Properties

Label 363.3.h.n.323.2
Level $363$
Weight $3$
Character 363.323
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 323.2
Root \(-1.90610 + 0.619331i\) of defining polynomial
Character \(\chi\) \(=\) 363.323
Dual form 363.3.h.n.245.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.17804 + 1.62143i) q^{2} +(-0.157363 - 2.99587i) q^{3} +(-0.00519352 - 0.0159840i) q^{4} +(3.22364 + 4.43696i) q^{5} +(5.04297 + 3.27409i) q^{6} +(-1.72766 - 5.31721i) q^{7} +(-7.59238 - 2.46692i) q^{8} +(-8.95047 + 0.942880i) q^{9} -10.9918 q^{10} +(-0.0470687 + 0.0180744i) q^{12} +(-7.86105 - 5.71139i) q^{13} +(10.6567 + 3.46258i) q^{14} +(12.7853 - 10.3558i) q^{15} +(12.9984 - 9.44391i) q^{16} +(-10.5047 - 14.4584i) q^{17} +(9.01518 - 15.6233i) q^{18} +(-5.76592 + 17.7457i) q^{19} +(0.0541783 - 0.0745701i) q^{20} +(-15.6578 + 6.01259i) q^{21} +12.3649i q^{23} +(-6.19579 + 23.1340i) q^{24} +(-1.56932 + 4.82989i) q^{25} +(18.5212 - 6.01791i) q^{26} +(4.23322 + 26.6661i) q^{27} +(-0.0760176 + 0.0552300i) q^{28} +(-2.35608 + 0.765535i) q^{29} +(1.72970 + 32.9300i) q^{30} +(-39.8286 - 28.9372i) q^{31} +0.268903i q^{32} +35.8182 q^{34} +(18.0228 - 24.8063i) q^{35} +(0.0615554 + 0.138168i) q^{36} +(-12.1539 - 37.4057i) q^{37} +(-21.9809 - 30.2541i) q^{38} +(-15.8735 + 24.4494i) q^{39} +(-13.5295 - 41.6395i) q^{40} +(-53.7571 - 17.4667i) q^{41} +(8.69646 - 32.4711i) q^{42} +43.9060 q^{43} +(-33.0366 - 36.6734i) q^{45} +(-20.0488 - 14.5663i) q^{46} +(-54.9558 - 17.8562i) q^{47} +(-30.3382 - 37.4555i) q^{48} +(14.3540 - 10.4288i) q^{49} +(-5.98260 - 8.23434i) q^{50} +(-41.6625 + 33.7458i) q^{51} +(-0.0504643 + 0.155313i) q^{52} +(25.3428 - 34.8814i) q^{53} +(-48.2241 - 24.5498i) q^{54} +44.6323i q^{56} +(54.0710 + 14.4814i) q^{57} +(1.53428 - 4.72204i) q^{58} +(-85.6247 + 27.8212i) q^{59} +(-0.231928 - 0.150577i) q^{60} +(-24.9740 + 18.1446i) q^{61} +(93.8392 - 30.4902i) q^{62} +(20.4769 + 45.9625i) q^{63} +(51.5577 + 37.4589i) q^{64} -53.2906i q^{65} +34.0775 q^{67} +(-0.176547 + 0.242996i) q^{68} +(37.0435 - 1.94578i) q^{69} +(18.9901 + 58.4456i) q^{70} +(-22.0985 - 30.4160i) q^{71} +(70.2814 + 14.9214i) q^{72} +(3.74717 + 11.5326i) q^{73} +(74.9685 + 24.3587i) q^{74} +(14.7167 + 3.94145i) q^{75} +0.313592 q^{76} +(-20.9434 - 54.5402i) q^{78} +(-51.0852 - 37.1155i) q^{79} +(83.8045 + 27.2297i) q^{80} +(79.2220 - 16.8784i) q^{81} +(91.6490 - 66.5869i) q^{82} +(5.70238 + 7.84865i) q^{83} +(0.177424 + 0.219048i) q^{84} +(30.2882 - 93.2174i) q^{85} +(-51.7229 + 71.1904i) q^{86} +(2.66420 + 6.93803i) q^{87} +34.1289i q^{89} +(98.3817 - 10.3639i) q^{90} +(-16.7874 + 51.6662i) q^{91} +(0.197640 - 0.0642171i) q^{92} +(-80.4244 + 123.875i) q^{93} +(93.6927 - 68.0717i) q^{94} +(-97.3240 + 31.6225i) q^{95} +(0.805600 - 0.0423155i) q^{96} +(30.5992 + 22.2316i) q^{97} +35.5595i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} + 18 q^{4} - 32 q^{6} + 34 q^{7} + 17 q^{9} + 12 q^{10} + 106 q^{12} + 2 q^{13} - 28 q^{15} + 102 q^{16} - 42 q^{18} - 66 q^{19} + 12 q^{21} + 74 q^{24} - 176 q^{25} - 55 q^{27} + 146 q^{28}+ \cdots + 252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.17804 + 1.62143i −0.589019 + 0.810715i −0.994648 0.103323i \(-0.967052\pi\)
0.405629 + 0.914038i \(0.367052\pi\)
\(3\) −0.157363 2.99587i −0.0524544 0.998623i
\(4\) −0.00519352 0.0159840i −0.00129838 0.00399600i
\(5\) 3.22364 + 4.43696i 0.644728 + 0.887392i 0.998857 0.0478050i \(-0.0152226\pi\)
−0.354129 + 0.935197i \(0.615223\pi\)
\(6\) 5.04297 + 3.27409i 0.840495 + 0.545682i
\(7\) −1.72766 5.31721i −0.246809 0.759601i −0.995334 0.0964935i \(-0.969237\pi\)
0.748524 0.663107i \(-0.230763\pi\)
\(8\) −7.59238 2.46692i −0.949048 0.308364i
\(9\) −8.95047 + 0.942880i −0.994497 + 0.104764i
\(10\) −10.9918 −1.09918
\(11\) 0 0
\(12\) −0.0470687 + 0.0180744i −0.00392239 + 0.00150620i
\(13\) −7.86105 5.71139i −0.604696 0.439338i 0.242846 0.970065i \(-0.421919\pi\)
−0.847543 + 0.530727i \(0.821919\pi\)
\(14\) 10.6567 + 3.46258i 0.761195 + 0.247327i
\(15\) 12.7853 10.3558i 0.852351 0.690388i
\(16\) 12.9984 9.44391i 0.812402 0.590245i
\(17\) −10.5047 14.4584i −0.617921 0.850495i 0.379279 0.925282i \(-0.376172\pi\)
−0.997199 + 0.0747875i \(0.976172\pi\)
\(18\) 9.01518 15.6233i 0.500843 0.867962i
\(19\) −5.76592 + 17.7457i −0.303469 + 0.933982i 0.676775 + 0.736190i \(0.263377\pi\)
−0.980244 + 0.197792i \(0.936623\pi\)
\(20\) 0.0541783 0.0745701i 0.00270892 0.00372850i
\(21\) −15.6578 + 6.01259i −0.745609 + 0.286314i
\(22\) 0 0
\(23\) 12.3649i 0.537603i 0.963196 + 0.268801i \(0.0866275\pi\)
−0.963196 + 0.268801i \(0.913372\pi\)
\(24\) −6.19579 + 23.1340i −0.258158 + 0.963917i
\(25\) −1.56932 + 4.82989i −0.0627730 + 0.193195i
\(26\) 18.5212 6.01791i 0.712355 0.231458i
\(27\) 4.23322 + 26.6661i 0.156786 + 0.987633i
\(28\) −0.0760176 + 0.0552300i −0.00271491 + 0.00197250i
\(29\) −2.35608 + 0.765535i −0.0812440 + 0.0263978i −0.349357 0.936990i \(-0.613600\pi\)
0.268113 + 0.963387i \(0.413600\pi\)
\(30\) 1.72970 + 32.9300i 0.0576568 + 1.09767i
\(31\) −39.8286 28.9372i −1.28479 0.933457i −0.285107 0.958496i \(-0.592029\pi\)
−0.999686 + 0.0250387i \(0.992029\pi\)
\(32\) 0.268903i 0.00840323i
\(33\) 0 0
\(34\) 35.8182 1.05348
\(35\) 18.0228 24.8063i 0.514939 0.708752i
\(36\) 0.0615554 + 0.138168i 0.00170987 + 0.00383799i
\(37\) −12.1539 37.4057i −0.328483 1.01097i −0.969844 0.243727i \(-0.921630\pi\)
0.641361 0.767239i \(-0.278370\pi\)
\(38\) −21.9809 30.2541i −0.578444 0.796160i
\(39\) −15.8735 + 24.4494i −0.407014 + 0.626909i
\(40\) −13.5295 41.6395i −0.338238 1.04099i
\(41\) −53.7571 17.4667i −1.31115 0.426018i −0.431703 0.902016i \(-0.642087\pi\)
−0.879446 + 0.475998i \(0.842087\pi\)
\(42\) 8.69646 32.4711i 0.207059 0.773120i
\(43\) 43.9060 1.02107 0.510534 0.859857i \(-0.329448\pi\)
0.510534 + 0.859857i \(0.329448\pi\)
\(44\) 0 0
\(45\) −33.0366 36.6734i −0.734147 0.814964i
\(46\) −20.0488 14.5663i −0.435842 0.316658i
\(47\) −54.9558 17.8562i −1.16927 0.379920i −0.340902 0.940099i \(-0.610732\pi\)
−0.828372 + 0.560179i \(0.810732\pi\)
\(48\) −30.3382 37.4555i −0.632046 0.780323i
\(49\) 14.3540 10.4288i 0.292939 0.212832i
\(50\) −5.98260 8.23434i −0.119652 0.164687i
\(51\) −41.6625 + 33.7458i −0.816911 + 0.661682i
\(52\) −0.0504643 + 0.155313i −0.000970468 + 0.00298679i
\(53\) 25.3428 34.8814i 0.478167 0.658140i −0.499985 0.866034i \(-0.666661\pi\)
0.978151 + 0.207894i \(0.0666610\pi\)
\(54\) −48.2241 24.5498i −0.893038 0.454625i
\(55\) 0 0
\(56\) 44.6323i 0.797005i
\(57\) 54.0710 + 14.4814i 0.948615 + 0.254060i
\(58\) 1.53428 4.72204i 0.0264532 0.0814145i
\(59\) −85.6247 + 27.8212i −1.45127 + 0.471545i −0.925390 0.379016i \(-0.876262\pi\)
−0.525876 + 0.850561i \(0.676262\pi\)
\(60\) −0.231928 0.150577i −0.00386546 0.00250961i
\(61\) −24.9740 + 18.1446i −0.409409 + 0.297453i −0.773363 0.633964i \(-0.781427\pi\)
0.363953 + 0.931417i \(0.381427\pi\)
\(62\) 93.8392 30.4902i 1.51353 0.491777i
\(63\) 20.4769 + 45.9625i 0.325030 + 0.729564i
\(64\) 51.5577 + 37.4589i 0.805589 + 0.585295i
\(65\) 53.2906i 0.819855i
\(66\) 0 0
\(67\) 34.0775 0.508620 0.254310 0.967123i \(-0.418152\pi\)
0.254310 + 0.967123i \(0.418152\pi\)
\(68\) −0.176547 + 0.242996i −0.00259628 + 0.00357348i
\(69\) 37.0435 1.94578i 0.536863 0.0281996i
\(70\) 18.9901 + 58.4456i 0.271287 + 0.834937i
\(71\) −22.0985 30.4160i −0.311247 0.428394i 0.624523 0.781006i \(-0.285293\pi\)
−0.935769 + 0.352612i \(0.885293\pi\)
