Properties

Label 363.3.h.n.323.1
Level $363$
Weight $3$
Character 363.323
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,5,18,0,-32,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 323.1
Root \(-2.91048 + 0.945671i\) of defining polynomial
Character \(\chi\) \(=\) 363.323
Dual form 363.3.h.n.245.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.79877 + 2.47580i) q^{2} +(2.88971 + 0.805978i) q^{3} +(-1.65793 - 5.10257i) q^{4} +(-3.90250 - 5.37133i) q^{5} +(-7.19336 + 5.70456i) q^{6} +(0.946512 + 2.91306i) q^{7} +(3.97326 + 1.29099i) q^{8} +(7.70080 + 4.65808i) q^{9} +20.3180 q^{10} +(-0.678356 - 16.0812i) q^{12} +(13.1422 + 9.54837i) q^{13} +(-8.91472 - 2.89657i) q^{14} +(-6.94789 - 18.6669i) q^{15} +(7.01879 - 5.09945i) q^{16} +(-0.473548 - 0.651783i) q^{17} +(-25.3845 + 10.6868i) q^{18} +(-6.39720 + 19.6886i) q^{19} +(-20.9375 + 28.8180i) q^{20} +(0.387274 + 9.18076i) q^{21} +27.3224i q^{23} +(10.4410 + 6.93295i) q^{24} +(-5.89623 + 18.1467i) q^{25} +(-47.2797 + 15.3621i) q^{26} +(18.4987 + 19.6672i) q^{27} +(13.2949 - 9.65928i) q^{28} +(-3.59755 + 1.16891i) q^{29} +(58.7131 + 16.3759i) q^{30} +(16.8114 + 12.2142i) q^{31} +43.2608i q^{32} +2.46549 q^{34} +(11.9533 - 16.4522i) q^{35} +(11.0008 - 47.0166i) q^{36} +(11.9137 + 36.6667i) q^{37} +(-37.2378 - 51.2534i) q^{38} +(30.2813 + 38.1843i) q^{39} +(-8.57131 - 26.3798i) q^{40} +(12.7181 + 4.13237i) q^{41} +(-23.4263 - 15.5553i) q^{42} -43.4125 q^{43} +(-5.03227 - 59.5416i) q^{45} +(-67.6447 - 49.1468i) q^{46} +(18.9168 + 6.14644i) q^{47} +(24.3923 - 9.07892i) q^{48} +(32.0518 - 23.2870i) q^{49} +(-34.3217 - 47.2397i) q^{50} +(-0.843091 - 2.26513i) q^{51} +(26.9324 - 82.8895i) q^{52} +(-10.3894 + 14.2997i) q^{53} +(-81.9669 + 10.4224i) q^{54} +12.7963i q^{56} +(-34.3546 + 51.7382i) q^{57} +(3.57717 - 11.0094i) q^{58} +(-41.3952 + 13.4501i) q^{59} +(-83.7299 + 66.4004i) q^{60} +(8.61986 - 6.26270i) q^{61} +(-60.4797 + 19.6510i) q^{62} +(-6.28039 + 26.8418i) q^{63} +(-79.0299 - 57.4185i) q^{64} -107.854i q^{65} +72.2963 q^{67} +(-2.54066 + 3.49692i) q^{68} +(-22.0213 + 78.9537i) q^{69} +(19.2312 + 59.1877i) q^{70} +(-1.51055 - 2.07909i) q^{71} +(24.5838 + 28.4494i) q^{72} +(14.0537 + 43.2529i) q^{73} +(-112.209 - 36.4590i) q^{74} +(-31.6643 + 47.6865i) q^{75} +111.068 q^{76} +(-149.006 + 6.28555i) q^{78} +(-79.4797 - 57.7454i) q^{79} +(-54.7816 - 17.7996i) q^{80} +(37.6046 + 71.7419i) q^{81} +(-33.1080 + 24.0543i) q^{82} +(-18.7507 - 25.8081i) q^{83} +(46.2034 - 17.1971i) q^{84} +(-1.65292 + 5.08716i) q^{85} +(78.0893 - 107.481i) q^{86} +(-11.3380 + 0.478272i) q^{87} +18.5409i q^{89} +(156.465 + 94.6430i) q^{90} +(-15.3758 + 47.3217i) q^{91} +(139.414 - 45.2985i) q^{92} +(38.7356 + 48.8450i) q^{93} +(-49.2443 + 35.7781i) q^{94} +(130.719 - 42.4731i) q^{95} +(-34.8673 + 125.011i) q^{96} +(51.2123 + 37.2079i) q^{97} +121.242i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} + 18 q^{4} - 32 q^{6} + 34 q^{7} + 17 q^{9} + 12 q^{10} + 106 q^{12} + 2 q^{13} - 28 q^{15} + 102 q^{16} - 42 q^{18} - 66 q^{19} + 12 q^{21} + 74 q^{24} - 176 q^{25} - 55 q^{27} + 146 q^{28}+ \cdots + 252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.79877 + 2.47580i −0.899386 + 1.23790i 0.0712771 + 0.997457i \(0.477293\pi\)
−0.970663 + 0.240443i \(0.922707\pi\)
\(3\) 2.88971 + 0.805978i 0.963235 + 0.268659i
\(4\) −1.65793 5.10257i −0.414481 1.27564i
\(5\) −3.90250 5.37133i −0.780499 1.07427i −0.995227 0.0975910i \(-0.968886\pi\)
0.214727 0.976674i \(-0.431114\pi\)
\(6\) −7.19336 + 5.70456i −1.19889 + 0.950759i
\(7\) 0.946512 + 2.91306i 0.135216 + 0.416152i 0.995624 0.0934546i \(-0.0297910\pi\)
−0.860408 + 0.509607i \(0.829791\pi\)
\(8\) 3.97326 + 1.29099i 0.496658 + 0.161374i
\(9\) 7.70080 + 4.65808i 0.855644 + 0.517564i
\(10\) 20.3180 2.03180
\(11\) 0 0
\(12\) −0.678356 16.0812i −0.0565297 1.34010i
\(13\) 13.1422 + 9.54837i 1.01094 + 0.734490i 0.964406 0.264427i \(-0.0851827\pi\)
0.0465330 + 0.998917i \(0.485183\pi\)
\(14\) −8.91472 2.89657i −0.636765 0.206898i
\(15\) −6.94789 18.6669i −0.463193 1.24446i
\(16\) 7.01879 5.09945i 0.438674 0.318716i
\(17\) −0.473548 0.651783i −0.0278557 0.0383401i 0.794862 0.606790i \(-0.207543\pi\)
−0.822718 + 0.568450i \(0.807543\pi\)
\(18\) −25.3845 + 10.6868i −1.41025 + 0.593711i
\(19\) −6.39720 + 19.6886i −0.336695 + 1.03624i 0.629186 + 0.777255i \(0.283388\pi\)
−0.965881 + 0.258986i \(0.916612\pi\)
\(20\) −20.9375 + 28.8180i −1.04688 + 1.44090i
\(21\) 0.387274 + 9.18076i 0.0184416 + 0.437179i
\(22\) 0 0
\(23\) 27.3224i 1.18793i 0.804491 + 0.593965i \(0.202438\pi\)
−0.804491 + 0.593965i \(0.797562\pi\)
\(24\) 10.4410 + 6.93295i 0.435044 + 0.288873i
\(25\) −5.89623 + 18.1467i −0.235849 + 0.725870i
\(26\) −47.2797 + 15.3621i −1.81845 + 0.590850i
\(27\) 18.4987 + 19.6672i 0.685138 + 0.728413i
\(28\) 13.2949 9.65928i 0.474817 0.344974i
\(29\) −3.59755 + 1.16891i −0.124053 + 0.0403074i −0.370386 0.928878i \(-0.620774\pi\)
0.246332 + 0.969185i \(0.420774\pi\)
\(30\) 58.7131 + 16.3759i 1.95710 + 0.545863i
\(31\) 16.8114 + 12.2142i 0.542302 + 0.394006i 0.824939 0.565221i \(-0.191209\pi\)
−0.282637 + 0.959227i \(0.591209\pi\)
\(32\) 43.2608i 1.35190i
\(33\) 0 0
\(34\) 2.46549 0.0725143
\(35\) 11.9533 16.4522i 0.341522 0.470064i
\(36\) 11.0008 47.0166i 0.305579 1.30602i
\(37\) 11.9137 + 36.6667i 0.321993 + 0.990991i 0.972780 + 0.231731i \(0.0744390\pi\)
−0.650787 + 0.759260i \(0.725561\pi\)
\(38\) −37.2378 51.2534i −0.979942 1.34877i
\(39\) 30.2813 + 38.1843i 0.776444 + 0.979085i
\(40\) −8.57131 26.3798i −0.214283 0.659494i
\(41\) 12.7181 + 4.13237i 0.310199 + 0.100790i 0.459979 0.887930i \(-0.347857\pi\)
−0.149781 + 0.988719i \(0.547857\pi\)
\(42\) −23.4263 15.5553i −0.557770 0.370364i
\(43\) −43.4125 −1.00959 −0.504797 0.863238i \(-0.668433\pi\)
−0.504797 + 0.863238i \(0.668433\pi\)
\(44\) 0 0
\(45\) −5.03227 59.5416i −0.111828 1.32315i
\(46\) −67.6447 49.1468i −1.47054 1.06841i
\(47\) 18.9168 + 6.14644i 0.402485 + 0.130775i 0.503262 0.864134i \(-0.332133\pi\)
−0.100777 + 0.994909i \(0.532133\pi\)
\(48\) 24.3923 9.07892i 0.508173 0.189144i
\(49\) 32.0518 23.2870i 0.654118 0.475244i
\(50\) −34.3217 47.2397i −0.686434 0.944795i
\(51\) −0.843091 2.26513i −0.0165312 0.0444143i
\(52\) 26.9324 82.8895i 0.517931 1.59403i
\(53\) −10.3894 + 14.2997i −0.196026 + 0.269806i −0.895703 0.444653i \(-0.853327\pi\)
0.699677 + 0.714459i \(0.253327\pi\)
\(54\) −81.9669 + 10.4224i −1.51791 + 0.193007i
\(55\) 0 0
\(56\) 12.7963i 0.228505i
\(57\) −34.3546 + 51.7382i −0.602712 + 0.907687i
\(58\) 3.57717 11.0094i 0.0616754 0.189817i
\(59\) −41.3952 + 13.4501i −0.701614 + 0.227968i −0.638034 0.770009i \(-0.720252\pi\)
−0.0635803 + 0.997977i \(0.520252\pi\)
\(60\) −83.7299 + 66.4004i −1.39550 + 1.10667i
\(61\) 8.61986 6.26270i 0.141309 0.102667i −0.514885 0.857259i \(-0.672165\pi\)
0.656194 + 0.754592i \(0.272165\pi\)
\(62\) −60.4797 + 19.6510i −0.975479 + 0.316952i
\(63\) −6.28039 + 26.8418i −0.0996887 + 0.426061i
\(64\) −79.0299 57.4185i −1.23484 0.897165i
\(65\) 107.854i 1.65929i
\(66\) 0 0
\(67\) 72.2963 1.07905 0.539525 0.841970i \(-0.318604\pi\)
0.539525 + 0.841970i \(0.318604\pi\)
\(68\) −2.54066 + 3.49692i −0.0373626 + 0.0514253i
\(69\) −22.0213 + 78.9537i −0.319149 + 1.14426i
\(70\) 19.2312 + 59.1877i 0.274732 + 0.845538i
\(71\) −1.51055 2.07909i −0.0212753 0.0292830i 0.798247 0.602330i \(-0.205761\pi\)
