Properties

Label 363.3.h.q.245.1
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.1
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.q.323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.05778 - 2.83229i) q^{2} +(-2.95837 - 0.498071i) q^{3} +(-2.55135 + 7.85225i) q^{4} +(-4.64306 + 6.39063i) q^{5} +(4.67699 + 9.40388i) q^{6} +(0.560737 - 1.72577i) q^{7} +(14.1718 - 4.60468i) q^{8} +(8.50385 + 2.94695i) q^{9} +27.6545 q^{10} +(11.4588 - 21.9591i) q^{12} +(-0.0573816 + 0.0416901i) q^{13} +(-6.04176 + 1.96309i) q^{14} +(16.9189 - 16.5932i) q^{15} +(-15.4861 - 11.2513i) q^{16} +(-2.15151 + 2.96129i) q^{17} +(-9.15243 - 30.1496i) q^{18} +(8.13557 + 25.0387i) q^{19} +(-38.3347 - 52.7632i) q^{20} +(-2.51842 + 4.82617i) q^{21} +6.84236i q^{23} +(-44.2187 + 6.56379i) q^{24} +(-11.5567 - 35.5678i) q^{25} +(0.236157 + 0.0767322i) q^{26} +(-23.6897 - 12.9537i) q^{27} +(12.1205 + 8.80609i) q^{28} +(-28.7313 - 9.33537i) q^{29} +(-81.8122 - 13.7739i) q^{30} +(-34.1714 + 24.8270i) q^{31} +7.40958i q^{32} +12.8146 q^{34} +(8.42522 + 11.5963i) q^{35} +(-44.8365 + 59.2557i) q^{36} +(1.14339 - 3.51900i) q^{37} +(54.1758 - 74.5665i) q^{38} +(0.190520 - 0.0947546i) q^{39} +(-36.3736 + 111.946i) q^{40} +(67.5964 - 21.9634i) q^{41} +(18.8515 - 2.79830i) q^{42} -13.8601 q^{43} +(-58.3168 + 40.6621i) q^{45} +(19.3796 - 14.0801i) q^{46} +(26.0191 - 8.45412i) q^{47} +(40.2096 + 40.9986i) q^{48} +(36.9780 + 26.8661i) q^{49} +(-76.9573 + 105.923i) q^{50} +(7.83988 - 7.68899i) q^{51} +(-0.180961 - 0.556941i) q^{52} +(-12.7697 - 17.5760i) q^{53} +(12.0596 + 93.7520i) q^{54} -27.0392i q^{56} +(-11.5969 - 78.1258i) q^{57} +(32.6823 + 100.586i) q^{58} +(-75.8954 - 24.6599i) q^{59} +(87.1283 + 175.186i) q^{60} +(-64.0476 - 46.5333i) q^{61} +(140.634 + 45.6949i) q^{62} +(9.85418 - 13.0232i) q^{63} +(-40.9582 + 29.7579i) q^{64} -0.560274i q^{65} -101.689 q^{67} +(-17.7636 - 24.4495i) q^{68} +(3.40798 - 20.2422i) q^{69} +(15.5069 - 47.7254i) q^{70} +(-27.2787 + 37.5458i) q^{71} +(134.084 + 2.60595i) q^{72} +(35.6914 - 109.847i) q^{73} +(-12.3197 + 4.00291i) q^{74} +(16.4736 + 110.979i) q^{75} -217.367 q^{76} +(-0.660422 - 0.344625i) q^{78} +(-50.8781 + 36.9651i) q^{79} +(143.806 - 46.7253i) q^{80} +(63.6310 + 50.1209i) q^{81} +(-201.305 - 146.257i) q^{82} +(49.6679 - 68.3620i) q^{83} +(-31.4709 - 32.0885i) q^{84} +(-8.93495 - 27.4990i) q^{85} +(28.5211 + 39.2559i) q^{86} +(80.3481 + 41.9277i) q^{87} -45.3523i q^{89} +(235.170 + 81.4966i) q^{90} +(0.0397717 + 0.122405i) q^{91} +(-53.7279 - 17.4573i) q^{92} +(113.457 - 56.4275i) q^{93} +(-77.4862 - 56.2970i) q^{94} +(-197.787 - 64.2650i) q^{95} +(3.69050 - 21.9202i) q^{96} +(77.8815 - 56.5842i) q^{97} -160.017i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} + 18 q^{4} + 10 q^{6} + 22 q^{9} + 72 q^{10} + 56 q^{12} + 42 q^{13} - 28 q^{15} - 30 q^{16} - 94 q^{18} - 84 q^{19} - 112 q^{21} - 48 q^{24} + 108 q^{25} + 38 q^{27} - 132 q^{28} + 148 q^{30}+ \cdots - 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.05778 2.83229i −1.02889 1.41615i −0.905777 0.423754i \(-0.860712\pi\)
−0.123113 0.992393i \(-0.539288\pi\)
\(3\) −2.95837 0.498071i −0.986122 0.166024i
\(4\) −2.55135 + 7.85225i −0.637838 + 1.96306i
\(5\) −4.64306 + 6.39063i −0.928613 + 1.27813i 0.0317852 + 0.999495i \(0.489881\pi\)
−0.960398 + 0.278631i \(0.910119\pi\)
\(6\) 4.67699 + 9.40388i 0.779498 + 1.56731i
\(7\) 0.560737 1.72577i 0.0801053 0.246539i −0.902981 0.429680i \(-0.858626\pi\)
0.983087 + 0.183141i \(0.0586265\pi\)
\(8\) 14.1718 4.60468i 1.77147 0.575585i
\(9\) 8.50385 + 2.94695i 0.944872 + 0.327439i
\(10\) 27.6545 2.76545
\(11\) 0 0
\(12\) 11.4588 21.9591i 0.954901 1.82992i
\(13\) −0.0573816 + 0.0416901i −0.00441397 + 0.00320693i −0.589990 0.807411i \(-0.700868\pi\)
0.585576 + 0.810617i \(0.300868\pi\)
\(14\) −6.04176 + 1.96309i −0.431554 + 0.140220i
\(15\) 16.9189 16.5932i 1.12792 1.10622i
\(16\) −15.4861 11.2513i −0.967880 0.703206i
\(17\) −2.15151 + 2.96129i −0.126559 + 0.174194i −0.867595 0.497272i \(-0.834335\pi\)
0.741035 + 0.671466i \(0.234335\pi\)
\(18\) −9.15243 30.1496i −0.508469 1.67498i
\(19\) 8.13557 + 25.0387i 0.428188 + 1.31783i 0.899908 + 0.436079i \(0.143633\pi\)
−0.471720 + 0.881748i \(0.656367\pi\)
\(20\) −38.3347 52.7632i −1.91674 2.63816i
\(21\) −2.51842 + 4.82617i −0.119925 + 0.229818i
\(22\) 0 0
\(23\) 6.84236i 0.297494i 0.988875 + 0.148747i \(0.0475240\pi\)
−0.988875 + 0.148747i \(0.952476\pi\)
\(24\) −44.2187 + 6.56379i −1.84245 + 0.273491i
\(25\) −11.5567 35.5678i −0.462267 1.42271i
\(26\) 0.236157 + 0.0767322i 0.00908298 + 0.00295124i
\(27\) −23.6897 12.9537i −0.877397 0.479766i
\(28\) 12.1205 + 8.80609i 0.432877 + 0.314503i
\(29\) −28.7313 9.33537i −0.990735 0.321909i −0.231578 0.972816i \(-0.574389\pi\)
−0.759157 + 0.650907i \(0.774389\pi\)
\(30\) −81.8122 13.7739i −2.72707 0.459131i
\(31\) −34.1714 + 24.8270i −1.10230 + 0.800870i −0.981434 0.191799i \(-0.938568\pi\)
−0.120869 + 0.992669i \(0.538568\pi\)
\(32\) 7.40958i 0.231549i
\(33\) 0 0
\(34\) 12.8146 0.376899
\(35\) 8.42522 + 11.5963i 0.240721 + 0.331324i
\(36\) −44.8365 + 59.2557i −1.24546 + 1.64599i
\(37\) 1.14339 3.51900i 0.0309025 0.0951080i −0.934416 0.356184i \(-0.884077\pi\)
0.965318 + 0.261076i \(0.0840775\pi\)
\(38\) 54.1758 74.5665i 1.42568 1.96228i
\(39\) 0.190520 0.0947546i 0.00488514 0.00242960i
\(40\) −36.3736 + 111.946i −0.909339 + 2.79866i
\(41\) 67.5964 21.9634i 1.64869 0.535692i 0.670236 0.742148i \(-0.266193\pi\)
0.978456 + 0.206456i \(0.0661929\pi\)
\(42\) 18.8515 2.79830i 0.448845 0.0666263i
\(43\) −13.8601 −0.322329 −0.161164 0.986928i \(-0.551525\pi\)
−0.161164 + 0.986928i \(0.551525\pi\)
\(44\) 0 0
\(45\) −58.3168 + 40.6621i −1.29593 + 0.903602i
\(46\) 19.3796 14.0801i 0.421295 0.306089i
\(47\) 26.0191 8.45412i 0.553598 0.179875i −0.0188404 0.999823i \(-0.505997\pi\)
0.572439 + 0.819948i \(0.305997\pi\)
\(48\) 40.2096 + 40.9986i 0.837699 + 0.854138i
\(49\) 36.9780 + 26.8661i 0.754653 + 0.548287i
\(50\) −76.9573 + 105.923i −1.53915 + 2.11845i
\(51\) 7.83988 7.68899i 0.153723 0.150764i
\(52\) −0.180961 0.556941i −0.00348002 0.0107104i
\(53\) −12.7697 17.5760i −0.240938 0.331623i 0.671374 0.741119i \(-0.265705\pi\)
−0.912312 + 0.409496i \(0.865705\pi\)
\(54\) 12.0596 + 93.7520i 0.223326 + 1.73615i
\(55\) 0 0
\(56\) 27.0392i 0.482843i
\(57\) −11.5969 78.1258i −0.203455 1.37063i
\(58\) 32.6823 + 100.586i 0.563487 + 1.73424i
\(59\) −75.8954 24.6599i −1.28636 0.417964i −0.415546 0.909572i \(-0.636409\pi\)
−0.870817 + 0.491608i \(0.836409\pi\)
\(60\) 87.1283 + 175.186i 1.45214 + 2.91977i
\(61\) −64.0476 46.5333i −1.04996 0.762842i −0.0777562 0.996972i \(-0.524776\pi\)
−0.972205 + 0.234131i \(0.924776\pi\)
\(62\) 140.634 + 45.6949i 2.26830 + 0.737015i
\(63\) 9.85418 13.0232i 0.156416 0.206718i
\(64\) −40.9582 + 29.7579i −0.639973 + 0.464967i
\(65\) 0.560274i 0.00861961i
\(66\) 0 0
\(67\) −101.689 −1.51775 −0.758874 0.651238i \(-0.774250\pi\)
−0.758874 + 0.651238i \(0.774250\pi\)
\(68\) −17.7636 24.4495i −0.261229 0.359551i
\(69\) 3.40798 20.2422i 0.0493910 0.293365i
\(70\) 15.5069 47.7254i 0.221527 0.681791i
\(71\) −27.2787 + 37.5458i −0.384206 + 0.528815i −0.956693 0.291099i \(-0.905979\pi\)
0.572486 + 0.819914i \(0.305979\pi\)
\(72\) 134.084 + 2.60595i 1.86228 + 0.0361937i