\(72\) 70.2814 + 14.9214i 0.976131 + 0.207241i
\(73\) 3.74717 + 11.5326i 0.0513311 + 0.157981i 0.973436 0.228959i \(-0.0735321\pi\)
−0.922105 + 0.386940i \(0.873532\pi\)
\(74\) 74.9685 + 24.3587i 1.01309 + 0.329172i
\(75\) 14.7167 + 3.94145i 0.196222 + 0.0525526i
\(76\) 0.313592 0.00412621
\(77\) 0 0
\(78\) −20.9434 54.5402i −0.268506 0.699233i
\(79\) −51.0852 37.1155i −0.646648 0.469817i 0.215480 0.976508i \(-0.430868\pi\)
−0.862128 + 0.506691i \(0.830868\pi\)
\(80\) 83.8045 + 27.2297i 1.04756 + 0.340372i
\(81\) 79.2220 16.8784i 0.978049 0.208376i
\(82\) 91.6490 66.5869i 1.11767 0.812035i
\(83\) 5.70238 + 7.84865i 0.0687034 + 0.0945621i 0.841986 0.539500i \(-0.181387\pi\)
−0.773283 + 0.634062i \(0.781387\pi\)
\(84\) 0.177424 + 0.219048i 0.00211219 + 0.00260771i
\(85\) 30.2882 93.2174i 0.356331 1.09668i
\(86\) −51.7229 + 71.1904i −0.601429 + 0.827795i
\(87\) 2.66420 + 6.93803i 0.0306230 + 0.0797474i
\(88\) 0 0
\(89\) 34.1289i 0.383471i 0.981447 + 0.191735i \(0.0614115\pi\)
−0.981447 + 0.191735i \(0.938588\pi\)
\(90\) 98.3817 10.3639i 1.09313 0.115155i
\(91\) −16.7874 + 51.6662i −0.184476 + 0.567760i
\(92\) 0.197640 0.0642171i 0.00214826 0.000698012i
\(93\) −80.4244 + 123.875i −0.864779 + 1.33199i
\(94\) 93.6927 68.0717i 0.996731 0.724167i
\(95\) −97.3240 + 31.6225i −1.02446 + 0.332868i
\(96\) 0.805600 0.0423155i 0.00839166 0.000440787i
\(97\) 30.5992 + 22.2316i 0.315456 + 0.229192i 0.734234 0.678896i \(-0.237542\pi\)
−0.418778 + 0.908089i \(0.637542\pi\)
\(98\) 35.5595i 0.362852i
\(99\) 0 0
\(100\) 0.0853512 0.000853512
\(101\) −27.5699 + 37.9467i −0.272969 + 0.375710i −0.923389 0.383865i \(-0.874593\pi\)
0.650420 + 0.759575i \(0.274593\pi\)
\(102\) −5.63647 107.307i −0.0552595 1.05203i
\(103\) 32.3840 + 99.6677i 0.314408 + 0.967647i 0.975998 + 0.217782i \(0.0698820\pi\)
−0.661590 + 0.749866i \(0.730118\pi\)
\(104\) 45.5946 + 62.7556i 0.438410 + 0.603419i
\(105\) −77.1527 50.0905i −0.734787 0.477052i
\(106\) 26.7030 + 82.1833i 0.251915 + 0.775314i
\(107\) −44.3479 14.4095i −0.414467 0.134668i 0.0943585 0.995538i \(-0.469920\pi\)
−0.508825 + 0.860870i \(0.669920\pi\)
\(108\) 0.404245 0.206155i 0.00374301 0.00190884i
\(109\) 168.413 1.54507 0.772537 0.634969i \(-0.218987\pi\)
0.772537 + 0.634969i \(0.218987\pi\)
\(110\) 0 0
\(111\) −110.150 + 42.2977i −0.992344 + 0.381060i
\(112\) −72.6722 52.7994i −0.648858 0.471423i
\(113\) −44.0531 14.3137i −0.389850 0.126670i 0.107532 0.994202i \(-0.465705\pi\)
−0.497382 + 0.867532i \(0.665705\pi\)
\(114\) −87.1783 + 70.6127i −0.764722 + 0.619410i
\(115\) −54.8624 + 39.8598i −0.477064 + 0.346607i
\(116\) 0.0244726 + 0.0336837i 0.000210971 + 0.000290377i
\(117\) 75.7453 + 43.7076i 0.647396 + 0.373569i
\(118\) 55.7591 171.609i 0.472535 1.45431i
\(119\) −58.7298 + 80.8347i −0.493528 + 0.679283i
\(120\) −122.618 + 47.0852i −1.02181 + 0.392376i
\(121\) 0 0
\(122\) 61.8686i 0.507120i
\(123\) −43.8687 + 163.798i −0.356656 + 1.33169i
\(124\) −0.255681 + 0.786906i −0.00206195 + 0.00634602i
\(125\) 103.910 33.7624i 0.831280 0.270099i
\(126\) −98.6476 20.9437i −0.782917 0.166220i
\(127\) −55.2468 + 40.1392i −0.435014 + 0.316056i −0.783651 0.621202i \(-0.786645\pi\)
0.348636 + 0.937258i \(0.386645\pi\)
\(128\) −122.497 + 39.8016i −0.957006 + 0.310950i
\(129\) −6.90919 131.537i −0.0535596 1.01966i
\(130\) 86.4070 + 62.7783i 0.664669 + 0.482910i
\(131\) 162.272i 1.23872i 0.785109 + 0.619358i \(0.212607\pi\)
−0.785109 + 0.619358i \(0.787393\pi\)
\(132\) 0 0
\(133\) 104.319 0.784353
\(134\) −40.1446 + 55.2543i −0.299587 + 0.412346i
\(135\) −104.670 + 104.744i −0.775333 + 0.775885i
\(136\) 44.0877 + 135.688i 0.324174 + 0.997705i
\(137\) −31.0745 42.7704i −0.226821 0.312192i 0.680405 0.732837i \(-0.261804\pi\)
−0.907226 + 0.420644i \(0.861804\pi\)
\(138\) −40.4837 + 62.3556i −0.293360 + 0.451853i
\(139\) 26.7410 + 82.3003i 0.192381 + 0.592089i 0.999997 + 0.00237984i \(0.000757526\pi\)
−0.807616 + 0.589709i \(0.799242\pi\)
\(140\) −0.490106 0.159245i −0.00350076 0.00113747i
\(141\) −44.8469 + 167.450i −0.318063 + 1.18759i
\(142\) 75.3502 0.530635
\(143\) 0 0
\(144\) −107.438 + 96.7835i −0.746095 + 0.672107i
\(145\) −10.9918 7.98600i −0.0758054 0.0550758i
\(146\) −23.1136 7.51007i −0.158312 0.0514388i
\(147\) −33.5021 41.3616i −0.227905 0.281371i
\(148\) −0.534772 + 0.388535i −0.00361332 + 0.00262523i
\(149\) 37.8827 + 52.1411i 0.254246 + 0.349940i 0.916993 0.398904i \(-0.130609\pi\)
−0.662746 + 0.748844i \(0.730609\pi\)
\(150\) −23.7276 + 19.2189i −0.158184 + 0.128126i
\(151\) −13.7929 + 42.4502i −0.0913437 + 0.281127i −0.986284 0.165060i \(-0.947218\pi\)
0.894940 + 0.446187i \(0.147218\pi\)
\(152\) 87.5541 120.508i 0.576014 0.792815i
\(153\) 107.654 + 119.505i 0.703622 + 0.781079i
\(154\) 0 0
\(155\) 270.001i 1.74194i
\(156\) 0.473239 + 0.126744i 0.00303359 + 0.000812461i
\(157\) −43.5918 + 134.162i −0.277655 + 0.854534i 0.710850 + 0.703344i \(0.248311\pi\)
−0.988505 + 0.151190i \(0.951689\pi\)
\(158\) 120.360 39.1075i 0.761775 0.247516i
\(159\) −108.488 70.4348i −0.682316 0.442986i
\(160\) −1.19311 + 0.866847i −0.00745696 + 0.00541780i
\(161\) 65.7465 21.3623i 0.408363 0.132685i
\(162\) −65.9592 + 148.336i −0.407156 + 0.915656i
\(163\) −97.8624 71.1012i −0.600383 0.436204i 0.245632 0.969363i \(-0.421005\pi\)
−0.846015 + 0.533159i \(0.821005\pi\)
\(164\) 0.949967i 0.00579248i
\(165\) 0 0
\(166\) −19.4437 −0.117130
\(167\) 63.1468 86.9141i 0.378125 0.520444i −0.576962 0.816771i \(-0.695762\pi\)
0.955086 + 0.296327i \(0.0957619\pi\)
\(168\) 133.712 7.02348i 0.795908 0.0418064i
\(169\) −23.0477 70.9335i −0.136377 0.419725i
\(170\) 115.465 + 158.924i 0.679205 + 0.934846i
\(171\) 34.8756 164.269i 0.203951 0.960635i
\(172\) −0.228026 0.701793i −0.00132573 0.00408019i
\(173\) 312.721 + 101.609i 1.80763 + 0.587336i 0.999997 0.00234427i \(-0.000746206\pi\)
0.807637 + 0.589680i \(0.200746\pi\)
\(174\) −14.3881 3.85344i −0.0826900 0.0221462i
\(175\) 28.3928 0.162244
\(176\) 0 0
\(177\) 96.8227 + 252.142i 0.547021 + 1.42453i
\(178\) −55.3376 40.2051i −0.310885 0.225872i
\(179\) 45.9346 + 14.9251i 0.256618 + 0.0833802i 0.434501 0.900671i \(-0.356925\pi\)
−0.177883 + 0.984052i \(0.556925\pi\)
\(180\) −0.414611 + 0.718521i −0.00230339 + 0.00399178i
\(181\) −0.0538541 + 0.0391273i −0.000297537 + 0.000216173i −0.587934 0.808909i \(-0.700059\pi\)
0.587636 + 0.809125i \(0.300059\pi\)
\(182\) −63.9969 88.0842i −0.351632 0.483979i
\(183\) 58.2890 + 71.9634i 0.318519 + 0.393243i
\(184\) 30.5031 93.8788i 0.165778 0.510211i
\(185\) 126.788 174.509i 0.685341 0.943291i
\(186\) −106.111 276.332i −0.570492 1.48566i
\(187\) 0 0
\(188\) 0.971151i 0.00516570i
\(189\) 134.475 68.5790i 0.711510 0.362852i
\(190\) 63.3777 195.056i 0.333567 1.02661i
\(191\) −187.751 + 61.0042i −0.982992 + 0.319393i −0.756049 0.654515i \(-0.772873\pi\)
−0.226943 + 0.973908i \(0.572873\pi\)
\(192\) 104.109 160.355i 0.542232 0.835182i
\(193\) 1.23267 0.895586i 0.00638688 0.00464034i −0.584587 0.811331i \(-0.698744\pi\)
0.590974 + 0.806691i \(0.298744\pi\)
\(194\) −72.0941 + 23.4248i −0.371619 + 0.120746i
\(195\) −159.652 + 8.38599i −0.818727 + 0.0430051i
\(196\) −0.241241 0.175272i −0.00123082 0.000894245i
\(197\) 215.460i 1.09370i −0.837229 0.546852i \(-0.815826\pi\)
0.837229 0.546852i \(-0.184174\pi\)
\(198\) 0 0
\(199\) −106.663 −0.535993 −0.267997 0.963420i \(-0.586362\pi\)
−0.267997 + 0.963420i \(0.586362\pi\)
\(200\) 23.8298 32.7990i 0.119149 0.163995i