−0.819522 + 0.573047i \(0.805761\pi\)
\(72\) 24.5838 + 28.4494i 0.341441 + 0.395131i
\(73\) 14.0537 + 43.2529i 0.192517 + 0.592505i 0.999997 + 0.00261035i \(0.000830900\pi\)
−0.807480 + 0.589895i \(0.799169\pi\)
\(74\) −112.209 36.4590i −1.51634 0.492690i
\(75\) −31.6643 + 47.6865i −0.422190 + 0.635820i
\(76\) 111.068 1.46143
\(77\) 0 0
\(78\) −149.006 + 6.28555i −1.91033 + 0.0805840i
\(79\) −79.4797 57.7454i −1.00607 0.730954i −0.0426901 0.999088i \(-0.513593\pi\)
−0.963381 + 0.268135i \(0.913593\pi\)
\(80\) −54.7816 17.7996i −0.684770 0.222495i
\(81\) 37.6046 + 71.7419i 0.464254 + 0.885702i
\(82\) −33.1080 + 24.0543i −0.403756 + 0.293346i
\(83\) −18.7507 25.8081i −0.225912 0.310941i 0.680982 0.732300i \(-0.261553\pi\)
−0.906894 + 0.421359i \(0.861553\pi\)
\(84\) 46.2034 17.1971i 0.550041 0.204728i
\(85\) −1.65292 + 5.08716i −0.0194461 + 0.0598489i
\(86\) 78.0893 107.481i 0.908015 1.24978i
\(87\) −11.3380 + 0.478272i −0.130321 + 0.00549738i
\(88\) 0 0
\(89\) 18.5409i 0.208325i 0.994560 + 0.104162i \(0.0332161\pi\)
−0.994560 + 0.104162i \(0.966784\pi\)
\(90\) 156.465 + 94.6430i 1.73850 + 1.05159i
\(91\) −15.3758 + 47.3217i −0.168964 + 0.520019i
\(92\) 139.414 45.2985i 1.51537 0.492375i
\(93\) 38.7356 + 48.8450i 0.416511 + 0.525215i
\(94\) −49.2443 + 35.7781i −0.523876 + 0.380618i
\(95\) 130.719 42.4731i 1.37599 0.447085i
\(96\) −34.8673 + 125.011i −0.363201 + 1.30220i
\(97\) 51.2123 + 37.2079i 0.527962 + 0.383587i 0.819595 0.572943i \(-0.194199\pi\)
−0.291633 + 0.956530i \(0.594199\pi\)
\(98\) 121.242i 1.23716i
\(99\) 0 0
\(100\) 102.371 1.02371
\(101\) 88.3786 121.643i 0.875036 1.20438i −0.102735 0.994709i \(-0.532759\pi\)
0.977771 0.209675i \(-0.0672406\pi\)
\(102\) 7.12453 + 1.98713i 0.0698483 + 0.0194817i
\(103\) −46.2807 142.437i −0.449327 1.38289i −0.877668 0.479269i \(-0.840902\pi\)
0.428341 0.903617i \(-0.359098\pi\)
\(104\) 39.8906 + 54.9047i 0.383563 + 0.527929i
\(105\) 47.8015 37.9081i 0.455253 0.361029i
\(106\) −16.7152 51.4440i −0.157690 0.485320i
\(107\) 19.7358 + 6.41256i 0.184447 + 0.0599305i 0.399784 0.916609i \(-0.369085\pi\)
−0.215337 + 0.976540i \(0.569085\pi\)
\(108\) 69.6835 126.998i 0.645218 1.17590i
\(109\) 105.794 0.970583 0.485291 0.874352i \(-0.338714\pi\)
0.485291 + 0.874352i \(0.338714\pi\)
\(110\) 0 0
\(111\) 4.87462 + 115.558i 0.0439155 + 1.04106i
\(112\) 21.4984 + 15.6195i 0.191950 + 0.139460i
\(113\) 126.271 + 41.0279i 1.11744 + 0.363078i 0.808790 0.588097i \(-0.200123\pi\)
0.308650 + 0.951176i \(0.400123\pi\)
\(114\) −66.2971 178.120i −0.581554 1.56246i
\(115\) 146.757 106.626i 1.27615 0.927179i
\(116\) 11.9289 + 16.4188i 0.102836 + 0.141541i
\(117\) 56.7284 + 134.748i 0.484858 + 1.15169i
\(118\) 41.1608 126.680i 0.348820 1.07356i
\(119\) 1.45047 1.99639i 0.0121888 0.0167764i
\(120\) −3.50703 83.1381i −0.0292253 0.692817i
\(121\) 0 0
\(122\) 32.6062i 0.267264i
\(123\) 33.4211 + 22.1919i 0.271716 + 0.180422i
\(124\) 34.4517 106.031i 0.277836 0.855092i
\(125\) −37.3772 + 12.1446i −0.299018 + 0.0971568i
\(126\) −55.1580 63.8313i −0.437762 0.506598i
\(127\) −118.647 + 86.2019i −0.934226 + 0.678755i −0.947024 0.321163i \(-0.895926\pi\)
0.0127976 + 0.999918i \(0.495926\pi\)
\(128\) 119.740 38.9058i 0.935466 0.303951i
\(129\) −125.449 34.9896i −0.972476 0.271237i
\(130\) 267.024 + 194.004i 2.05403 + 1.49234i
\(131\) 149.467i 1.14097i −0.821309 0.570484i \(-0.806756\pi\)
0.821309 0.570484i \(-0.193244\pi\)
\(132\) 0 0
\(133\) −63.4091 −0.476760
\(134\) −130.045 + 178.991i −0.970482 + 1.33575i
\(135\) 33.4475 176.114i 0.247759 1.30455i
\(136\) −1.04008 3.20105i −0.00764768 0.0235371i
\(137\) 89.4650 + 123.138i 0.653029 + 0.898817i 0.999226 0.0393446i \(-0.0125270\pi\)
−0.346197 + 0.938162i \(0.612527\pi\)
\(138\) −155.862 196.540i −1.12944 1.42420i
\(139\) −34.5591 106.362i −0.248627 0.765194i −0.995019 0.0996878i \(-0.968216\pi\)
0.746392 0.665506i \(-0.231784\pi\)
\(140\) −103.766 33.7157i −0.741188 0.240827i
\(141\) 49.7100 + 33.0079i 0.352554 + 0.234099i
\(142\) 7.86454 0.0553841
\(143\) 0 0
\(144\) 77.8039 6.57574i 0.540305 0.0456649i
\(145\) 20.3180 + 14.7619i 0.140124 + 0.101806i
\(146\) −132.365 43.0080i −0.906609 0.294575i
\(147\) 111.389 41.4595i 0.757748 0.282037i
\(148\) 167.342 121.581i 1.13069 0.821495i
\(149\) 152.645 + 210.098i 1.02446 + 1.41005i 0.909026 + 0.416739i \(0.136827\pi\)
0.115437 + 0.993315i \(0.463173\pi\)
\(150\) −61.1054 164.171i −0.407369 1.09448i
\(151\) −27.1990 + 83.7098i −0.180126 + 0.554370i −0.999830 0.0184166i \(-0.994137\pi\)
0.819705 + 0.572786i \(0.194137\pi\)
\(152\) −50.8355 + 69.9691i −0.334444 + 0.460323i
\(153\) −0.610640 7.22507i −0.00399111 0.0472227i
\(154\) 0 0
\(155\) 137.965i 0.890098i
\(156\) 144.634 217.819i 0.927141 1.39628i
\(157\) −2.36562 + 7.28062i −0.0150676 + 0.0463734i −0.958308 0.285738i \(-0.907761\pi\)
0.943240 + 0.332112i \(0.107761\pi\)
\(158\) 285.932 92.9048i 1.80969 0.588005i
\(159\) −41.5475 + 32.9484i −0.261305 + 0.207223i
\(160\) 232.368 168.825i 1.45230 1.05516i
\(161\) −79.5919 + 25.8610i −0.494360 + 0.160627i
\(162\) −245.260 35.9460i −1.51395 0.221889i
\(163\) −212.405 154.321i −1.30310 0.946756i −0.303117 0.952953i \(-0.598027\pi\)
−0.999981 + 0.00619729i \(0.998027\pi\)
\(164\) 71.7464i 0.437478i
\(165\) 0 0
\(166\) 97.6240 0.588096
\(167\) −94.0494 + 129.448i −0.563170 + 0.775137i −0.991725 0.128379i \(-0.959023\pi\)
0.428555 + 0.903515i \(0.359023\pi\)
\(168\) −10.3135 + 36.9776i −0.0613901 + 0.220105i
\(169\) 29.3223 + 90.2447i 0.173505 + 0.533992i
\(170\) −9.62155 13.2429i −0.0565974 0.0778996i
\(171\) −140.974 + 121.819i −0.824412 + 0.712392i
\(172\) 71.9747 + 221.515i 0.418458 + 1.28788i
\(173\) 157.422 + 51.1497i 0.909956 + 0.295663i 0.726340 0.687335i \(-0.241220\pi\)
0.183616 + 0.982998i \(0.441220\pi\)
\(174\) 19.2103 28.9308i 0.110404 0.166269i
\(175\) −58.4435 −0.333963
\(176\) 0 0
\(177\) −130.461 + 5.50325i −0.737065 + 0.0310918i
\(178\) −45.9035 33.3508i −0.257885 0.187364i
\(179\) 55.6720 + 18.0889i 0.311017 + 0.101056i 0.460367 0.887729i \(-0.347718\pi\)
−0.149350 + 0.988784i \(0.547718\pi\)
\(180\) −295.472 + 124.393i −1.64151 + 0.691073i
\(181\) −230.309 + 167.330i −1.27243 + 0.924473i −0.999296 0.0375044i \(-0.988059\pi\)
−0.273131 + 0.961977i \(0.588059\pi\)
\(182\) −89.5015 123.188i −0.491767 0.676859i
\(183\) 29.9565 11.1499i 0.163696 0.0609286i
\(184\) −35.2730 + 108.559i −0.191701 + 0.589995i
\(185\) 150.455 207.084i 0.813272 1.11937i
\(186\) −190.607 + 8.04041i −1.02477 + 0.0432280i
\(187\) 0 0
\(188\) 106.715i 0.567631i
\(189\) −39.7824 + 72.5032i −0.210489 + 0.383615i
\(190\) −129.979 + 400.033i −0.684097 + 2.10544i
\(191\) −130.716 + 42.4721i −0.684375 + 0.222367i −0.630510 0.776181i \(-0.717154\pi\)
−0.0538652 + 0.998548i \(0.517154\pi\)
\(192\) −182.095 229.619i −0.948411 1.19593i
\(193\) 241.163 175.215i 1.24955 0.907852i 0.251356 0.967895i \(-0.419124\pi\)
0.998196 + 0.0600426i \(0.0191237\pi\)
\(194\) −184.239 + 59.8628i −0.949684 + 0.308571i
\(195\) 86.9276 311.665i 0.445783 1.59828i
\(196\) −171.963 124.938i −0.877362 0.637441i
\(197\) 58.1375i 0.295114i 0.989054 + 0.147557i \(0.0471410\pi\)
−0.989054 + 0.147557i \(0.952859\pi\)
\(198\) 0 0
\(199\) −125.049 −0.628385 −0.314193 0.949359i \(-0.601734\pi\)
−0.314193 + 0.949359i \(0.601734\pi\)
