Properties

Label 363.3.h.n.269.1
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,5,18,0,-32,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.1
Root \(2.10855 + 2.90217i\) of defining polynomial
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.n.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.41170 + 1.10853i) q^{2} +(2.93308 + 0.630124i) q^{3} +(7.17480 - 5.21280i) q^{4} +(1.98428 + 0.644731i) q^{5} +(-10.7053 + 1.10160i) q^{6} +(7.17034 - 5.20956i) q^{7} +(-10.2655 + 14.1293i) q^{8} +(8.20589 + 3.69641i) q^{9} -7.48447 q^{10} +(24.3290 - 10.7685i) q^{12} +(0.508273 + 1.56430i) q^{13} +(-18.6881 + 25.7220i) q^{14} +(5.41378 + 3.14139i) q^{15} +(8.39811 - 25.8467i) q^{16} +(11.8154 + 3.83907i) q^{17} +(-32.0936 - 3.51458i) q^{18} +(8.54780 + 6.21034i) q^{19} +(17.5977 - 5.71782i) q^{20} +(24.3138 - 10.7618i) q^{21} -20.3378i q^{23} +(-39.0129 + 34.9738i) q^{24} +(-16.7037 - 12.1360i) q^{25} +(-3.46815 - 4.77350i) q^{26} +(21.7393 + 16.0126i) q^{27} +(24.2894 - 74.7550i) q^{28} +(-6.82340 - 9.39161i) q^{29} +(-21.9525 - 4.71615i) q^{30} +(-7.22737 - 22.2436i) q^{31} +27.6317i q^{32} -44.5665 q^{34} +(17.5867 - 5.71427i) q^{35} +(78.1442 - 16.2546i) q^{36} +(-5.86208 + 4.25905i) q^{37} +(-36.0469 - 11.7123i) q^{38} +(0.505098 + 4.90850i) q^{39} +(-29.4793 + 21.4180i) q^{40} +(22.8512 - 31.4520i) q^{41} +(-71.0217 + 63.6687i) q^{42} +15.8444 q^{43} +(13.8996 + 12.6253i) q^{45} +(22.5450 + 69.3864i) q^{46} +(-26.6317 + 36.6554i) q^{47} +(40.9190 - 70.5186i) q^{48} +(9.13245 - 28.1068i) q^{49} +(70.4413 + 22.8878i) q^{50} +(32.2365 + 18.7055i) q^{51} +(11.8011 + 8.57403i) q^{52} +(38.3428 - 12.4583i) q^{53} +(-91.9184 - 30.5315i) q^{54} +154.791i q^{56} +(21.1581 + 23.6016i) q^{57} +(33.6903 + 24.4774i) q^{58} +(66.5264 + 91.5657i) q^{59} +(55.2182 - 5.68211i) q^{60} +(-23.9538 + 73.7222i) q^{61} +(49.3152 + 67.8766i) q^{62} +(78.0956 - 16.2445i) q^{63} +(2.96194 + 9.11592i) q^{64} +3.43171i q^{65} +62.9082 q^{67} +(104.786 - 34.0470i) q^{68} +(12.8153 - 59.6523i) q^{69} +(-53.6662 + 38.9908i) q^{70} +(9.71270 + 3.15585i) q^{71} +(-136.466 + 77.9979i) q^{72} +(-60.3706 + 43.8618i) q^{73} +(15.2784 - 21.0289i) q^{74} +(-41.3462 - 46.1212i) q^{75} +93.7020 q^{76} +(-7.16445 - 16.1864i) q^{78} +(-26.6720 - 82.0879i) q^{79} +(33.3284 - 45.8726i) q^{80} +(53.6731 + 60.6646i) q^{81} +(-43.0961 + 132.636i) q^{82} +(11.2304 + 3.64896i) q^{83} +(118.348 - 203.957i) q^{84} +(20.9700 + 15.2356i) q^{85} +(-54.0563 + 17.5639i) q^{86} +(-14.0957 - 31.8459i) q^{87} -74.5782i q^{89} +(-61.4167 - 27.6656i) q^{90} +(11.7938 + 8.56870i) q^{91} +(-106.017 - 145.919i) q^{92} +(-7.18222 - 69.7962i) q^{93} +(50.2259 - 154.579i) q^{94} +(12.9572 + 17.8341i) q^{95} +(-17.4114 + 81.0458i) q^{96} +(-23.8462 - 73.3909i) q^{97} +106.016i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} + 18 q^{4} - 32 q^{6} + 34 q^{7} + 17 q^{9} + 12 q^{10} + 106 q^{12} + 2 q^{13} - 28 q^{15} + 102 q^{16} - 42 q^{18} - 66 q^{19} + 12 q^{21} + 74 q^{24} - 176 q^{25} - 55 q^{27} + 146 q^{28}+ \cdots + 252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.41170 + 1.10853i −1.70585 + 0.554264i −0.989634 0.143614i \(-0.954128\pi\)