\(73\) 35.6914 109.847i 0.488923 1.50475i −0.337295 0.941399i \(-0.609512\pi\)
0.826218 0.563351i \(-0.190488\pi\)
\(74\) −12.3197 + 4.00291i −0.166482 + 0.0540933i
\(75\) 16.4736 + 110.979i 0.219648 + 1.47971i
\(76\) −217.367 −2.86009
\(77\) 0 0
\(78\) −0.660422 0.344625i −0.00846695 0.00441827i
\(79\) −50.8781 + 36.9651i −0.644026 + 0.467912i −0.861231 0.508214i \(-0.830306\pi\)
0.217205 + 0.976126i \(0.430306\pi\)
\(80\) 143.806 46.7253i 1.79757 0.584067i
\(81\) 63.6310 + 50.1209i 0.785567 + 0.618776i
\(82\) −201.305 146.257i −2.45494 1.78362i
\(83\) 49.6679 68.3620i 0.598409 0.823639i −0.397153 0.917753i \(-0.630002\pi\)
0.995561 + 0.0941136i \(0.0300017\pi\)
\(84\) −31.4709 32.0885i −0.374654 0.382006i
\(85\) −8.93495 27.4990i −0.105117 0.323517i
\(86\) 28.5211 + 39.2559i 0.331641 + 0.456464i
\(87\) 80.3481 + 41.9277i 0.923541 + 0.481927i
\(88\) 0 0
\(89\) 45.3523i 0.509577i −0.966997 0.254788i \(-0.917994\pi\)
0.966997 0.254788i \(-0.0820058\pi\)
\(90\) 235.170 + 81.4966i 2.61300 + 0.905518i
\(91\) 0.0397717 + 0.122405i 0.000437051 + 0.00134511i
\(92\) −53.7279 17.4573i −0.583999 0.189753i
\(93\) 113.457 56.4275i 1.21997 0.606747i
\(94\) −77.4862 56.2970i −0.824321 0.598905i
\(95\) −197.787 64.2650i −2.08197 0.676473i
\(96\) 3.69050 21.9202i 0.0384427 0.228336i
\(97\) 77.8815 56.5842i 0.802902 0.583342i −0.108862 0.994057i \(-0.534721\pi\)
0.911764 + 0.410715i \(0.134721\pi\)
\(98\) 160.017i 1.63283i
\(99\) 0 0
\(100\) 308.772 3.08772
\(101\) −32.7370 45.0587i −0.324129 0.446126i 0.615593 0.788064i \(-0.288917\pi\)
−0.939722 + 0.341939i \(0.888917\pi\)
\(102\) −37.9102 6.38257i −0.371669 0.0625742i
\(103\) 40.3200 124.092i 0.391456 1.20478i −0.540231 0.841517i \(-0.681663\pi\)
0.931687 0.363262i \(-0.118337\pi\)
\(104\) −0.621228 + 0.855046i −0.00597334 + 0.00822160i
\(105\) −19.1491 38.5025i −0.182372 0.366691i
\(106\) −23.5031 + 72.3352i −0.221728 + 0.682408i
\(107\) −55.2940 + 17.9661i −0.516767 + 0.167908i −0.555778 0.831331i \(-0.687579\pi\)
0.0390107 + 0.999239i \(0.487579\pi\)
\(108\) 162.156 152.968i 1.50145 1.41637i
\(109\) 49.0112 0.449644 0.224822 0.974400i \(-0.427820\pi\)
0.224822 + 0.974400i \(0.427820\pi\)
\(110\) 0 0
\(111\) −5.13528 + 9.84099i −0.0462638 + 0.0886575i
\(112\) −28.1008 + 20.4164i −0.250900 + 0.182289i
\(113\) −49.6509 + 16.1325i −0.439388 + 0.142766i −0.520353 0.853951i \(-0.674200\pi\)
0.0809652 + 0.996717i \(0.474200\pi\)
\(114\) −197.411 + 193.612i −1.73168 + 1.69835i
\(115\) −43.7270 31.7695i −0.380235 0.276257i
\(116\) 146.607 201.788i 1.26386 1.73955i
\(117\) −0.610823 + 0.185426i −0.00522071 + 0.00158484i
\(118\) 86.3320 + 265.703i 0.731627 + 2.25172i
\(119\) 3.90409 + 5.37351i 0.0328074 + 0.0451556i
\(120\) 163.363 313.061i 1.36136 2.60884i
\(121\) 0 0
\(122\) 277.157i 2.27178i
\(123\) −210.914 + 31.3079i −1.71475 + 0.254536i
\(124\) −107.764 331.665i −0.869068 2.67471i
\(125\) 93.1432 + 30.2640i 0.745145 + 0.242112i
\(126\) −57.1634 1.11098i −0.453677 0.00881728i
\(127\) 47.3051 + 34.3692i 0.372481 + 0.270624i 0.758239 0.651977i \(-0.226060\pi\)
−0.385758 + 0.922600i \(0.626060\pi\)
\(128\) 196.754 + 63.9292i 1.53714 + 0.499447i
\(129\) 41.0033 + 6.90333i 0.317855 + 0.0535142i
\(130\) −1.58686 + 1.15292i −0.0122066 + 0.00886863i
\(131\) 147.683i 1.12735i −0.825997 0.563675i \(-0.809387\pi\)
0.825997 0.563675i \(-0.190613\pi\)
\(132\) 0 0
\(133\) 47.7730 0.359196
\(134\) 209.254 + 288.013i 1.56160 + 2.14935i
\(135\) 192.775 91.2474i 1.42796 0.675906i
\(136\) −16.8548 + 51.8737i −0.123932 + 0.381425i
\(137\) −97.2514 + 133.855i −0.709864 + 0.977044i 0.289936 + 0.957046i \(0.406366\pi\)
−0.999800 + 0.0199980i \(0.993634\pi\)
\(138\) −64.3447 + 32.0016i −0.466266 + 0.231896i
\(139\) −16.0986 + 49.5465i −0.115818 + 0.356450i −0.992117 0.125318i \(-0.960005\pi\)
0.876299 + 0.481767i \(0.160005\pi\)
\(140\) −112.553 + 36.5707i −0.803950 + 0.261219i
\(141\) −81.1848 + 12.0510i −0.575779 + 0.0854682i
\(142\) 162.474 1.14419
\(143\) 0 0
\(144\) −98.5343 141.316i −0.684266 0.981362i
\(145\) 193.060 140.267i 1.33145 0.967355i
\(146\) −384.563 + 124.952i −2.63399 + 0.855837i
\(147\) −96.0131 97.8973i −0.653151 0.665968i
\(148\) 24.7149 + 17.9564i 0.166992 + 0.121327i
\(149\) −17.9536 + 24.7110i −0.120494 + 0.165846i −0.865003 0.501767i \(-0.832684\pi\)
0.744509 + 0.667612i \(0.232684\pi\)
\(150\) 280.425 275.028i 1.86950 1.83352i
\(151\) −51.0733 157.187i −0.338234 1.04098i −0.965107 0.261855i \(-0.915666\pi\)
0.626873 0.779121i \(-0.284334\pi\)
\(152\) 230.591 + 317.381i 1.51704 + 2.08803i
\(153\) −27.0229 + 18.8420i −0.176620 + 0.123150i
\(154\) 0 0
\(155\) 333.650i 2.15258i
\(156\) 0.257953 + 1.73777i 0.00165354 + 0.0111395i
\(157\) −65.2412 200.792i −0.415549 1.27893i −0.911759 0.410726i \(-0.865275\pi\)
0.496210 0.868203i \(-0.334725\pi\)
\(158\) 209.392 + 68.0355i 1.32526 + 0.430605i
\(159\) 29.0234 + 58.3565i 0.182537 + 0.367022i
\(160\) −47.3519 34.4031i −0.295949 0.215020i
\(161\) 11.8083 + 3.83676i 0.0733437 + 0.0238308i
\(162\) 11.0184 283.359i 0.0680149 1.74913i
\(163\) 70.7189 51.3803i 0.433858 0.315216i −0.349332 0.936999i \(-0.613591\pi\)
0.783190 + 0.621783i \(0.213591\pi\)
\(164\) 586.820i 3.57817i
\(165\) 0 0
\(166\) −295.827 −1.78209
\(167\) 24.3144 + 33.4659i 0.145595 + 0.200395i 0.875586 0.483063i \(-0.160476\pi\)
−0.729991 + 0.683457i \(0.760476\pi\)
\(168\) −13.4674 + 79.9919i −0.0801634 + 0.476142i
\(169\) −52.2223 + 160.724i −0.309008 + 0.951028i
\(170\) −59.4989 + 81.8933i −0.349994 + 0.481725i
\(171\) −4.60420 + 236.901i −0.0269251 + 1.38538i
\(172\) 35.3621 108.833i 0.205593 0.632751i
\(173\) 196.711 63.9152i 1.13706 0.369452i 0.320803 0.947146i \(-0.396047\pi\)
0.816253 + 0.577694i \(0.196047\pi\)
\(174\) −46.5873 313.847i −0.267743 1.80372i
\(175\) −67.8621 −0.387784
\(176\) 0 0
\(177\) 212.244 + 110.754i 1.19912 + 0.625730i
\(178\) −128.451 + 93.3252i −0.721635 + 0.524299i
\(179\) 131.523 42.7345i 0.734767 0.238740i 0.0823532 0.996603i \(-0.473756\pi\)
0.652414 + 0.757863i \(0.273756\pi\)
\(180\) −170.502 561.661i −0.947234 3.12034i
\(181\) 50.1033 + 36.4022i 0.276814 + 0.201117i 0.717526 0.696531i \(-0.245274\pi\)
−0.440713 + 0.897648i \(0.645274\pi\)
\(182\) 0.264844 0.364527i 0.00145519 0.00200289i
\(183\) 166.299 + 169.563i 0.908740 + 0.926573i
\(184\) 31.5069 + 96.9682i 0.171233 + 0.527001i
\(185\) 17.1798 + 23.6459i 0.0928636 + 0.127816i
\(186\) −393.289 205.228i −2.11446 1.10338i
\(187\) 0 0
\(188\) 225.878i 1.20148i
\(189\) −35.6388 + 33.6194i −0.188565 + 0.177880i
\(190\) 224.986 + 692.435i 1.18413 + 3.64439i
\(191\) 23.1013 + 7.50608i 0.120949 + 0.0392988i 0.368866 0.929482i \(-0.379746\pi\)
−0.247917 + 0.968781i \(0.579746\pi\)
\(192\) 135.991 67.6347i 0.708287 0.352264i
\(193\) −163.270 118.623i −0.845958 0.614625i 0.0780703 0.996948i \(-0.475124\pi\)
−0.924029 + 0.382323i \(0.875124\pi\)
\(194\) −320.526 104.145i −1.65220 0.536831i
\(195\) −0.279056 + 1.65750i −0.00143106 + 0.00849998i
\(196\) −305.303 + 221.816i −1.55767 + 1.13171i
\(197\) 64.9088i 0.329486i −0.986337 0.164743i \(-0.947320\pi\)
0.986337 0.164743i \(-0.0526795\pi\)
\(198\) 0 0
\(199\) 136.263 0.684741 0.342370 0.939565i \(-0.388770\pi\)
0.342370 + 0.939565i \(0.388770\pi\)
\(200\) −327.557 450.843i −1.63778 2.25422i
\(201\) 300.834 + 50.6484i 1.49668 + 0.251982i
\(202\) −60.2537 + 185.442i −0.298286 + 0.918029i