\(201\) −5.36255 102.092i −0.0266794 0.507920i
\(202\) −29.0496 89.4053i −0.143810 0.442601i
\(203\) 8.14102 + 11.2051i 0.0401035 + 0.0551978i
\(204\) 0.755768 + 0.490674i 0.00370474 + 0.00240526i
\(205\) −95.7943 294.824i −0.467289 1.43817i
\(206\) −199.754 64.9039i −0.969678 0.315068i
\(207\) −11.6586 110.671i −0.0563216 0.534644i
\(208\) −156.119 −0.750573
\(209\) 0 0
\(210\) 172.107 66.0891i 0.819557 0.314710i
\(211\) 173.797 + 126.271i 0.823684 + 0.598442i 0.917765 0.397123i \(-0.129991\pi\)
−0.0940813 + 0.995565i \(0.529991\pi\)
\(212\) −0.689163 0.223923i −0.00325077 0.00105624i
\(213\) −87.6448 + 70.9906i −0.411478 + 0.333289i
\(214\) 75.6075 54.9321i 0.353306 0.256692i
\(215\) 141.537 + 194.809i 0.658311 + 0.906088i
\(216\) 33.6427 212.902i 0.155753 0.985658i
\(217\) −85.0544 + 261.771i −0.391956 + 1.20632i
\(218\) −198.397 + 273.070i −0.910078 + 1.25261i
\(219\) 33.9605 13.0408i 0.155071 0.0595472i
\(220\) 0 0
\(221\) 173.654i 0.785767i
\(222\) 61.1783 228.429i 0.275578 1.02896i
\(223\) 13.8343 42.5777i 0.0620373 0.190931i −0.915234 0.402922i \(-0.867995\pi\)
0.977272 + 0.211991i \(0.0679946\pi\)
\(224\) 1.42981 0.464575i 0.00638310 0.00207400i
\(225\) 9.49220 44.7094i 0.0421875 0.198709i
\(226\) 75.1049 54.5669i 0.332323 0.241446i
\(227\) 213.516 69.3755i 0.940598 0.305619i 0.201709 0.979446i \(-0.435351\pi\)
0.738890 + 0.673827i \(0.235351\pi\)
\(228\) −0.0493479 0.939481i −0.000216438 0.00412053i
\(229\) 84.2193 + 61.1889i 0.367770 + 0.267200i 0.756286 0.654242i \(-0.227012\pi\)
−0.388516 + 0.921442i \(0.627012\pi\)
\(230\) 135.912i 0.590921i
\(231\) 0 0
\(232\) 19.7767 0.0852446
\(233\) −36.1658 + 49.7780i −0.155218 + 0.213640i −0.879543 0.475819i \(-0.842152\pi\)
0.724325 + 0.689459i \(0.242152\pi\)
\(234\) −160.100 + 71.3264i −0.684186 + 0.304814i
\(235\) −97.9304 301.399i −0.416725 1.28255i
\(236\) 0.889387 + 1.22414i 0.00376859 + 0.00518702i
\(237\) −103.154 + 158.885i −0.435251 + 0.670401i
\(238\) −61.8818 190.453i −0.260008 0.800221i
\(239\) 141.955 + 46.1240i 0.593954 + 0.192987i 0.590542 0.807007i \(-0.298914\pi\)
0.00341179 + 0.999994i \(0.498914\pi\)
\(240\) 68.3890 255.352i 0.284954 1.06397i
\(241\) −358.881 −1.48913 −0.744567 0.667548i \(-0.767344\pi\)
−0.744567 + 0.667548i \(0.767344\pi\)
\(242\) 0 0
\(243\) −63.0323 234.683i −0.259392 0.965772i
\(244\) 0.419727 + 0.304949i 0.00172019 + 0.00124979i
\(245\) 92.5441 + 30.0694i 0.377731 + 0.122732i
\(246\) −213.908 264.090i −0.869544 1.07354i
\(247\) 146.679 106.568i 0.593840 0.431450i
\(248\) 231.008 + 317.956i 0.931486 + 1.28208i
\(249\) 22.6162 18.3187i 0.0908281 0.0735690i
\(250\) −67.6665 + 208.256i −0.270666 + 0.833024i
\(251\) 209.852 288.837i 0.836065 1.15074i −0.150699 0.988580i \(-0.548152\pi\)
0.986764 0.162165i \(-0.0518477\pi\)
\(252\) 0.628318 0.566010i 0.00249332 0.00224607i
\(253\) 0 0
\(254\) 136.864i 0.538836i
\(255\) −284.033 76.0704i −1.11386 0.298315i
\(256\) 0.997138 3.06887i 0.00389507 0.0119878i
\(257\) 62.8586 20.4240i 0.244586 0.0794708i −0.184159 0.982897i \(-0.558956\pi\)
0.428745 + 0.903426i \(0.358956\pi\)
\(258\) 221.416 + 143.752i 0.858203 + 0.557179i
\(259\) −177.896 + 129.249i −0.686858 + 0.499031i
\(260\) −0.851797 + 0.276766i −0.00327614 + 0.00106448i
\(261\) 20.3662 9.07340i 0.0780313 0.0347640i
\(262\) −263.112 191.162i −1.00424 0.729627i
\(263\) 85.4194i 0.324789i −0.986726 0.162394i \(-0.948078\pi\)
0.986726 0.162394i \(-0.0519216\pi\)
\(264\) 0 0
\(265\) 236.464 0.892315
\(266\) −122.892 + 169.146i −0.461998 + 0.635886i
\(267\) 102.246 5.37064i 0.382943 0.0201147i
\(268\) −0.176982 0.544695i −0.000660381 0.00203244i
\(269\) −95.0942 130.886i −0.353510 0.486565i 0.594816 0.803862i \(-0.297225\pi\)
−0.948326 + 0.317297i \(0.897225\pi\)
\(270\) −46.5307 293.108i −0.172336 1.08558i
\(271\) 80.3424 + 247.269i 0.296467 + 0.912430i 0.982725 + 0.185072i \(0.0592520\pi\)
−0.686258 + 0.727358i \(0.740748\pi\)
\(272\) −273.088 88.7317i −1.00400 0.326219i
\(273\) 157.427 + 42.1624i 0.576655 + 0.154441i
\(274\) 105.956 0.386701
\(275\) 0 0
\(276\) −0.223487 0.581998i −0.000809737 0.00210869i
\(277\) −70.2162 51.0151i −0.253488 0.184170i 0.453783 0.891112i \(-0.350074\pi\)
−0.707271 + 0.706942i \(0.750074\pi\)
\(278\) −164.946 53.5942i −0.593331 0.192785i
\(279\) 383.769 + 221.448i 1.37552 + 0.793720i
\(280\) −198.031 + 143.878i −0.707255 + 0.513851i
\(281\) −284.908 392.143i −1.01391 1.39553i −0.916387 0.400292i \(-0.868909\pi\)
−0.0975213 0.995233i \(-0.531091\pi\)
\(282\) −218.678 269.979i −0.775453 0.957373i
\(283\) −133.518 + 410.925i −0.471794 + 1.45203i 0.378439 + 0.925626i \(0.376461\pi\)
−0.850233 + 0.526406i \(0.823539\pi\)
\(284\) −0.371400 + 0.511188i −0.00130775 + 0.00179996i
\(285\) 110.052 + 286.594i 0.386148 + 1.00559i
\(286\) 0 0
\(287\) 316.014i 1.10109i
\(288\) −0.253544 2.40681i −0.000880360 0.00835699i
\(289\) −9.39211 + 28.9059i −0.0324986 + 0.100021i
\(290\) 25.8975 8.41460i 0.0893016 0.0290159i
\(291\) 61.7879 95.1697i 0.212329 0.327044i
\(292\) 0.164876 0.119790i 0.000564644 0.000410238i
\(293\) 5.25894 1.70873i 0.0179486 0.00583185i −0.300029 0.953930i \(-0.596996\pi\)
0.317978 + 0.948098i \(0.396996\pi\)
\(294\) 106.532 5.59576i 0.362352 0.0190332i
\(295\) −399.464 290.228i −1.35412 0.983823i
\(296\) 313.981i 1.06075i
\(297\) 0 0
\(298\) −129.170 −0.433458
\(299\) 70.6205 97.2008i 0.236189 0.325086i
\(300\) −0.0134311 0.255701i −4.47705e−5 0.000852337i
\(301\) −75.8548 233.457i −0.252009 0.775604i
\(302\) −52.5814 72.3721i −0.174111 0.239643i
\(303\) 118.022 + 76.6244i 0.389511 + 0.252886i
\(304\) 92.6406 + 285.119i 0.304739 + 0.937890i
\(305\) −161.014 52.3166i −0.527915 0.171530i
\(306\) −320.590 + 33.7722i −1.04768 + 0.110367i
\(307\) −219.257 −0.714191 −0.357095 0.934068i \(-0.616233\pi\)
−0.357095 + 0.934068i \(0.616233\pi\)
\(308\) 0 0
\(309\) 293.495 112.702i 0.949823 0.364732i
\(310\) 437.787 + 318.071i 1.41222 + 1.02604i
\(311\) 135.193 + 43.9268i 0.434704 + 0.141244i 0.518191 0.855265i \(-0.326606\pi\)
−0.0834870 + 0.996509i \(0.526606\pi\)
\(312\) 180.833 146.471i 0.579592 0.469458i
\(313\) −76.2787 + 55.4197i −0.243702 + 0.177060i −0.702931 0.711258i \(-0.748126\pi\)
0.459229 + 0.888318i \(0.348126\pi\)
\(314\) −166.181 228.729i −0.529239 0.728435i
\(315\) −137.924 + 239.022i −0.437853 + 0.758799i
\(316\) −0.327943 + 1.00931i −0.00103779 + 0.00319400i
\(317\) −294.607 + 405.491i −0.929359 + 1.27915i 0.0307506 + 0.999527i \(0.490210\pi\)
−0.960109 + 0.279625i \(0.909790\pi\)
\(318\) 242.008 92.9312i 0.761032 0.292237i
\(319\) 0 0
\(320\) 349.513i 1.09223i
\(321\) −36.1903 + 135.128i −0.112742 + 0.420960i
\(322\) −42.8143 + 131.769i −0.132964 + 0.409220i
\(323\) 317.143 103.046i 0.981867 0.319028i
\(324\) −0.681226 1.17863i −0.00210255 0.00363773i
\(325\) 39.9219 29.0050i 0.122837 0.0892460i
\(326\) 230.571 74.9172i 0.707274 0.229807i
\(327\) −26.5020 504.544i −0.0810460 1.54295i
\(328\) 365.056 + 265.228i 1.11297 + 0.808623i
\(329\) 323.061i 0.981948i
\(330\) 0 0
\(331\) −653.489 −1.97429 −0.987143 0.159839i \(-0.948903\pi\)
−0.987143 + 0.159839i \(0.948903\pi\)
\(332\) 0.0958375 0.131909i 0.000288667 0.000397316i
\(333\) 144.052 + 323.339i 0.432588 + 0.970989i
\(334\) 66.5358 + 204.776i 0.199209 + 0.613103i
\(335\) 109.854 + 151.201i 0.327921 + 0.451345i
\(336\) −146.744 + 226.025i −0.436739 + 0.672693i
\(337\) −203.755 627.094i −0.604615 1.86081i −0.499419 0.866361i \(-0.666453\pi\)