−0.716217 + 0.697878i \(0.754128\pi\)
\(3\) 2.93308 + 0.630124i 0.977692 + 0.210041i
\(4\) 7.17480 5.21280i 1.79370 1.30320i
\(5\) 1.98428 + 0.644731i 0.396856 + 0.128946i 0.500644 0.865653i \(-0.333097\pi\)
−0.103789 + 0.994599i \(0.533097\pi\)
\(6\) −10.7053 + 1.10160i −1.78422 + 0.183601i
\(7\) 7.17034 5.20956i 1.02433 0.744222i 0.0571672 0.998365i \(-0.481793\pi\)
0.967167 + 0.254142i \(0.0817932\pi\)
\(8\) −10.2655 + 14.1293i −1.28319 + 1.76616i
\(9\) 8.20589 + 3.69641i 0.911765 + 0.410712i
\(10\) −7.48447 −0.748447
\(11\) 0 0
\(12\) 24.3290 10.7685i 2.02741 0.897377i
\(13\) 0.508273 + 1.56430i 0.0390979 + 0.120331i 0.968700 0.248233i \(-0.0798497\pi\)
−0.929603 + 0.368564i \(0.879850\pi\)
\(14\) −18.6881 + 25.7220i −1.33486 + 1.83728i
\(15\) 5.41378 + 3.14139i 0.360919 + 0.209426i
\(16\) 8.39811 25.8467i 0.524882 1.61542i
\(17\) 11.8154 + 3.83907i 0.695026 + 0.225828i 0.635162 0.772379i \(-0.280933\pi\)
0.0598641 + 0.998207i \(0.480933\pi\)
\(18\) −32.0936 3.51458i −1.78298 0.195254i
\(19\) 8.54780 + 6.21034i 0.449884 + 0.326860i 0.789550 0.613686i \(-0.210314\pi\)
−0.339666 + 0.940546i \(0.610314\pi\)
\(20\) 17.5977 5.71782i 0.879883 0.285891i
\(21\) 24.3138 10.7618i 1.15780 0.512468i
\(22\) 0 0
\(23\) 20.3378i 0.884251i −0.896953 0.442126i \(-0.854225\pi\)
0.896953 0.442126i \(-0.145775\pi\)
\(24\) −39.0129 + 34.9738i −1.62554 + 1.45724i
\(25\) −16.7037 12.1360i −0.668150 0.485439i
\(26\) −3.46815 4.77350i −0.133390 0.183596i
\(27\) 21.7393 + 16.0126i 0.805159 + 0.593059i
\(28\) 24.2894 74.7550i 0.867478 2.66982i
\(29\) −6.82340 9.39161i −0.235290 0.323849i 0.675002 0.737816i \(-0.264143\pi\)
−0.910292 + 0.413967i \(0.864143\pi\)
\(30\) −21.9525 4.71615i −0.731751 0.157205i
\(31\) −7.22737 22.2436i −0.233141 0.717534i −0.997363 0.0725803i \(-0.976877\pi\)
0.764222 0.644954i \(-0.223123\pi\)
\(32\) 27.6317i 0.863489i
\(33\) 0 0
\(34\) −44.5665 −1.31078
\(35\) 17.5867 5.71427i 0.502477 0.163265i
\(36\) 78.1442 16.2546i 2.17067 0.451518i
\(37\) −5.86208 + 4.25905i −0.158435 + 0.115109i −0.664178 0.747575i \(-0.731218\pi\)
0.505743 + 0.862684i \(0.331218\pi\)
\(38\) −36.0469 11.7123i −0.948602 0.308220i
\(39\) 0.505098 + 4.90850i 0.0129512 + 0.125859i
\(40\) −29.4793 + 21.4180i −0.736983 + 0.535449i
\(41\) 22.8512 31.4520i 0.557347 0.767122i −0.433639 0.901087i \(-0.642771\pi\)
0.990986 + 0.133964i \(0.0427707\pi\)