\(203\) −32.2214 + 44.3490i −0.158726 + 0.218468i
\(204\) 40.3736 + 81.1780i 0.197910 + 0.397931i
\(205\) −173.494 + 533.961i −0.846314 + 2.60469i
\(206\) −434.435 + 141.157i −2.10891 + 0.685226i
\(207\) −20.1641 + 58.1864i −0.0974111 + 0.281094i
\(208\) 1.35768 0.00652733
\(209\) 0 0
\(210\) −69.6458 + 133.466i −0.331647 + 0.635550i
\(211\) 1.00476 0.729998i 0.00476188 0.00345971i −0.585402 0.810743i \(-0.699063\pi\)
0.590164 + 0.807284i \(0.299063\pi\)
\(212\) 170.591 55.4285i 0.804677 0.261455i
\(213\) 99.4007 97.4876i 0.466670 0.457688i
\(214\) 164.668 + 119.639i 0.769478 + 0.559059i
\(215\) 64.3535 88.5750i 0.299318 0.411977i
\(216\) −395.372 74.4928i −1.83043 0.344874i
\(217\) 23.6845 + 72.8934i 0.109145 + 0.335914i
\(218\) −100.854 138.814i −0.462634 0.636761i
\(219\) −160.300 + 307.190i −0.731962 + 1.40269i
\(220\) 0 0
\(221\) 0.259620i 0.00117475i
\(222\) 38.4398 5.70598i 0.173152 0.0257026i
\(223\) 38.3982 + 118.178i 0.172189 + 0.529944i 0.999494 0.0318093i \(-0.0101269\pi\)
−0.827305 + 0.561754i \(0.810127\pi\)
\(224\) 12.7872 + 4.15482i 0.0570859 + 0.0185483i
\(225\) 6.54032 336.520i 0.0290681 1.49565i
\(226\) 147.863 + 107.429i 0.654260 + 0.475347i
\(227\) −45.3725 14.7424i −0.199879 0.0649446i 0.207367 0.978263i \(-0.433511\pi\)
−0.407246 + 0.913319i \(0.633511\pi\)
\(228\) 643.051 + 108.264i 2.82040 + 0.474843i
\(229\) 59.2260 43.0302i 0.258629 0.187905i −0.450913 0.892568i \(-0.648902\pi\)
0.709542 + 0.704663i \(0.248902\pi\)
\(230\) 189.222i 0.822706i
\(231\) 0 0
\(232\) −450.160 −1.94034
\(233\) −108.973 149.988i −0.467694 0.643726i 0.508388 0.861128i \(-0.330242\pi\)
−0.976082 + 0.217402i \(0.930242\pi\)
\(234\) 1.78212 + 1.34846i 0.00761590 + 0.00576266i
\(235\) −66.7813 + 205.532i −0.284176 + 0.874603i
\(236\) 387.271 533.033i 1.64098 2.25862i
\(237\) 168.927 84.0153i 0.712773 0.354495i
\(238\) 7.18561 22.1150i 0.0301916 0.0929203i
\(239\) −333.790 + 108.455i −1.39661 + 0.453787i −0.908094 0.418767i \(-0.862462\pi\)
−0.488518 + 0.872554i \(0.662462\pi\)
\(240\) −448.703 + 66.6051i −1.86959 + 0.277521i
\(241\) −175.508 −0.728248 −0.364124 0.931351i \(-0.618631\pi\)
−0.364124 + 0.931351i \(0.618631\pi\)
\(242\) 0 0
\(243\) −163.280 179.969i −0.671934 0.740611i
\(244\) 528.799 384.195i 2.16721 1.57457i
\(245\) −343.382 + 111.572i −1.40156 + 0.455395i
\(246\) 522.688 + 532.945i 2.12475 + 2.16644i
\(247\) −1.51070 1.09759i −0.00611619 0.00444368i
\(248\) −369.948 + 509.190i −1.49173 + 2.05319i
\(249\) −180.985 + 177.502i −0.726847 + 0.712858i
\(250\) −105.952 326.086i −0.423806 1.30434i
\(251\) −81.7075 112.461i −0.325528 0.448051i 0.614617 0.788826i \(-0.289311\pi\)
−0.940145 + 0.340775i \(0.889311\pi\)
\(252\) 77.1202 + 110.604i 0.306032 + 0.438906i
\(253\) 0 0
\(254\) 204.706i 0.805930i
\(255\) 12.7364 + 85.8022i 0.0499468 + 0.336479i
\(256\) −161.232 496.220i −0.629811 1.93836i
\(257\) 406.456 + 132.065i 1.58154 + 0.513873i 0.962453 0.271449i \(-0.0875029\pi\)
0.619087 + 0.785323i \(0.287503\pi\)
\(258\) −64.8236 130.339i −0.251254 0.505190i
\(259\) −5.43184 3.94646i −0.0209724 0.0152373i
\(260\) 4.39941 + 1.42946i 0.0169208 + 0.00549791i
\(261\) −216.816 164.056i −0.830712 0.628569i
\(262\) −418.281 + 303.899i −1.59649 + 1.15992i
\(263\) 201.638i 0.766686i −0.923606 0.383343i \(-0.874773\pi\)
0.923606 0.383343i \(-0.125227\pi\)
\(264\) 0 0
\(265\) 171.613 0.647595
\(266\) −98.3064 135.307i −0.369573 0.508673i
\(267\) −22.5887 + 134.169i −0.0846018 + 0.502505i
\(268\) 259.445 798.488i 0.968077 2.97943i
\(269\) −201.640 + 277.534i −0.749591 + 1.03172i 0.248418 + 0.968653i \(0.420089\pi\)
−0.998009 + 0.0630705i \(0.979911\pi\)
\(270\) −655.128 358.228i −2.42640 1.32677i
\(271\) 125.951 387.638i 0.464765 1.43040i −0.394513 0.918890i \(-0.629087\pi\)
0.859278 0.511509i \(-0.170913\pi\)
\(272\) 66.6368 21.6516i 0.244988 0.0796015i
\(273\) −0.0566929 0.381927i −0.000207666 0.00139900i
\(274\) 579.239 2.11401
\(275\) 0 0
\(276\) 150.252 + 78.4053i 0.544391 + 0.284077i
\(277\) −402.078 + 292.127i −1.45154 + 1.05461i −0.466078 + 0.884744i \(0.654333\pi\)
−0.985467 + 0.169865i \(0.945667\pi\)
\(278\) 173.458 56.3598i 0.623949 0.202733i
\(279\) −363.752 + 110.423i −1.30377 + 0.395783i
\(280\) 172.798 + 125.545i 0.617134 + 0.448374i
\(281\) 227.477 313.095i 0.809525 1.11422i −0.181871 0.983322i \(-0.558215\pi\)
0.991396 0.130893i \(-0.0417845\pi\)
\(282\) 201.193 + 205.141i 0.713449 + 0.727450i
\(283\) 68.5261 + 210.902i 0.242142 + 0.745235i 0.996093 + 0.0883055i \(0.0281452\pi\)
−0.753952 + 0.656930i \(0.771855\pi\)
\(284\) −225.222 309.991i −0.793035 1.09152i
\(285\) 553.118 + 288.631i 1.94077 + 1.01274i
\(286\) 0 0
\(287\) 128.971i 0.449378i
\(288\) −21.8357 + 63.0099i −0.0758183 + 0.218785i
\(289\) 85.1656 + 262.113i 0.294691 + 0.906965i
\(290\) −794.552 258.165i −2.73983 0.890226i
\(291\) −258.585 + 128.606i −0.888607 + 0.441946i
\(292\) 771.483 + 560.515i 2.64207 + 1.91957i
\(293\) 421.089 + 136.820i 1.43716 + 0.466963i 0.921012 0.389535i \(-0.127364\pi\)
0.516151 + 0.856497i \(0.327364\pi\)
\(294\) −79.6998 + 473.389i −0.271088 + 1.61017i
\(295\) 509.979 370.522i 1.72874 1.25601i
\(296\) 55.1353i 0.186268i
\(297\) 0 0
\(298\) 106.933 0.358837
\(299\) −0.285259 0.392625i −0.000954043 0.00131313i
\(300\) −913.462 153.791i −3.04487 0.512635i
\(301\) −7.77188 + 23.9194i −0.0258202 + 0.0794664i
\(302\) −340.103 + 468.112i −1.12617 + 1.55004i
\(303\) 74.4057 + 149.605i 0.245563 + 0.493747i
\(304\) 155.730 479.288i 0.512270 1.57660i
\(305\) 594.755 193.247i 1.95002 0.633598i
\(306\) 108.973 + 37.7640i 0.356122 + 0.123412i
\(307\) −324.906 −1.05832 −0.529162 0.848521i \(-0.677494\pi\)
−0.529162 + 0.848521i \(0.677494\pi\)
\(308\) 0 0
\(309\) −181.088 + 347.028i −0.586046 + 1.12307i
\(310\) −944.994 + 686.579i −3.04837 + 2.21477i
\(311\) −111.277 + 36.1562i −0.357805 + 0.116258i −0.482403 0.875949i \(-0.660236\pi\)
0.124598 + 0.992207i \(0.460236\pi\)
\(312\) 2.26369 2.22012i 0.00725542 0.00711578i
\(313\) 118.178 + 85.8611i 0.377564 + 0.274317i 0.760341 0.649524i \(-0.225032\pi\)
−0.382776 + 0.923841i \(0.625032\pi\)
\(314\) −434.449 + 597.968i −1.38360 + 1.90436i
\(315\) 37.4730 + 123.442i 0.118962 + 0.391880i
\(316\) −160.451 493.818i −0.507757 1.56272i
\(317\) −39.7124 54.6595i −0.125276 0.172427i 0.741772 0.670652i \(-0.233986\pi\)
−0.867048 + 0.498225i \(0.833986\pi\)
\(318\) 105.559 202.288i 0.331946 0.636125i
\(319\) 0 0
\(320\) 399.917i 1.24974i
\(321\) 172.528 25.6100i 0.537472 0.0797819i
\(322\) −13.4321 41.3399i −0.0417147 0.128385i
\(323\) −91.6508 29.7791i −0.283749 0.0921955i
\(324\) −555.907 + 371.770i −1.71576 + 1.14744i
\(325\) 2.14597 + 1.55914i 0.00660298 + 0.00479734i
\(326\) −291.048 94.5672i −0.892785 0.290083i
\(327\) −144.993 24.4110i −0.443403 0.0746515i
\(328\) 856.825 622.520i 2.61227 1.89793i
\(329\) 49.6436i 0.150892i
\(330\) 0 0
\(331\) 303.465 0.916814 0.458407 0.888742i \(-0.348420\pi\)
0.458407 + 0.888742i \(0.348420\pi\)
\(332\) 410.076 + 564.421i 1.23517 + 1.70006i
\(333\) 20.0935 26.5555i 0.0603410 0.0797463i
\(334\) 44.7515 137.731i 0.133987 0.412368i
\(335\) 472.149 649.857i 1.40940 1.93987i
\(336\) 93.3012 46.4030i 0.277682 0.138104i
\(337\) 171.640 528.253i 0.509317 1.56752i −0.284072 0.958803i \(-0.591686\pi\)
0.793390 0.608714i \(-0.208314\pi\)