−0.105195 0.994452i \(-0.533547\pi\)
\(338\) 142.165 + 46.1921i 0.420606 + 0.136663i
\(339\) −35.9497 + 134.230i −0.106046 + 0.395958i
\(340\) −1.64729 −0.00484497
\(341\) 0 0
\(342\) 225.265 + 250.063i 0.658670 + 0.731179i
\(343\) −301.882 219.330i −0.880122 0.639446i
\(344\) −333.351 108.312i −0.969043 0.314861i
\(345\) 128.048 + 158.088i 0.371154 + 0.458226i
\(346\) −533.149 + 387.355i −1.54089 + 1.11952i
\(347\) −163.333 224.809i −0.470702 0.647865i 0.505983 0.862543i \(-0.331130\pi\)
−0.976685 + 0.214678i \(0.931130\pi\)
\(348\) 0.0970609 0.0786174i 0.000278910 0.000225912i
\(349\) 78.1118 240.403i 0.223816 0.688835i −0.774594 0.632459i \(-0.782046\pi\)
0.998410 0.0563757i \(-0.0179545\pi\)
\(350\) −33.4477 + 46.0369i −0.0955650 + 0.131534i
\(351\) 119.023 233.801i 0.339096 0.666100i
\(352\) 0 0
\(353\) 560.803i 1.58868i −0.607476 0.794338i \(-0.707818\pi\)
0.607476 0.794338i \(-0.292182\pi\)
\(354\) −522.892 140.042i −1.47710 0.395599i
\(355\) 63.7168 196.100i 0.179484 0.552395i
\(356\) 0.545516 0.177249i 0.00153235 0.000497891i
\(357\) 251.412 + 163.227i 0.704236 + 0.457217i
\(358\) −78.3126 + 56.8975i −0.218750 + 0.158931i
\(359\) −281.573 + 91.4886i −0.784326 + 0.254843i −0.673686 0.739018i \(-0.735290\pi\)
−0.110640 + 0.993861i \(0.535290\pi\)
\(360\) 160.357 + 359.937i 0.445435 + 0.999825i
\(361\) 10.3923 + 7.55047i 0.0287876 + 0.0209154i
\(362\) 0.133414i 0.000368547i
\(363\) 0 0
\(364\) 0.913018 0.00250829
\(365\) −39.0901 + 53.8030i −0.107096 + 0.147405i
\(366\) −185.350 + 9.73585i −0.506422 + 0.0266007i
\(367\) 26.2225 + 80.7046i 0.0714510 + 0.219904i 0.980405 0.196993i \(-0.0631177\pi\)
−0.908954 + 0.416897i \(0.863118\pi\)
\(368\) 116.773 + 160.724i 0.317317 + 0.436749i
\(369\) 497.621 + 105.649i 1.34857 + 0.286312i
\(370\) 133.593 + 411.156i 0.361061 + 1.11123i
\(371\) −229.256 74.4897i −0.617940 0.200781i
\(372\) 2.39770 + 0.642158i 0.00644544 + 0.00172623i
\(373\) −316.098 −0.847447 −0.423724 0.905792i \(-0.639277\pi\)
−0.423724 + 0.905792i \(0.639277\pi\)
\(374\) 0 0
\(375\) −117.499 305.988i −0.313332 0.815968i
\(376\) 373.196 + 271.143i 0.992543 + 0.721124i
\(377\) 22.8935 + 7.43855i 0.0607255 + 0.0197309i
\(378\) −47.2212 + 298.831i −0.124924 + 0.790558i
\(379\) 87.9702 63.9141i 0.232111 0.168639i −0.465650 0.884969i \(-0.654180\pi\)
0.697762 + 0.716330i \(0.254180\pi\)
\(380\) 1.01091 + 1.39139i 0.00266028 + 0.00366157i
\(381\) 128.946 + 159.196i 0.338440 + 0.417837i
\(382\) 122.264 376.291i 0.320064 0.985055i
\(383\) 259.809 357.597i 0.678353 0.933673i −0.321560 0.946889i \(-0.604207\pi\)
0.999913 + 0.0132167i \(0.00420713\pi\)
\(384\) 138.517 + 360.721i 0.360721 + 0.939378i
\(385\) 0 0
\(386\) 3.05372i 0.00791119i
\(387\) −392.979 + 41.3980i −1.01545 + 0.106972i
\(388\) 0.196433 0.604558i 0.000506270 0.00155814i
\(389\) −484.656 + 157.474i −1.24590 + 0.404818i −0.856450 0.516229i \(-0.827335\pi\)
−0.389451 + 0.921047i \(0.627335\pi\)
\(390\) 174.478 268.743i 0.447381 0.689085i
\(391\) 178.776 129.889i 0.457228 0.332196i
\(392\) −134.708 + 43.7693i −0.343643 + 0.111656i
\(393\) 486.145 25.5356i 1.23701 0.0649761i
\(394\) 349.353 + 253.819i 0.886682 + 0.644212i
\(395\) 346.310i 0.876734i
\(396\) 0 0
\(397\) 13.0481 0.0328668 0.0164334 0.999865i \(-0.494769\pi\)
0.0164334 + 0.999865i \(0.494769\pi\)
\(398\) 125.653 172.946i 0.315710 0.434538i
\(399\) −16.4160 312.526i −0.0411428 0.783273i
\(400\) 25.2143 + 77.6015i 0.0630356 + 0.194004i
\(401\) −323.050 444.640i −0.805611 1.10883i −0.991986 0.126350i \(-0.959674\pi\)
0.186375 0.982479i \(-0.440326\pi\)
\(402\) 171.852 + 111.573i 0.427493 + 0.277545i
\(403\) 147.823 + 454.953i 0.366807 + 1.12892i
\(404\) 0.749725 + 0.243601i 0.00185576 + 0.000602972i
\(405\) 330.272 + 297.094i 0.815486 + 0.733567i
\(406\) −27.7588 −0.0683714
\(407\) 0 0
\(408\) 399.566 153.433i 0.979327 0.376062i
\(409\) 500.107 + 363.349i 1.22276 + 0.888384i 0.996326 0.0856436i \(-0.0272946\pi\)
0.226430 + 0.974028i \(0.427295\pi\)
\(410\) 590.886 + 191.991i 1.44119 + 0.468270i
\(411\) −123.244 + 99.8256i −0.299865 + 0.242885i
\(412\) 1.42490 1.03525i 0.00345850 0.00251275i
\(413\) 295.862 + 407.219i 0.716372 + 0.986001i
\(414\) 193.180 + 111.471i 0.466619 + 0.269255i
\(415\) −16.4417 + 50.6024i −0.0396186 + 0.121934i
\(416\) 1.53581 2.11386i 0.00369185 0.00508140i
\(417\) 242.353 93.0636i 0.581182 0.223174i
\(418\) 0 0
\(419\) 440.342i 1.05094i 0.850814 + 0.525468i \(0.176110\pi\)
−0.850814 + 0.525468i \(0.823890\pi\)
\(420\) −0.399953 + 1.49335i −0.000952269 + 0.00355560i
\(421\) 177.447 546.125i 0.421489 1.29721i −0.484828 0.874610i \(-0.661118\pi\)
0.906317 0.422599i \(-0.138882\pi\)
\(422\) −409.480 + 133.048i −0.970331 + 0.315280i
\(423\) 508.717 + 108.005i 1.20264 + 0.255331i
\(424\) −278.462 + 202.315i −0.656750 + 0.477157i
\(425\) 86.3177 28.0463i 0.203100 0.0659913i
\(426\) −11.8574 225.740i −0.0278342 0.529905i
\(427\) 139.625 + 101.444i 0.326992 + 0.237573i
\(428\) 0.783693i 0.00183106i
\(429\) 0 0
\(430\) −482.605 −1.12234
\(431\) 388.809 535.150i 0.902109 1.24165i −0.0676813 0.997707i \(-0.521560\pi\)
0.969790 0.243940i \(-0.0784399\pi\)
\(432\) 306.857 + 306.639i 0.710318 + 0.709813i
\(433\) 65.7530 + 202.367i 0.151855 + 0.467360i 0.997829 0.0658637i \(-0.0209803\pi\)
−0.845974 + 0.533224i \(0.820980\pi\)
\(434\) −324.245 446.285i −0.747109 1.02831i
\(435\) −22.1953 + 34.1867i −0.0510237 + 0.0785900i
\(436\) −0.874656 2.69192i −0.00200609 0.00617412i
\(437\) −219.423 71.2947i −0.502111 0.163146i
\(438\) −18.8619 + 70.4272i −0.0430638 + 0.160793i
\(439\) 103.815 0.236482 0.118241 0.992985i \(-0.462275\pi\)
0.118241 + 0.992985i \(0.462275\pi\)
\(440\) 0 0
\(441\) −118.642 + 106.877i −0.269029 + 0.242351i
\(442\) −281.569 204.572i −0.637033 0.462831i
\(443\) −263.223 85.5262i −0.594182 0.193061i −0.00353800 0.999994i \(-0.501126\pi\)
−0.590644 + 0.806932i \(0.701126\pi\)
\(444\) 1.24815 + 1.54097i 0.00281115 + 0.00347065i
\(445\) −151.429 + 110.019i −0.340289 + 0.247234i
\(446\) 52.7393 + 72.5895i 0.118250 + 0.162757i
\(447\) 150.247 121.697i 0.336122 0.272252i
\(448\) 110.102 338.859i 0.245764 0.756382i
\(449\) −292.645 + 402.791i −0.651770 + 0.897084i −0.999174 0.0406314i \(-0.987063\pi\)
0.347405 + 0.937715i \(0.387063\pi\)
\(450\) 61.3111 + 68.0603i 0.136247 + 0.151245i
\(451\) 0 0
\(452\) 0.778483i 0.00172231i
\(453\) 129.346 + 34.6416i 0.285531 + 0.0764716i
\(454\) −139.042 + 427.928i −0.306260 + 0.942572i
\(455\) −283.357 + 92.0683i −0.622763 + 0.202348i
\(456\) −374.804 243.337i −0.821938 0.533634i
\(457\) 656.206 476.762i 1.43590 1.04324i 0.447021 0.894523i \(-0.352485\pi\)
0.988879 0.148719i \(-0.0475151\pi\)
\(458\) −198.427 + 64.4728i −0.433247 + 0.140770i
\(459\) 341.081 341.324i 0.743095 0.743624i
\(460\) 0.922048 + 0.669907i 0.00200445 + 0.00145632i
\(461\) 790.057i 1.71379i −0.515492 0.856894i \(-0.672391\pi\)
0.515492 0.856894i \(-0.327609\pi\)
\(462\) 0 0
\(463\) 540.381 1.16713 0.583565 0.812067i \(-0.301658\pi\)
0.583565 + 0.812067i \(0.301658\pi\)
\(464\) −23.3956 + 32.2013i −0.0504216 + 0.0693994i
\(465\) −808.887 + 42.4882i −1.73954 + 0.0913725i
\(466\) −38.1068 117.281i −0.0817743 0.251675i
\(467\) 163.326 + 224.799i 0.349734 + 0.481367i 0.947253 0.320488i \(-0.103847\pi\)
−0.597519 + 0.801855i \(0.703847\pi\)
\(468\) 0.305238 1.43771i 0.000652218 0.00307203i
\(469\) −58.8745 181.197i −0.125532 0.386348i
