.574i −0.390181 0.537037i
\(516\) −292.362 616.942i −0.566594 1.19562i
\(517\) 0 0
\(518\) 92.7942i 0.179139i
\(519\) −1.52193 + 2.78629i −0.00293242 + 0.00536858i
\(520\) 42.9082 + 132.058i 0.0825157 + 0.253957i
\(521\) 829.134 + 269.402i 1.59143 + 0.517086i 0.964968 0.262367i \(-0.0845032\pi\)
0.626460 + 0.779454i \(0.284503\pi\)
\(522\) 95.6666 25.1183i 0.183269 0.0481194i
\(523\) −573.820 416.904i −1.09717 0.797140i −0.116574 0.993182i \(-0.537191\pi\)
−0.980596 + 0.196042i \(0.937191\pi\)
\(524\) −585.793 190.336i −1.11793 0.363236i
\(525\) 349.753 330.234i 0.666197 0.629018i
\(526\) 75.9766 55.2002i 0.144442 0.104943i
\(527\) 528.555i 1.00295i
\(528\) 0 0
\(529\) −248.573 −0.469892
\(530\) 156.802 + 215.819i 0.295852 + 0.407206i
\(531\) 132.881 341.025i 0.250246 0.642231i
\(532\) 105.347 324.226i 0.198022 0.609448i
\(533\) 85.8288 118.133i 0.161030 0.221638i
\(534\) −7.69246 + 40.9296i −0.0144054 + 0.0766472i
\(535\) 137.014 421.686i 0.256101 0.788198i
\(536\) −150.425 + 48.8759i −0.280643 + 0.0911864i
\(537\) 124.750 228.389i 0.232310 0.425305i
\(538\) −21.0236 −0.0390774
\(539\) 0 0
\(540\) 149.229 601.538i 0.276351 1.11396i
\(541\) 138.021 100.278i 0.255122 0.185357i −0.452872 0.891576i \(-0.649600\pi\)
0.707994 + 0.706219i \(0.249600\pi\)
\(542\) −129.756 + 42.1601i −0.239401 + 0.0777862i
\(543\) −321.840 + 41.5472i −0.592708 + 0.0765143i
\(544\) −672.302 488.456i −1.23585 0.897897i
\(545\) 143.913 198.079i 0.264060 0.363447i
\(546\) −10.2114 79.1012i −0.0187022 0.144874i
\(547\) −32.7797 100.886i −0.0599264 0.184434i 0.916612 0.399778i \(-0.130913\pi\)
−0.976538 + 0.215344i \(0.930913\pi\)
\(548\) 169.008 + 232.619i 0.308408 + 0.424487i
\(549\) −133.982 + 163.761i −0.244047 + 0.298290i
\(550\) 0 0
\(551\) 166.205i 0.301642i
\(552\) −376.553 205.681i −0.682162 0.372610i
\(553\) −327.254 1007.18i −0.591779 1.82131i
\(554\) −103.301 33.5645i −0.186464 0.0605858i
\(555\) 278.599 + 52.3610i 0.501980 + 0.0943441i
\(556\) 1.94870 + 1.41581i 0.00350485 + 0.00254642i
\(557\) 697.965 + 226.782i 1.25308 + 0.407150i 0.859023 0.511937i \(-0.171072\pi\)
0.394055 + 0.919087i \(0.371072\pi\)
\(558\) −39.2733 + 100.791i −0.0703822 + 0.180629i
\(559\) −217.135 + 157.758i −0.388435 + 0.282215i
\(560\) 647.771i 1.15673i
\(561\) 0 0
\(562\) −270.320 −0.480997
\(563\) −583.990 803.794i −1.03728 1.42770i −0.899336 0.437258i \(-0.855950\pi\)
−0.137947 0.990440i \(-0.544050\pi\)
\(564\) 76.1705 + 80.6727i 0.135054 + 0.143037i
\(565\) 341.502 1051.04i 0.604429 1.86024i
\(566\) 27.0360 37.2119i 0.0477669 0.0657455i
\(567\) −315.515 + 689.880i −0.556463 + 1.21672i
\(568\) 1.57807 4.85681i 0.00277830 0.00855073i
\(569\) 1014.04 329.482i 1.78215 0.579055i 0.783068 0.621936i \(-0.213654\pi\)
0.999080 + 0.0428814i \(0.0136537\pi\)
\(570\) 119.673 + 65.3678i 0.209953 + 0.114680i
\(571\) −409.079 −0.716425 −0.358213 0.933640i \(-0.616614\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(572\) 0 0
\(573\) 77.6733 36.8086i 0.135556 0.0642384i
\(574\) −180.494 + 131.136i −0.314449 + 0.228460i
\(575\) −454.035 + 147.525i −0.789625 + 0.256565i
\(576\) 115.426 + 179.714i 0.200392 + 0.312003i
\(577\) −371.961 270.246i −0.644647 0.468363i 0.216797 0.976217i \(-0.430439\pi\)
−0.861444 + 0.507853i \(0.830439\pi\)
\(578\) −242.638 + 333.962i −0.419788 + 0.577789i
\(579\) 37.7708 4.87593i 0.0652345 0.00842130i