\(338\) 562.679 182.825i 1.66473 0.540904i
\(339\) 154.921 22.9963i 0.456993 0.0678357i
\(340\) 238.725 0.702132
\(341\) 0 0
\(342\) 680.447 474.449i 1.98961 1.38728i
\(343\) 139.033 101.013i 0.405344 0.294500i
\(344\) −196.422 + 63.8215i −0.570995 + 0.185528i
\(345\) 113.537 + 115.765i 0.329092 + 0.335551i
\(346\) −585.814 425.619i −1.69310 1.23011i
\(347\) −228.043 + 313.874i −0.657184 + 0.904537i −0.999384 0.0350905i \(-0.988828\pi\)
0.342200 + 0.939627i \(0.388828\pi\)
\(348\) −534.223 + 523.941i −1.53512 + 1.50558i
\(349\) −139.687 429.911i −0.400248 1.23184i −0.924799 0.380457i \(-0.875767\pi\)
0.524551 0.851379i \(-0.324233\pi\)
\(350\) 139.645 + 192.205i 0.398987 + 0.549158i
\(351\) 1.89939 0.244325i 0.00541138 0.000696082i
\(352\) 0 0
\(353\) 304.454i 0.862476i 0.902238 + 0.431238i \(0.141923\pi\)
−0.902238 + 0.431238i \(0.858077\pi\)
\(354\) −123.063 829.045i −0.347635 2.34193i
\(355\) −113.285 348.656i −0.319113 0.982128i
\(356\) 356.118 + 115.710i 1.00033 + 0.325027i
\(357\) −8.87332 17.8413i −0.0248552 0.0499757i
\(358\) −391.683 284.574i −1.09409 0.794900i
\(359\) −288.279 93.6674i −0.803004 0.260912i −0.121372 0.992607i \(-0.538730\pi\)
−0.681632 + 0.731695i \(0.738730\pi\)
\(360\) −639.216 + 844.783i −1.77560 + 2.34662i
\(361\) −268.695 + 195.218i −0.744307 + 0.540771i
\(362\) 216.815i 0.598936i
\(363\) 0 0
\(364\) −1.06262 −0.00291929
\(365\) 536.273 + 738.116i 1.46924 + 2.02224i
\(366\) 138.044 819.932i 0.377169 2.24025i
\(367\) −129.776 + 399.409i −0.353612 + 1.08831i 0.603197 + 0.797592i \(0.293893\pi\)
−0.956810 + 0.290715i \(0.906107\pi\)
\(368\) 76.9854 105.961i 0.209200 0.287938i
\(369\) 639.554 + 12.4298i 1.73321 + 0.0336852i
\(370\) 31.6200 97.3163i 0.0854594 0.263017i
\(371\) −37.4926 + 12.1821i −0.101058 + 0.0328359i
\(372\) 153.614 + 1034.86i 0.412941 + 2.78188i
\(373\) 198.795 0.532963 0.266482 0.963840i \(-0.414139\pi\)
0.266482 + 0.963840i \(0.414139\pi\)
\(374\) 0 0
\(375\) −260.478 135.924i −0.694608 0.362464i
\(376\) 329.808 239.620i 0.877149 0.637286i
\(377\) 2.03784 0.662135i 0.00540541 0.00175633i
\(378\) 168.557 + 31.7581i 0.445917 + 0.0840161i
\(379\) −58.5806 42.5613i −0.154566 0.112299i 0.507814 0.861467i \(-0.330454\pi\)
−0.662380 + 0.749168i \(0.730454\pi\)
\(380\) 1009.25 1389.11i 2.65592 3.65556i
\(381\) −122.828 125.238i −0.322382 0.328708i
\(382\) −26.2781 80.8756i −0.0687908 0.211716i
\(383\) −308.532 424.658i −0.805566 1.10877i −0.991992 0.126298i \(-0.959691\pi\)
0.186426 0.982469i \(-0.440309\pi\)
\(384\) −550.229 287.123i −1.43289 0.747717i
\(385\) 0 0
\(386\) 706.528i 1.83038i
\(387\) −117.864 40.8451i −0.304559 0.105543i
\(388\) 245.610 + 755.911i 0.633016 + 1.94822i
\(389\) −354.669 115.239i −0.911745 0.296244i −0.184669 0.982801i \(-0.559121\pi\)
−0.727076 + 0.686557i \(0.759121\pi\)
\(390\) 5.26875 2.62040i 0.0135096 0.00671896i
\(391\) −20.2622 14.7214i −0.0518216 0.0376506i
\(392\) 647.753 + 210.468i 1.65243 + 0.536907i
\(393\) −73.5565 + 436.900i −0.187167 + 1.11170i
\(394\) −183.841 + 133.568i −0.466601 + 0.339005i
\(395\) 496.774i 1.25766i
\(396\) 0 0
\(397\) −184.584 −0.464947 −0.232474 0.972603i \(-0.574682\pi\)
−0.232474 + 0.972603i \(0.574682\pi\)
\(398\) −280.400 385.938i −0.704523 0.969693i
\(399\) −141.330 23.7943i −0.354211 0.0596350i
\(400\) −221.216 + 680.834i −0.553041 + 1.70208i
\(401\) −53.3656 + 73.4514i −0.133081 + 0.183171i −0.870357 0.492421i \(-0.836112\pi\)
0.737276 + 0.675592i \(0.236112\pi\)
\(402\) −475.598 956.272i −1.18308 2.37879i
\(403\) 0.925768 2.84922i 0.00229719 0.00707003i
\(404\) 437.336 142.099i 1.08251 0.351730i
\(405\) −615.747 + 173.927i −1.52036 + 0.429450i
\(406\) 191.914 0.472694
\(407\) 0 0
\(408\) 75.6995 145.067i 0.185538 0.355555i
\(409\) 444.897 323.237i 1.08777 0.790310i 0.108747 0.994069i \(-0.465316\pi\)
0.979021 + 0.203760i \(0.0653161\pi\)
\(410\) 1869.35 607.388i 4.55938 1.48143i
\(411\) 354.374 347.554i 0.862225 0.845630i
\(412\) 871.533 + 633.206i 2.11537 + 1.53691i
\(413\) −85.1147 + 117.150i −0.206089 + 0.283657i
\(414\) 206.294 62.6242i 0.498295 0.151266i
\(415\) 206.265 + 634.819i 0.497024 + 1.52968i
\(416\) −0.308906 0.425173i −0.000742563 0.00102205i
\(417\) 72.3034 138.558i 0.173389 0.332275i
\(418\) 0 0
\(419\) 298.402i 0.712176i 0.934452 + 0.356088i \(0.115890\pi\)
−0.934452 + 0.356088i \(0.884110\pi\)
\(420\) 351.188 52.1300i 0.836161 0.124119i
\(421\) −37.8855 116.600i −0.0899894 0.276959i 0.895926 0.444203i \(-0.146513\pi\)
−0.985915 + 0.167244i \(0.946513\pi\)
\(422\) −4.13514 1.34359i −0.00979891 0.00318386i
\(423\) 246.177 + 4.78448i 0.581978 + 0.0113108i
\(424\) −261.902 190.283i −0.617692 0.448780i
\(425\) 130.191 + 42.3016i 0.306332 + 0.0995332i
\(426\) −480.658 80.9238i −1.12831 0.189962i
\(427\) −116.220 + 84.4386i −0.272177 + 0.197748i
\(428\) 480.021i 1.12154i
\(429\) 0 0
\(430\) −383.296 −0.891385
\(431\) −347.398 478.153i −0.806028 1.10940i −0.991924 0.126833i \(-0.959519\pi\)
0.185896 0.982569i \(-0.440481\pi\)
\(432\) 221.115 + 467.142i 0.511840 + 1.08135i
\(433\) 198.492 610.896i 0.458411 1.41084i −0.408672 0.912681i \(-0.634008\pi\)
0.867083 0.498163i \(-0.165992\pi\)
\(434\) 157.718 217.080i 0.363405 0.500184i
\(435\) −641.005 + 318.802i −1.47358 + 0.732878i
\(436\) −125.045 + 384.848i −0.286800 + 0.882679i
\(437\) −171.324 + 55.6665i −0.392046 + 0.127383i
\(438\) 1199.91 178.114i 2.73953 0.406654i
\(439\) −476.217 −1.08478 −0.542388 0.840128i \(-0.682480\pi\)
−0.542388 + 0.840128i \(0.682480\pi\)
\(440\) 0 0
\(441\) 235.282 + 337.437i 0.533520 + 0.765164i
\(442\) −0.735321 + 0.534242i −0.00166362 + 0.00120869i
\(443\) −102.449 + 33.2878i −0.231262 + 0.0751417i −0.422356 0.906430i \(-0.638797\pi\)
0.191093 + 0.981572i \(0.438797\pi\)
\(444\) −64.1720 65.4313i −0.144532 0.147368i
\(445\) 289.830 + 210.574i 0.651303 + 0.473200i
\(446\) 255.698 351.939i 0.573315 0.789100i
\(447\) 65.4211 64.1620i 0.146356 0.143539i
\(448\) 28.3885 + 87.3709i 0.0633672 + 0.195024i
\(449\) 131.943 + 181.604i 0.293860 + 0.404464i 0.930263 0.366893i \(-0.119578\pi\)
−0.636403 + 0.771357i \(0.719578\pi\)
\(450\) −966.582 + 673.961i −2.14796 + 1.49769i
\(451\) 0 0
\(452\) 431.031i 0.953608i
\(453\) 72.8030 + 490.456i 0.160713 + 1.08268i
\(454\) 51.6118 + 158.845i 0.113682 + 0.349879i
\(455\) −0.966905 0.314166i −0.00212507 0.000690476i
\(456\) −524.093 1053.78i −1.14933 2.31092i
\(457\) 57.6734 + 41.9021i 0.126200 + 0.0916896i 0.649095 0.760708i \(-0.275148\pi\)
−0.522895 + 0.852397i \(0.675148\pi\)
\(458\) −243.748 79.1986i −0.532202 0.172923i
\(459\) 89.3282 42.2823i 0.194615 0.0921182i
\(460\) 361.025 262.300i 0.784837 0.570217i
\(461\) 876.537i 1.90138i 0.310141 + 0.950691i \(0.399624\pi\)
−0.310141 + 0.950691i \(0.600376\pi\)
\(462\) 0 0
\(463\) −824.691 −1.78119 −0.890595 0.454797i \(-0.849712\pi\)
−0.890595 + 0.454797i \(0.849712\pi\)
\(464\) 339.901 + 467.833i 0.732544 + 1.00826i
\(465\) −166.181 + 987.058i −0.357379 + 2.12271i
\(466\) −200.568 + 617.285i −0.430404 + 1.32465i
\(467\) −188.715 + 259.743i −0.404100 + 0.556196i −0.961767 0.273869i \(-0.911697\pi\)
0.557667 + 0.830065i \(0.311697\pi\)
\(468\) 0.102412 5.26942i 0.000218829 0.0112595i
\(469\) −57.0208 + 175.492i −0.121580 + 0.374183i
\(470\) 719.547 233.795i 1.53095 0.497436i
\(471\) 92.9987 + 626.510i 0.197450 + 1.33017i
\(472\) −1189.12 −2.51933