\(470\) 604.063 + 196.272i 1.28524 + 0.417600i
\(471\) 408.791 + 109.483i 0.867922 + 0.232449i
\(472\) 718.728 1.52273
\(473\) 0 0
\(474\) −136.101 354.430i −0.287133 0.747743i
\(475\) −76.6609 55.6974i −0.161391 0.117258i
\(476\) 1.59708 + 0.518921i 0.00335520 + 0.00109017i
\(477\) −193.941 + 336.100i −0.406586 + 0.704613i
\(478\) −242.015 + 175.834i −0.506308 + 0.367854i
\(479\) −276.392 380.421i −0.577019 0.794198i 0.416346 0.909206i \(-0.363311\pi\)
−0.993365 + 0.115008i \(0.963311\pi\)
\(480\) 2.78471 + 3.43800i 0.00580149 + 0.00716250i
\(481\) −118.097 + 363.464i −0.245523 + 0.755642i
\(482\) 422.776 581.901i 0.877128 1.20726i
\(483\) −74.3449 193.606i −0.153923 0.400841i
\(484\) 0 0
\(485\) 207.434i 0.427699i
\(486\) 454.776 + 174.263i 0.935753 + 0.358565i
\(487\) 78.5518 241.757i 0.161297 0.496422i −0.837447 0.546518i \(-0.815953\pi\)
0.998744 + 0.0500964i \(0.0159529\pi\)
\(488\) 234.373 76.1525i 0.480273 0.156050i
\(489\) −197.610 + 304.372i −0.404111 + 0.622437i
\(490\) −157.776 + 114.631i −0.321992 + 0.233941i
\(491\) −117.097 + 38.0472i −0.238487 + 0.0774892i −0.425822 0.904807i \(-0.640015\pi\)
0.187335 + 0.982296i \(0.440015\pi\)
\(492\) 2.84598 0.149490i 0.00578451 0.000303841i
\(493\) 35.8182 + 26.0234i 0.0726535 + 0.0527859i
\(494\) 363.370i 0.735567i
\(495\) 0 0
\(496\) −790.989 −1.59474
\(497\) −123.549 + 170.051i −0.248590 + 0.342155i
\(498\) 3.05972 + 58.2507i 0.00614401 + 0.116969i
\(499\) 20.1875 + 62.1308i 0.0404560 + 0.124511i 0.969245 0.246099i \(-0.0791488\pi\)
−0.928789 + 0.370610i \(0.879149\pi\)
\(500\) −1.07932 1.48555i −0.00215863 0.00297110i
\(501\) −270.320 175.503i −0.539562 0.350305i
\(502\) 221.115 + 680.522i 0.440468 + 1.35562i
\(503\) 405.054 + 131.610i 0.805277 + 0.261650i 0.682596 0.730796i \(-0.260851\pi\)
0.122681 + 0.992446i \(0.460851\pi\)
\(504\) −42.0829 399.480i −0.0834978 0.792619i
\(505\) −257.243 −0.509393
\(506\) 0 0
\(507\) −208.881 + 80.2103i −0.411994 + 0.158206i
\(508\) 0.928510 + 0.674602i 0.00182778 + 0.00132796i
\(509\) 66.4418 + 21.5883i 0.130534 + 0.0424131i 0.373555 0.927608i \(-0.378139\pi\)
−0.243021 + 0.970021i \(0.578139\pi\)
\(510\) 457.945 370.926i 0.897931 0.727307i
\(511\) 54.8473 39.8489i 0.107333 0.0779823i
\(512\) −299.027 411.576i −0.584038 0.803859i
\(513\) −497.616 78.6330i −0.970011 0.153281i
\(514\) −40.9337 + 125.981i −0.0796376 + 0.245099i
\(515\) −337.827 + 464.979i −0.655975 + 0.902872i
\(516\) −2.06660 + 0.793574i −0.00400503 + 0.00153793i
\(517\) 0 0
\(518\) 440.706i 0.850785i
\(519\) 255.197 952.860i 0.491709 1.83595i
\(520\) −131.463 + 404.603i −0.252814 + 0.778082i
\(521\) −95.7147 + 31.0996i −0.183714 + 0.0596921i −0.399429 0.916764i \(-0.630792\pi\)
0.215716 + 0.976456i \(0.430792\pi\)
\(522\) −9.28025 + 43.7111i −0.0177783 + 0.0837378i
\(523\) −689.238 + 500.761i −1.31785 + 0.957477i −0.317898 + 0.948125i \(0.602977\pi\)
−0.999956 + 0.00935234i \(0.997023\pi\)
\(524\) 2.59375 0.842761i 0.00494991 0.00160832i
\(525\) −4.46798 85.0610i −0.00851043 0.162021i
\(526\) 138.502 + 100.627i 0.263311 + 0.191307i
\(527\) 879.833i 1.66951i
\(528\) 0 0
\(529\) 376.110 0.710983
\(530\) −278.563 + 383.409i −0.525590 + 0.723413i
\(531\) 740.150 329.746i 1.39388 0.620991i
\(532\) −0.541782 1.66743i −0.00101839 0.00313427i
\(533\) 322.828 + 444.335i 0.605681 + 0.833648i
\(534\) −111.741 + 172.111i −0.209253 + 0.322305i
\(535\) −79.0273 243.221i −0.147715 0.454619i
\(536\) −258.730 84.0664i −0.482705 0.156840i
\(537\) 37.4851 139.963i 0.0698047 0.260638i
\(538\) 324.247 0.602689
\(539\) 0 0
\(540\) 2.21784 + 1.12905i 0.00410711 + 0.00209084i
\(541\) 591.736 + 429.921i 1.09378 + 0.794679i 0.980034 0.198831i \(-0.0637145\pi\)
0.113747 + 0.993510i \(0.463715\pi\)
\(542\) −495.575 161.022i −0.914345 0.297089i
\(543\) 0.125695 + 0.155183i 0.000231483 + 0.000285788i
\(544\) 3.88792 2.82474i 0.00714691 0.00519253i
\(545\) 542.903 + 747.242i 0.996152 + 1.37109i
\(546\) −253.818 + 205.588i −0.464868 + 0.376534i
\(547\) 38.0953 117.245i 0.0696440 0.214342i −0.910177 0.414220i \(-0.864054\pi\)
0.979821 + 0.199878i \(0.0640545\pi\)
\(548\) −0.522256 + 0.718823i −0.000953021 + 0.00131172i
\(549\) 206.421 185.951i 0.375994 0.338708i
\(550\) 0 0
\(551\) 46.2241i 0.0838913i
\(552\) −286.049 76.6101i −0.518204 0.138786i
\(553\) −109.093 + 335.753i −0.197275 + 0.607149i
\(554\) 165.435 53.7530i 0.298619 0.0970271i
\(555\) −542.757 352.379i −0.977941 0.634917i
\(556\) 1.17661 0.854856i 0.00211620 0.00153751i
\(557\) 191.900 62.3520i 0.344524 0.111942i −0.131644 0.991297i \(-0.542026\pi\)
0.476168 + 0.879355i \(0.342026\pi\)
\(558\) −811.156 + 361.381i −1.45369 + 0.647636i
\(559\) −345.147 250.764i −0.617436 0.448594i
\(560\) 492.649i 0.879731i
\(561\) 0 0
\(562\) 971.465 1.72858
\(563\) −284.551 + 391.651i −0.505420 + 0.695651i −0.983139 0.182862i \(-0.941464\pi\)
0.477719 + 0.878513i \(0.341464\pi\)
\(564\) 2.90944 0.152824i 0.00515858 0.000270964i
\(565\) −78.5019 241.604i −0.138941 0.427618i
\(566\) −508.998 700.575i −0.899289 1.23776i
\(567\) −226.615 392.079i −0.399674 0.691498i
\(568\) 92.7467 + 285.445i 0.163286 + 0.502544i
\(569\) −444.542 144.440i −0.781268 0.253849i −0.108887 0.994054i \(-0.534729\pi\)
−0.672382 + 0.740205i \(0.734729\pi\)
\(570\) −594.337 159.177i −1.04270 0.279257i
\(571\) −656.796 −1.15026 −0.575128 0.818064i \(-0.695048\pi\)
−0.575128 + 0.818064i \(0.695048\pi\)
\(572\) 0 0
\(573\) 212.306 + 552.879i 0.370516 + 0.964885i
\(574\) −512.395 372.277i −0.892674 0.648566i
\(575\) −59.7209 19.4045i −0.103862 0.0337469i
\(576\) −496.785 286.662i −0.862474 0.497677i
\(577\) 706.639 513.403i 1.22468 0.889780i 0.228198 0.973615i \(-0.426717\pi\)
0.996480 + 0.0838344i \(0.0267167\pi\)
\(578\) −35.8047 49.2809i −0.0619458 0.0852611i
\(579\) −2.87704 3.55198i −0.00496897 0.00613468i
\(580\) −0.0705622 + 0.217168i −0.000121659 + 0.000374428i
\(581\) 31.8811 43.8806i 0.0548728 0.0755259i
\(582\) 81.5225 + 212.298i 0.140073 + 0.364774i
\(583\) 0 0
\(584\) 96.8039i 0.165760i
\(585\) 50.2466 + 476.976i 0.0858917 + 0.815344i
\(586\) −3.42464 + 10.5399i −0.00584409 + 0.0179863i
\(587\) 751.908 244.310i 1.28093 0.416201i 0.412025 0.911173i \(-0.364822\pi\)
0.868909 + 0.494972i \(0.164822\pi\)
\(588\) −0.487130 + 0.750309i −0.000828452 + 0.00127604i
\(589\) 743.158 539.936i 1.26173 0.916699i
\(590\) 941.168 305.804i 1.59520 0.518312i
\(591\) −645.489 + 33.9054i −1.09220 + 0.0573696i
\(592\) −511.238 371.436i −0.863577 0.627425i
\(593\) 928.634i 1.56599i 0.622026 + 0.782997i \(0.286310\pi\)
−0.622026 + 0.782997i \(0.713690\pi\)
\(594\) 0 0
\(595\) −547.984 −0.920981
\(596\) 0.636679 0.876313i 0.00106825 0.00147032i
\(597\) 16.7848 + 319.547i 0.0281152 + 0.535255i
\(598\) 74.4106 + 229.012i 0.124433 + 0.382964i
\(599\) 539.215 + 742.166i 0.900192 + 1.23901i 0.970407 + 0.241477i \(0.0776317\pi\)
−0.0702143 + 0.997532i \(0.522368\pi\)
\(600\) −102.011 66.2297i −0.170019 0.110383i
\(601\) −295.316 908.889i −0.491374 1.51229i −0.822532 0.568719i \(-0.807439\pi\)
0.331158 0.943575i \(-0.392561\pi\)
\(602\) 467.894 + 152.028i 0.777232 + 0.252538i
\(603\) −305.010 + 32.1310i −0.505821 + 0.0532853i
\(604\) 0.750158 0.00124198
\(605\) 0 0
\(606\) −263.275 + 101.098i −0.434448 + 0.166828i
\(607\) −632.343 459.424i −1.04175 0.756877i −0.0711247 0.997467i \(-0.522659\pi\)
−0.970627 + 0.240591i \(0.922659\pi\)
\(608\) −4.77187 1.55047i −0.00784847 0.00255012i