\(200\) −46.8546 + 64.4898i −0.234273 + 0.322449i
\(201\) 208.915 + 58.2693i 1.03938 + 0.289897i
\(202\) 142.190 + 437.615i 0.703910 + 2.16641i
\(203\) −6.81024 9.37349i −0.0335480 0.0461748i
\(204\) −10.1602 + 8.05735i −0.0498049 + 0.0394968i
\(205\) −27.4362 84.4398i −0.133835 0.411902i
\(206\) 435.894 + 141.631i 2.11599 + 0.687527i
\(207\) −127.270 + 210.404i −0.614831 + 1.01645i
\(208\) 140.934 0.677566
\(209\) 0 0
\(210\) 7.86865 + 186.535i 0.0374698 + 0.888262i
\(211\) −39.1505 28.4445i −0.185547 0.134808i 0.491134 0.871084i \(-0.336583\pi\)
−0.676681 + 0.736276i \(0.736583\pi\)
\(212\) 90.1902 + 29.3046i 0.425425 + 0.138229i
\(213\) −2.68934 7.22543i −0.0126260 0.0339222i
\(214\) −51.3765 + 37.3272i −0.240077 + 0.174426i
\(215\) 169.417 + 233.183i 0.787987 + 1.08457i
\(216\) 48.1102 + 102.024i 0.222732 + 0.472336i
\(217\) −19.6685 + 60.5335i −0.0906383 + 0.278956i
\(218\) −190.298 + 261.923i −0.872929 + 1.20148i
\(219\) 5.75021 + 136.315i 0.0262567 + 0.622444i
\(220\) 0 0
\(221\) 13.0875i 0.0592193i
\(222\) −294.867 195.794i −1.32823 0.881956i
\(223\) 65.4240 201.354i 0.293381 0.902934i −0.690379 0.723448i \(-0.742556\pi\)
0.983760 0.179487i \(-0.0574437\pi\)
\(224\) −126.021 + 40.9469i −0.562596 + 0.182798i
\(225\) −129.935 + 112.279i −0.577487 + 0.499019i
\(226\) −328.709 + 238.821i −1.45447 + 1.05673i
\(227\) 115.444 37.5101i 0.508565 0.165243i −0.0434848 0.999054i \(-0.513846\pi\)
0.552049 + 0.833811i \(0.313846\pi\)
\(228\) 320.955 + 89.5187i 1.40770 + 0.392626i
\(229\) −261.267 189.822i −1.14090 0.828915i −0.153659 0.988124i \(-0.549106\pi\)
−0.987245 + 0.159209i \(0.949106\pi\)
\(230\) 555.137i 2.41364i
\(231\) 0 0
\(232\) −15.8030 −0.0681166
\(233\) 236.530 325.556i 1.01515 1.39724i 0.0996031 0.995027i \(-0.468243\pi\)
0.915548 0.402209i \(-0.131757\pi\)
\(234\) −435.649 101.932i −1.86175 0.435607i
\(235\) −40.8082 125.595i −0.173652 0.534445i
\(236\) 137.260 + 188.923i 0.581612 + 0.800520i
\(237\) −183.131 230.926i −0.772706 0.974371i
\(238\) 2.33361 + 7.18212i 0.00980509 + 0.0301770i
\(239\) −0.305711 0.0993315i −0.00127912 0.000415613i 0.308377 0.951264i \(-0.400214\pi\)
−0.309656 + 0.950848i \(0.600214\pi\)
\(240\) −143.957 95.5885i −0.599819 0.398285i
\(241\) −290.799 −1.20664 −0.603318 0.797500i \(-0.706155\pi\)
−0.603318 + 0.797500i \(0.706155\pi\)
\(242\) 0 0
\(243\) 50.8438 + 237.621i 0.209234 + 0.977866i
\(244\) −46.2469 33.6004i −0.189537 0.137706i
\(245\) −250.164 81.2832i −1.02108 0.331768i
\(246\) −115.060 + 42.8257i −0.467722 + 0.174088i
\(247\) −272.067 + 197.668i −1.10149 + 0.800276i
\(248\) 51.0276 + 70.2335i 0.205756 + 0.283199i
\(249\) −33.3832 89.6906i −0.134069 0.360203i
\(250\) 37.1656 114.384i 0.148662 0.457535i
\(251\) −66.1972 + 91.1127i −0.263734 + 0.362999i −0.920262 0.391303i \(-0.872024\pi\)
0.656528 + 0.754302i \(0.272024\pi\)
\(252\) 147.375 12.4557i 0.584821 0.0494272i
\(253\) 0 0
\(254\) 448.803i 1.76694i
\(255\) −8.87658 + 13.3682i −0.0348101 + 0.0524242i
\(256\) 1.68535 5.18697i 0.00658339 0.0202616i
\(257\) −186.948 + 60.7430i −0.727423 + 0.236354i −0.649238 0.760585i \(-0.724912\pi\)
−0.0781844 + 0.996939i \(0.524912\pi\)
\(258\) 312.282 247.649i 1.21040 0.959881i
\(259\) −95.5359 + 69.4109i −0.368864 + 0.267996i
\(260\) −550.330 + 178.813i −2.11665 + 0.687743i
\(261\) −33.1489 7.75609i −0.127007 0.0297168i
\(262\) 370.050 + 268.857i 1.41240 + 1.02617i
\(263\) 378.327i 1.43850i −0.694749 0.719252i \(-0.744485\pi\)
0.694749 0.719252i \(-0.255515\pi\)
\(264\) 0 0
\(265\) 117.353 0.442842
\(266\) 114.059 156.988i 0.428791 0.590181i
\(267\) −14.9435 + 53.5777i −0.0559683 + 0.200666i
\(268\) −119.862 368.897i −0.447246 1.37648i
\(269\) −118.235 162.737i −0.439537 0.604971i 0.530572 0.847640i \(-0.321977\pi\)
−0.970109 + 0.242669i \(0.921977\pi\)
\(270\) 375.858 + 399.598i 1.39206 + 1.47999i
\(271\) −24.7877 76.2886i −0.0914674 0.281508i 0.894850 0.446368i \(-0.147283\pi\)
−0.986317 + 0.164860i \(0.947283\pi\)
\(272\) −6.64746 2.15989i −0.0244392 0.00794078i
\(273\) −82.5717 + 124.353i −0.302460 + 0.455507i
\(274\) −465.792 −1.69997
\(275\) 0 0
\(276\) 439.376 18.5343i 1.59194 0.0671533i
\(277\) 177.106 + 128.675i 0.639371 + 0.464530i 0.859634 0.510910i \(-0.170692\pi\)
−0.220263 + 0.975441i \(0.570692\pi\)
\(278\) 325.495 + 105.760i 1.17084 + 0.380430i
\(279\) 72.5664 + 172.368i 0.260095 + 0.617805i
\(280\) 68.7331 49.9375i 0.245475 0.178348i
\(281\) −291.798 401.626i −1.03843 1.42927i −0.898427 0.439123i \(-0.855289\pi\)
−0.140001 0.990151i \(-0.544711\pi\)
\(282\) −171.138 + 63.6983i −0.606872 + 0.225881i
\(283\) 95.0850 292.642i 0.335990 1.03407i −0.630243 0.776398i \(-0.717045\pi\)
0.966233 0.257672i \(-0.0829553\pi\)
\(284\) −8.10433 + 11.1547i −0.0285364 + 0.0392770i
\(285\) 411.971 17.3783i 1.44551 0.0609764i
\(286\) 0 0
\(287\) 40.9601i 0.142718i
\(288\) −201.512 + 333.143i −0.699695 + 1.15675i
\(289\) 89.1053 274.238i 0.308323 0.948921i
\(290\) −73.0950 + 23.7500i −0.252052 + 0.0818966i
\(291\) 118.000 + 148.796i 0.405497 + 0.511326i
\(292\) 197.401 143.420i 0.676030 0.491165i
\(293\) −323.072 + 104.972i −1.10263 + 0.358268i −0.803116 0.595823i \(-0.796826\pi\)
−0.299519 + 0.954090i \(0.596826\pi\)
\(294\) −97.7182 + 350.353i −0.332375 + 1.19168i
\(295\) 233.790 + 169.858i 0.792507 + 0.575790i
\(296\) 161.067i 0.544145i
\(297\) 0 0
\(298\) −794.734 −2.66689
\(299\) −260.884 + 359.077i −0.872523 + 1.20092i
\(300\) 295.821 + 82.5084i 0.986069 + 0.275028i
\(301\) −41.0905 126.463i −0.136513 0.420144i
\(302\) −158.324 217.914i −0.524251 0.721570i
\(303\) 353.430 280.281i 1.16643 0.925018i
\(304\) 55.5002 + 170.812i 0.182567 + 0.561882i
\(305\) −67.2779 21.8599i −0.220583 0.0716719i
\(306\) 18.9862 + 11.4844i 0.0620465 + 0.0375308i
\(307\) 396.129 1.29032 0.645161 0.764047i \(-0.276790\pi\)
0.645161 + 0.764047i \(0.276790\pi\)
\(308\) 0 0
\(309\) −18.9362 448.903i −0.0612821 1.45276i
\(310\) 341.574 + 248.168i 1.10185 + 0.800542i
\(311\) −82.7760 26.8955i −0.266161 0.0864808i 0.172896 0.984940i \(-0.444687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(312\) 71.0200 + 190.809i 0.227628 + 0.611568i
\(313\) 484.531 352.033i 1.54802 1.12471i 0.602982 0.797755i \(-0.293979\pi\)
0.945041 0.326951i \(-0.106021\pi\)
\(314\) −13.7701 18.9530i −0.0438539 0.0603598i
\(315\) 168.685 71.0162i 0.535509 0.225448i
\(316\) −162.878 + 501.288i −0.515438 + 1.58635i
\(317\) −1.44295 + 1.98605i −0.00455190 + 0.00626516i −0.811287 0.584648i \(-0.801233\pi\)
0.806735 + 0.590913i \(0.201233\pi\)
\(318\) −6.83917 162.130i −0.0215068 0.509843i
\(319\) 0 0
\(320\) 648.571i 2.02678i
\(321\) 51.8624 + 34.4371i 0.161565 + 0.107281i
\(322\) 79.1412 243.571i 0.245780 0.756433i
\(323\) 15.8620 5.15389i 0.0491085 0.0159563i
\(324\) 303.722 310.823i 0.937414 0.959329i
\(325\) −250.761 + 182.189i −0.771573 + 0.560581i
\(326\) 764.136 248.283i 2.34398 0.761604i
\(327\) 305.712 + 85.2673i 0.934900 + 0.260756i
\(328\) 45.1977 + 32.8380i 0.137798 + 0.100116i
\(329\) 60.9235i 0.185178i
\(330\) 0 0
\(331\) 368.074 1.11200 0.556002 0.831181i \(-0.312335\pi\)
0.556002 + 0.831181i \(0.312335\pi\)
\(332\) −100.601 + 138.465i −0.303014 + 0.417063i
\(333\) −79.0511 + 337.858i −0.237391 + 1.01459i
\(334\) −151.313 465.694i −0.453034 1.39429i
\(335\) −282.136 388.327i −0.842197 1.15919i
\(336\) 49.5350 + 62.4630i 0.147426 + 0.185902i