\(473\) 0 0
\(474\) −585.571 305.566i −1.23538 0.644654i
\(475\) 796.552 578.729i 1.67695 1.21838i
\(476\) −52.1549 + 16.9461i −0.109569 + 0.0356011i
\(477\) −56.7962 187.096i −0.119070 0.392234i
\(478\) 994.044 + 722.215i 2.07959 + 1.51091i
\(479\) −254.639 + 350.481i −0.531606 + 0.731693i −0.987374 0.158406i \(-0.949365\pi\)
0.455768 + 0.890099i \(0.349365\pi\)
\(480\) 122.949 + 125.362i 0.256144 + 0.261170i
\(481\) 0.0810979 + 0.249594i 0.000168603 + 0.000518906i
\(482\) 361.156 + 497.089i 0.749287 + 1.03131i
\(483\) −33.0224 17.2319i −0.0683694 0.0356769i
\(484\) 0 0
\(485\) 760.436i 1.56791i
\(486\) −173.730 + 832.792i −0.357468 + 1.71356i
\(487\) −108.946 335.301i −0.223708 0.688504i −0.998420 0.0561891i \(-0.982105\pi\)
0.774712 0.632315i \(-0.217895\pi\)
\(488\) −1121.94 364.540i −2.29905 0.747008i
\(489\) −234.803 + 116.779i −0.480170 + 0.238811i
\(490\) 1022.61 + 742.969i 2.08696 + 1.51626i
\(491\) 424.537 + 137.940i 0.864637 + 0.280938i 0.707564 0.706649i \(-0.249794\pi\)
0.157073 + 0.987587i \(0.449794\pi\)
\(492\) 292.278 1736.03i 0.594061 3.52851i
\(493\) 89.4604 64.9968i 0.181461 0.131839i
\(494\) 6.53734i 0.0132335i
\(495\) 0 0
\(496\) 808.517 1.63007
\(497\) 49.4994 + 68.1300i 0.0995963 + 0.137083i
\(498\) 875.164 + 147.343i 1.75736 + 0.295869i
\(499\) 27.7403 85.3758i 0.0555917 0.171094i −0.919405 0.393311i \(-0.871329\pi\)
0.974997 + 0.222217i \(0.0713295\pi\)
\(500\) −475.282 + 654.169i −0.950564 + 1.30834i
\(501\) −55.2625 111.115i −0.110304 0.221786i
\(502\) −150.386 + 462.839i −0.299573 + 0.921990i
\(503\) −928.252 + 301.607i −1.84543 + 0.599617i −0.847840 + 0.530252i \(0.822097\pi\)
−0.997591 + 0.0693646i \(0.977903\pi\)
\(504\) 79.6832 229.937i 0.158102 0.456225i
\(505\) 439.954 0.871195
\(506\) 0 0
\(507\) 234.545 449.469i 0.462612 0.886527i
\(508\) −390.567 + 283.764i −0.768834 + 0.558590i
\(509\) −305.922 + 99.3999i −0.601025 + 0.195285i −0.593697 0.804688i \(-0.702332\pi\)
−0.00732728 + 0.999973i \(0.502332\pi\)
\(510\) 216.808 212.635i 0.425114 0.416932i
\(511\) −169.557 123.190i −0.331814 0.241077i
\(512\) −587.258 + 808.291i −1.14699 + 1.57869i
\(513\) 131.614 698.546i 0.256558 1.36169i
\(514\) −462.349 1422.96i −0.899511 2.76841i
\(515\) 605.819 + 833.839i 1.17635 + 1.61910i
\(516\) −158.821 + 304.356i −0.307792 + 0.589836i
\(517\) 0 0
\(518\) 23.5055i 0.0453774i
\(519\) −613.777 + 91.1086i −1.18261 + 0.175546i
\(520\) −2.57989 7.94007i −0.00496132 0.0152694i
\(521\) −291.387 94.6773i −0.559284 0.181722i 0.0157151 0.999877i \(-0.494998\pi\)
−0.574999 + 0.818154i \(0.694998\pi\)
\(522\) −18.4960 + 951.678i −0.0354330 + 1.82314i
\(523\) −543.341 394.761i −1.03889 0.754800i −0.0688243 0.997629i \(-0.521925\pi\)
−0.970069 + 0.242828i \(0.921925\pi\)
\(524\) 1159.64 + 376.791i 2.21306 + 0.719066i
\(525\) 200.761 + 33.8001i 0.382402 + 0.0643812i
\(526\) −571.099 + 414.928i −1.08574 + 0.788836i
\(527\) 154.607i 0.293372i
\(528\) 0 0
\(529\) 482.182 0.911497
\(530\) −353.141 486.057i −0.666304 0.917089i
\(531\) −572.731 433.364i −1.07859 0.816128i
\(532\) −121.886 + 375.126i −0.229108 + 0.705123i
\(533\) −2.96313 + 4.07840i −0.00555934 + 0.00765177i
\(534\) 426.488 212.112i 0.798666 0.397214i
\(535\) 141.919 436.782i 0.265269 0.816414i
\(536\) −1441.11 + 468.246i −2.68864 + 0.873593i
\(537\) −410.379 + 60.9164i −0.764206 + 0.113438i
\(538\) 1200.99 2.23232
\(539\) 0 0
\(540\) 224.661 + 1746.52i 0.416038 + 3.23430i
\(541\) 148.941 108.212i 0.275307 0.200022i −0.441561 0.897231i \(-0.645575\pi\)
0.716868 + 0.697209i \(0.245575\pi\)
\(542\) −1357.08 + 440.944i −2.50385 + 0.813549i
\(543\) −130.093 132.646i −0.239582 0.244283i
\(544\) −21.9419 15.9418i −0.0403345 0.0293047i
\(545\) −227.562 + 313.212i −0.417545 + 0.574701i
\(546\) −0.965066 + 0.946492i −0.00176752 + 0.00173350i
\(547\) 187.610 + 577.405i 0.342980 + 1.05558i 0.962656 + 0.270727i \(0.0872640\pi\)
−0.619676 + 0.784858i \(0.712736\pi\)
\(548\) −802.941 1105.15i −1.46522 2.01670i
\(549\) −407.520 584.458i −0.742295 1.06459i
\(550\) 0 0
\(551\) 795.344i 1.44346i
\(552\) −44.9118 302.560i −0.0813620 0.548116i
\(553\) 35.2640 + 108.532i 0.0637686 + 0.196260i
\(554\) 1654.78 + 537.670i 2.98696 + 0.970523i
\(555\) −39.0467 78.5100i −0.0703544 0.141459i
\(556\) −347.979 252.821i −0.625861 0.454714i
\(557\) −386.247 125.499i −0.693441 0.225313i −0.0589706 0.998260i \(-0.518782\pi\)
−0.634471 + 0.772947i \(0.718782\pi\)
\(558\) 1061.27 + 803.026i 1.90192 + 1.43911i
\(559\) 0.795316 0.577831i 0.00142275 0.00103369i
\(560\) 274.376i 0.489958i
\(561\) 0 0
\(562\) −1354.87 −2.41081
\(563\) 189.430 + 260.728i 0.336465 + 0.463104i 0.943405 0.331643i \(-0.107603\pi\)
−0.606940 + 0.794748i \(0.707603\pi\)
\(564\) 112.503 668.230i 0.199474 1.18480i
\(565\) 127.435 392.205i 0.225549 0.694168i
\(566\) 456.323 628.075i 0.806225 1.10967i
\(567\) 122.177 81.7078i 0.215480 0.144105i
\(568\) −213.700 + 657.700i −0.376232 + 1.15792i
\(569\) 414.675 134.736i 0.728779 0.236795i 0.0789537 0.996878i \(-0.474842\pi\)
0.649825 + 0.760084i \(0.274842\pi\)
\(570\) −320.708 2160.53i −0.562646 3.79041i
\(571\) 155.637 0.272569 0.136284 0.990670i \(-0.456484\pi\)
0.136284 + 0.990670i \(0.456484\pi\)
\(572\) 0 0
\(573\) −64.6036 33.7118i −0.112746 0.0588339i
\(574\) −365.285 + 265.395i −0.636385 + 0.462361i
\(575\) 243.368 79.0749i 0.423248 0.137522i
\(576\) −435.998 + 132.355i −0.756941 + 0.229783i
\(577\) −678.174 492.722i −1.17534 0.853938i −0.183706 0.982981i \(-0.558809\pi\)
−0.991639 + 0.129043i \(0.958809\pi\)
\(578\) 567.128 780.585i 0.981190 1.35049i
\(579\) 423.930 + 432.249i 0.732176 + 0.746544i
\(580\) 608.843 + 1873.83i 1.04973 + 3.23074i
\(581\) −90.1265 124.049i −0.155123 0.213509i
\(582\) 896.361 + 467.744i 1.54014 + 0.803684i
\(583\) 0 0
\(584\) 1721.07i 2.94704i
\(585\) 1.65110 4.76449i 0.00282240 0.00814443i
\(586\) −478.994 1474.19i −0.817396 2.51569i
\(587\) −580.367 188.573i −0.988699 0.321248i −0.230358 0.973106i \(-0.573990\pi\)
−0.758341 + 0.651858i \(0.773990\pi\)
\(588\) 1013.68 504.149i 1.72394 0.857396i
\(589\) −899.640 653.626i −1.52740 1.10972i
\(590\) −2098.85 681.958i −3.55738 1.15586i
\(591\) −32.3292 + 192.024i −0.0547025 + 0.324913i
\(592\) −57.2999 + 41.6308i −0.0967904 + 0.0703224i
\(593\) 626.517i 1.05652i 0.849083 + 0.528260i \(0.177155\pi\)
−0.849083 + 0.528260i \(0.822845\pi\)
\(594\) 0 0
\(595\) −52.4671 −0.0881799
\(596\) −148.231 204.023i −0.248710 0.342320i
\(597\) −403.117 67.8688i −0.675238 0.113683i
\(598\) −0.525029 + 1.61587i −0.000877975 + 0.00270213i
\(599\) 673.968 927.638i 1.12516 1.54864i 0.328198 0.944609i \(-0.393559\pi\)
0.796958 0.604035i \(-0.206441\pi\)
\(600\) 744.481 + 1496.91i 1.24080 + 2.49484i
\(601\) 188.992 581.657i 0.314462 0.967816i −0.661513 0.749934i \(-0.730085\pi\)
0.975975 0.217882i \(-0.0699148\pi\)
\(602\) 83.7396 27.2086i 0.139102 0.0451971i
\(603\) −864.749 299.673i −1.43408 0.496970i
\(604\) 1364.58 2.25924
\(605\) 0 0
\(606\) 270.616 518.594i 0.446560 0.855766i
\(607\) 90.2465 65.5679i 0.148676 0.108020i −0.510960 0.859604i \(-0.670710\pi\)
0.659637 + 0.751585i \(0.270710\pi\)
\(608\) −185.526 + 60.2812i −0.305142 + 0.0991467i
\(609\) 117.412 115.152i 0.192794 0.189084i
\(610\) −1771.21 1286.86i −2.90362 2.10960i
\(611\) −1.14056 + 1.56985i −0.00186672 + 0.00256932i