\(42\) −71.0217 + 63.6687i −1.69099 + 1.51592i
\(43\) 15.8444 0.368474 0.184237 0.982882i \(-0.441019\pi\)
0.184237 + 0.982882i \(0.441019\pi\)
\(44\) 0 0
\(45\) 13.8996 + 12.6253i 0.308879 + 0.280562i
\(46\) 22.5450 + 69.3864i 0.490109 + 1.50840i
\(47\) −26.6317 + 36.6554i −0.566633 + 0.779903i −0.992151 0.125047i \(-0.960092\pi\)
0.425518 + 0.904950i \(0.360092\pi\)
\(48\) 40.9190 70.5186i 0.852478 1.46914i
\(49\) 9.13245 28.1068i 0.186376 0.573608i
\(50\) 70.4413 + 22.8878i 1.40883 + 0.457755i
\(51\) 32.2365 + 18.7055i 0.632089 + 0.366774i
\(52\) 11.8011 + 8.57403i 0.226945 + 0.164885i
\(53\) 38.3428 12.4583i 0.723450 0.235063i 0.0759315 0.997113i \(-0.475807\pi\)
0.647518 + 0.762050i \(0.275807\pi\)
\(54\) −91.9184 30.5315i −1.70219 0.565398i
\(55\) 0 0
\(56\) 154.791i 2.76412i
\(57\) 21.1581 + 23.6016i 0.371194 + 0.414063i
\(58\) 33.6903 + 24.4774i 0.580867 + 0.422024i
\(59\) 66.5264 + 91.5657i 1.12757 + 1.55196i 0.792611 + 0.609727i \(0.208721\pi\)
0.334955 + 0.942234i \(0.391279\pi\)
\(60\) 55.2182 5.68211i 0.920304 0.0947018i
\(61\) −23.9538 + 73.7222i −0.392685 + 1.20856i 0.538065 + 0.842903i \(0.319156\pi\)
−0.930750 + 0.365657i \(0.880844\pi\)
\(62\) 49.3152 + 67.8766i 0.795407 + 1.09478i
\(63\) 78.0956 16.2445i 1.23961 0.257850i
\(64\) 2.96194 + 9.11592i 0.0462803 + 0.142436i
\(65\) 3.43171i 0.0527956i
\(66\) 0 0
\(67\) 62.9082 0.938929 0.469464 0.882951i \(-0.344447\pi\)
0.469464 + 0.882951i \(0.344447\pi\)
\(68\) 104.786 34.0470i 1.54097 0.500691i
\(69\) 12.8153 59.6523i 0.185729 0.864526i
\(70\) −53.6662 + 38.9908i −0.766660 + 0.557011i
\(71\) 9.71270 + 3.15585i 0.136799 + 0.0444486i 0.376616 0.926369i \(-0.377088\pi\)
−0.239817 + 0.970818i \(0.577088\pi\)
\(72\) −136.466 + 77.9979i −1.89536 + 1.08330i
\(73\) −60.3706 + 43.8618i −0.826995 + 0.600847i −0.918708 0.394938i \(-0.870766\pi\)
0.0917125 + 0.995786i \(0.470766\pi\)
\(74\) 15.2784 21.0289i 0.206465 0.284174i
\(75\) −41.3462 46.1212i −0.551283 0.614949i
\(76\) 93.7020 1.23292
\(77\) 0 0
\(78\) −7.16445 16.1864i −0.0918519 0.207518i
\(79\) −26.6720 82.0879i −0.337620 1.03909i −0.965417 0.260710i \(-0.916043\pi\)
0.627797 0.778377i \(-0.283957\pi\)
\(80\) 33.3284 45.8726i 0.416605 0.573407i
\(81\) 53.6731 + 60.6646i 0.662631 + 0.748946i
\(82\) −43.0961 + 132.636i −0.525562 + 1.61751i
\(83\) 11.2304 + 3.64896i 0.135305 + 0.0439634i 0.375887 0.926666i \(-0.377338\pi\)
−0.240581 + 0.970629i \(0.577338\pi\)
\(84\) 118.348 203.957i 1.40890 2.42806i
\(85\) 20.9700 + 15.2356i 0.246705 + 0.179242i
\(86\) −54.0563 + 17.5639i −0.628561 + 0.204232i
\(87\) −14.0957 31.8459i −0.162019 0.366045i
\(88\) 0 0
\(89\) 74.5782i 0.837957i −0.907996 0.418979i \(-0.862388\pi\)
0.907996 0.418979i \(-0.137612\pi\)
\(90\) −61.4167 27.6656i −0.682408 0.307396i