\(337\) −182.901 562.911i −0.542733 1.67036i −0.726321 0.687356i \(-0.758771\pi\)
0.183588 0.983003i \(-0.441229\pi\)
\(338\) −276.172 89.7336i −0.817076 0.265484i
\(339\) 331.818 + 220.330i 0.978814 + 0.649941i
\(340\) 28.6980 0.0844059
\(341\) 0 0
\(342\) −48.0182 568.149i −0.140404 1.66125i
\(343\) 219.596 + 159.546i 0.640221 + 0.465148i
\(344\) −172.489 56.0452i −0.501423 0.162922i
\(345\) 510.024 189.833i 1.47833 0.550241i
\(346\) −409.803 + 297.740i −1.18440 + 0.860519i
\(347\) 173.162 + 238.337i 0.499026 + 0.686851i 0.982021 0.188773i \(-0.0604509\pi\)
−0.482994 + 0.875623i \(0.660451\pi\)
\(348\) 21.2379 + 57.0598i 0.0610285 + 0.163965i
\(349\) −127.318 + 391.843i −0.364807 + 1.12276i 0.585295 + 0.810820i \(0.300979\pi\)
−0.950102 + 0.311939i \(0.899021\pi\)
\(350\) 105.127 144.694i 0.300361 0.413412i
\(351\) 55.3248 + 435.102i 0.157620 + 1.23961i
\(352\) 0 0
\(353\) 135.577i 0.384070i −0.981388 0.192035i \(-0.938491\pi\)
0.981388 0.192035i \(-0.0615086\pi\)
\(354\) 221.044 332.893i 0.624418 0.940376i
\(355\) −5.27257 + 16.2273i −0.0148523 + 0.0457107i
\(356\) 94.6061 30.7394i 0.265748 0.0863466i
\(357\) 5.80047 4.59995i 0.0162478 0.0128850i
\(358\) −144.926 + 105.295i −0.404821 + 0.294120i
\(359\) 265.131 86.1464i 0.738527 0.239962i 0.0844899 0.996424i \(-0.473074\pi\)
0.654037 + 0.756462i \(0.273074\pi\)
\(360\) 56.8732 243.071i 0.157981 0.675198i
\(361\) −54.6603 39.7131i −0.151414 0.110008i
\(362\) 871.187i 2.40659i
\(363\) 0 0
\(364\) 266.954 0.733391
\(365\) 177.481 244.281i 0.486249 0.669264i
\(366\) −26.2799 + 94.2223i −0.0718030 + 0.257438i
\(367\) −54.5068 167.755i −0.148520 0.457097i 0.848927 0.528510i \(-0.177249\pi\)
−0.997447 + 0.0714131i \(0.977249\pi\)
\(368\) 139.329 + 191.770i 0.378612 + 0.521115i
\(369\) 78.6909 + 91.0647i 0.213254 + 0.246788i
\(370\) 242.063 + 744.994i 0.654225 + 2.01350i
\(371\) −51.4897 16.7300i −0.138786 0.0450944i
\(372\) 185.014 278.632i 0.497350 0.749011i
\(373\) −163.109 −0.437289 −0.218645 0.975805i \(-0.570164\pi\)
−0.218645 + 0.975805i \(0.570164\pi\)
\(374\) 0 0
\(375\) −117.797 + 4.96908i −0.314126 + 0.0132509i
\(376\) 67.2264 + 48.8428i 0.178794 + 0.129901i
\(377\) −58.4409 18.9886i −0.155016 0.0503676i
\(378\) −107.944 228.910i −0.285565 0.605582i
\(379\) −43.0644 + 31.2881i −0.113626 + 0.0825545i −0.643147 0.765742i \(-0.722372\pi\)
0.529521 + 0.848297i \(0.322372\pi\)
\(380\) −433.444 596.584i −1.14064 1.56996i
\(381\) −412.331 + 153.471i −1.08223 + 0.402812i
\(382\) 129.975 400.023i 0.340250 1.04718i
\(383\) 52.7039 72.5408i 0.137608 0.189401i −0.734651 0.678445i \(-0.762654\pi\)
0.872259 + 0.489044i \(0.162654\pi\)
\(384\) 377.369 15.9187i 0.982733 0.0414549i
\(385\) 0 0
\(386\) 912.245i 2.36333i
\(387\) −334.311 202.219i −0.863853 0.522530i
\(388\) 104.950 323.002i 0.270489 0.832480i
\(389\) −256.406 + 83.3113i −0.659141 + 0.214168i −0.619440 0.785044i \(-0.712640\pi\)
−0.0397008 + 0.999212i \(0.512640\pi\)
\(390\) 615.257 + 775.830i 1.57758 + 1.98931i
\(391\) 17.8083 12.9385i 0.0455454 0.0330907i
\(392\) 157.413 51.1467i 0.401565 0.130476i
\(393\) 120.467 431.915i 0.306532 1.09902i
\(394\) −143.937 104.576i −0.365322 0.265422i
\(395\) 652.262i 1.65130i
\(396\) 0 0
\(397\) 211.490 0.532720 0.266360 0.963874i \(-0.414179\pi\)
0.266360 + 0.963874i \(0.414179\pi\)
\(398\) 224.934 309.595i 0.565161 0.777877i
\(399\) −183.234 51.1063i −0.459232 0.128086i
\(400\) 51.1540 + 157.436i 0.127885 + 0.393589i
\(401\) 264.385 + 363.894i 0.659314 + 0.907468i 0.999458 0.0329055i \(-0.0104760\pi\)
−0.340145 + 0.940373i \(0.610476\pi\)
\(402\) −520.054 + 412.418i −1.29367 + 1.02592i
\(403\) 104.313 + 321.042i 0.258841 + 0.796631i
\(404\) −767.216 249.284i −1.89905 0.617038i
\(405\) 238.597 481.959i 0.589129 1.19002i
\(406\) 35.4569 0.0873323
\(407\) 0 0
\(408\) −0.425560 10.0884i −0.00104304 0.0247264i
\(409\) −124.826 90.6917i −0.305199 0.221740i 0.424635 0.905365i \(-0.360403\pi\)
−0.729834 + 0.683625i \(0.760403\pi\)
\(410\) 258.407 + 83.9617i 0.630262 + 0.204785i
\(411\) 159.281 + 427.939i 0.387545 + 1.04122i
\(412\) −650.066 + 472.301i −1.57783 + 1.14636i
\(413\) −78.3621 107.856i −0.189739 0.261153i
\(414\) −291.989 693.564i −0.705287 1.67528i
\(415\) −65.4493 + 201.432i −0.157709 + 0.485379i
\(416\) −413.070 + 568.542i −0.992957 + 1.36669i
\(417\) −14.1402 335.209i −0.0339093 0.803858i
\(418\) 0 0
\(419\) 755.530i 1.80317i 0.432599 + 0.901587i \(0.357597\pi\)
−0.432599 + 0.901587i \(0.642403\pi\)
\(420\) −272.680 181.062i −0.649238 0.431100i
\(421\) −135.007 + 415.507i −0.320681 + 0.986954i 0.652672 + 0.757641i \(0.273648\pi\)
−0.973353 + 0.229313i \(0.926352\pi\)
\(422\) 140.846 45.7635i 0.333758 0.108444i
\(423\) 117.044 + 135.448i 0.276699 + 0.320209i
\(424\) −59.7405 + 43.4040i −0.140897 + 0.102368i
\(425\) 14.6199 4.75029i 0.0343997 0.0111771i
\(426\) 22.7262 + 6.33865i 0.0533479 + 0.0148795i
\(427\) 26.4024 + 19.1825i 0.0618324 + 0.0449239i
\(428\) 111.335i 0.260129i
\(429\) 0 0
\(430\) −882.057 −2.05129
\(431\) −5.72154 + 7.87503i −0.0132750 + 0.0182715i −0.815603 0.578612i \(-0.803595\pi\)
0.802328 + 0.596884i \(0.203595\pi\)
\(432\) 230.130 + 43.7063i 0.532709 + 0.101172i
\(433\) −18.3169 56.3736i −0.0423023 0.130193i 0.927675 0.373389i \(-0.121804\pi\)
−0.969977 + 0.243196i \(0.921804\pi\)
\(434\) −114.489 157.581i −0.263801 0.363090i
\(435\) 46.8153 + 59.0334i 0.107621 + 0.135709i
\(436\) −175.398 539.819i −0.402288 1.23812i
\(437\) −537.939 174.787i −1.23098 0.399970i
\(438\) −347.832 230.964i −0.794137 0.527314i
\(439\) −444.724 −1.01304 −0.506519 0.862229i \(-0.669068\pi\)
−0.506519 + 0.862229i \(0.669068\pi\)
\(440\) 0 0
\(441\) 355.297 30.0286i 0.805662 0.0680920i
\(442\) 32.4019 + 23.5414i 0.0733075 + 0.0532610i
\(443\) −509.149 165.433i −1.14932 0.373437i −0.328434 0.944527i \(-0.606521\pi\)
−0.820888 + 0.571090i \(0.806521\pi\)
\(444\) 581.562 216.460i 1.30982 0.487522i
\(445\) 99.5891 72.3557i 0.223796 0.162597i
\(446\) 380.830 + 524.167i 0.853878 + 1.17526i
\(447\) 271.765 + 730.150i 0.607975 + 1.63344i
\(448\) 92.4612 284.566i 0.206387 0.635193i
\(449\) 452.250 622.469i 1.00724 1.38635i 0.0864624 0.996255i \(-0.472444\pi\)
0.920777 0.390090i \(-0.127556\pi\)
\(450\) −44.2578 523.657i −0.0983508 1.16368i
\(451\) 0 0
\(452\) 712.327i 1.57594i
\(453\) −146.065 + 219.975i −0.322440 + 0.485596i
\(454\) −114.790 + 353.289i −0.252842 + 0.778169i
\(455\) 314.184 102.085i 0.690515 0.224362i
\(456\) −203.293 + 161.218i −0.445819 + 0.353548i
\(457\) 137.254 99.7207i 0.300337 0.218207i −0.427402 0.904061i \(-0.640571\pi\)
0.727739 + 0.685854i \(0.240571\pi\)
\(458\) 939.919 305.398i 2.05223 0.666809i
\(459\) 4.05868 21.3705i 0.00884244 0.0465588i
\(460\) −787.377 572.063i −1.71169 1.24362i
\(461\) 266.355i 0.577777i 0.957363 + 0.288888i \(0.0932857\pi\)
−0.957363 + 0.288888i \(0.906714\pi\)
\(462\) 0 0
\(463\) −704.848 −1.52235 −0.761175 0.648547i \(-0.775377\pi\)
−0.761175 + 0.648547i \(0.775377\pi\)
\(464\) −19.2896 + 26.5499i −0.0415724 + 0.0572195i
\(465\) 111.197 398.679i 0.239133 0.857373i
\(466\) 380.547 + 1171.20i 0.816624 + 2.51331i
\(467\) −396.859 546.230i −0.849806 1.16966i −0.983905 0.178690i \(-0.942814\pi\)
0.134099 0.990968i \(-0.457186\pi\)
\(468\) 593.507 512.862i 1.26818 1.09586i
\(469\) 68.4293 + 210.604i 0.145905 + 0.449049i