\(612\) −79.0074 260.263i −0.129097 0.425266i
\(613\) −223.735 688.587i −0.364984 1.12331i −0.949991 0.312278i \(-0.898908\pi\)
0.585006 0.811029i \(-0.301092\pi\)
\(614\) 668.585 + 920.228i 1.08890 + 1.49874i
\(615\) 779.210 1493.24i 1.26701 2.42803i
\(616\) 0 0
\(617\) 305.723i 0.495499i 0.968824 + 0.247749i \(0.0796910\pi\)
−0.968824 + 0.247749i \(0.920309\pi\)
\(618\) 1355.52 201.213i 2.19341 0.325588i
\(619\) 306.245 + 942.525i 0.494741 + 1.52266i 0.817359 + 0.576128i \(0.195437\pi\)
−0.322618 + 0.946529i \(0.604563\pi\)
\(620\) 2619.90 + 851.258i 4.22565 + 1.37300i
\(621\) 88.6337 162.093i 0.142727 0.261020i
\(622\) 331.389 + 240.769i 0.532780 + 0.387088i
\(623\) −78.2677 25.4307i −0.125630 0.0408198i
\(624\) −4.01653 0.676223i −0.00643674 0.00108369i
\(625\) 130.518 94.8272i 0.208829 0.151723i
\(626\) 511.397i 0.816928i
\(627\) 0 0
\(628\) 1743.12 2.77567
\(629\) 7.96077 + 10.9571i 0.0126562 + 0.0174198i
\(630\) 272.513 360.151i 0.432560 0.571669i
\(631\) −167.008 + 513.999i −0.264673 + 0.814578i 0.727096 + 0.686536i \(0.240869\pi\)
−0.991769 + 0.128043i \(0.959131\pi\)
\(632\) −550.819 + 758.137i −0.871549 + 1.19958i
\(633\) −3.33603 + 1.65916i −0.00527019 + 0.00262111i
\(634\) −73.0921 + 224.954i −0.115287 + 0.354818i
\(635\) −439.282 + 142.731i −0.691782 + 0.224774i
\(636\) −532.279 + 79.0112i −0.836917 + 0.124231i
\(637\) −3.24190 −0.00508933
\(638\) 0 0
\(639\) −342.619 + 238.895i −0.536181 + 0.373858i
\(640\) −1322.09 + 960.554i −2.06576 + 1.50087i
\(641\) 270.883 88.0153i 0.422595 0.137309i −0.0899965 0.995942i \(-0.528686\pi\)
0.512591 + 0.858633i \(0.328686\pi\)
\(642\) −427.561 435.951i −0.665982 0.679052i
\(643\) −131.317 95.4072i −0.204225 0.148378i 0.480972 0.876736i \(-0.340284\pi\)
−0.685197 + 0.728358i \(0.740284\pi\)
\(644\) −60.2544 + 82.9331i −0.0935628 + 0.128778i
\(645\) −234.498 + 229.984i −0.363562 + 0.356565i
\(646\) 104.254 + 320.861i 0.161384 + 0.496689i
\(647\) −163.579 225.146i −0.252826 0.347985i 0.663672 0.748023i \(-0.268997\pi\)
−0.916499 + 0.400038i \(0.868997\pi\)
\(648\) 1132.55 + 417.300i 1.74777 + 0.643982i
\(649\) 0 0
\(650\) 9.28637i 0.0142867i
\(651\) −33.7613 227.442i −0.0518607 0.349373i
\(652\) 223.022 + 686.391i 0.342058 + 1.05275i
\(653\) −568.393 184.682i −0.870433 0.282821i −0.160454 0.987043i \(-0.551296\pi\)
−0.709979 + 0.704222i \(0.751296\pi\)
\(654\) 229.225 + 460.895i 0.350496 + 0.704732i
\(655\) 943.786 + 685.701i 1.44090 + 1.04687i
\(656\) −1293.92 420.420i −1.97244 0.640884i
\(657\) 627.227 828.940i 0.954684 1.26170i
\(658\) −140.605 + 102.156i −0.213686 + 0.155252i
\(659\) 187.267i 0.284169i 0.989855 + 0.142085i \(0.0453805\pi\)
−0.989855 + 0.142085i \(0.954620\pi\)
\(660\) 0 0
\(661\) 218.982 0.331289 0.165645 0.986186i \(-0.447030\pi\)
0.165645 + 0.986186i \(0.447030\pi\)
\(662\) −624.465 859.503i −0.943301 1.29834i
\(663\) −0.129309 + 0.768052i −0.000195037 + 0.00115845i
\(664\) 389.096 1197.52i 0.585988 1.80349i
\(665\) −221.813 + 305.300i −0.333554 + 0.459097i
\(666\) −116.561 2.26538i −0.175017 0.00340147i
\(667\) 63.8760 196.590i 0.0957660 0.294738i
\(668\) −324.817 + 105.539i −0.486253 + 0.157993i
\(669\) −54.7351 368.737i −0.0818164 0.551177i
\(670\) −2812.17 −4.19726
\(671\) 0 0
\(672\) −35.7599 18.6604i −0.0532141 0.0277685i
\(673\) −496.850 + 360.983i −0.738261 + 0.536378i −0.892166 0.451707i \(-0.850815\pi\)
0.153905 + 0.988086i \(0.450815\pi\)
\(674\) −1849.37 + 600.895i −2.74387 + 0.891536i
\(675\) −186.960 + 992.292i −0.276977 + 1.47006i
\(676\) −1128.81 820.125i −1.66983 1.21320i
\(677\) 479.292 659.688i 0.707964 0.974429i −0.291874 0.956457i \(-0.594279\pi\)
0.999838 0.0179723i \(-0.00572108\pi\)
\(678\) −383.925 391.459i −0.566261 0.577373i
\(679\) −53.9803 166.134i −0.0794997 0.244675i
\(680\) −253.248 348.566i −0.372424 0.512597i
\(681\) 126.886 + 66.2122i 0.186323 + 0.0972279i
\(682\) 0 0
\(683\) 95.9038i 0.140416i 0.997532 + 0.0702078i \(0.0223662\pi\)
−0.997532 + 0.0702078i \(0.977634\pi\)
\(684\) −1848.46 640.570i −2.70242 0.936506i
\(685\) −403.874 1243.00i −0.589597 1.81459i
\(686\) −572.199 185.919i −0.834109 0.271018i
\(687\) −196.644 + 97.8004i −0.286236 + 0.142359i
\(688\) 214.639 + 155.944i 0.311976 + 0.226663i
\(689\) 1.46549 + 0.476168i 0.00212699 + 0.000691100i
\(690\) 94.2461 559.789i 0.136589 0.811288i
\(691\) −239.639 + 174.108i −0.346801 + 0.251965i −0.747526 0.664233i \(-0.768758\pi\)
0.400725 + 0.916198i \(0.368758\pi\)
\(692\) 1707.69i 2.46776i
\(693\) 0 0
\(694\) 1358.25 1.95713
\(695\) −241.887 332.928i −0.348038 0.479033i
\(696\) 1331.74 + 224.211i 1.91341 + 0.322143i
\(697\) −80.3939 + 247.427i −0.115343 + 0.354989i
\(698\) −930.189 + 1280.30i −1.33265 + 1.83423i
\(699\) 247.676 + 497.996i 0.354330 + 0.712440i
\(700\) 173.140 532.870i 0.247343 0.761243i
\(701\) −707.749 + 229.962i −1.00963 + 0.328048i −0.766707 0.641998i \(-0.778106\pi\)
−0.242922 + 0.970046i \(0.578106\pi\)
\(702\) −4.60053 4.87687i −0.00655347 0.00694711i
\(703\) 97.4133 0.138568
\(704\) 0 0
\(705\) 299.933 574.776i 0.425436 0.815285i
\(706\) 862.303 626.500i 1.22139 0.887394i
\(707\) −96.1178 + 31.2306i −0.135952 + 0.0441734i
\(708\) −1411.18 + 1384.02i −1.99319 + 1.95483i
\(709\) 637.240 + 462.982i 0.898787 + 0.653007i 0.938154 0.346218i \(-0.112534\pi\)
−0.0393674 + 0.999225i \(0.512534\pi\)
\(710\) −754.379 + 1038.31i −1.06251 + 1.46241i
\(711\) −541.594 + 164.410i −0.761735 + 0.231238i
\(712\) −208.833 642.722i −0.293305 0.902700i
\(713\) −169.875 233.813i −0.238254 0.327928i
\(714\) −32.2725 + 61.8454i −0.0451996 + 0.0866182i
\(715\) 0 0
\(716\) 1141.78i 1.59467i
\(717\) 1041.49 154.598i 1.45257 0.215618i
\(718\) 327.921 + 1009.24i 0.456714 + 1.40562i
\(719\) 464.851 + 151.039i 0.646525 + 0.210069i 0.613881 0.789398i \(-0.289607\pi\)
0.0326435 + 0.999467i \(0.489607\pi\)
\(720\) 1360.60 + 26.4435i 1.88972 + 0.0367270i
\(721\) −191.546 139.166i −0.265667 0.193018i
\(722\) 1105.83 + 359.306i 1.53162 + 0.497654i
\(723\) 519.216 + 87.4153i 0.718141 + 0.120906i
\(724\) −413.670 + 300.549i −0.571367 + 0.415123i
\(725\) 1129.80i 1.55834i
\(726\) 0 0
\(727\) 270.772 0.372452 0.186226 0.982507i \(-0.440374\pi\)
0.186226 + 0.982507i \(0.440374\pi\)
\(728\) 1.12727 + 1.55155i 0.00154845 + 0.00213125i
\(729\) 393.404 + 613.738i 0.539649 + 0.841890i
\(730\) 987.029 3037.76i 1.35209 4.16132i
\(731\) 29.8202 41.0439i 0.0407936 0.0561476i
\(732\) −1755.74 + 873.210i −2.39855 + 1.19291i
\(733\) −125.540 + 386.373i −0.171269 + 0.527112i −0.999443 0.0333585i \(-0.989380\pi\)
0.828174 + 0.560471i \(0.189380\pi\)
\(734\) 1398.29 454.333i 1.90503 0.618982i
\(735\) 1071.42 159.041i 1.45772 0.216382i
\(736\) −50.6990 −0.0688845
\(737\) 0 0
\(738\) −1280.86 1836.98i −1.73558 2.48914i
\(739\) −751.623 + 546.086i −1.01708 + 0.738953i −0.965682 0.259726i \(-0.916368\pi\)
−0.0513986 + 0.998678i \(0.516368\pi\)
\(740\) −229.505 + 74.5708i −0.310142 + 0.100771i
\(741\) 3.92253 + 3.99950i 0.00529356 + 0.00539744i
\(742\) 111.655 + 81.1221i 0.150478 + 0.109329i
\(743\) −426.474 + 586.991i −0.573989 + 0.790029i −0.993020 0.117943i \(-0.962370\pi\)
0.419031 + 0.907972i \(0.362370\pi\)
\(744\) 1348.06 1322.11i 1.81190 1.77703i
\(745\) −74.5592 229.470i −0.100079 0.308013i
\(746\) −409.077 563.046i −0.548361 0.754754i
\(747\) 623.828 434.972i 0.835111 0.582291i
\(748\) 0 0