\(580\) 114.553 + 352.557i 0.197505 + 0.607858i
\(581\) −572.899 788.527i −0.986056 1.35719i
\(582\) −350.674 + 166.181i −0.602533 + 0.285534i
\(583\) 0 0
\(584\) 479.406i 0.820901i
\(585\) −243.250 13.9764i −0.415812 0.0238913i
\(586\) 76.8856 + 236.629i 0.131204 + 0.403804i
\(587\) 55.9862 + 18.1910i 0.0953768 + 0.0309898i 0.356317 0.934365i \(-0.384032\pi\)
−0.260940 + 0.965355i \(0.584032\pi\)
\(588\) 75.8732 403.701i 0.129036 0.686567i
\(589\) 147.055 + 106.842i 0.249669 + 0.181395i
\(590\) −170.816 55.5014i −0.289518 0.0940702i
\(591\) −693.445 734.432i −1.17334 1.24269i
\(592\) −125.531 + 91.2039i −0.212046 + 0.154061i
\(593\) 149.728i 0.252493i 0.991999 + 0.126247i \(0.0402931\pi\)
−0.991999 + 0.126247i \(0.959707\pi\)
\(594\) 0 0
\(595\) 1819.01 3.05715
\(596\) −411.489 566.366i −0.690418 0.950278i
\(597\) −401.062 + 378.680i −0.671795 + 0.634304i
\(598\) −24.4609 + 75.2828i −0.0409045 + 0.125891i
\(599\) −260.728 + 358.862i −0.435273 + 0.599102i −0.969153 0.246458i \(-0.920733\pi\)
0.533881 + 0.845560i \(0.320733\pi\)
\(600\) −258.897 48.6581i −0.431495 0.0810968i
\(601\) −127.932 + 393.733i −0.212864 + 0.655129i 0.786434 + 0.617674i \(0.211925\pi\)
−0.999298 + 0.0374549i \(0.988075\pi\)
\(602\) 390.004 126.720i 0.647847 0.210498i
\(603\) 15.9203 277.082i 0.0264018 0.459506i
\(604\) −314.483 −0.520668
\(605\) 0 0
\(606\) 41.6185 + 87.8232i 0.0686774 + 0.144923i
\(607\) 308.111 223.856i 0.507597 0.368791i −0.304314 0.952572i \(-0.598427\pi\)
0.811911 + 0.583781i \(0.198427\pi\)
\(608\) −271.797 + 88.3121i −0.447034 + 0.145250i
\(609\) −58.0926 450.007i −0.0953901 0.738927i
\(610\) 84.0017 + 61.0308i 0.137708 + 0.100051i
\(611\) 25.6380 35.2877i 0.0419608 0.0577541i
\(612\) 801.539 514.808i 1.30970 0.841189i
\(613\) 34.9041 + 107.424i 0.0569399 + 0.175243i 0.975482 0.220081i \(-0.0706323\pi\)
−0.918542 + 0.395324i \(0.870632\pi\)
\(614\) −193.663 266.554i −0.315412 0.434127i
\(615\) 291.868 + 615.898i 0.474582 + 1.00146i
\(616\) 0 0
\(617\) 378.251i 0.613049i 0.951863 + 0.306524i \(0.0991661\pi\)
−0.951863 + 0.306524i \(0.900834\pi\)
\(618\) 51.5512 94.3782i 0.0834161 0.152715i
\(619\) −9.05390 27.8651i −0.0146267 0.0450162i 0.943477 0.331439i \(-0.107534\pi\)
−0.958103 + 0.286422i \(0.907534\pi\)
\(620\) −385.574 125.281i −0.621894 0.202066i
\(621\) 576.181 484.629i 0.927828 0.780401i
\(622\) −185.069 134.460i −0.297538 0.216174i
\(623\) 181.699 + 59.0377i 0.291652 + 0.0947635i
\(624\) 96.9712 91.5595i 0.155403 0.146730i
\(625\) 614.774 446.660i 0.983639 0.714655i
\(626\) 332.837i 0.531689i
\(627\) 0 0
\(628\) 236.041 0.375862
\(629\) 256.110 + 352.505i 0.407169 + 0.560421i
\(630\) 346.869 + 135.158i 0.550585 + 0.214536i
\(631\) −300.638 + 925.267i −0.476446 + 1.46635i 0.367551 + 0.930003i \(0.380196\pi\)
−0.843997 + 0.536347i \(0.819804\pi\)
\(632\) −340.895 + 469.202i −0.539392 + 0.742409i
\(633\) −99.7477 + 530.732i −0.157579 + 0.838439i
\(634\) −32.8730 + 101.173i −0.0518501 + 0.159578i
\(635\) −896.978 + 291.446i −1.41256 + 0.458970i
\(636\) 307.228 562.464i 0.483064 0.884377i
\(637\) −161.486 −0.253510
\(638\) 0 0
\(639\) 6.93552 + 5.67432i 0.0108537 + 0.00888000i
\(640\) 667.991 485.324i 1.04374 0.758319i
\(641\) −831.582 + 270.198i −1.29732 + 0.421525i −0.874648 0.484758i \(-0.838908\pi\)
−0.422672 + 0.906283i \(0.638908\pi\)
\(642\) 138.327 17.8570i 0.215463 0.0278147i