\(470\) 384.352 + 124.883i 0.817769 + 0.265709i
\(471\) −12.7040 + 19.1322i −0.0269723 + 0.0406204i
\(472\) −181.838 −0.385250
\(473\) 0 0
\(474\) 901.138 38.0129i 1.90113 0.0801960i
\(475\) −319.564 232.177i −0.672766 0.488793i
\(476\) −12.5915 4.09123i −0.0264527 0.00859502i
\(477\) −146.616 + 61.7249i −0.307371 + 0.129402i
\(478\) 0.795829 0.578204i 0.00166491 0.00120963i
\(479\) −411.336 566.156i −0.858740 1.18195i −0.981868 0.189563i \(-0.939293\pi\)
0.123128 0.992391i \(-0.460707\pi\)
\(480\) 807.544 300.571i 1.68238 0.626191i
\(481\) −193.534 + 595.638i −0.402358 + 1.23833i
\(482\) 523.082 719.961i 1.08523 1.49369i
\(483\) −250.841 + 10.5813i −0.519339 + 0.0219074i
\(484\) 0 0
\(485\) 420.282i 0.866560i
\(486\) −679.759 301.548i −1.39868 0.620469i
\(487\) −201.895 + 621.370i −0.414569 + 1.27591i 0.498066 + 0.867139i \(0.334044\pi\)
−0.912636 + 0.408774i \(0.865956\pi\)
\(488\) 42.3341 13.7552i 0.0867501 0.0281868i
\(489\) −489.408 617.137i −1.00083 1.26204i
\(490\) 651.229 473.145i 1.32904 0.965603i
\(491\) −58.8107 + 19.1088i −0.119777 + 0.0389180i −0.368292 0.929710i \(-0.620057\pi\)
0.248515 + 0.968628i \(0.420057\pi\)
\(492\) 57.8260 207.326i 0.117533 0.421394i
\(493\) 2.46549 + 1.79128i 0.00500099 + 0.00363343i
\(494\) 1029.14i 2.08329i
\(495\) 0 0
\(496\) 180.281 0.363470
\(497\) 4.62677 6.36821i 0.00930940 0.0128133i
\(498\) 282.105 + 78.6828i 0.566475 + 0.157998i
\(499\) 101.973 + 313.842i 0.204356 + 0.628942i 0.999739 + 0.0228356i \(0.00726941\pi\)
−0.795384 + 0.606106i \(0.792731\pi\)
\(500\) 123.937 + 170.585i 0.247875 + 0.341170i
\(501\) −376.107 + 298.264i −0.750713 + 0.595338i
\(502\) −106.503 327.782i −0.212157 0.652952i
\(503\) −330.187 107.284i −0.656436 0.213289i −0.0381861 0.999271i \(-0.512158\pi\)
−0.618250 + 0.785982i \(0.712158\pi\)
\(504\) −59.6062 + 98.5418i −0.118266 + 0.195519i
\(505\) −998.280 −1.97679
\(506\) 0 0
\(507\) 11.9975 + 284.414i 0.0236637 + 0.560974i
\(508\) 636.559 + 462.487i 1.25307 + 0.910407i
\(509\) 814.289 + 264.578i 1.59978 + 0.519800i 0.967053 0.254574i \(-0.0819352\pi\)
0.632728 + 0.774374i \(0.281935\pi\)
\(510\) −17.1299 46.0229i −0.0335881 0.0902410i
\(511\) −112.696 + 81.8787i −0.220541 + 0.160232i
\(512\) 305.823 + 420.929i 0.597310 + 0.822127i
\(513\) −505.558 + 238.399i −0.985494 + 0.464715i
\(514\) 185.889 572.108i 0.361652 1.11305i
\(515\) −584.467 + 804.449i −1.13489 + 1.56204i
\(516\) 29.4492 + 698.125i 0.0570720 + 1.35295i
\(517\) 0 0
\(518\) 361.382i 0.697649i
\(519\) 413.679 + 274.687i 0.797069 + 0.529261i
\(520\) 139.238 428.530i 0.267765 0.824097i
\(521\) 677.779 220.224i 1.30092 0.422695i 0.425019 0.905185i \(-0.360268\pi\)
0.875901 + 0.482490i \(0.160268\pi\)
\(522\) 78.8298 68.1184i 0.151015 0.130495i
\(523\) 407.684 296.200i 0.779510 0.566347i −0.125322 0.992116i \(-0.539996\pi\)
0.904832 + 0.425769i \(0.139996\pi\)
\(524\) −762.665 + 247.805i −1.45547 + 0.472910i
\(525\) −168.884 47.1042i −0.321685 0.0897222i
\(526\) 936.660 + 680.524i 1.78072 + 1.29377i
\(527\) 16.7414i 0.0317673i
\(528\) 0 0
\(529\) −217.513 −0.411179
\(530\) −211.091 + 290.542i −0.398286 + 0.548193i
\(531\) −381.428 89.2456i −0.718320 0.168071i
\(532\) 105.128 + 323.549i 0.197608 + 0.608175i
\(533\) 127.687 + 175.746i 0.239563 + 0.329730i
\(534\) −105.768 133.371i −0.198066 0.249759i
\(535\) −42.5751 131.033i −0.0795796 0.244921i
\(536\) 287.252 + 93.3339i 0.535918 + 0.174130i
\(537\) 146.297 + 97.1422i 0.272433 + 0.180898i
\(538\) 615.583 1.14421
\(539\) 0 0
\(540\) −954.086 + 121.315i −1.76683 + 0.224658i
\(541\) −474.599 344.817i −0.877263 0.637369i 0.0552628 0.998472i \(-0.482400\pi\)
−0.932526 + 0.361103i \(0.882400\pi\)
\(542\) 233.463 + 75.8566i 0.430743 + 0.139957i
\(543\) −800.390 + 297.909i −1.47402 + 0.548635i
\(544\) 28.1966 20.4861i 0.0518320 0.0376582i
\(545\) −412.859 568.251i −0.757539 1.04266i
\(546\) −159.346 428.114i −0.291842 0.784092i
\(547\) −212.865 + 655.132i −0.389151 + 1.19768i 0.544273 + 0.838908i \(0.316805\pi\)
−0.933424 + 0.358775i \(0.883195\pi\)
\(548\) 479.994 660.655i 0.875901 1.20557i
\(549\) 95.5519 8.07575i 0.174047 0.0147099i
\(550\) 0 0
\(551\) 78.3083i 0.142120i
\(552\) −189.425 + 285.275i −0.343161 + 0.516802i
\(553\) 92.9875 286.186i 0.168151 0.517515i
\(554\) −637.146 + 207.021i −1.15008 + 0.373685i
\(555\) 601.677 477.148i 1.08410 0.859727i
\(556\) −485.423 + 352.681i −0.873063 + 0.634317i
\(557\) −588.519 + 191.222i −1.05659 + 0.343306i −0.785250 0.619178i \(-0.787466\pi\)
−0.271337 + 0.962484i \(0.587466\pi\)
\(558\) −557.278 130.390i −0.998706 0.233675i
\(559\) −570.536 414.519i −1.02064 0.741536i
\(560\) 176.430i 0.315053i
\(561\) 0 0
\(562\) 1519.22 2.70325
\(563\) −334.609 + 460.549i −0.594331 + 0.818027i −0.995175 0.0981198i \(-0.968717\pi\)
0.400843 + 0.916147i \(0.368717\pi\)
\(564\) 86.0096 308.374i 0.152499 0.546762i
\(565\) −272.397 838.353i −0.482119 1.48381i
\(566\) 553.485 + 761.807i 0.977889 + 1.34595i
\(567\) −173.395 + 177.449i −0.305812 + 0.312961i
\(568\) −3.31772 10.2109i −0.00584105 0.0179769i
\(569\) 857.404 + 278.588i 1.50686 + 0.489609i 0.942010 0.335584i \(-0.108934\pi\)
0.564851 + 0.825193i \(0.308934\pi\)
\(570\) −698.017 + 1051.22i −1.22459 + 1.84424i
\(571\) 804.182 1.40837 0.704187 0.710014i \(-0.251312\pi\)
0.704187 + 0.710014i \(0.251312\pi\)
\(572\) 0 0
\(573\) −411.961 + 17.3779i −0.718955 + 0.0303279i
\(574\) −101.409 73.6779i −0.176671 0.128359i
\(575\) −495.812 161.099i −0.862283 0.280173i
\(576\) −341.133 810.296i −0.592244 1.40676i
\(577\) 636.777 462.646i 1.10360 0.801812i 0.121956 0.992535i \(-0.461083\pi\)
0.981644 + 0.190723i \(0.0610833\pi\)
\(578\) 518.678 + 713.899i 0.897366 + 1.23512i
\(579\) 838.111 311.949i 1.44751 0.538771i
\(580\) 41.6379 128.148i 0.0717895 0.220945i
\(581\) 57.4330 79.0497i 0.0988519 0.136058i
\(582\) −580.643 + 24.4934i −0.997669 + 0.0420849i
\(583\) 0 0
\(584\) 189.998i 0.325340i
\(585\) 502.390 830.558i 0.858787 1.41976i
\(586\) 321.243 988.683i 0.548195 1.68717i
\(587\) 173.593 56.4039i 0.295730 0.0960884i −0.157395 0.987536i \(-0.550309\pi\)
0.453124 + 0.891447i \(0.350309\pi\)
\(588\) −396.225 499.633i −0.673851 0.849717i
\(589\) −348.025 + 252.855i −0.590875 + 0.429296i
\(590\) −841.069 + 273.280i −1.42554 + 0.463186i
\(591\) −46.8576 + 168.000i −0.0792852 + 0.284264i
\(592\) 270.600 + 196.602i 0.457094 + 0.332098i
\(593\) 685.071i 1.15526i 0.816297 + 0.577632i \(0.196023\pi\)
−0.816297 + 0.577632i \(0.803977\pi\)
\(594\) 0 0
\(595\) −16.3837 −0.0275357
\(596\) 818.965 1127.21i 1.37410 1.89129i
\(597\) −361.354 100.786i −0.605283 0.168822i
\(598\) −419.729 1291.79i −0.701889 2.16019i
\(599\) 212.117 + 291.955i 0.354119 + 0.487403i 0.948499 0.316782i \(-0.102602\pi\)
−0.594379 + 0.804185i \(0.702602\pi\)
\(600\) −187.373 + 148.593i −0.312289 + 0.247655i
\(601\) 129.629 + 398.956i 0.215688 + 0.663820i 0.999104 + 0.0423223i \(0.0134756\pi\)
−0.783416 + 0.621498i \(0.786524\pi\)
\(602\) 387.010 + 125.747i 0.642874 + 0.208883i
\(603\) 556.739 + 336.762i 0.923282 + 0.558478i
\(604\) 472.229 0.781836
\(605\) 0 0
\(606\) 58.1783 + 1379.18i 0.0960039 + 2.27588i
\(607\) 815.264 + 592.324i 1.34310 + 0.975822i 0.999324 + 0.0367717i \(0.0117074\pi\)
0.343780 + 0.939050i \(0.388293\pi\)
\(608\) −851.743 276.748i −1.40089 0.455178i
\(609\) −12.1248 32.5755i −0.0199093 0.0534902i