\(609\) 32.2881 26.1527i 0.0530182 0.0429437i
\(610\) 274.508 199.442i 0.450014 0.326954i
\(611\) 330.027 + 454.243i 0.540142 + 0.743442i
\(612\) 1.35106 2.34140i 0.00220762 0.00382581i
\(613\) −26.5687 + 81.7701i −0.0433421 + 0.133393i −0.970386 0.241560i \(-0.922341\pi\)
0.927044 + 0.374953i \(0.122341\pi\)
\(614\) 258.293 355.509i 0.420672 0.579005i
\(615\) −868.181 + 333.382i −1.41168 + 0.542084i
\(616\) 0 0
\(617\) 7.47837i 0.0121205i 0.999982 + 0.00606027i \(0.00192905\pi\)
−0.999982 + 0.00606027i \(0.998071\pi\)
\(618\) −163.010 + 608.650i −0.263770 + 0.984870i
\(619\) 100.475 309.230i 0.162318 0.499564i −0.836510 0.547951i \(-0.815408\pi\)
0.998829 + 0.0483869i \(0.0154080\pi\)
\(620\) −4.31569 + 1.40225i −0.00696079 + 0.00226170i
\(621\) −329.722 + 52.3432i −0.530954 + 0.0842886i
\(622\) −230.487 + 167.458i −0.370557 + 0.269226i
\(623\) 181.470 58.9633i 0.291285 0.0946441i
\(624\) 24.5674 + 467.713i 0.0393709 + 0.749540i
\(625\) 587.484 + 426.832i 0.939975 + 0.682932i
\(626\) 188.967i 0.301864i
\(627\) 0 0
\(628\) 2.37084 0.00377522
\(629\) −413.156 + 568.660i −0.656845 + 0.904070i
\(630\) −225.078 505.210i −0.357266 0.801921i
\(631\) −211.843 651.985i −0.335726 1.03326i −0.966363 0.257180i \(-0.917207\pi\)
0.630638 0.776077i \(-0.282793\pi\)
\(632\) 296.297 + 407.818i 0.468825 + 0.645282i
\(633\) 350.943 540.545i 0.554412 0.853941i
\(634\) −310.418 955.368i −0.489618 1.50689i
\(635\) −356.192 115.734i −0.560932 0.182258i
\(636\) −0.562394 + 2.09988i −0.000884268 + 0.00330170i
\(637\) −172.400 −0.270644
\(638\) 0 0
\(639\) 226.471 + 251.401i 0.354414 + 0.393429i
\(640\) −571.484 415.207i −0.892943 0.648761i
\(641\) −259.923 84.4540i −0.405496 0.131754i 0.0991656 0.995071i \(-0.468383\pi\)
−0.504661 + 0.863317i \(0.668383\pi\)
\(642\) −176.467 217.866i −0.274871 0.339355i
\(643\) −149.364 + 108.519i −0.232292 + 0.168770i −0.697842 0.716251i \(-0.745856\pi\)
0.465550 + 0.885021i \(0.345856\pi\)
\(644\) −0.682911 0.939947i −0.00106042 0.00145954i
\(645\) 561.349 454.682i 0.870309 0.704933i
\(646\) −206.525 + 635.617i −0.319698 + 0.983928i
\(647\) −211.660 + 291.325i −0.327141 + 0.450271i −0.940631 0.339432i \(-0.889765\pi\)
0.613490 + 0.789703i \(0.289765\pi\)
\(648\) −643.121 67.2862i −0.992471 0.103837i
\(649\) 0 0
\(650\) 98.8995i 0.152153i
\(651\) 797.615 + 213.619i 1.22521 + 0.328140i
\(652\) −0.628232 + 1.93350i −0.000963546 + 0.00296549i
\(653\) 979.935 318.400i 1.50067 0.487596i 0.560455 0.828185i \(-0.310626\pi\)
0.940212 + 0.340589i \(0.110626\pi\)
\(654\) 849.303 + 551.400i 1.29863 + 0.843120i
\(655\) −719.993 + 523.105i −1.09923 + 0.798634i
\(656\) −863.712 + 280.637i −1.31663 + 0.427801i
\(657\) −44.4128 99.6891i −0.0675994 0.151734i
\(658\) −523.821 380.578i −0.796080 0.578386i
\(659\) 1071.63i 1.62614i −0.582166 0.813070i \(-0.697795\pi\)
0.582166 0.813070i \(-0.302205\pi\)
\(660\) 0 0
\(661\) 441.357 0.667712 0.333856 0.942624i \(-0.391650\pi\)
0.333856 + 0.942624i \(0.391650\pi\)
\(662\) 769.834 1059.59i 1.16289 1.60058i
\(663\) 520.246 27.3268i 0.784685 0.0412170i
\(664\) −23.9327 73.6573i −0.0360432 0.110930i
\(665\) 336.286 + 462.859i 0.505694 + 0.696028i
\(666\) −693.971 147.336i −1.04200 0.221225i
\(667\) −9.46574 29.1325i −0.0141915 0.0436770i
\(668\) −1.71719 0.557949i −0.00257064 0.000835253i
\(669\) −129.734 34.7457i −0.193923 0.0519367i
\(670\) −374.573 −0.559064
\(671\) 0 0
\(672\) −1.61681 4.21043i −0.00240596 0.00626552i
\(673\) −299.904 217.893i −0.445623 0.323764i 0.342242 0.939612i \(-0.388814\pi\)
−0.787865 + 0.615848i \(0.788814\pi\)
\(674\) 1256.82 + 408.365i 1.86472 + 0.605883i
\(675\) −135.437 21.4018i −0.200648 0.0317063i
\(676\) −1.01410 + 0.736789i −0.00150015 + 0.00108992i
\(677\) 44.2177 + 60.8605i 0.0653142 + 0.0898973i 0.840424 0.541929i \(-0.182306\pi\)
−0.775110 + 0.631826i \(0.782306\pi\)
\(678\) −175.294 216.418i −0.258546 0.319200i
\(679\) 65.3450 201.111i 0.0962371 0.296187i
\(680\) −459.919 + 633.024i −0.676351 + 0.930918i
\(681\) −241.440 628.749i −0.354537 0.923272i
\(682\) 0 0
\(683\) 987.234i 1.44544i −0.691142 0.722719i \(-0.742892\pi\)
0.691142 0.722719i \(-0.257108\pi\)
\(684\) −2.80680 + 0.295680i −0.00410351 + 0.000432280i
\(685\) 89.5974 275.752i 0.130799 0.402558i
\(686\) 711.257 231.101i 1.03682 0.336882i
\(687\) 170.061 261.939i 0.247541 0.381279i
\(688\) 570.708 414.644i 0.829518 0.602680i
\(689\) −398.443 + 129.462i −0.578291 + 0.187898i
\(690\) −407.174 + 21.3875i −0.590108 + 0.0309964i
\(691\) −830.700 603.539i −1.20217 0.873428i −0.207675 0.978198i \(-0.566589\pi\)
−0.994497 + 0.104770i \(0.966589\pi\)
\(692\) 5.52624i 0.00798589i
\(693\) 0 0
\(694\) 556.925 0.802486
\(695\) −278.960 + 383.955i −0.401381 + 0.552454i
\(696\) −3.11213 59.2485i −0.00447146 0.0851272i
\(697\) 312.158 + 960.725i 0.447860 + 1.37837i
\(698\) 297.779 + 409.857i 0.426617 + 0.587188i
\(699\) 154.820 + 100.515i 0.221487 + 0.143798i
\(700\) −0.147458 0.453830i −0.000210655 0.000648328i
\(701\) 177.798 + 57.7699i 0.253634 + 0.0824107i 0.433074 0.901358i \(-0.357429\pi\)
−0.179440 + 0.983769i \(0.557429\pi\)
\(702\) 238.879 + 468.413i 0.340283 + 0.667255i
\(703\) 733.868 1.04391
\(704\) 0 0
\(705\) −887.541 + 340.816i −1.25892 + 0.483427i
\(706\) 909.302 + 660.647i 1.28796 + 0.935760i
\(707\) 249.402 + 81.0357i 0.352761 + 0.114619i
\(708\) 3.52739 2.85712i 0.00498220 0.00403548i
\(709\) 577.375 419.488i 0.814351 0.591661i −0.100738 0.994913i \(-0.532120\pi\)
0.915089 + 0.403252i \(0.132120\pi\)
\(710\) 242.902 + 334.326i 0.342115 + 0.470881i
\(711\) 492.232 + 284.035i 0.692309 + 0.399486i
\(712\) 84.1931 259.120i 0.118249 0.363932i
\(713\) 357.804 492.475i 0.501829 0.690708i
\(714\) −560.833 + 215.360i −0.785481 + 0.301625i
\(715\) 0 0
\(716\) 0.811733i 0.00113370i
\(717\) 115.843 432.537i 0.161566 0.603259i
\(718\) 183.361 564.328i 0.255378 0.785972i
\(719\) −474.314 + 154.114i −0.659685 + 0.214345i −0.619680 0.784855i \(-0.712738\pi\)
−0.0400055 + 0.999199i \(0.512738\pi\)
\(720\) −775.764 164.701i −1.07745 0.228752i
\(721\) 474.005 344.385i 0.657427 0.477649i
\(722\) −24.4851 + 7.95569i −0.0339129 + 0.0110190i
\(723\) 56.4747 + 1075.16i 0.0781117 + 1.48708i
\(724\) 0.000905104 0 0.000657596i 1.25014e−6 0 9.08282e-7i
\(725\) 12.5809i 0.0173530i
\(726\) 0 0
\(727\) 427.838 0.588498 0.294249 0.955729i \(-0.404930\pi\)
0.294249 + 0.955729i \(0.404930\pi\)
\(728\) 254.912 350.857i 0.350154 0.481946i
\(729\) −693.160 + 225.767i −0.950836 + 0.309694i
\(730\) −41.1881 126.764i −0.0564220 0.173649i
\(731\) −461.217 634.810i −0.630940 0.868414i
\(732\) 0.847539 1.30543i 0.00115784 0.00178338i
\(733\) −295.860 910.564i −0.403629 1.24224i −0.922035 0.387108i \(-0.873474\pi\)
0.518405 0.855135i \(-0.326526\pi\)
\(734\) −161.748 52.5551i −0.220365 0.0716010i
\(735\) 75.5210 281.982i 0.102750 0.383649i
\(736\) −3.32495 −0.00451760
\(737\) 0 0
\(738\) −757.518 + 682.398i −1.02645 + 0.924659i
\(739\) −918.220 667.126i −1.24252 0.902741i −0.244753 0.969585i \(-0.578707\pi\)
−0.997763 + 0.0668442i \(0.978707\pi\)
\(740\) −3.44782 1.12027i −0.00465922 0.00151387i
\(741\) −342.346 422.660i −0.462006 0.570391i
\(742\) 390.851 283.970i 0.526754 0.382709i
\(743\) −509.543 701.326i −0.685791 0.943911i 0.314194 0.949359i \(-0.398266\pi\)
−0.999985 + 0.00544821i \(0.998266\pi\)
\(744\) 916.202 742.106i 1.23145 0.997454i
\(745\) −109.228 + 336.168i −0.146614 + 0.451232i
\(746\) 372.375 512.530i 0.499162 0.687038i