\(643\) −590.727 429.188i −0.918704 0.667477i 0.0244973 0.999700i \(-0.492202\pi\)
−0.943201 + 0.332223i \(0.892202\pi\)
\(644\) −542.929 + 747.278i −0.843058 + 1.16037i
\(645\) −160.388 1242.43i −0.248664 1.92624i
\(646\) 64.7688 + 199.338i 0.100261 + 0.308572i
\(647\) 436.536 + 600.841i 0.674708 + 0.928656i 0.999855 0.0170072i \(-0.00541382\pi\)
−0.325147 + 0.945663i \(0.605414\pi\)
\(648\) 407.218 82.2808i 0.628423 0.126977i
\(649\) 0 0
\(650\) 48.5994i 0.0747684i
\(651\) 435.501 + 237.879i 0.668973 + 0.365406i
\(652\) −152.844 470.405i −0.234423 0.721479i
\(653\) 1057.97 + 343.757i 1.62018 + 0.526427i 0.971983 0.235050i \(-0.0755254\pi\)
0.648192 + 0.761477i \(0.275525\pi\)
\(654\) 75.6931 + 14.2261i 0.115739 + 0.0217524i
\(655\) −914.364 664.324i −1.39598 1.01424i
\(656\) −354.801 115.282i −0.540855 0.175734i
\(657\) 783.828 + 305.420i 1.19304 + 0.464870i
\(658\) −53.9155 + 39.1719i −0.0819385 + 0.0595318i
\(659\) 829.020i 1.25800i 0.777407 + 0.628998i \(0.216535\pi\)
−0.777407 + 0.628998i \(0.783465\pi\)
\(660\) 0 0
\(661\) −1040.95 −1.57480 −0.787402 0.616439i \(-0.788575\pi\)
−0.787402 + 0.616439i \(0.788575\pi\)
\(662\) −16.1116 22.1757i −0.0243378 0.0334981i
\(663\) −257.108 272.305i −0.387795 0.410716i
\(664\) −164.946 + 507.651i −0.248412 + 0.764535i
\(665\) 367.692 506.084i 0.552920 0.761029i
\(666\) 22.6457 + 86.2493i 0.0340026 + 0.129503i
\(667\) −139.158 + 428.284i −0.208633 + 0.642105i
\(668\) −462.181 + 150.172i −0.691887 + 0.224808i
\(669\) −692.591 378.306i −1.03526 0.565480i
\(670\) −136.196 −0.203278
\(671\) 0 0
\(672\) −705.035 + 334.109i −1.04916 + 0.497186i
\(673\) −205.745 + 149.482i −0.305713 + 0.222113i −0.730055 0.683389i \(-0.760505\pi\)
0.424342 + 0.905502i \(0.360505\pi\)
\(674\) 7.71203 2.50579i 0.0114422 0.00371779i
\(675\) 244.494 392.297i 0.362213 0.581181i
\(676\) 433.788 + 315.166i 0.641699 + 0.466221i
\(677\) −595.961 + 820.270i −0.880297 + 1.21163i 0.0960413 + 0.995377i \(0.469382\pi\)
−0.976339 + 0.216248i \(0.930618\pi\)
\(678\) 344.776 44.5080i 0.508519 0.0656461i
\(679\) 550.110 + 1693.06i 0.810177 + 2.49347i
\(680\) −585.534 805.919i −0.861080 1.18518i
\(681\) −24.4777 + 11.5997i −0.0359438 + 0.0170334i
\(682\) 0 0
\(683\) 561.211i 0.821685i −0.911706 0.410842i \(-0.865235\pi\)
0.911706 0.410842i \(-0.134765\pi\)
\(684\) 18.7923 327.067i 0.0274741 0.478169i
\(685\) 163.040 + 501.784i 0.238014 + 0.732532i
\(686\) −62.3554 20.2605i −0.0908970 0.0295342i
\(687\) −195.291 + 1039.09i −0.284267 + 1.51251i
\(688\) 554.746 + 403.047i 0.806318 + 0.585824i
\(689\) −239.626 77.8593i −0.347788 0.113003i
\(690\) −253.649 268.642i −0.367608 0.389336i
\(691\) −462.234 + 335.833i −0.668935 + 0.486010i −0.869668 0.493636i \(-0.835667\pi\)
0.200734 + 0.979646i \(0.435667\pi\)
\(692\) 3.74304i 0.00540902i
\(693\) 0 0
\(694\) 409.185 0.589603
\(695\) 2.59794 + 3.57575i 0.00373804 + 0.00514497i
\(696\) −180.678 + 170.595i −0.259595 + 0.245107i
\(697\) −323.722 + 996.315i −0.464451 + 1.42943i
\(698\) 53.1831 73.2003i 0.0761936 0.104871i
\(699\) 104.380 + 19.6175i 0.149327 + 0.0280651i
\(700\) −175.246 + 539.352i −0.250352 + 0.770503i
\(701\) −672.521 + 218.515i −0.959373 + 0.311719i −0.746519 0.665365i \(-0.768276\pi\)
−0.212855 + 0.977084i \(0.568276\pi\)
\(702\) −28.7952 71.0301i −0.0410188 0.101182i
\(703\) 149.844 0.213149
\(704\) 0 0
\(705\) 87.1843 + 183.976i 0.123666 + 0.260959i