\(610\) 175.138 127.246i 0.287112 0.208599i
\(611\) 189.920 + 261.402i 0.310834 + 0.427827i
\(612\) −35.8540 + 15.0945i −0.0585850 + 0.0246642i
\(613\) 170.654 525.219i 0.278391 0.856800i −0.709911 0.704292i \(-0.751265\pi\)
0.988302 0.152509i \(-0.0487352\pi\)
\(614\) −712.546 + 980.735i −1.16050 + 1.59729i
\(615\) −11.2258 266.119i −0.0182533 0.432714i
\(616\) 0 0
\(617\) 675.556i 1.09490i −0.836837 0.547452i \(-0.815598\pi\)
0.836837 0.547452i \(-0.184402\pi\)
\(618\) 1145.45 + 760.592i 1.85349 + 1.23073i
\(619\) −83.1625 + 255.948i −0.134350 + 0.413486i −0.995488 0.0948843i \(-0.969752\pi\)
0.861139 + 0.508370i \(0.169752\pi\)
\(620\) −703.977 + 228.736i −1.13545 + 0.368929i
\(621\) −537.354 + 505.430i −0.865304 + 0.813896i
\(622\) 215.483 156.558i 0.346436 0.251700i
\(623\) −54.0108 + 17.5492i −0.0866947 + 0.0281688i
\(624\) 407.257 + 113.590i 0.652656 + 0.182035i
\(625\) 597.010 + 433.754i 0.955217 + 0.694006i
\(626\) 1832.83i 2.92784i
\(627\) 0 0
\(628\) 41.0719 0.0654011
\(629\) 18.2570 25.1286i 0.0290254 0.0399501i
\(630\) −127.605 + 545.373i −0.202548 + 0.865672i
\(631\) 28.8464 + 88.7801i 0.0457154 + 0.140697i 0.971309 0.237822i \(-0.0764334\pi\)
−0.925593 + 0.378519i \(0.876433\pi\)
\(632\) −241.245 332.045i −0.381716 0.525388i
\(633\) −90.2078 113.751i −0.142508 0.179701i
\(634\) −2.32153 7.14492i −0.00366171 0.0112696i
\(635\) 926.037 + 300.888i 1.45833 + 0.473839i
\(636\) 237.004 + 157.373i 0.372648 + 0.247442i
\(637\) 643.584 1.01034
\(638\) 0 0
\(639\) −1.94785 23.0469i −0.00304828 0.0360672i
\(640\) −676.259 491.331i −1.05665 0.767704i
\(641\) −14.0474 4.56426i −0.0219148 0.00712054i 0.298039 0.954554i \(-0.403667\pi\)
−0.319954 + 0.947433i \(0.603667\pi\)
\(642\) −178.548 + 66.4563i −0.278112 + 0.103515i
\(643\) 352.763 256.298i 0.548621 0.398597i −0.278656 0.960391i \(-0.589889\pi\)
0.827277 + 0.561794i \(0.189889\pi\)
\(644\) 263.915 + 363.248i 0.409806 + 0.564049i
\(645\) 301.626 + 810.376i 0.467637 + 1.25640i
\(646\) −15.7722 + 48.5419i −0.0244152 + 0.0751423i
\(647\) −184.783 + 254.332i −0.285600 + 0.393095i −0.927579 0.373628i \(-0.878114\pi\)
0.641979 + 0.766722i \(0.278114\pi\)
\(648\) 56.7948 + 333.596i 0.0876462 + 0.514809i
\(649\) 0 0
\(650\) 948.550i 1.45931i
\(651\) −105.625 + 159.071i −0.162250 + 0.244349i
\(652\) −435.283 + 1339.66i −0.667612 + 2.05470i
\(653\) 182.526 59.3063i 0.279519 0.0908213i −0.165903 0.986142i \(-0.553054\pi\)
0.445422 + 0.895321i \(0.353054\pi\)
\(654\) −761.011 + 603.505i −1.16363 + 0.922791i
\(655\) −802.835 + 583.294i −1.22570 + 0.890525i
\(656\) 110.339 35.8512i 0.168199 0.0546513i
\(657\) −93.2506 + 398.545i −0.141934 + 0.606614i
\(658\) −150.834 109.587i −0.229231 0.166546i
\(659\) 127.678i 0.193745i −0.995297 0.0968724i \(-0.969116\pi\)
0.995297 0.0968724i \(-0.0308839\pi\)
\(660\) 0 0
\(661\) 580.599 0.878364 0.439182 0.898398i \(-0.355268\pi\)
0.439182 + 0.898398i \(0.355268\pi\)
\(662\) −662.081 + 911.276i −1.00012 + 1.37655i
\(663\) 10.5482 37.8189i 0.0159098 0.0570421i
\(664\) −41.1834 126.750i −0.0620232 0.190888i
\(665\) 247.454 + 340.591i 0.372111 + 0.512167i
\(666\) −694.273 803.444i −1.04245 1.20637i
\(667\) −31.9375 98.2936i −0.0478823 0.147367i
\(668\) 816.443 + 265.279i 1.22222 + 0.397124i
\(669\) 351.343 529.124i 0.525177 0.790918i
\(670\) 1468.92 2.19241
\(671\) 0 0
\(672\) −397.167 + 16.7538i −0.591023 + 0.0249313i
\(673\) −442.096 321.202i −0.656904 0.477268i 0.208712 0.977977i \(-0.433073\pi\)
−0.865616 + 0.500709i \(0.833073\pi\)
\(674\) 1722.65 + 559.723i 2.55586 + 0.830450i
\(675\) −465.968 + 219.729i −0.690322 + 0.325525i
\(676\) 411.866 299.238i 0.609269 0.442660i
\(677\) 17.1436 + 23.5961i 0.0253229 + 0.0348540i 0.821491 0.570222i \(-0.193143\pi\)
−0.796168 + 0.605076i \(0.793143\pi\)
\(678\) −1142.36 + 425.191i −1.68489 + 0.627125i
\(679\) −59.9160 + 184.402i −0.0882415 + 0.271579i
\(680\) −13.1350 + 18.0787i −0.0193161 + 0.0265863i
\(681\) 363.832 15.3476i 0.534261 0.0225369i
\(682\) 0 0
\(683\) 82.4506i 0.120718i −0.998177 0.0603592i \(-0.980775\pi\)
0.998177 0.0603592i \(-0.0192246\pi\)
\(684\) 855.315 + 517.365i 1.25046 + 0.756382i
\(685\) 312.277 961.091i 0.455879 1.40305i
\(686\) −790.006 + 256.688i −1.15161 + 0.374181i
\(687\) −601.992 759.104i −0.876263 1.10495i
\(688\) −304.703 + 221.380i −0.442883 + 0.321773i
\(689\) −273.078 + 88.7285i −0.396340 + 0.128779i
\(690\) −447.428 + 1604.18i −0.648447 + 2.32490i
\(691\) −782.898 568.809i −1.13299 0.823168i −0.146865 0.989156i \(-0.546918\pi\)
−0.986128 + 0.165989i \(0.946918\pi\)
\(692\) 888.061i 1.28333i
\(693\) 0 0
\(694\) −901.554 −1.29907
\(695\) −436.438 + 600.705i −0.627968 + 0.864324i
\(696\) −45.6662 12.7369i −0.0656123 0.0183002i
\(697\) −3.32924 10.2463i −0.00477652 0.0147006i
\(698\) −741.109 1020.05i −1.06176 1.46139i
\(699\) 945.894 750.123i 1.35321 1.07314i
\(700\) 96.8949 + 298.212i 0.138421 + 0.426017i
\(701\) −298.727 97.0623i −0.426144 0.138463i 0.0880898 0.996113i \(-0.471924\pi\)
−0.514234 + 0.857650i \(0.671924\pi\)
\(702\) −1176.74 645.677i −1.67627 0.919768i
\(703\) −798.129 −1.13532
\(704\) 0 0
\(705\) −16.6971 395.822i −0.0236838 0.561450i
\(706\) 335.660 + 243.871i 0.475439 + 0.345427i
\(707\) 438.005 + 142.316i 0.619525 + 0.201296i
\(708\) 244.375 + 656.560i 0.345162 + 0.927344i
\(709\) −264.833 + 192.413i −0.373531 + 0.271386i −0.758673 0.651471i \(-0.774152\pi\)
0.385143 + 0.922857i \(0.374152\pi\)
\(710\) −30.6913 42.2430i −0.0432272 0.0594972i
\(711\) −343.074 814.908i −0.482524 1.14614i
\(712\) −23.9361 + 73.6678i −0.0336181 + 0.103466i
\(713\) −333.721 + 459.327i −0.468051 + 0.644217i
\(714\) 0.954820 + 22.6351i 0.00133728 + 0.0317018i
\(715\) 0 0
\(716\) 314.061i 0.438632i
\(717\) −0.803355 0.533435i −0.00112044 0.000743982i
\(718\) −263.630 + 811.369i −0.367172 + 1.13004i
\(719\) 1052.06 341.836i 1.46323 0.475433i 0.534176 0.845373i \(-0.320622\pi\)
0.929056 + 0.369940i \(0.120622\pi\)
\(720\) −338.950 392.248i −0.470764 0.544789i
\(721\) 371.124 269.637i 0.514735 0.373977i
\(722\) 196.643 63.8932i 0.272359 0.0884947i
\(723\) −840.325 234.378i −1.16228 0.324174i
\(724\) 1235.65 + 897.750i 1.70669 + 1.23999i
\(725\) 72.1759i 0.0995530i
\(726\) 0 0
\(727\) 577.040 0.793727 0.396864 0.917878i \(-0.370099\pi\)
0.396864 + 0.917878i \(0.370099\pi\)
\(728\) −122.184 + 168.172i −0.167835 + 0.231005i
\(729\) −44.5941 + 727.635i −0.0611716 + 0.998127i
\(730\) 285.544 + 878.813i 0.391156 + 1.20385i
\(731\) 20.5579 + 28.2955i 0.0281230 + 0.0387080i
\(732\) −106.559 134.369i −0.145572 0.183564i
\(733\) −191.375 588.991i −0.261084 0.803535i −0.992570 0.121678i \(-0.961173\pi\)
0.731485 0.681857i \(-0.238827\pi\)
\(734\) 513.372 + 166.805i 0.699417 + 0.227254i
\(735\) −657.388 436.511i −0.894405 0.593893i
\(736\) −1181.99 −1.60596
\(737\) 0 0
\(738\) −367.005 + 31.0181i −0.497297 + 0.0420299i
\(739\) −905.537 657.911i −1.22535 0.890272i −0.228821 0.973468i \(-0.573487\pi\)
−0.996533 + 0.0831961i \(0.973487\pi\)
\(740\) −1306.10 424.379i −1.76501 0.573485i
\(741\) −945.510 + 351.923i −1.27599 + 0.474930i
\(742\) 134.038 97.3846i 0.180645 0.131246i
\(743\) 675.116 + 929.218i 0.908636 + 1.25063i 0.967630 + 0.252371i \(0.0812105\pi\)
−0.0589948 + 0.998258i \(0.518790\pi\)
\(744\) 90.8481 + 244.081i 0.122108 + 0.328066i
\(745\) 532.808 1639.81i 0.715178 2.20109i