\(747\) −58.4393 64.8725i −0.0782321 0.0868441i
\(748\) 0 0
\(749\) 260.702i 0.348067i
\(750\) 634.556 + 169.948i 0.846075 + 0.226598i
\(751\) −357.678 + 1100.82i −0.476268 + 1.46580i 0.367971 + 0.929837i \(0.380053\pi\)
−0.844240 + 0.535966i \(0.819947\pi\)
\(752\) −882.972 + 286.895i −1.17417 + 0.381509i
\(753\) −898.341 583.238i −1.19302 0.774552i
\(754\) −39.0305 + 28.3573i −0.0517646 + 0.0376092i
\(755\) −232.813 + 75.6455i −0.308362 + 0.100193i
\(756\) −1.79457 1.79329i −0.00237377 0.00237208i
\(757\) 331.936 + 241.165i 0.438488 + 0.318580i 0.785034 0.619453i \(-0.212645\pi\)
−0.346546 + 0.938033i \(0.612645\pi\)
\(758\) 217.931i 0.287508i
\(759\) 0 0
\(760\) 816.931 1.07491
\(761\) −148.998 + 205.078i −0.195792 + 0.269484i −0.895613 0.444833i \(-0.853263\pi\)
0.699822 + 0.714318i \(0.253263\pi\)
\(762\) −410.028 + 21.5374i −0.538094 + 0.0282643i
\(763\) −290.961 895.487i −0.381339 1.17364i
\(764\) 1.95018 + 2.68419i 0.00255259 + 0.00351334i
\(765\) −183.201 + 862.898i −0.239478 + 1.12797i
\(766\) 273.753 + 842.524i 0.357380 + 1.09990i
\(767\) 831.998 + 270.332i 1.08474 + 0.352454i
\(768\) −9.35086 2.50437i −0.0121756 0.00326089i
\(769\) 788.887 1.02586 0.512931 0.858430i \(-0.328560\pi\)
0.512931 + 0.858430i \(0.328560\pi\)
\(770\) 0 0
\(771\) −71.0793 185.102i −0.0921910 0.240081i
\(772\) −0.0207169 0.0150517i −2.68354e−5 1.94971e-5i
\(773\) −326.547 106.102i −0.422442 0.137260i 0.0900787 0.995935i \(-0.471288\pi\)
−0.512520 + 0.858675i \(0.671288\pi\)
\(774\) 395.820 685.956i 0.511395 0.886249i
\(775\) 202.267 146.956i 0.260990 0.189620i
\(776\) −177.477 244.277i −0.228708 0.314790i
\(777\) 415.208 + 512.615i 0.534373 + 0.659736i
\(778\) 315.609 971.346i 0.405668 1.24852i
\(779\) 619.918 853.244i 0.795787 1.09531i
\(780\) 0.963195 + 2.50832i 0.00123487 + 0.00321580i
\(781\) 0 0
\(782\) 442.887i 0.566351i
\(783\) −30.3876 59.5866i −0.0388092 0.0761004i
\(784\) 88.0908 271.116i 0.112361 0.345811i
\(785\) −735.795 + 239.074i −0.937318 + 0.304553i
\(786\) −531.293 + 818.332i −0.675945 + 1.04113i
\(787\) −156.500 + 113.704i −0.198856 + 0.144478i −0.682758 0.730645i \(-0.739219\pi\)
0.483901 + 0.875123i \(0.339219\pi\)
\(788\) −3.44391 + 1.11899i −0.00437044 + 0.00142004i
\(789\) −255.905 + 13.4419i −0.324341 + 0.0170366i
\(790\) 561.517 + 407.966i 0.710781 + 0.516413i
\(791\) 258.969i 0.327394i
\(792\) 0 0
\(793\) 299.953 0.378251
\(794\) −15.3712 + 21.1566i −0.0193592 + 0.0266456i
\(795\) −37.2107 708.414i −0.0468059 0.891087i
\(796\) 0.553954 + 1.70490i 0.000695922 + 0.00214183i
\(797\) −312.659 430.338i −0.392294 0.539947i 0.566495 0.824065i \(-0.308299\pi\)
−0.958789 + 0.284119i \(0.908299\pi\)
\(798\) 526.077 + 341.550i 0.659245 + 0.428007i
\(799\) 319.119 + 982.148i 0.399398 + 1.22922i
\(800\) −1.29877 0.421997i −0.00162347 0.000527496i
\(801\) −32.1795 305.470i −0.0401741 0.381361i
\(802\) 1101.52 1.37346
\(803\) 0 0
\(804\) −1.60399 + 0.615931i −0.00199501 + 0.000766083i
\(805\) 306.727 + 222.850i 0.381027 + 0.276832i
\(806\) −911.816 296.267i −1.13128 0.367577i
\(807\) −377.153 + 305.486i −0.467352 + 0.378546i
\(808\) 302.933 220.094i 0.374917 0.272393i
\(809\) −170.708 234.960i −0.211012 0.290433i 0.690371 0.723455i \(-0.257447\pi\)
−0.901383 + 0.433022i \(0.857447\pi\)
\(810\) −870.790 + 185.524i −1.07505 + 0.229042i
\(811\) −118.833 + 365.730i −0.146526 + 0.450962i −0.997204 0.0747256i \(-0.976192\pi\)
0.850678 + 0.525688i \(0.176192\pi\)
\(812\) 0.136823 0.188320i 0.000168501 0.000231921i
\(813\) 728.142 279.607i 0.895623 0.343919i
\(814\) 0 0
\(815\) 663.416i 0.814008i
\(816\) −222.855 + 832.099i −0.273106 + 1.01973i
\(817\) −253.158 + 779.140i −0.309863 + 0.953660i
\(818\) −1178.29 + 382.850i −1.44045 + 0.468031i
\(819\) 101.540 478.265i 0.123980 0.583962i
\(820\) −4.21497 + 3.06235i −0.00514020 + 0.00373458i
\(821\) 591.295 192.123i 0.720213 0.234011i 0.0740974 0.997251i \(-0.476392\pi\)
0.646115 + 0.763240i \(0.276392\pi\)
\(822\) −16.6736 317.431i −0.0202842 0.386169i
\(823\) 231.689 + 168.332i 0.281517 + 0.204534i 0.719579 0.694411i \(-0.244335\pi\)
−0.438062 + 0.898945i \(0.644335\pi\)
\(824\) 836.604i 1.01530i
\(825\) 0 0
\(826\) −1008.81 −1.22132
\(827\) 245.405 337.771i 0.296741 0.408430i −0.634448 0.772966i \(-0.718772\pi\)
0.931189 + 0.364536i \(0.118772\pi\)
\(828\) −1.70842 + 0.761124i −0.00206331 + 0.000919232i
\(829\) 114.601 + 352.706i 0.138240 + 0.425460i 0.996080 0.0884576i \(-0.0281938\pi\)
−0.857840 + 0.513917i \(0.828194\pi\)
\(830\) −62.6793 86.2707i −0.0755173 0.103941i
\(831\) −141.785 + 218.387i −0.170620 + 0.262800i
\(832\) −191.356 588.932i −0.229995 0.707851i
\(833\) −301.567 97.9852i −0.362026 0.117629i
\(834\) −134.605 + 502.591i −0.161397 + 0.602627i
\(835\) 589.197 0.705625
\(836\) 0 0
\(837\) 603.038 1184.57i 0.720475 1.41526i
\(838\) −713.983 518.739i −0.852009 0.619020i
\(839\) 823.477 + 267.564i 0.981498 + 0.318908i 0.755449 0.655208i \(-0.227419\pi\)
0.226050 + 0.974116i \(0.427419\pi\)
\(840\) 462.204 + 570.635i 0.550242 + 0.679328i
\(841\) −675.418 + 490.720i −0.803113 + 0.583496i
\(842\) 676.464 + 931.073i 0.803402 + 1.10579i
\(843\) −1129.97 + 915.257i −1.34042 + 1.08571i
\(844\) 1.11570 3.43377i 0.00132192 0.00406845i
\(845\) 240.432 330.926i 0.284534 0.391628i
\(846\) −774.410 + 697.615i −0.915379 + 0.824604i
\(847\) 0 0
\(848\) 692.739i 0.816910i
\(849\) 1252.09 + 335.337i 1.47478 + 0.394979i
\(850\) −56.2104 + 172.998i −0.0661298 + 0.203527i
\(851\) 462.517 150.281i 0.543498 0.176593i
\(852\) 1.58990 + 1.03222i 0.00186608 + 0.00121153i
\(853\) −1089.63 + 791.663i −1.27741 + 0.928093i −0.999472 0.0325055i \(-0.989651\pi\)
−0.277939 + 0.960599i \(0.589651\pi\)
\(854\) −328.968 + 106.888i −0.385208 + 0.125162i
\(855\) 841.280 374.801i 0.983953 0.438364i
\(856\) 301.159 + 218.805i 0.351822 + 0.255614i
\(857\) 770.599i 0.899182i 0.893235 + 0.449591i \(0.148430\pi\)
−0.893235 + 0.449591i \(0.851570\pi\)
\(858\) 0 0
\(859\) −549.532 −0.639735 −0.319867 0.947462i \(-0.603638\pi\)
−0.319867 + 0.947462i \(0.603638\pi\)
\(860\) 2.37875 3.27407i 0.00276599 0.00380706i
\(861\) 946.738 49.7290i 1.09958 0.0577573i
\(862\) 409.676 + 1260.85i 0.475262 + 1.46271i
\(863\) −644.169 886.623i −0.746430 1.02737i −0.998223 0.0595920i \(-0.981020\pi\)
0.251792 0.967781i \(-0.418980\pi\)
\(864\) −7.17060 + 1.13833i −0.00829930 + 0.00131751i
\(865\) 557.263 + 1715.08i 0.644235 + 1.98275i
\(866\) −405.583 131.782i −0.468341 0.152173i
\(867\) 88.0764 + 23.5888i 0.101588 + 0.0272074i
\(868\) 4.62587 0.00532935
\(869\) 0 0
\(870\) −29.2843 76.2613i −0.0336602 0.0876567i
\(871\) −267.885 194.630i −0.307560 0.223456i
\(872\) −1278.66 415.461i −1.46635 0.476446i
\(873\) −294.839 170.132i −0.337731 0.194882i
\(874\) 374.088 271.791i 0.428018 0.310973i
\(875\) −359.043 494.181i −0.410335 0.564778i
\(876\) −0.384819 0.475097i −0.000439291 0.000542348i
\(877\) 445.959 1372.52i 0.508505 1.56502i −0.286293 0.958142i \(-0.592423\pi\)
0.794798 0.606875i \(-0.207577\pi\)
\(878\) −122.298 + 168.329i −0.139292 + 0.191719i
\(879\) −5.94670 15.4862i −0.00676531 0.0176180i
\(880\) 0 0
\(881\) 162.080i 0.183973i 0.995760 + 0.0919866i \(0.0293217\pi\)
−0.995760 + 0.0919866i \(0.970678\pi\)
\(882\) −33.5283 318.274i −0.0380140 0.360855i
\(883\) −26.9204 + 82.8525i −0.0304875 + 0.0938307i −0.965142 0.261725i \(-0.915709\pi\)
0.934655 + 0.355556i \(0.115709\pi\)
\(884\) 2.77569 0.901877i 0.00313992 0.00102022i