\(91\) 11.7938 + 8.56870i 0.129602 + 0.0941616i
\(92\) −106.017 145.919i −1.15236 1.58608i
\(93\) −7.18222 69.7962i −0.0772282 0.750497i
\(94\) 50.2259 154.579i 0.534318 1.64446i
\(95\) 12.9572 + 17.8341i 0.136392 + 0.187727i
\(96\) −17.4114 + 81.0458i −0.181369 + 0.844227i
\(97\) −23.8462 73.3909i −0.245837 0.756608i −0.995498 0.0947856i \(-0.969783\pi\)
0.749661 0.661822i \(-0.230217\pi\)
\(98\) 106.016i 1.08179i
\(99\) 0 0
\(100\) −183.108 −1.83108
\(101\) −12.1692 + 3.95400i −0.120487 + 0.0391485i −0.368640 0.929572i \(-0.620176\pi\)
0.248153 + 0.968721i \(0.420176\pi\)
\(102\) −130.717 28.0824i −1.28154 0.275318i
\(103\) −57.0875 + 41.4765i −0.554248 + 0.402685i −0.829349 0.558731i \(-0.811289\pi\)
0.275101 + 0.961415i \(0.411289\pi\)
\(104\) −27.3202 8.87688i −0.262694 0.0853546i
\(105\) 55.1839 5.67858i 0.525561 0.0540817i
\(106\) −117.004 + 85.0083i −1.10381 + 0.801965i
\(107\) −108.282 + 149.037i −1.01198 + 1.39287i −0.0943034 + 0.995544i \(0.530062\pi\)
−0.917677 + 0.397328i \(0.869938\pi\)
\(108\) 239.445 + 1.56448i 2.21709 + 0.0144859i
\(109\) 58.5394 0.537058 0.268529 0.963272i \(-0.413462\pi\)
0.268529 + 0.963272i \(0.413462\pi\)
\(110\) 0 0
\(111\) −19.8777 + 8.79828i −0.179078 + 0.0792638i
\(112\) −74.4327 229.080i −0.664577 2.04536i
\(113\) −89.3418 + 122.968i −0.790635 + 1.08822i 0.203393 + 0.979097i \(0.434803\pi\)
−0.994029 + 0.109119i \(0.965197\pi\)
\(114\) −98.3481 57.0672i −0.862703 0.500590i
\(115\) 13.1124 40.3558i 0.114021 0.350920i
\(116\) −97.9131 31.8139i −0.844078 0.274258i
\(117\) −1.61147 + 14.7153i −0.0137733 + 0.125772i
\(118\) −328.471 238.648i −2.78366 2.02244i
\(119\) 104.721 34.0258i 0.880005 0.285931i
\(120\) −99.9611 + 44.2449i −0.833009 + 0.368708i
\(121\) 0 0
\(122\) 278.071i 2.27927i
\(123\) 86.8431 77.8521i 0.706042 0.632944i
\(124\) −167.806 121.918i −1.35327 0.983212i
\(125\) −55.9792 77.0488i −0.447834 0.616390i
\(126\) −248.431 + 141.993i −1.97168 + 1.12693i
\(127\) 4.41099 13.5756i 0.0347322 0.106895i −0.932187 0.361976i \(-0.882102\pi\)
0.966920 + 0.255081i \(0.0821022\pi\)
\(128\) −85.1764 117.235i −0.665441 0.915901i
\(129\) 46.4728 + 9.98393i 0.360254 + 0.0773948i
\(130\) −3.80415 11.7080i −0.0292627 0.0900613i
\(131\) 153.686i 1.17318i −0.809885 0.586589i \(-0.800471\pi\)
0.809885 0.586589i \(-0.199529\pi\)
\(132\) 0 0
\(133\) 93.6438 0.704088
\(134\) −214.624 + 69.7356i −1.60167 + 0.520415i
\(135\) 32.8130 + 45.7894i 0.243059 + 0.339181i
\(136\) −175.535 + 127.534i −1.29070 + 0.937750i
\(137\) 76.6942 + 24.9195i 0.559812 + 0.181894i 0.575237 0.817987i \(-0.304910\pi\)
−0.0154246 + 0.999881i \(0.504910\pi\)
\(138\) 22.4042 + 217.722i 0.162349 + 1.57769i
\(139\) 171.464 124.576i 1.23356 0.896231i 0.236404 0.971655i \(-0.424031\pi\)
0.997152 + 0.0754243i \(0.0240311\pi\)