\(746\) 293.396 403.825i 0.393292 0.541320i
\(747\) −24.1791 286.086i −0.0323682 0.382979i
\(748\) 0 0
\(749\) 63.5613i 0.0848616i
\(750\) 199.588 300.581i 0.266118 0.400775i
\(751\) −84.5649 + 260.264i −0.112603 + 0.346556i −0.991440 0.130567i \(-0.958320\pi\)
0.878837 + 0.477123i \(0.158320\pi\)
\(752\) 164.116 53.3246i 0.218240 0.0709104i
\(753\) −264.725 + 209.935i −0.351561 + 0.278798i
\(754\) 152.134 110.532i 0.201769 0.146594i
\(755\) 555.776 180.583i 0.736128 0.239182i
\(756\) 435.909 + 82.7877i 0.576599 + 0.109508i
\(757\) 451.436 + 327.988i 0.596349 + 0.433273i 0.844581 0.535428i \(-0.179850\pi\)
−0.248232 + 0.968701i \(0.579850\pi\)
\(758\) 162.899i 0.214906i
\(759\) 0 0
\(760\) 574.212 0.755543
\(761\) 247.901 341.207i 0.325757 0.448366i −0.614457 0.788950i \(-0.710625\pi\)
0.940214 + 0.340584i \(0.110625\pi\)
\(762\) 361.725 1296.91i 0.474705 1.70198i
\(763\) 100.135 + 308.183i 0.131238 + 0.403910i
\(764\) 433.434 + 596.570i 0.567321 + 0.780851i
\(765\) −36.4252 + 31.4758i −0.0476146 + 0.0411448i
\(766\) 84.7939 + 260.969i 0.110697 + 0.340690i
\(767\) −672.451 218.493i −0.876729 0.284867i
\(768\) 9.05074 13.6305i 0.0117848 0.0177480i
\(769\) 108.997 0.141738 0.0708692 0.997486i \(-0.477423\pi\)
0.0708692 + 0.997486i \(0.477423\pi\)
\(770\) 0 0
\(771\) −589.181 + 24.8536i −0.764178 + 0.0322355i
\(772\) −1293.88 940.059i −1.67601 1.21769i
\(773\) −981.122 318.786i −1.26924 0.412401i −0.404461 0.914555i \(-0.632541\pi\)
−0.864778 + 0.502154i \(0.832541\pi\)
\(774\) 1102.00 463.941i 1.42378 0.599407i
\(775\) −320.771 + 233.054i −0.413898 + 0.300715i
\(776\) 155.445 + 213.952i 0.200316 + 0.275711i
\(777\) −332.014 + 123.577i −0.427303 + 0.159044i
\(778\) 254.954 784.668i 0.327704 1.00857i
\(779\) −162.721 + 223.966i −0.208885 + 0.287505i
\(780\) −1734.41 + 73.1631i −2.22360 + 0.0937988i
\(781\) 0 0
\(782\) 67.3630i 0.0861420i
\(783\) −89.5392 49.1301i −0.114354 0.0627459i
\(784\) 106.214 326.893i 0.135477 0.416955i
\(785\) 48.3384 15.7061i 0.0615776 0.0200078i
\(786\) 852.642 + 1075.17i 1.08479 + 1.36790i
\(787\) 167.812 121.923i 0.213230 0.154921i −0.476044 0.879422i \(-0.657930\pi\)
0.689274 + 0.724501i \(0.257930\pi\)
\(788\) 296.651 96.3877i 0.376460 0.122319i
\(789\) 304.923 1093.25i 0.386468 1.38562i
\(790\) −1614.87 1173.27i −2.04414 1.48515i
\(791\) 406.668i 0.514119i
\(792\) 0 0
\(793\) 173.082 0.218263
\(794\) −380.422 + 523.606i −0.479121 + 0.659453i
\(795\) 339.116 + 94.5840i 0.426561 + 0.118974i
\(796\) 207.321 + 638.069i 0.260454 + 0.801595i
\(797\) 130.723 + 179.925i 0.164019 + 0.225753i 0.883113 0.469160i \(-0.155443\pi\)
−0.719094 + 0.694912i \(0.755443\pi\)
\(798\) 456.125 361.721i 0.571585 0.453284i
\(799\) −4.95186 15.2403i −0.00619757 0.0190742i
\(800\) −785.043 255.076i −0.981303 0.318845i
\(801\) −86.3649 + 142.780i −0.107821 + 0.178252i
\(802\) −1376.50 −1.71633
\(803\) 0 0
\(804\) −49.0426 1162.61i −0.0609983 1.44603i
\(805\) 449.515 + 326.592i 0.558403 + 0.405704i
\(806\) −982.472 319.224i −1.21895 0.396060i
\(807\) −210.503 565.558i −0.260846 0.700815i
\(808\) 508.191 369.223i 0.628950 0.456959i
\(809\) −442.375 608.877i −0.546817 0.752630i 0.442759 0.896641i \(-0.354000\pi\)
−0.989576 + 0.144011i \(0.954000\pi\)
\(810\) 764.051 + 1457.65i 0.943272 + 1.79957i
\(811\) −71.7678 + 220.879i −0.0884930 + 0.272354i −0.985503 0.169656i \(-0.945734\pi\)
0.897010 + 0.442010i \(0.145734\pi\)
\(812\) −36.5380 + 50.2903i −0.0449976 + 0.0619338i
\(813\) −10.1421 240.430i −0.0124749 0.295732i
\(814\) 0 0
\(815\) 1743.13i 2.13881i
\(816\) −17.4684 11.5992i −0.0214073 0.0142147i
\(817\) 277.719 854.730i 0.339925 1.04618i
\(818\) 449.069 145.911i 0.548984 0.178376i
\(819\) −338.834 + 292.793i −0.413717 + 0.357501i
\(820\) −385.373 + 279.990i −0.469967 + 0.341451i
\(821\) −461.227 + 149.862i −0.561787 + 0.182536i −0.576125 0.817361i \(-0.695436\pi\)
0.0143379 + 0.999897i \(0.495436\pi\)
\(822\) −1346.00 375.418i −1.63747 0.456713i
\(823\) −126.927 92.2181i −0.154225 0.112051i 0.507997 0.861359i \(-0.330386\pi\)
−0.662222 + 0.749308i \(0.730386\pi\)
\(824\) 625.689i 0.759331i
\(825\) 0 0
\(826\) 407.986 0.493930
\(827\) 92.7092 127.603i 0.112103 0.154297i −0.749279 0.662255i \(-0.769600\pi\)
0.861382 + 0.507958i \(0.169600\pi\)
\(828\) 1284.61 + 300.569i 1.55146 + 0.363006i
\(829\) 403.767 + 1242.67i 0.487053 + 1.49900i 0.828985 + 0.559271i \(0.188919\pi\)
−0.341931 + 0.939725i \(0.611081\pi\)
\(830\) −380.977 524.370i −0.459009 0.631771i
\(831\) 408.074 + 514.576i 0.491064 + 0.619225i
\(832\) −490.373 1509.21i −0.589390 1.81396i
\(833\) −30.3561 9.86329i −0.0364419 0.0118407i
\(834\) 855.344 + 567.956i 1.02559 + 0.681002i
\(835\) 1062.33 1.27226
\(836\) 0 0
\(837\) 70.7709 + 556.579i 0.0845530 + 0.664969i
\(838\) −1870.54 1359.03i −2.23215 1.62175i
\(839\) 1220.51 + 396.569i 1.45472 + 0.472668i 0.926454 0.376409i \(-0.122841\pi\)
0.528269 + 0.849077i \(0.322841\pi\)
\(840\) 238.867 88.9074i 0.284366 0.105842i
\(841\) −668.807 + 485.917i −0.795252 + 0.577785i
\(842\) −785.866 1081.65i −0.933333 1.28462i
\(843\) −519.510 1395.76i −0.616263 1.65571i
\(844\) −80.2314 + 246.927i −0.0950610 + 0.292568i
\(845\) 370.304 509.679i 0.438229 0.603170i
\(846\) −545.878 + 46.1359i −0.645246 + 0.0545342i
\(847\) 0 0
\(848\) 153.347i 0.180834i
\(849\) 510.631 769.012i 0.601449 0.905785i
\(850\) −14.5371 + 44.7405i −0.0171025 + 0.0526359i
\(851\) −1001.82 + 325.512i −1.17723 + 0.382505i
\(852\) −32.4095 + 25.7018i −0.0380394 + 0.0301664i
\(853\) 401.784 291.913i 0.471025 0.342219i −0.326816 0.945088i \(-0.605976\pi\)
0.797840 + 0.602869i \(0.205976\pi\)
\(854\) −94.9839 + 30.8621i −0.111222 + 0.0361383i
\(855\) 1204.48 + 281.822i 1.40875 + 0.329616i
\(856\) 70.1371 + 50.9576i 0.0819359 + 0.0595299i
\(857\) 479.970i 0.560059i −0.959991 0.280029i \(-0.909656\pi\)
0.959991 0.280029i \(-0.0903442\pi\)
\(858\) 0 0
\(859\) 658.810 0.766950 0.383475 0.923551i \(-0.374727\pi\)
0.383475 + 0.923551i \(0.374727\pi\)
\(860\) 908.950 1251.06i 1.05692 1.45472i
\(861\) −33.0129 + 118.363i −0.0383426 + 0.137471i
\(862\) −9.20523 28.3308i −0.0106789 0.0328663i
\(863\) 316.707 + 435.910i 0.366984 + 0.505110i 0.952078 0.305855i \(-0.0989424\pi\)
−0.585094 + 0.810965i \(0.698942\pi\)
\(864\) −850.817 + 800.270i −0.984742 + 0.926238i
\(865\) −339.599 1045.18i −0.392600 1.20830i
\(866\) 172.518 + 56.0544i 0.199212 + 0.0647279i
\(867\) 478.518 720.650i 0.551924 0.831200i
\(868\) 341.485 0.393416
\(869\) 0 0
\(870\) −230.365 + 9.71754i −0.264787 + 0.0111696i
\(871\) 950.133 + 690.312i 1.09085 + 0.792551i
\(872\) 420.345 + 136.579i 0.482048 + 0.156627i
\(873\) 221.058 + 525.082i 0.253217 + 0.601468i
\(874\) 1400.37 1017.43i 1.60225 1.16410i
\(875\) −70.7560 97.3872i −0.0808639 0.111300i
\(876\) 686.024 255.341i 0.783132 0.291485i
\(877\) −26.1783 + 80.5685i −0.0298498 + 0.0918683i −0.964872 0.262722i \(-0.915380\pi\)
0.935022 + 0.354591i \(0.115380\pi\)
\(878\) 799.957 1101.05i 0.911113 1.25404i
\(879\) −1018.19 + 42.9505i −1.15835 + 0.0488629i
\(880\) 0 0
\(881\) 364.734i 0.414000i 0.978341 + 0.207000i \(0.0663701\pi\)
−0.978341 + 0.207000i \(0.933630\pi\)
\(882\) −564.754 + 933.658i −0.640310 + 1.05857i
\(883\) 68.8459 211.886i 0.0779682 0.239961i −0.904474 0.426529i \(-0.859736\pi\)
0.982442 + 0.186567i \(0.0597363\pi\)
\(884\) −66.7797 + 21.6980i −0.0755427 + 0.0245453i