\(749\) 105.499i 0.140853i
\(750\) 151.030 + 1017.45i 0.201373 + 1.35660i
\(751\) 339.950 + 1046.26i 0.452664 + 1.39316i 0.873856 + 0.486184i \(0.161612\pi\)
−0.421193 + 0.906971i \(0.638388\pi\)
\(752\) −498.054 161.828i −0.662306 0.215196i
\(753\) 185.707 + 373.396i 0.246623 + 0.495878i
\(754\) −6.06879 4.40923i −0.00804879 0.00584779i
\(755\) 1241.66 + 403.441i 1.64459 + 0.534359i
\(756\) −173.061 365.619i −0.228916 0.483624i
\(757\) 1020.40 741.362i 1.34795 0.979342i 0.348838 0.937183i \(-0.386576\pi\)
0.999111 0.0421594i \(-0.0134237\pi\)
\(758\) 253.499i 0.334431i
\(759\) 0 0
\(760\) −3098.91 −4.07752
\(761\) 68.5586 + 94.3628i 0.0900901 + 0.123998i 0.851683 0.524057i \(-0.175582\pi\)
−0.761593 + 0.648056i \(0.775582\pi\)
\(762\) −101.958 + 605.596i −0.133803 + 0.794745i
\(763\) 27.4824 84.5820i 0.0360188 0.110855i
\(764\) −117.879 + 162.247i −0.154292 + 0.212365i
\(765\) 5.05659 260.178i 0.00660993 0.340102i
\(766\) −567.864 + 1747.71i −0.741337 + 2.28160i
\(767\) 5.38307 1.74907i 0.00701834 0.00228040i
\(768\) 229.829 + 1548.30i 0.299257 + 2.01602i
\(769\) −1252.94 −1.62930 −0.814652 0.579949i \(-0.803072\pi\)
−0.814652 + 0.579949i \(0.803072\pi\)
\(770\) 0 0
\(771\) −1136.67 593.142i −1.47428 0.769315i
\(772\) 1348.01 979.389i 1.74613 1.26864i
\(773\) 1111.09 361.014i 1.43737 0.467030i 0.516293 0.856412i \(-0.327311\pi\)
0.921076 + 0.389382i \(0.127311\pi\)
\(774\) 126.854 + 417.877i 0.163894 + 0.539893i
\(775\) 1277.95 + 928.484i 1.64897 + 1.19804i
\(776\) 843.165 1160.52i 1.08655 1.49551i
\(777\) 14.1037 + 14.3805i 0.0181515 + 0.0185077i
\(778\) 403.440 + 1241.66i 0.518561 + 1.59597i
\(779\) 1099.87 + 1513.84i 1.41190 + 1.94331i
\(780\) −12.3031 6.42008i −0.0157732 0.00823087i
\(781\) 0 0
\(782\) 87.6820i 0.112125i
\(783\) 559.709 + 593.329i 0.714826 + 0.757763i
\(784\) −270.366 832.101i −0.344854 1.06135i
\(785\) 1586.10 + 515.357i 2.02052 + 0.656505i
\(786\) 1388.79 690.710i 1.76691 0.878767i
\(787\) 895.443 + 650.578i 1.13779 + 0.826655i 0.986810 0.161881i \(-0.0517561\pi\)
0.150983 + 0.988536i \(0.451756\pi\)
\(788\) 509.680 + 165.605i 0.646802 + 0.210159i
\(789\) −100.430 + 596.520i −0.127288 + 0.756045i
\(790\) −1407.01 + 1022.25i −1.78102 + 1.29399i
\(791\) 94.7321i 0.119762i
\(792\) 0 0
\(793\) 5.61513 0.00708088
\(794\) 379.834 + 522.796i 0.478380 + 0.658434i
\(795\) −507.693 85.4752i −0.638607 0.107516i
\(796\) −347.656 + 1069.97i −0.436753 + 1.34419i
\(797\) 38.1748 52.5432i 0.0478982 0.0659262i −0.784396 0.620260i \(-0.787027\pi\)
0.832294 + 0.554334i \(0.187027\pi\)
\(798\) 223.434 + 449.251i 0.279992 + 0.562972i
\(799\) −30.9451 + 95.2394i −0.0387298 + 0.119198i
\(800\) 263.542 85.6301i 0.329428 0.107038i
\(801\) 133.651 385.669i 0.166855 0.481485i
\(802\) 317.851 0.396322
\(803\) 0 0
\(804\) −1165.24 + 2233.00i −1.44930 + 2.77736i
\(805\) −79.3462 + 57.6484i −0.0985667 + 0.0716129i
\(806\) −9.97485 + 3.24103i −0.0123757 + 0.00402112i
\(807\) 734.756 720.615i 0.910478 0.892955i
\(808\) −671.422 487.817i −0.830968 0.603734i
\(809\) 377.536 519.633i 0.466669 0.642315i −0.509206 0.860645i \(-0.670061\pi\)
0.975875 + 0.218329i \(0.0700607\pi\)
\(810\) 1759.69 + 1386.07i 2.17245 + 1.71120i
\(811\) −28.1962 86.7791i −0.0347673 0.107003i 0.932167 0.362029i \(-0.117916\pi\)
−0.966934 + 0.255026i \(0.917916\pi\)
\(812\) −266.031 366.160i −0.327625 0.450936i
\(813\) −565.681 + 1084.04i −0.695795 + 1.33339i
\(814\) 0 0
\(815\) 690.500i 0.847239i
\(816\) −207.920 + 30.8635i −0.254804 + 0.0378229i
\(817\) −112.760 347.040i −0.138017 0.424774i
\(818\) −1831.00 594.929i −2.23839 0.727297i
\(819\) −0.0225081 + 1.15812i −2.74825e−5 + 0.00141406i
\(820\) −3750.15 2724.64i −4.57335 3.32274i
\(821\) −860.864 279.712i −1.04856 0.340696i −0.266454 0.963848i \(-0.585852\pi\)
−0.782101 + 0.623151i \(0.785852\pi\)
\(822\) −1713.60 288.502i −2.08467 0.350976i
\(823\) −506.080 + 367.688i −0.614921 + 0.446766i −0.851144 0.524933i \(-0.824090\pi\)
0.236223 + 0.971699i \(0.424090\pi\)
\(824\) 1944.27i 2.35955i
\(825\) 0 0
\(826\) 506.951 0.613742
\(827\) −533.996 734.983i −0.645703 0.888734i 0.353201 0.935548i \(-0.385093\pi\)
−0.998904 + 0.0468139i \(0.985093\pi\)
\(828\) −405.448 306.787i −0.489672 0.370516i
\(829\) −181.306 + 558.004i −0.218705 + 0.673104i 0.780165 + 0.625574i \(0.215135\pi\)
−0.998870 + 0.0475305i \(0.984865\pi\)
\(830\) 1373.54 1890.52i 1.65487 2.27774i
\(831\) 1334.99 663.954i 1.60649 0.798982i
\(832\) 1.10964 3.41511i 0.00133370 0.00410470i
\(833\) −159.117 + 51.7002i −0.191016 + 0.0620650i
\(834\) −541.223 + 80.3387i −0.648948 + 0.0963294i
\(835\) −326.761 −0.391331
\(836\) 0 0
\(837\) 1131.11 145.498i 1.35139 0.173833i
\(838\) 845.162 614.046i 1.00855 0.732752i
\(839\) 973.790 316.404i 1.16066 0.377120i 0.335508 0.942037i \(-0.391092\pi\)
0.825147 + 0.564917i \(0.191092\pi\)
\(840\) −448.668 457.473i −0.534129 0.544611i
\(841\) 57.9563 + 42.1077i 0.0689135 + 0.0500686i
\(842\) −252.284 + 347.239i −0.299625 + 0.412398i
\(843\) −828.902 + 812.949i −0.983276 + 0.964352i
\(844\) 3.16864 + 9.75208i 0.00375432 + 0.0115546i
\(845\) −784.655 1079.98i −0.928585 1.27809i
\(846\) −493.027 707.090i −0.582774 0.835803i
\(847\) 0 0
\(848\) 415.860i 0.490401i
\(849\) −97.6812 658.055i −0.115054 0.775094i
\(850\) −148.094 455.787i −0.174228 0.536219i
\(851\) 24.0782 + 7.82349i 0.0282940 + 0.00919329i
\(852\) 511.891 + 1029.24i 0.600811 + 1.20803i
\(853\) −319.388 232.049i −0.374429 0.272038i 0.384616 0.923077i \(-0.374334\pi\)
−0.759045 + 0.651038i \(0.774334\pi\)
\(854\) 478.309 + 155.412i 0.560081 + 0.181981i
\(855\) −1492.57 1129.37i −1.74569 1.32090i
\(856\) −700.885 + 509.223i −0.818791 + 0.594887i
\(857\) 1.34510i 0.00156955i −1.00000 0.000784774i \(-0.999750\pi\)
1.00000 0.000784774i \(-0.000249801\pi\)
\(858\) 0 0
\(859\) 847.638 0.986772 0.493386 0.869810i \(-0.335759\pi\)
0.493386 + 0.869810i \(0.335759\pi\)
\(860\) 531.324 + 731.305i 0.617819 + 0.850355i
\(861\) −64.2369 + 381.545i −0.0746074 + 0.443141i
\(862\) −639.399 + 1967.87i −0.741762 + 2.28291i
\(863\) −273.561 + 376.524i −0.316988 + 0.436296i −0.937545 0.347865i \(-0.886907\pi\)
0.620557 + 0.784162i \(0.286907\pi\)
\(864\) 95.9813 175.531i 0.111089 0.203161i
\(865\) −504.882 + 1553.87i −0.583679 + 1.79638i
\(866\) −2138.69 + 694.902i −2.46962 + 0.802427i
\(867\) −121.400 817.844i −0.140023 0.943303i
\(868\) −632.804 −0.729037
\(869\) 0 0
\(870\) 2221.99 + 1159.49i 2.55401 + 1.33275i
\(871\) 5.83508 4.23943i 0.00669929 0.00486732i
\(872\) 694.574 225.681i 0.796530 0.258808i
\(873\) 829.043 251.671i 0.949649 0.288282i
\(874\) 510.211 + 370.690i 0.583765 + 0.424130i
\(875\) 104.458 143.774i 0.119380 0.164313i
\(876\) −2003.15 2042.46i −2.28670 2.33158i
\(877\) 160.979 + 495.443i 0.183557 + 0.564929i 0.999921 0.0126089i \(-0.00401364\pi\)
−0.816364 + 0.577538i \(0.804014\pi\)
\(878\) 979.949 + 1348.78i 1.11612 + 1.53620i
\(879\) −1177.59 614.496i −1.33969 0.699085i
\(880\) 0 0
\(881\) 606.759i 0.688717i 0.938838 + 0.344358i \(0.111904\pi\)
−0.938838 + 0.344358i \(0.888096\pi\)
\(882\) 471.562 1360.76i 0.534651 1.54281i
\(883\) −34.5371 106.294i −0.0391134 0.120379i 0.929593 0.368587i \(-0.120158\pi\)
−0.968707 + 0.248208i \(0.920158\pi\)
\(884\) 2.03860 + 0.662383i 0.00230611 + 0.000749302i
\(885\) −1693.25 + 842.133i −1.91328 + 0.951562i