\(706\) 95.1701 69.1451i 0.134802 0.0979393i
\(707\) 424.013 137.770i 0.599736 0.194866i
\(708\) 55.2451 + 427.949i 0.0780297 + 0.604447i
\(709\) −739.545 537.311i −1.04308 0.757843i −0.0721966 0.997390i \(-0.523001\pi\)
−0.970885 + 0.239548i \(0.923001\pi\)
\(710\) 2.58474 3.55759i 0.00364048 0.00501069i
\(711\) −549.968 856.282i −0.773513 1.20434i
\(712\) −32.3317 99.5069i −0.0454098 0.139757i
\(713\) −289.483 398.439i −0.406007 0.558820i
\(714\) 245.038 + 517.078i 0.343190 + 0.724199i
\(715\) 0 0
\(716\) 306.812i 0.428509i
\(717\) −188.103 + 344.373i −0.262348 + 0.480297i
\(718\) −126.753 390.105i −0.176536 0.543321i
\(719\) −801.511 260.427i −1.11476 0.362207i −0.306993 0.951712i \(-0.599323\pi\)
−0.807765 + 0.589505i \(0.799323\pi\)
\(720\) 158.084 + 602.083i 0.219560 + 0.836226i
\(721\) −399.114 289.974i −0.553557 0.402183i
\(722\) −165.091 53.6412i −0.228657 0.0742953i
\(723\) 293.443 277.067i 0.405868 0.383218i
\(724\) 309.520 224.879i 0.427513 0.310607i
\(725\) 276.482i 0.381355i
\(726\) 0 0
\(727\) 958.596 1.31856 0.659282 0.751895i \(-0.270860\pi\)
0.659282 + 0.751895i \(0.270860\pi\)
\(728\) 117.777 + 162.107i 0.161782 + 0.222674i
\(729\) −124.901 + 718.221i −0.171332 + 0.985213i
\(730\) 127.567 392.612i 0.174750 0.537824i
\(731\) 1131.80 1557.78i 1.54828 2.13103i
\(732\) 46.0765 245.161i 0.0629461 0.334920i
\(733\) −311.526 + 958.778i −0.425001 + 1.30802i 0.477992 + 0.878364i \(0.341365\pi\)
−0.902993 + 0.429655i \(0.858635\pi\)
\(734\) −161.066 + 52.3334i −0.219436 + 0.0712989i
\(735\) 361.320 661.493i 0.491592 0.899990i
\(736\) 774.320 1.05207
\(737\) 0 0
\(738\) −135.760 + 165.935i −0.183957 + 0.224844i
\(739\) 916.677 666.005i 1.24043 0.901224i 0.242802 0.970076i \(-0.421933\pi\)
0.997627 + 0.0688515i \(0.0219335\pi\)
\(740\) −317.852 + 103.276i −0.429530 + 0.139563i
\(741\) −127.732 + 16.4893i −0.172378 + 0.0222528i
\(742\) 311.441 + 226.275i 0.419732 + 0.304953i
\(743\) 7.44321 10.2447i 0.0100178 0.0137883i −0.803979 0.594658i \(-0.797287\pi\)
0.813997 + 0.580870i \(0.197287\pi\)
\(744\) −34.7936 269.524i −0.0467656 0.362263i
\(745\) −396.959 1221.71i −0.532830 1.63988i
\(746\) 271.054 + 373.074i 0.363343 + 0.500099i
\(747\) −724.925 593.100i −0.970449 0.793976i
\(748\) 0 0
\(749\) 639.835i 0.854253i
\(750\) 91.6257 + 50.0477i 0.122168 + 0.0667303i
\(751\) −59.2741 182.427i −0.0789270 0.242912i 0.903806 0.427943i \(-0.140762\pi\)
−0.982733 + 0.185031i \(0.940762\pi\)
\(752\) −105.983 34.4360i −0.140935 0.0457925i
\(753\) 1192.81 + 224.181i 1.58408 + 0.297717i
\(754\) 37.0879 + 26.9459i 0.0491882 + 0.0357373i
\(755\) −548.817 178.321i −0.726910 0.236187i
\(756\) −63.4370 892.118i −0.0839114 1.18005i
\(757\) −417.065 + 303.015i −0.550944 + 0.400284i −0.828133 0.560531i \(-0.810597\pi\)
0.277189 + 0.960815i \(0.410597\pi\)
\(758\) 77.4605i 0.102191i
\(759\) 0 0
\(760\) −342.582 −0.450766
\(761\) −605.245 833.048i −0.795328 1.09468i −0.993424 0.114493i \(-0.963476\pi\)
0.198096 0.980183i \(-0.436524\pi\)
\(762\) −203.679 215.718i −0.267296 0.283095i
\(763\) 109.181 336.025i 0.143095 0.440400i
\(764\) −59.5640 + 81.9828i −0.0779633 + 0.107307i
\(765\) 1690.71 443.914i 2.21008 0.580280i
\(766\) 126.732 390.041i 0.165447 0.509192i
\(767\) 161.333 52.4203i 0.210343 0.0683446i
\(768\) −21.9858 12.0091i −0.0286273 0.0156368i
\(769\) −1094.35 −1.42308 −0.711539 0.702647i \(-0.752001\pi\)