\(885\) 538.681 + 679.269i 0.608680 + 0.767536i
\(886\) 1325.42 962.975i 1.49596 1.08688i
\(887\) 1296.73 421.334i 1.46193 0.475010i 0.533272 0.845944i \(-0.320962\pi\)
0.928659 + 0.370934i \(0.120962\pi\)
\(888\) −129.816 + 465.436i −0.146190 + 0.524140i
\(889\) −363.412 264.034i −0.408788 0.297002i
\(890\) 376.714i 0.423274i
\(891\) 0 0
\(892\) −1135.89 −1.27342
\(893\) −242.029 + 333.124i −0.271029 + 0.373040i
\(894\) −2296.55 640.538i −2.56884 0.716486i
\(895\) −120.098 369.625i −0.134188 0.412989i
\(896\) 226.670 + 311.984i 0.252980 + 0.348197i
\(897\) −1043.29 + 827.358i −1.16308 + 0.922362i
\(898\) 727.612 + 2239.36i 0.810259 + 2.49372i
\(899\) −74.7570 24.2900i −0.0831557 0.0270189i
\(900\) 788.335 + 476.850i 0.875927 + 0.529833i
\(901\) 14.2402 0.0158049
\(902\) 0 0
\(903\) −16.8126 398.560i −0.0186186 0.441373i
\(904\) 448.740 + 326.029i 0.496394 + 0.360652i
\(905\) 1797.56 + 584.064i 1.98626 + 0.645374i
\(906\) −281.875 757.313i −0.311121 0.835886i
\(907\) −531.719 + 386.317i −0.586239 + 0.425928i −0.840968 0.541085i \(-0.818014\pi\)
0.254729 + 0.967013i \(0.418014\pi\)
\(908\) −382.796 526.873i −0.421581 0.580257i
\(909\) 1247.21 525.072i 1.37207 0.577636i
\(910\) −312.405 + 961.484i −0.343302 + 1.05658i
\(911\) 204.809 281.895i 0.224818 0.309435i −0.681676 0.731654i \(-0.738749\pi\)
0.906494 + 0.422219i \(0.138749\pi\)
\(912\) 22.7085 + 538.329i 0.0248996 + 0.590273i
\(913\) 0 0
\(914\) 519.188i 0.568039i
\(915\) −176.795 117.393i −0.193218 0.128299i
\(916\) −535.416 + 1647.84i −0.584516 + 1.79895i
\(917\) 435.407 141.472i 0.474816 0.154277i
\(918\) 45.6084 + 48.4891i 0.0496823 + 0.0528204i
\(919\) 517.293 375.836i 0.562887 0.408961i −0.269627 0.962965i \(-0.586901\pi\)
0.832514 + 0.554003i \(0.186901\pi\)
\(920\) 720.759 234.189i 0.783433 0.254553i
\(921\) 1144.70 + 319.271i 1.24288 + 0.346657i
\(922\) −659.442 479.112i −0.715229 0.519645i
\(923\) 41.7471i 0.0452298i
\(924\) 0 0
\(925\) −735.627 −0.795272
\(926\) 1267.86 1745.06i 1.36918 1.88452i
\(927\) 307.086 1312.46i 0.331269 1.41581i
\(928\) −50.5681 155.633i −0.0544915 0.167708i
\(929\) −184.827 254.392i −0.198952 0.273834i 0.697871 0.716224i \(-0.254131\pi\)
−0.896823 + 0.442389i \(0.854131\pi\)
\(930\) 787.030 + 992.433i 0.846269 + 1.06713i
\(931\) 253.446 + 780.025i 0.272229 + 0.837836i
\(932\) −2053.32 667.165i −2.20313 0.715842i
\(933\) −217.521 144.436i −0.233141 0.154808i
\(934\) 2066.22 2.21222
\(935\) 0 0
\(936\) 51.4389 + 608.623i 0.0549561 + 0.650238i
\(937\) 1229.78 + 893.489i 1.31247 + 0.953564i 0.999993 + 0.00363731i \(0.00115779\pi\)
0.312474 + 0.949926i \(0.398842\pi\)
\(938\) −644.501 209.411i −0.687101 0.223253i
\(939\) 1683.88 626.749i 1.79327 0.667464i
\(940\) −573.199 + 416.453i −0.609786 + 0.443035i
\(941\) 659.673 + 907.963i 0.701034 + 0.964891i 0.999944 + 0.0106096i \(0.00337722\pi\)
−0.298909 + 0.954282i \(0.596623\pi\)
\(942\) −24.5160 65.8669i −0.0260254 0.0699224i
\(943\) −112.906 + 347.490i −0.119731 + 0.368494i
\(944\) −221.956 + 305.496i −0.235123 + 0.323619i
\(945\) 544.689 69.2591i 0.576390 0.0732900i
\(946\) 0 0
\(947\) 865.333i 0.913762i −0.889528 0.456881i \(-0.848967\pi\)
0.889528 0.456881i \(-0.151033\pi\)
\(948\) −874.698 + 1317.30i −0.922677 + 1.38956i
\(949\) −228.298 + 702.628i −0.240567 + 0.740388i
\(950\) 1149.65 373.543i 1.21015 0.393203i
\(951\) −5.77043 + 4.57612i −0.00606775 + 0.00481191i
\(952\) 8.34041 6.05966i 0.00876093 0.00636519i
\(953\) 482.372 156.732i 0.506162 0.164462i −0.0447943 0.998996i \(-0.514263\pi\)
0.550956 + 0.834534i \(0.314263\pi\)
\(954\) 110.910 474.020i 0.116258 0.496876i
\(955\) 738.249 + 536.369i 0.773035 + 0.561643i
\(956\) 1.72460i 0.00180397i
\(957\) 0 0
\(958\) 2141.59 2.23548
\(959\) −274.029 + 377.169i −0.285745 + 0.393294i
\(960\) −522.734 + 1874.18i −0.544514 + 1.95227i
\(961\) −163.529 503.291i −0.170166 0.523716i
\(962\) −1126.55 1550.57i −1.17105 1.61182i
\(963\) 122.111 + 141.313i 0.126803 + 0.146742i
\(964\) 482.124 + 1483.82i 0.500128 + 1.53924i
\(965\) −1882.28 611.589i −1.95055 0.633771i
\(966\) 425.008 640.064i 0.439967 0.662592i
\(967\) 569.116 0.588537 0.294269 0.955723i \(-0.404924\pi\)
0.294269 + 0.955723i \(0.404924\pi\)
\(968\) 0 0
\(969\) 49.9906 2.10876i 0.0515899 0.00217623i
\(970\) 1040.53 + 755.991i 1.07271 + 0.779373i
\(971\) −1192.00 387.303i −1.22760 0.398871i −0.377754 0.925906i \(-0.623304\pi\)
−0.849843 + 0.527035i \(0.823304\pi\)
\(972\) 1128.18 653.392i 1.16068 0.672214i
\(973\) 277.129 201.346i 0.284819 0.206933i
\(974\) −1175.22 1617.55i −1.20659 1.66073i
\(975\) −871.466 + 324.364i −0.893812 + 0.332681i
\(976\) 28.5647 87.9131i 0.0292671 0.0900749i
\(977\) −671.043 + 923.611i −0.686840 + 0.945354i −0.999991 0.00434910i \(-0.998616\pi\)
0.313150 + 0.949704i \(0.398616\pi\)
\(978\) 2408.24 101.587i 2.46241 0.103873i
\(979\) 0 0
\(980\) 1411.24i 1.44004i
\(981\) 814.695 + 492.795i 0.830474 + 0.502339i
\(982\) 58.4777 179.976i 0.0595496 0.183275i
\(983\) −632.701 + 205.577i −0.643643 + 0.209132i −0.612609 0.790386i \(-0.709880\pi\)
−0.0310339 + 0.999518i \(0.509880\pi\)
\(984\) 104.141 + 131.321i 0.105835 + 0.133456i
\(985\) 312.275 226.881i 0.317031 0.230336i
\(986\) −8.86970 + 2.88194i −0.00899564 + 0.00292286i
\(987\) −49.1030 + 176.051i −0.0497497 + 0.178370i
\(988\) 1459.68 + 1060.52i 1.47741 + 1.07340i
\(989\) 1186.13i 1.19933i
\(990\) 0 0
\(991\) −1471.97 −1.48534 −0.742670 0.669658i \(-0.766441\pi\)
−0.742670 + 0.669658i \(0.766441\pi\)
\(992\) −528.395 + 727.273i −0.532656 + 0.733139i
\(993\) 1063.62 + 296.659i 1.07112 + 0.298751i
\(994\) 7.44388 + 22.9099i 0.00748881 + 0.0230482i
\(995\) 488.002 + 671.677i 0.490454 + 0.675052i
\(996\) −402.306 + 319.041i −0.403921 + 0.320322i
\(997\) −191.835 590.409i −0.192413 0.592185i −0.999997 0.00243317i \(-0.999225\pi\)
0.807584 0.589752i \(-0.200775\pi\)
\(998\) −960.436 312.065i −0.962361 0.312690i
\(999\) −500.741 + 912.596i −0.501242 + 0.913510i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.n.323.1 16
3.2 odd 2 inner 363.3.h.n.323.4 16
11.2 odd 10 33.3.h.b.5.1 16
11.3 even 5 inner 363.3.h.n.245.4 16
11.4 even 5 363.3.h.j.251.1 16
11.5 even 5 363.3.b.l.122.2 8
11.6 odd 10 363.3.b.m.122.7 8
11.7 odd 10 33.3.h.b.20.4 yes 16
11.8 odd 10 363.3.h.o.245.1 16
11.9 even 5 363.3.h.j.269.4 16
11.10 odd 2 363.3.h.o.323.4 16
33.2 even 10 33.3.h.b.5.4 yes 16
33.5 odd 10 363.3.b.l.122.7 8
33.8 even 10 363.3.h.o.245.4 16
33.14 odd 10 inner 363.3.h.n.245.1 16
33.17 even 10 363.3.b.m.122.2 8
33.20 odd 10 363.3.h.j.269.1 16
33.26 odd 10 363.3.h.j.251.4 16
33.29 even 10 33.3.h.b.20.1 yes 16
33.32 even 2 363.3.h.o.323.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.5.1 16 11.2 odd 10
33.3.h.b.5.4 yes 16 33.2 even 10
33.3.h.b.20.1 yes 16 33.29 even 10
33.3.h.b.20.4 yes 16 11.7 odd 10
363.3.b.l.122.2 8 11.5 even 5
363.3.b.l.122.7 8 33.5 odd 10
363.3.b.m.122.2 8 33.17 even 10
363.3.b.m.122.7 8 11.6 odd 10
363.3.h.j.251.1 16 11.4 even 5
363.3.h.j.251.4 16 33.26 odd 10
363.3.h.j.269.1 16 33.20 odd 10
363.3.h.j.269.4 16 11.9 even 5
363.3.h.n.245.1 16 33.14 odd 10 inner
363.3.h.n.245.4 16 11.3 even 5 inner
363.3.h.n.323.1 16 1.1 even 1 trivial
363.3.h.n.323.4 16 3.2 odd 2 inner
363.3.h.o.245.1 16 11.8 odd 10
363.3.h.o.245.4 16 33.8 even 10
363.3.h.o.323.1 16 33.32 even 2
363.3.h.o.323.4 16 11.10 odd 2