\(886\) 305.099 + 221.667i 0.344355 + 0.250189i
\(887\) 10.8413 + 3.52254i 0.0122224 + 0.00397130i 0.315122 0.949051i \(-0.397955\pi\)
−0.302899 + 0.953023i \(0.597955\pi\)
\(888\) −27.4613 + 163.110i −0.0309249 + 0.183683i
\(889\) 85.8391 62.3657i 0.0965569 0.0701527i
\(890\) 1254.20i 1.40921i
\(891\) 0 0
\(892\) −1025.93 −1.15014
\(893\) 423.361 + 582.706i 0.474088 + 0.652527i
\(894\) −316.348 53.2604i −0.353857 0.0595754i
\(895\) −337.571 + 1038.94i −0.377174 + 1.16082i
\(896\) 220.654 303.705i 0.246266 0.338956i
\(897\) 0.648345 + 1.30361i 0.000722792 + 0.00145330i
\(898\) 242.846 747.404i 0.270430 0.832298i
\(899\) 1213.56 394.309i 1.34990 0.438608i
\(900\) 2625.75 + 909.937i 2.91751 + 1.01104i
\(901\) 79.5220 0.0882597
\(902\) 0 0
\(903\) 34.9056 66.8914i 0.0386552 0.0740768i
\(904\) −629.355 + 457.253i −0.696189 + 0.505811i
\(905\) −465.265 + 151.174i −0.514106 + 0.167043i
\(906\) 1239.30 1215.45i 1.36788 1.34156i
\(907\) −1290.64 937.708i −1.42298 1.03386i −0.991270 0.131845i \(-0.957910\pi\)
−0.431711 0.902012i \(-0.642090\pi\)
\(908\) 231.522 318.663i 0.254981 0.350951i
\(909\) −145.605 479.647i −0.160182 0.527664i
\(910\) 1.09987 + 3.38504i 0.00120865 + 0.00371983i
\(911\) −355.865 489.806i −0.390631 0.537658i 0.567731 0.823214i \(-0.307822\pi\)
−0.958362 + 0.285557i \(0.907822\pi\)
\(912\) −699.425 + 1340.34i −0.766914 + 1.46967i
\(913\) 0 0
\(914\) 249.573i 0.273056i
\(915\) −1855.75 + 275.467i −2.02814 + 0.301056i
\(916\) 186.778 + 574.843i 0.203906 + 0.627558i
\(917\) −254.867 82.8112i −0.277935 0.0903066i
\(918\) −303.574 165.996i −0.330690 0.180824i
\(919\) 297.362 + 216.046i 0.323571 + 0.235088i 0.737698 0.675131i \(-0.235913\pi\)
−0.414127 + 0.910219i \(0.635913\pi\)
\(920\) −765.977 248.881i −0.832583 0.270523i
\(921\) 961.190 + 161.826i 1.04364 + 0.175707i
\(922\) 2482.61 1803.72i 2.69263 1.95631i
\(923\) 3.29169i 0.00356630i
\(924\) 0 0
\(925\) −138.377 −0.149597
\(926\) 1697.03 + 2335.77i 1.83265 + 2.52243i
\(927\) 708.569 936.441i 0.764368 1.01018i
\(928\) 69.1712 212.887i 0.0745379 0.229404i
\(929\) 982.652 1352.50i 1.05775 1.45587i 0.175862 0.984415i \(-0.443729\pi\)
0.881890 0.471456i \(-0.156271\pi\)
\(930\) 3137.60 1560.48i 3.37377 1.67793i
\(931\) −371.855 + 1144.45i −0.399415 + 1.22927i
\(932\) 1455.77 473.009i 1.56199 0.507520i
\(933\) 347.207 51.5392i 0.372141 0.0552403i
\(934\) 1124.00 1.20343
\(935\) 0 0
\(936\) −7.80261 + 5.44046i −0.00833612 + 0.00581246i
\(937\) −809.725 + 588.299i −0.864167 + 0.627854i −0.929015 0.370041i \(-0.879344\pi\)
0.0648482 + 0.997895i \(0.479344\pi\)
\(938\) 614.381 199.625i 0.654991 0.212819i
\(939\) −306.848 312.869i −0.326781 0.333194i
\(940\) −1443.50 1048.77i −1.53564 1.11571i
\(941\) −207.090 + 285.035i −0.220074 + 0.302906i −0.904751 0.425940i \(-0.859943\pi\)
0.684677 + 0.728847i \(0.259943\pi\)
\(942\) 1583.09 1552.62i 1.68056 1.64822i
\(943\) 150.281 + 462.518i 0.159365 + 0.490476i
\(944\) 897.866 + 1235.81i 0.951130 + 1.30912i
\(945\) −49.3760 383.851i −0.0522497 0.406192i
\(946\) 0 0
\(947\) 1536.20i 1.62217i −0.584927 0.811086i \(-0.698877\pi\)
0.584927 0.811086i \(-0.301123\pi\)
\(948\) 228.717 + 1540.81i 0.241263 + 1.62533i
\(949\) 2.53150 + 7.79116i 0.00266755 + 0.00820986i
\(950\) −3278.26 1065.17i −3.45080 1.12123i
\(951\) 90.2596 + 181.482i 0.0949102 + 0.190833i
\(952\) 80.0711 + 58.1750i 0.0841083 + 0.0611082i
\(953\) 853.431 + 277.296i 0.895520 + 0.290972i 0.720387 0.693573i \(-0.243964\pi\)
0.175133 + 0.984545i \(0.443964\pi\)
\(954\) −413.036 + 545.865i −0.432951 + 0.572186i
\(955\) −155.230 + 112.781i −0.162544 + 0.118095i
\(956\) 2897.71i 3.03108i
\(957\) 0 0
\(958\) 1516.66 1.58315
\(959\) 176.471 + 242.891i 0.184015 + 0.253275i
\(960\) −199.187 + 1183.10i −0.207486 + 1.23240i
\(961\) 254.340 782.779i 0.264662 0.814546i
\(962\) 0.540041 0.743302i 0.000561373 0.000772663i
\(963\) −523.158 10.1676i −0.543258 0.0105583i
\(964\) 447.782 1378.13i 0.464504 1.42960i
\(965\) 1516.15 492.626i 1.57114 0.510493i
\(966\) 19.1470 + 128.989i 0.0198209 + 0.133529i
\(967\) 1717.58 1.77620 0.888099 0.459652i \(-0.152026\pi\)
0.888099 + 0.459652i \(0.152026\pi\)
\(968\) 0 0
\(969\) 256.304 + 133.746i 0.264504 + 0.138025i
\(970\) 2153.78 1564.81i 2.22039 1.61321i
\(971\) 1425.38 463.135i 1.46795 0.476967i 0.537465 0.843286i \(-0.319382\pi\)
0.930489 + 0.366319i \(0.119382\pi\)
\(972\) 1829.74 822.951i 1.88245 0.846658i
\(973\) 76.4788 + 55.5651i 0.0786011 + 0.0571070i
\(974\) −725.484 + 998.544i −0.744850 + 1.02520i
\(975\) −5.57199 5.68134i −0.00571487 0.00582701i
\(976\) 468.287 + 1441.24i 0.479802 + 1.47668i
\(977\) 33.1740 + 45.6602i 0.0339550 + 0.0467351i 0.825657 0.564172i \(-0.190805\pi\)
−0.791702 + 0.610908i \(0.790805\pi\)
\(978\) 813.925 + 424.727i 0.832234 + 0.434281i
\(979\) 0 0
\(980\) 2980.98i 3.04182i
\(981\) 416.784 + 144.434i 0.424856 + 0.147231i
\(982\) −482.917 1486.26i −0.491768 1.51351i
\(983\) 45.2279 + 14.6954i 0.0460101 + 0.0149496i 0.331932 0.943303i \(-0.392300\pi\)
−0.285922 + 0.958253i \(0.592300\pi\)
\(984\) −2844.86 + 1414.88i −2.89112 + 1.43789i
\(985\) 414.808 + 301.376i 0.421125 + 0.305965i
\(986\) −368.180 119.629i −0.373408 0.121327i
\(987\) −24.7260 + 146.864i −0.0250517 + 0.148798i
\(988\) 12.4729 9.06206i 0.0126244 0.00917213i
\(989\) 94.8360i 0.0958908i
\(990\) 0 0
\(991\) −218.685 −0.220671 −0.110336 0.993894i \(-0.535193\pi\)
−0.110336 + 0.993894i \(0.535193\pi\)
\(992\) −183.957 253.196i −0.185441 0.255238i
\(993\) −897.761 151.147i −0.904090 0.152213i
\(994\) 91.1053 280.393i 0.0916553 0.282086i
\(995\) −632.680 + 870.809i −0.635859 + 0.875185i
\(996\) −932.032 1874.01i −0.935775 1.88153i
\(997\) 203.226 625.464i 0.203837 0.627346i −0.795922 0.605399i \(-0.793013\pi\)
0.999759 0.0219472i \(-0.00698656\pi\)
\(998\) −298.893 + 97.1161i −0.299492 + 0.0973107i
\(999\) −72.6706 + 68.5529i −0.0727433 + 0.0686215i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.q.245.1 24
3.2 odd 2 inner 363.3.h.q.245.6 24
11.2 odd 10 363.3.b.k.122.1 yes 6
11.3 even 5 inner 363.3.h.q.269.1 24
11.4 even 5 inner 363.3.h.q.323.6 24
11.5 even 5 inner 363.3.h.q.251.6 24
11.6 odd 10 363.3.h.p.251.1 24
11.7 odd 10 363.3.h.p.323.1 24
11.8 odd 10 363.3.h.p.269.6 24
11.9 even 5 363.3.b.j.122.6 yes 6
11.10 odd 2 363.3.h.p.245.6 24
33.2 even 10 363.3.b.k.122.6 yes 6
33.5 odd 10 inner 363.3.h.q.251.1 24
33.8 even 10 363.3.h.p.269.1 24
33.14 odd 10 inner 363.3.h.q.269.6 24
33.17 even 10 363.3.h.p.251.6 24
33.20 odd 10 363.3.b.j.122.1 6
33.26 odd 10 inner 363.3.h.q.323.1 24
33.29 even 10 363.3.h.p.323.6 24
33.32 even 2 363.3.h.p.245.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.j.122.1 6 33.20 odd 10
363.3.b.j.122.6 yes 6 11.9 even 5
363.3.b.k.122.1 yes 6 11.2 odd 10
363.3.b.k.122.6 yes 6 33.2 even 10
363.3.h.p.245.1 24 33.32 even 2
363.3.h.p.245.6 24 11.10 odd 2
363.3.h.p.251.1 24 11.6 odd 10
363.3.h.p.251.6 24 33.17 even 10
363.3.h.p.269.1 24 33.8 even 10
363.3.h.p.269.6 24 11.8 odd 10
363.3.h.p.323.1 24 11.7 odd 10
363.3.h.p.323.6 24 33.29 even 10
363.3.h.q.245.1 24 1.1 even 1 trivial
363.3.h.q.245.6 24 3.2 odd 2 inner
363.3.h.q.251.1 24 33.5 odd 10 inner
363.3.h.q.251.6 24 11.5 even 5 inner
363.3.h.q.269.1 24 11.3 even 5 inner
363.3.h.q.269.6 24 33.14 odd 10 inner
363.3.h.q.323.1 24 33.26 odd 10 inner
363.3.h.q.323.6 24 11.4 even 5 inner