−0.711539 + 0.702647i \(0.752001\pi\)
\(770\) 0 0
\(771\) −372.346 + 176.451i −0.482938 + 0.228860i
\(772\) −36.3248 + 26.3915i −0.0470529 + 0.0341859i
\(773\) 490.859 159.490i 0.635005 0.206326i 0.0262141 0.999656i \(-0.491655\pi\)
0.608791 + 0.793331i \(0.291655\pi\)
\(774\) 331.572 212.960i 0.428387 0.275142i
\(775\) −244.626 177.732i −0.315647 0.229331i
\(776\) 573.041 788.723i 0.738455 1.01640i
\(777\) 405.709 52.3740i 0.522148 0.0674055i
\(778\) 95.7186 + 294.592i 0.123032 + 0.378653i
\(779\) 211.758 + 291.460i 0.271833 + 0.374147i
\(780\) 259.584 123.014i 0.332800 0.157710i
\(781\) 0 0
\(782\) 567.892i 0.726205i
\(783\) −163.816 404.090i −0.209216 0.516079i
\(784\) 127.491 + 392.378i 0.162617 + 0.500483i
\(785\) 411.925 + 133.843i 0.524745 + 0.170500i
\(786\) 65.6698 349.412i 0.0835493 0.444544i
\(787\) −587.721 427.004i −0.746786 0.542572i 0.148043 0.988981i \(-0.452703\pi\)
−0.894829 + 0.446409i \(0.852703\pi\)
\(788\) 1132.56 + 367.992i 1.43726 + 0.466995i
\(789\) −284.225 301.024i −0.360234 0.381526i
\(790\) −404.030 + 293.545i −0.511430 + 0.371576i
\(791\) 1594.77i 2.01614i
\(792\) 0 0
\(793\) −98.0678 −0.123667
\(794\) −131.112 180.461i −0.165129 0.227280i
\(795\) 855.090 807.369i 1.07558 1.01556i
\(796\) 200.955 618.475i 0.252456 0.776978i
\(797\) −862.522 + 1187.16i −1.08221 + 1.48954i −0.225147 + 0.974325i \(0.572286\pi\)
−0.857064 + 0.515211i \(0.827714\pi\)
\(798\) 193.393 + 36.3471i 0.242348 + 0.0455477i
\(799\) −96.6996 + 297.611i −0.121026 + 0.372479i
\(800\) 452.136 146.908i 0.565170 0.183635i
\(801\) 183.291 + 10.5314i 0.228828 + 0.0131478i
\(802\) −171.519 −0.213864
\(803\) 0 0
\(804\) 140.123 + 295.687i 0.174283 + 0.367770i
\(805\) −1371.21 + 996.246i −1.70337 + 1.23757i
\(806\) −47.6825 + 15.4930i −0.0591594 + 0.0192221i
\(807\) 11.8660 + 91.9181i 0.0147038 + 0.113901i
\(808\) −197.529 143.513i −0.244466 0.177615i
\(809\) −15.0886 + 20.7677i −0.0186510 + 0.0256709i −0.818241 0.574876i \(-0.805050\pi\)
0.799590 + 0.600547i \(0.205050\pi\)
\(810\) 355.388 + 40.9743i 0.438750 + 0.0505855i
\(811\) 203.045 + 624.909i 0.250364 + 0.770541i 0.994708 + 0.102744i \(0.0327624\pi\)
−0.744344 + 0.667797i \(0.767238\pi\)
\(812\) 314.433 + 432.780i 0.387233 + 0.532980i
\(813\) 257.565 + 543.513i 0.316808 + 0.668528i
\(814\) 0 0
\(815\) 907.588i 1.11360i
\(816\) −458.661 + 839.702i −0.562085 + 1.02905i
\(817\) −204.627 629.777i −0.250461 0.770841i
\(818\) 293.692 + 95.4262i 0.359036 + 0.116658i
\(819\) −340.078 + 89.2911i −0.415235 + 0.109025i
\(820\) −650.070 472.303i −0.792768 0.575979i
\(821\) −895.899 291.095i −1.09123 0.354562i −0.292508 0.956263i \(-0.594490\pi\)
−0.798721 + 0.601701i \(0.794490\pi\)
\(822\) −120.676 + 113.942i −0.146808 + 0.138615i
\(823\) 165.283 120.085i 0.200830 0.145912i −0.482825 0.875717i \(-0.660389\pi\)
0.683655 + 0.729805i \(0.260389\pi\)
\(824\) 270.172i 0.327878i
\(825\) 0 0
\(826\) −259.183 −0.313781
\(827\) 68.2953 + 94.0004i 0.0825820 + 0.113664i 0.848309 0.529501i \(-0.177621\pi\)
−0.765727 + 0.643165i \(0.777621\pi\)
\(828\) −322.268 + 827.069i −0.389213 + 0.998875i
\(829\) 468.065 1440.56i 0.564614 1.73770i −0.104482 0.994527i \(-0.533319\pi\)
0.669096 0.743176i \(-0.266681\pi\)
\(830\) −270.166 + 371.852i −0.325501 + 0.448014i
\(831\) −88.4445 + 470.590i −0.106431 + 0.566294i
\(832\) −30.5913 + 94.1505i −0.0367684 + 0.113162i