\(140\) 96.3938 132.675i 0.688527 0.947676i
\(141\) −101.210 + 90.7319i −0.717804 + 0.643489i
\(142\) −36.6352 −0.257994
\(143\) 0 0
\(144\) 164.454 181.052i 1.14204 1.25731i
\(145\) −7.48447 23.0348i −0.0516170 0.158861i
\(146\) 157.344 216.566i 1.07770 1.48333i
\(147\) 44.4970 76.6848i 0.302700 0.521665i
\(148\) −19.8577 + 61.1156i −0.134173 + 0.412943i
\(149\) −215.252 69.9397i −1.44465 0.469394i −0.521303 0.853371i \(-0.674554\pi\)
−0.923342 + 0.383978i \(0.874554\pi\)
\(150\) 192.188 + 111.518i 1.28125 + 0.743455i
\(151\) 220.642 + 160.306i 1.46121 + 1.06163i 0.983046 + 0.183357i \(0.0586964\pi\)
0.478161 + 0.878272i \(0.341304\pi\)
\(152\) −175.496 + 57.0220i −1.15458 + 0.375145i
\(153\) 82.7654 + 75.1777i 0.540951 + 0.491357i
\(154\) 0 0
\(155\) 48.7971i 0.314820i
\(156\) 29.2110 + 32.5845i 0.187250 + 0.208875i
\(157\) −4.90208 3.56157i −0.0312234 0.0226852i 0.572064 0.820209i \(-0.306143\pi\)
−0.603288 + 0.797524i \(0.706143\pi\)
\(158\) 181.994 + 250.493i 1.15186 + 1.58540i
\(159\) 120.313 12.3805i 0.756684 0.0778649i
\(160\) −17.8150 + 54.8289i −0.111344 + 0.342681i
\(161\) −105.951 145.829i −0.658079 0.905769i
\(162\) −250.365 147.471i −1.54546 0.910317i
\(163\) 50.0381 + 154.002i 0.306982 + 0.944795i 0.978930 + 0.204196i \(0.0654580\pi\)
−0.671947 + 0.740599i \(0.734542\pi\)
\(164\) 344.781i 2.10232i
\(165\) 0 0
\(166\) −42.3596 −0.255178
\(167\) −151.417 + 49.1982i −0.906686 + 0.294600i −0.724994 0.688755i \(-0.758158\pi\)
−0.181692 + 0.983355i \(0.558158\pi\)
\(168\) −97.5375 + 454.014i −0.580581 + 2.70246i
\(169\) 134.535 97.7455i 0.796066 0.578376i
\(170\) −88.4323 28.7334i −0.520190 0.169020i
\(171\) 47.1863 + 82.5575i 0.275944 + 0.482793i
\(172\) 113.680 82.5935i 0.660931 0.480195i
\(173\) −22.5826 + 31.0822i −0.130535 + 0.179666i −0.869282 0.494317i \(-0.835418\pi\)
0.738746 + 0.673983i \(0.235418\pi\)
\(174\) 83.3924 + 93.0232i 0.479266 + 0.534616i
\(175\) −182.995 −1.04568
\(176\) 0 0
\(177\) 137.429 + 310.489i 0.776437 + 1.75418i
\(178\) 82.6721 + 254.439i 0.464450 + 1.42943i
\(179\) 80.0291 110.151i 0.447090 0.615367i −0.524679 0.851300i \(-0.675815\pi\)
0.971769 + 0.235933i \(0.0758147\pi\)
\(180\) 165.540 + 18.1283i 0.919665 + 0.100713i
\(181\) −40.2773 + 123.961i −0.222526 + 0.684865i 0.776007 + 0.630724i \(0.217242\pi\)
−0.998533 + 0.0541412i \(0.982758\pi\)
\(182\) −49.7356 16.1601i −0.273273 0.0887916i
\(183\) −116.712 + 201.139i −0.637773 + 1.09912i
\(184\) 287.359 + 208.778i 1.56173 + 1.13467i
\(185\) −14.3779 + 4.67167i −0.0777186 + 0.0252523i
\(186\) 101.875 + 230.162i 0.547713 + 1.23743i
\(187\) 0 0
\(188\) 401.821i 2.13735i
\(189\) 239.297 + 1.56351i 1.26612 + 0.00827254i
\(190\) −63.9758 46.4811i −0.336715 0.244637i
\(191\) −185.493 255.309i −0.971169 1.33670i −0.941454 0.337140i \(-0.890540\pi\)