\(885\) −806.624 + 1242.41i −0.911439 + 1.40386i
\(886\) 448.761 326.044i 0.506502 0.367995i
\(887\) −776.279 + 252.228i −0.875174 + 0.284361i −0.711952 0.702228i \(-0.752189\pi\)
−0.163222 + 0.986589i \(0.552189\pi\)
\(888\) 940.647 49.4091i 1.05929 0.0556409i
\(889\) 308.876 + 224.412i 0.347442 + 0.252432i
\(890\) 375.137i 0.421503i
\(891\) 0 0
\(892\) −0.752410 −0.000843509
\(893\) 633.741 872.270i 0.709677 0.976786i
\(894\) 20.3267 + 386.978i 0.0227368 + 0.432861i
\(895\) 81.8547 + 251.923i 0.0914578 + 0.281478i
\(896\) 423.267 + 582.577i 0.472396 + 0.650197i
\(897\) −302.314 196.274i −0.337028 0.218812i
\(898\) −308.350 949.005i −0.343375 1.05680i
\(899\) 115.992 + 37.6879i 0.129023 + 0.0419221i
\(900\) −0.763934 + 0.0804759i −0.000848815 + 8.94177e-5i
\(901\) −770.548 −0.855214
\(902\) 0 0
\(903\) −687.470 + 263.989i −0.761318 + 0.292346i
\(904\) 299.157 + 217.351i 0.330926 + 0.240432i
\(905\) −0.347213 0.112816i −0.000383660 0.000124659i
\(906\) −208.543 + 168.916i −0.230180 + 0.186441i
\(907\) −451.884 + 328.313i −0.498218 + 0.361977i −0.808336 0.588721i \(-0.799632\pi\)
0.310118 + 0.950698i \(0.399632\pi\)
\(908\) −2.21780 3.05253i −0.00244251 0.00336182i
\(909\) 210.985 365.636i 0.232106 0.402240i
\(910\) 184.523 567.903i 0.202773 0.624070i
\(911\) −956.353 + 1316.31i −1.04978 + 1.44490i −0.160788 + 0.986989i \(0.551403\pi\)
−0.888996 + 0.457914i \(0.848597\pi\)
\(912\) 839.600 322.407i 0.920614 0.353516i
\(913\) 0 0
\(914\) 1625.64i 1.77860i
\(915\) −131.396 + 490.610i −0.143602 + 0.536186i
\(916\) 0.540649 1.66395i 0.000590228 0.00181654i
\(917\) 862.832 280.351i 0.940929 0.305726i
\(918\) 151.626 + 955.130i 0.165170 + 1.04045i
\(919\) 46.5896 33.8493i 0.0506960 0.0368328i −0.562149 0.827036i \(-0.690025\pi\)
0.612845 + 0.790203i \(0.290025\pi\)
\(920\) 514.867 167.290i 0.559638 0.181837i
\(921\) 34.5029 + 656.864i 0.0374625 + 0.713208i
\(922\) 1281.02 + 930.716i 1.38939 + 1.00945i
\(923\) 365.315i 0.395791i
\(924\) 0 0
\(925\) 199.739 0.215934
\(926\) −636.589 + 876.189i −0.687461 + 0.946209i
\(927\) −383.827 861.539i −0.414053 0.929384i
\(928\) −0.205855 0.633557i −0.000221827 0.000682712i
\(929\) 12.6377 + 17.3943i 0.0136036 + 0.0187237i 0.815765 0.578384i \(-0.196316\pi\)
−0.802161 + 0.597108i \(0.796316\pi\)
\(930\) 884.008 1361.61i 0.950546 1.46409i
\(931\) 102.302 + 314.853i 0.109884 + 0.338187i
\(932\) 0.983480 + 0.319552i 0.00105524 + 0.000342867i
\(933\) 110.325 411.933i 0.118247 0.441514i
\(934\) −556.899 −0.596251
\(935\) 0 0
\(936\) −467.264 518.702i −0.499214 0.554169i
\(937\) −185.231 134.578i −0.197685 0.143626i 0.484539 0.874769i \(-0.338987\pi\)
−0.682224 + 0.731143i \(0.738987\pi\)
\(938\) 363.155 + 117.996i 0.387159 + 0.125796i
\(939\) 178.034 + 219.800i 0.189599 + 0.234079i
\(940\) −4.30896 + 3.13064i −0.00458400 + 0.00333047i
\(941\) −507.355 698.315i −0.539166 0.742099i 0.449326 0.893368i \(-0.351664\pi\)
−0.988493 + 0.151269i \(0.951664\pi\)
\(942\) −659.091 + 533.851i −0.699672 + 0.566720i
\(943\) 215.974 664.699i 0.229028 0.704877i
\(944\) −850.246 + 1170.26i −0.900685 + 1.23969i
\(945\) 737.782 + 375.588i 0.780722 + 0.397448i
\(946\) 0 0
\(947\) 1155.70i 1.22038i 0.792253 + 0.610192i \(0.208908\pi\)
−0.792253 + 0.610192i \(0.791092\pi\)
\(948\) 3.07535 + 0.823648i 0.00324404 + 0.000868827i
\(949\) 36.4105 112.060i 0.0383672 0.118082i
\(950\) 180.619 58.6866i 0.190125 0.0617754i
\(951\) 1261.16 + 818.794i 1.32614 + 0.860982i
\(952\) 645.312 468.846i 0.677849 0.492486i
\(953\) 1709.15 555.337i 1.79344 0.582725i 0.793769 0.608220i \(-0.208116\pi\)
0.999675 + 0.0254945i \(0.00811604\pi\)
\(954\) −316.493 710.401i −0.331754 0.744655i
\(955\) −875.916 636.390i −0.917189 0.666377i
\(956\) 2.50855i 0.00262401i
\(957\) 0 0
\(958\) 942.426 0.983743
\(959\) −173.732 + 239.122i −0.181160 + 0.249345i
\(960\) 1047.10 55.0006i 1.09073 0.0572923i
\(961\) 451.992 + 1391.09i 0.470335 + 1.44754i
\(962\) −450.209 619.659i −0.467993 0.644136i
\(963\) 410.521 + 87.1572i 0.426294 + 0.0905059i
\(964\) 1.86386 + 5.73636i 0.00193346 + 0.00595058i
\(965\) 7.94735 + 2.58225i 0.00823560 + 0.00267591i
\(966\) 401.500 + 107.531i 0.415632 + 0.111315i
\(967\) 1767.36 1.82767 0.913835 0.406085i \(-0.133106\pi\)
0.913835 + 0.406085i \(0.133106\pi\)
\(968\) 0 0
\(969\) −358.619 933.904i −0.370092 0.963781i
\(970\) −336.340 244.365i −0.346742 0.251923i
\(971\) 483.830 + 157.206i 0.498280 + 0.161901i 0.547365 0.836894i \(-0.315631\pi\)
−0.0490858 + 0.998795i \(0.515631\pi\)
\(972\) −3.42381 + 2.22634i −0.00352244 + 0.00229047i
\(973\) 391.408 284.375i 0.402270 0.292266i
\(974\) 299.456 + 412.166i 0.307449 + 0.423168i
\(975\) −93.1773 115.036i −0.0955665 0.117986i
\(976\) −153.266 + 471.704i −0.157035 + 0.483303i
\(977\) −831.426 + 1144.36i −0.850999 + 1.17130i 0.132643 + 0.991164i \(0.457654\pi\)
−0.983642 + 0.180136i \(0.942346\pi\)
\(978\) −260.726 678.972i −0.266590 0.694246i
\(979\) 0 0
\(980\) 1.63539i 0.00166877i
\(981\) −1507.38 + 158.793i −1.53657 + 0.161869i
\(982\) 76.2541 234.686i 0.0776518 0.238988i
\(983\) −1.06713 + 0.346732i −0.00108559 + 0.000352728i −0.309560 0.950880i \(-0.600182\pi\)
0.308474 + 0.951233i \(0.400182\pi\)
\(984\) 737.144 1135.40i 0.749130 1.15386i
\(985\) 955.985 694.564i 0.970543 0.705141i
\(986\) −84.3903 + 27.4201i −0.0855886 + 0.0278094i
\(987\) 967.849 50.8380i 0.980597 0.0515076i
\(988\) −2.46516 1.79105i −0.00249510 0.00181280i
\(989\) 542.891i 0.548929i
\(990\) 0 0
\(991\) −1431.64 −1.44464 −0.722320 0.691559i \(-0.756924\pi\)
−0.722320 + 0.691559i \(0.756924\pi\)
\(992\) 7.78130 10.7100i 0.00784405 0.0107964i
\(993\) 102.835 + 1957.77i 0.103560 + 1.97157i
\(994\) −130.180 400.653i −0.130966 0.403071i
\(995\) −343.842 473.258i −0.345570 0.475636i
\(996\) −0.410263 0.266359i −0.000411911 0.000267429i
\(997\) 360.427 + 1109.28i 0.361511 + 1.11262i 0.952137 + 0.305671i \(0.0988808\pi\)
−0.590626 + 0.806945i \(0.701119\pi\)
\(998\) −124.522 40.4598i −0.124772 0.0405409i
\(999\) 946.014 482.443i 0.946961 0.482926i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.n.323.2 16
3.2 odd 2 inner 363.3.h.n.323.3 16
11.2 odd 10 33.3.h.b.5.2 16
11.3 even 5 inner 363.3.h.n.245.3 16
11.4 even 5 363.3.h.j.251.2 16
11.5 even 5 363.3.b.l.122.3 8
11.6 odd 10 363.3.b.m.122.6 8
11.7 odd 10 33.3.h.b.20.3 yes 16
11.8 odd 10 363.3.h.o.245.2 16
11.9 even 5 363.3.h.j.269.3 16
11.10 odd 2 363.3.h.o.323.3 16
33.2 even 10 33.3.h.b.5.3 yes 16
33.5 odd 10 363.3.b.l.122.6 8
33.8 even 10 363.3.h.o.245.3 16
33.14 odd 10 inner 363.3.h.n.245.2 16
33.17 even 10 363.3.b.m.122.3 8
33.20 odd 10 363.3.h.j.269.2 16
33.26 odd 10 363.3.h.j.251.3 16
33.29 even 10 33.3.h.b.20.2 yes 16
33.32 even 2 363.3.h.o.323.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.5.2 16 11.2 odd 10
33.3.h.b.5.3 yes 16 33.2 even 10
33.3.h.b.20.2 yes 16 33.29 even 10
33.3.h.b.20.3 yes 16 11.7 odd 10
363.3.b.l.122.3 8 11.5 even 5
363.3.b.l.122.6 8 33.5 odd 10
363.3.b.m.122.3 8 33.17 even 10
363.3.b.m.122.6 8 11.6 odd 10
363.3.h.j.251.2 16 11.4 even 5
363.3.h.j.251.3 16 33.26 odd 10
363.3.h.j.269.2 16 33.20 odd 10
363.3.h.j.269.3 16 11.9 even 5
363.3.h.n.245.2 16 33.14 odd 10 inner
363.3.h.n.245.3 16 11.3 even 5 inner
363.3.h.n.323.2 16 1.1 even 1 trivial
363.3.h.n.323.3 16 3.2 odd 2 inner
363.3.h.o.245.2 16 11.8 odd 10
363.3.h.o.245.3 16 33.8 even 10
363.3.h.o.323.2 16 33.32 even 2
363.3.h.o.323.3 16 11.10 odd 2