\(833\) 1101.84 358.009i 1.32273 0.429782i
\(834\) −0.666491 + 1.22019i −0.000799149 + 0.00146306i
\(835\) −891.721 −1.06793
\(836\) 0 0
\(837\) 462.837 + 114.821i 0.552972 + 0.137181i
\(838\) −162.827 + 118.301i −0.194304 + 0.141170i
\(839\) 800.614 260.135i 0.954248 0.310054i 0.209807 0.977743i \(-0.432716\pi\)
0.744441 + 0.667689i \(0.232716\pi\)
\(840\) −927.558 + 119.741i −1.10424 + 0.142549i
\(841\) −469.390 341.032i −0.558133 0.405508i
\(842\) 91.5934 126.068i 0.108781 0.149724i
\(843\) 152.572 + 1181.88i 0.180987 + 1.40199i
\(844\) −196.742 605.509i −0.233106 0.717428i
\(845\) 578.312 + 795.979i 0.684393 + 0.941987i
\(846\) −40.5532 + 49.5667i −0.0479352 + 0.0585895i
\(847\) 0 0
\(848\) 643.713i 0.759095i
\(849\) −177.955 97.2024i −0.209605 0.114490i
\(850\) −107.743 331.599i −0.126757 0.390117i
\(851\) −386.125 125.459i −0.453730 0.147426i
\(852\) −10.3829 1.95140i −0.0121865 0.00229038i
\(853\) 292.677 + 212.642i 0.343115 + 0.249287i 0.745975 0.665974i \(-0.231984\pi\)
−0.402860 + 0.915262i \(0.631984\pi\)
\(854\) 142.503 + 46.3019i 0.166865 + 0.0542177i
\(855\) 218.252 560.122i 0.255266 0.655113i
\(856\) −283.482 + 205.962i −0.331171 + 0.240610i
\(857\) 519.778i 0.606509i −0.952910 0.303254i \(-0.901927\pi\)
0.952910 0.303254i \(-0.0980732\pi\)
\(858\) 0 0
\(859\) −1258.77 −1.46538 −0.732692 0.680560i \(-0.761737\pi\)
−0.732692 + 0.680560i \(0.761737\pi\)
\(860\) 868.120 + 1194.86i 1.00944 + 1.38938i
\(861\) 675.218 + 715.128i 0.784225 + 0.830578i
\(862\) 117.546 361.768i 0.136364 0.419685i
\(863\) −667.030 + 918.087i −0.772920 + 1.06383i 0.223109 + 0.974794i \(0.428380\pi\)
−0.996028 + 0.0890389i \(0.971620\pi\)
\(864\) −573.772 + 482.602i −0.664087 + 0.558567i
\(865\) 2.12242 6.53213i 0.00245366 0.00755159i
\(866\) −186.573 + 60.6213i −0.215442 + 0.0700015i
\(867\) 1597.08 + 872.353i 1.84207 + 1.00617i
\(868\) −585.043 −0.674012
\(869\) 0 0
\(870\) −193.361 + 91.6318i −0.222254 + 0.105324i
\(871\) 104.068 75.6102i 0.119482 0.0868085i
\(872\) −184.023 + 59.7927i −0.211036 + 0.0685696i
\(873\) 924.489 + 1439.40i 1.05898 + 1.64880i
\(874\) −157.999 114.793i −0.180777 0.131342i
\(875\) 281.517 387.474i 0.321733 0.442828i
\(876\) −983.619 + 126.978i −1.12285 + 0.144952i
\(877\) 451.922 + 1390.87i 0.515304 + 1.58594i 0.782728 + 0.622364i \(0.213828\pi\)
−0.267423 + 0.963579i \(0.586172\pi\)
\(878\) −71.9196 98.9888i −0.0819130 0.112744i
\(879\) 991.181 469.710i 1.12762 0.534369i
\(880\) 0 0
\(881\) 1493.59i 1.69534i 0.530526 + 0.847668i \(0.321994\pi\)
−0.530526 + 0.847668i \(0.678006\pi\)
\(882\) 236.712 + 13.6008i 0.268381 + 0.0154204i
\(883\) 410.383 + 1263.03i 0.464760 + 1.43038i 0.859285 + 0.511498i \(0.170909\pi\)
−0.394525 + 0.918885i \(0.629091\pi\)
\(884\) 419.919 + 136.440i 0.475022 + 0.154344i
\(885\) −146.249 + 778.155i −0.165254 + 0.879271i
\(886\) 154.857 + 112.510i 0.174782 + 0.126987i
\(887\) 792.059 + 257.356i 0.892964 + 0.290142i 0.719330 0.694668i \(-0.244449\pi\)
0.173634 + 0.984810i \(0.444449\pi\)
\(888\) −153.801 162.892i −0.173200 0.183437i
\(889\) −1101.08 + 799.981i −1.23856 + 0.899866i
\(890\) 90.0949i 0.101230i
\(891\) 0 0
\(892\) 930.411 1.04306
\(893\) 63.2546 + 87.0625i 0.0708339 + 0.0974944i
\(894\) 293.815 277.418i 0.328652 0.310311i
\(895\) −173.972 + 535.430i −0.194382 + 0.598246i
\(896\) 700.354 963.954i 0.781645 1.07584i
\(897\) 342.953 + 64.4558i 0.382333 + 0.0718571i