−0.0297142 0.999558i \(-0.509460\pi\)
\(192\) 2.94344 + 28.6041i 0.0153304 + 0.148980i
\(193\) −45.2431 + 139.244i −0.234420 + 0.721472i 0.762777 + 0.646661i \(0.223835\pi\)
−0.997198 + 0.0748107i \(0.976165\pi\)
\(194\) 162.712 + 223.954i 0.838721 + 1.15440i
\(195\) −2.16241 + 10.0655i −0.0110893 + 0.0516178i
\(196\) −80.9915 249.266i −0.413222 1.27177i
\(197\) 229.459i 1.16476i 0.812915 + 0.582382i \(0.197879\pi\)
−0.812915 + 0.582382i \(0.802121\pi\)
\(198\) 0 0
\(199\) −389.358 −1.95657 −0.978287 0.207253i \(-0.933548\pi\)
−0.978287 + 0.207253i \(0.933548\pi\)
\(200\) 342.946 111.430i 1.71473 0.557150i
\(201\) 184.515 + 39.6400i 0.917984 + 0.197214i
\(202\) 37.1344 26.9797i 0.183834 0.133563i
\(203\) −97.8522 31.7941i −0.482031 0.156621i
\(204\) 328.799 33.8343i 1.61176 0.165854i
\(205\) 65.6213 47.6767i 0.320104 0.232569i
\(206\) 148.788 204.789i 0.722270 0.994120i
\(207\) 75.1767 166.889i 0.363173 0.806229i
\(208\) 44.7006 0.214907
\(209\) 0 0
\(210\) −181.976 + 80.5465i −0.866553 + 0.383555i
\(211\) −63.0362 194.005i −0.298750 0.919457i −0.981936 0.189213i \(-0.939406\pi\)
0.683186 0.730244i \(-0.260594\pi\)
\(212\) 210.159 289.260i 0.991318 1.36443i
\(213\) 26.4995 + 15.3766i 0.124411 + 0.0721904i
\(214\) 204.213 628.504i 0.954268 2.93693i
\(215\) 31.4396 + 10.2154i 0.146231 + 0.0475133i
\(216\) −449.413 + 142.784i −2.08061 + 0.661035i
\(217\) −167.702 121.842i −0.772819 0.561486i
\(218\) −199.719 + 64.8926i −0.916141 + 0.297672i
\(219\) −204.710 + 90.6091i −0.934750 + 0.413740i
\(220\) 0 0
\(221\) 20.4342i 0.0924626i
\(222\) 58.0635 52.0521i 0.261547 0.234469i
\(223\) 13.3648 + 9.71010i 0.0599319 + 0.0435431i 0.617348 0.786690i \(-0.288207\pi\)
−0.557416 + 0.830233i \(0.688207\pi\)
\(224\) 143.949 + 198.128i 0.642628 + 0.884502i
\(225\) −92.2095 161.330i −0.409820 0.717024i
\(226\) 168.493 518.569i 0.745546 2.29456i
\(227\) −66.3365 91.3043i −0.292231 0.402222i 0.637506 0.770445i \(-0.279966\pi\)
−0.929737 + 0.368224i \(0.879966\pi\)
\(228\) 274.835 + 59.0439i 1.20542 + 0.258965i
\(229\) −113.909 350.577i −0.497421 1.53090i −0.813150 0.582054i \(-0.802249\pi\)
0.315730 0.948849i \(-0.397751\pi\)
\(230\) 152.217i 0.661815i
\(231\) 0 0
\(232\) 202.743 0.873892
\(233\) −165.998 + 53.9359i −0.712436 + 0.231485i −0.642741 0.766084i \(-0.722203\pi\)
−0.0696955 + 0.997568i \(0.522203\pi\)
\(234\) −10.8144 51.9905i −0.0462156 0.222181i
\(235\) −76.4777 + 55.5643i −0.325437 + 0.236444i
\(236\) 954.627 + 310.177i 4.04503 + 1.31431i
\(237\) −26.5054 257.577i −0.111837 1.08682i
\(238\) −319.557 + 232.172i −1.34268 + 0.975511i
\(239\) −202.993 + 279.397i −0.849345 + 1.16902i 0.134661 + 0.990892i \(0.457005\pi\)
−0.984007 + 0.178132i \(0.942995\pi\)
\(240\) 126.660 113.547i 0.527751 0.473112i