\(898\) 58.3978 179.730i 0.0650310 0.200145i
\(899\) −271.266 + 88.1396i −0.301742 + 0.0980419i
\(900\) −31.2611 + 544.078i −0.0347345 + 0.604531i
\(901\) 1807.61 2.00622
\(902\) 0 0
\(903\) −774.160 1633.63i −0.857320 1.80911i
\(904\) −706.569 + 513.352i −0.781603 + 0.567868i
\(905\) 667.668 216.938i 0.737754 0.239711i
\(906\) −23.2406 180.031i −0.0256519 0.198709i
\(907\) −442.323 321.366i −0.487677 0.354318i 0.316614 0.948555i \(-0.397454\pi\)
−0.804290 + 0.594237i \(0.797454\pi\)
\(908\) 18.7708 25.8358i 0.0206727 0.0284535i
\(909\) 360.485 231.530i 0.396573 0.254709i
\(910\) 53.3186 + 164.098i 0.0585919 + 0.180327i
\(911\) −32.7594 45.0894i −0.0359598 0.0494944i 0.790658 0.612257i \(-0.209738\pi\)
−0.826618 + 0.562763i \(0.809738\pi\)
\(912\) 140.909 + 297.345i 0.154505 + 0.326037i
\(913\) 0 0
\(914\) 235.612i 0.257781i
\(915\) 219.424 401.713i 0.239807 0.439031i
\(916\) −385.191 1185.50i −0.420515 1.29421i
\(917\) −1551.15 503.999i −1.69155 0.549617i
\(918\) 353.944 + 420.808i 0.385560 + 0.458397i
\(919\) 864.120 + 627.820i 0.940283 + 0.683155i 0.948489 0.316811i \(-0.102612\pi\)
−0.00820611 + 0.999966i \(0.502612\pi\)
\(920\) 882.783 + 286.834i 0.959547 + 0.311776i
\(921\) −1056.10 + 997.165i −1.14669 + 1.08270i
\(922\) −36.9687 + 26.8593i −0.0400962 + 0.0291316i
\(923\) 4.15331i 0.00449979i
\(924\) 0 0
\(925\) −249.266 −0.269477
\(926\) 301.872 + 415.491i 0.325995 + 0.448694i
\(927\) −441.730 172.121i −0.476516 0.185675i
\(928\) 138.576 426.493i 0.149328 0.459583i
\(929\) −494.520 + 680.648i −0.532314 + 0.732667i −0.987481 0.157739i \(-0.949580\pi\)
0.455167 + 0.890406i \(0.349580\pi\)
\(930\) 43.2245 229.986i 0.0464779 0.247297i
\(931\) 123.119 378.921i 0.132244 0.407004i
\(932\) −119.086 + 38.6934i −0.127775 + 0.0415165i
\(933\) −483.423 + 885.035i −0.518138 + 0.948591i
\(934\) 196.924 0.210839
\(935\) 0 0
\(936\) 149.031 + 121.930i 0.159221 + 0.130268i
\(937\) 1014.10 736.790i 1.08229 0.786329i 0.104208 0.994556i \(-0.466769\pi\)
0.978081 + 0.208227i \(0.0667693\pi\)
\(938\) −186.921 + 60.7343i −0.199276 + 0.0647487i
\(939\) −1455.21 + 187.857i −1.54974 + 0.200061i
\(940\) −194.183 141.082i −0.206578 0.150088i
\(941\) 802.302 1104.27i 0.852605 1.17351i −0.130677 0.991425i \(-0.541715\pi\)
0.983283 0.182086i \(-0.0582848\pi\)
\(942\) 17.4437 + 135.125i 0.0185177 + 0.143445i
\(943\) −301.638 928.348i −0.319871 0.984462i
\(944\) −254.742 350.622i −0.269853 0.371421i
\(945\) 395.151 1592.84i 0.418149 1.68555i
\(946\) 0 0
\(947\) 1289.80i 1.36199i 0.732289 + 0.680994i \(0.238452\pi\)
−0.732289 + 0.680994i \(0.761548\pi\)
\(948\) 1052.97 + 575.155i 1.11073 + 0.606704i
\(949\) 120.486 + 370.816i 0.126961 + 0.390744i
\(950\) −114.037 37.0528i −0.120039 0.0390030i
\(951\) 460.894 + 86.6222i 0.484642 + 0.0910854i
\(952\) −1162.99 844.964i −1.22163 0.887567i
\(953\) 630.883 + 204.986i 0.661997 + 0.215096i 0.620696 0.784051i \(-0.286850\pi\)
0.0413004 + 0.999147i \(0.486850\pi\)
\(954\) 344.695 + 134.311i 0.361316 + 0.140787i
\(955\) −150.434 + 109.297i −0.157523 + 0.114447i
\(956\) 462.623i 0.483915i
\(957\) 0 0
\(958\) 113.059 0.118015
\(959\) 447.523 + 615.962i 0.466656 + 0.642296i
\(960\) −317.220 335.970i −0.330437 0.349968i
\(961\) −200.571 + 617.295i −0.208711 + 0.642347i
\(962\) −24.2934 + 33.4370i −0.0252530 + 0.0347578i
\(963\) −156.147 594.707i −0.162146 0.617556i
\(964\) −147.031 + 452.516i −0.152522 + 0.469415i
\(965\) −78.3566 + 25.4596i −0.0811986 + 0.0263830i
\(966\) −467.913 255.583i −0.484382 0.264579i
\(967\) 101.038 0.104486 0.0522428 0.998634i \(-0.483363\pi\)
0.0522428 + 0.998634i \(0.483363\pi\)
\(968\) 0 0
\(969\) 834.975 395.686i 0.861687 0.408345i
\(970\) 679.169 493.445i 0.700174 0.508706i
\(971\) 611.753 198.771i 0.630024 0.204707i 0.0234383 0.999725i \(-0.492539\pi\)
0.606586 + 0.795018i \(0.292539\pi\)
\(972\) −276.677 813.715i −0.284647 0.837155i
\(973\) 5.16004 + 3.74899i 0.00530323 + 0.00385302i
\(974\) −8.22387 + 11.3192i −0.00844340 + 0.0116213i
\(975\) 212.483 27.4301i 0.217932 0.0281334i
\(976\) 77.4235 + 238.285i 0.0793273 + 0.244144i
\(977\) 882.805 + 1215.08i 0.903588 + 1.24368i 0.969309 + 0.245844i \(0.0790651\pi\)
−0.0657216 + 0.997838i \(0.520935\pi\)
\(978\) 257.995 122.261i 0.263798 0.125011i
\(979\) 0 0
\(980\) 888.634i 0.906769i
\(981\) 19.4762 338.970i 0.0198534 0.345535i
\(982\) 100.644 + 309.750i 0.102489 + 0.315428i
\(983\) −693.417 225.305i −0.705409 0.229201i −0.0657234 0.997838i \(-0.520935\pi\)
−0.639686 + 0.768637i \(0.720935\pi\)
\(984\) 99.4893 529.357i 0.101107 0.537964i
\(985\) 1767.82 + 1284.39i 1.79474 + 1.30395i
\(986\) −312.793 101.633i −0.317234 0.103076i
\(987\) 201.695 + 213.617i 0.204352 + 0.216430i
\(988\) 122.842 89.2502i 0.124334 0.0903342i
\(989\) 1794.17i 1.81412i
\(990\) 0 0
\(991\) 1823.31 1.83987 0.919936 0.392069i \(-0.128241\pi\)
0.919936 + 0.392069i \(0.128241\pi\)
\(992\) 288.272 + 396.772i 0.290597 + 0.399972i
\(993\) −87.8616 + 82.9583i −0.0884810 + 0.0835431i
\(994\) 1.96095 6.03518i 0.00197279 0.00607161i
\(995\) 701.387 965.376i 0.704912 0.970228i
\(996\) 1085.26 + 203.968i 1.08962 + 0.204787i
\(997\) 3.39072 10.4356i 0.00340093 0.0104670i −0.949342 0.314246i \(-0.898248\pi\)
0.952743 + 0.303779i \(0.0982484\pi\)
\(998\) 165.009 53.6147i 0.165340 0.0537221i
\(999\) 364.312 147.690i 0.364677 0.147838i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.245.3 24
3.2 odd 2 inner 363.3.h.q.245.4 24
11.2 odd 10 363.3.b.k.122.3 yes 6
11.3 even 5 inner 363.3.h.q.269.3 24
11.4 even 5 inner 363.3.h.q.323.4 24
11.5 even 5 inner 363.3.h.q.251.4 24
11.6 odd 10 363.3.h.p.251.3 24
11.7 odd 10 363.3.h.p.323.3 24
11.8 odd 10 363.3.h.p.269.4 24
11.9 even 5 363.3.b.j.122.4 yes 6
11.10 odd 2 363.3.h.p.245.4 24
33.2 even 10 363.3.b.k.122.4 yes 6
33.5 odd 10 inner 363.3.h.q.251.3 24
33.8 even 10 363.3.h.p.269.3 24
33.14 odd 10 inner 363.3.h.q.269.4 24
33.17 even 10 363.3.h.p.251.4 24
33.20 odd 10 363.3.b.j.122.3 6
33.26 odd 10 inner 363.3.h.q.323.3 24
33.29 even 10 363.3.h.p.323.4 24
33.32 even 2 363.3.h.p.245.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.3 6 33.20 odd 10
363.3.b.j.122.4 yes 6 11.9 even 5
363.3.b.k.122.3 yes 6 11.2 odd 10
363.3.b.k.122.4 yes 6 33.2 even 10
363.3.h.p.245.3 24 33.32 even 2
363.3.h.p.245.4 24 11.10 odd 2
363.3.h.p.251.3 24 11.6 odd 10
363.3.h.p.251.4 24 33.17 even 10
363.3.h.p.269.3 24 33.8 even 10
363.3.h.p.269.4 24 11.8 odd 10
363.3.h.p.323.3 24 11.7 odd 10
363.3.h.p.323.4 24 33.29 even 10
363.3.h.q.245.3 24 1.1 even 1 trivial
363.3.h.q.245.4 24 3.2 odd 2 inner
363.3.h.q.251.3 24 33.5 odd 10 inner
363.3.h.q.251.4 24 11.5 even 5 inner
363.3.h.q.269.3 24 11.3 even 5 inner
363.3.h.q.269.4 24 33.14 odd 10 inner
363.3.h.q.323.3 24 33.26 odd 10 inner
363.3.h.q.323.4 24 11.4 even 5 inner