\(241\) 261.447 1.08484 0.542421 0.840107i \(-0.317508\pi\)
0.542421 + 0.840107i \(0.317508\pi\)
\(242\) 0 0
\(243\) 119.201 + 211.755i 0.490540 + 0.871419i
\(244\) 212.435 + 653.808i 0.870636 + 2.67954i
\(245\) 36.2426 49.8837i 0.147929 0.203607i
\(246\) −209.981 + 361.876i −0.853583 + 1.47104i
\(247\) −5.37024 + 16.5279i −0.0217419 + 0.0669146i
\(248\) 388.479 + 126.224i 1.56645 + 0.508970i
\(249\) 30.6402 + 17.7792i 0.123053 + 0.0714025i
\(250\) 276.395 + 200.813i 1.10558 + 0.803251i
\(251\) −188.638 + 61.2921i −0.751544 + 0.244192i −0.659646 0.751577i \(-0.729294\pi\)
−0.0918987 + 0.995768i \(0.529294\pi\)
\(252\) 475.641 523.648i 1.88746 2.07797i
\(253\) 0 0
\(254\) 51.2057i 0.201597i
\(255\) 51.9062 + 57.9008i 0.203554 + 0.227062i
\(256\) 389.537 + 283.016i 1.52163 + 1.10553i
\(257\) −1.09633 1.50897i −0.00426588 0.00587148i 0.806879 0.590717i \(-0.201155\pi\)
−0.811145 + 0.584846i \(0.801155\pi\)
\(258\) −169.619 + 17.4542i −0.657437 + 0.0676521i
\(259\) −19.8453 + 61.0776i −0.0766229 + 0.235821i
\(260\) 17.8888 + 24.6218i 0.0688031 + 0.0946994i
\(261\) −21.2769 102.289i −0.0815205 0.391910i
\(262\) 170.366 + 524.332i 0.650251 + 2.00127i
\(263\) 27.0901i 0.103004i −0.998673 0.0515020i \(-0.983599\pi\)
0.998673 0.0515020i \(-0.0164009\pi\)
\(264\) 0 0
\(265\) 84.1151 0.317416
\(266\) −319.485 + 103.807i −1.20107 + 0.390251i
\(267\) 46.9935 218.744i 0.176006 0.819264i
\(268\) 451.354 327.928i 1.68416 1.22361i
\(269\) −135.856 44.1424i −0.505042 0.164098i 0.0454041 0.998969i \(-0.485542\pi\)
−0.550446 + 0.834871i \(0.685542\pi\)
\(270\) −162.707 119.846i −0.602619 0.443873i
\(271\) −85.2115 + 61.9098i −0.314434 + 0.228449i −0.733797 0.679369i \(-0.762254\pi\)
0.419363 + 0.907819i \(0.362254\pi\)
\(272\) 198.455 273.150i 0.729613 1.00423i
\(273\) 29.1928 + 32.5642i 0.106933 + 0.119283i
\(274\) −289.282 −1.05577
\(275\) 0 0
\(276\) −219.008 494.797i −0.793507 1.79274i
\(277\) −75.6843 232.932i −0.273229 0.840911i −0.989683 0.143277i \(-0.954236\pi\)
0.716454 0.697634i \(-0.245764\pi\)
\(278\) −446.889 + 615.089i −1.60751 + 2.21255i
\(279\) 22.9143 209.243i 0.0821300 0.749976i
\(280\) −99.7985 + 307.148i −0.356423 + 1.09696i
\(281\) −61.9247 20.1206i −0.220373 0.0716034i 0.196750 0.980454i \(-0.436961\pi\)
−0.417122 + 0.908850i \(0.636961\pi\)
\(282\) 244.721 421.745i 0.867804 1.49555i
\(283\) −127.482 92.6208i −0.450465 0.327282i 0.339314 0.940673i \(-0.389805\pi\)
−0.789779 + 0.613391i \(0.789805\pi\)
\(284\) 86.1375 27.9878i 0.303301 0.0985485i
\(285\) 26.7668 + 60.4734i 0.0939187 + 0.212187i
\(286\) 0 0
\(287\) 344.566i 1.20058i
\(288\) −102.138 + 226.742i −0.354645 + 0.787300i
\(289\) −108.940 79.1493i −0.376954 0.273873i
\(290\) 51.0695 + 70.2912i 0.176102 + 0.242383i
\(291\) −23.6972 230.287i −0.0814337 0.791365i
\(292\) −204.504 + 629.400i −0.700358 + 2.15548i
\(293\) 108.158 + 148.867i 0.369139 + 0.508077i 0.952667 0.304017i \(-0.0983279\pi\)
−0.583527 + 0.812094i \(0.698328\pi\)
\(294\) −66.8030 + 310.952i −0.227221 + 1.05766i
\(295\) 72.9716 + 224.584i 0.247361 + 0.761300i
\(296\) 126.549i 0.427529i
\(297\) 0 0
\(298\) 811.906 2.72452
\(299\) 31.8144 10.3371i 0.106403 0.0345724i
\(300\) −537.071 115.381i −1.79024 0.384604i
\(301\) 113.610 82.5421i 0.377440 0.274226i
\(302\) −930.469 302.328i −3.08102 1.00109i
\(303\) −38.1846 + 3.92930i −0.126022 + 0.0129680i
\(304\) 232.302 168.778i 0.764153 0.555189i
\(305\) −95.0619 + 130.842i −0.311679 + 0.428989i
\(306\) −365.708 164.736i −1.19512 0.538353i
\(307\) −386.672 −1.25952 −0.629759 0.776790i \(-0.716846\pi\)
−0.629759 + 0.776790i \(0.716846\pi\)
\(308\) 0 0
\(309\) −193.578 + 85.6816i −0.626465 + 0.277287i
\(310\) 54.0930 + 166.481i 0.174494 + 0.537036i
\(311\) −54.2185 + 74.6253i −0.174336 + 0.239953i −0.887239 0.461309i \(-0.847380\pi\)
0.712903 + 0.701262i \(0.247380\pi\)
\(312\) −74.5388 43.2517i −0.238906 0.138627i
\(313\) −22.9902 + 70.7565i −0.0734510 + 0.226059i −0.981042 0.193797i \(-0.937920\pi\)
0.907591 + 0.419856i \(0.137920\pi\)
\(314\) 20.6725 + 6.71691i 0.0658361 + 0.0213914i
\(315\) 165.437 + 18.1170i 0.525196 + 0.0575143i
\(316\) −619.274 449.929i −1.95973 1.42382i
\(317\) 498.144 161.857i 1.57143 0.510589i 0.611600 0.791167i \(-0.290526\pi\)
0.959831 + 0.280578i \(0.0905263\pi\)
\(318\) −396.747 + 175.609i −1.24763 + 0.552229i
\(319\) 0 0
\(320\) 19.9982i 0.0624943i
\(321\) −411.511 + 368.907i −1.28197 + 1.14924i
\(322\) 523.128 + 380.075i 1.62462 + 1.18036i
\(323\) 77.1542 + 106.194i 0.238867 + 0.328773i
\(324\) 701.326 + 155.469i 2.16459 + 0.479843i
\(325\) 10.4943 32.2981i 0.0322901 0.0993787i
\(326\) −341.430 469.939i −1.04733 1.44153i
\(327\) 171.701 + 36.8871i 0.525078 + 0.112805i
\(328\) 209.815 + 645.744i 0.639680 + 1.96873i
\(329\) 401.571i 1.22058i
\(330\) 0 0
\(331\) 251.706 0.760441 0.380221 0.924896i \(-0.375848\pi\)
0.380221 + 0.924896i \(0.375848\pi\)
\(332\) 99.5968 32.3610i 0.299990 0.0974728i
\(333\) −63.8467 + 13.2806i −0.191732 + 0.0398818i
\(334\) 462.051 335.699i 1.38339 1.00509i
\(335\) 124.827 + 40.5589i 0.372619 + 0.121071i
\(336\) −73.9677 718.812i −0.220142 2.13932i
\(337\) −40.1679 + 29.1837i −0.119193 + 0.0865985i −0.645785 0.763520i \(-0.723470\pi\)
0.526592 + 0.850118i \(0.323470\pi\)
\(338\) −350.640 + 482.615i −1.03740 + 1.42785i
\(339\) −339.532 + 304.379i −1.00157 + 0.897874i
\(340\) 229.875 0.676104
\(341\) 0 0
\(342\) −252.503 229.354i −0.738313 0.670626i
\(343\) 53.2613 + 163.922i 0.155281 + 0.477905i
\(344\) −162.651 + 223.870i −0.472823 + 0.650785i
\(345\) 63.8889 110.104i 0.185185 0.319143i
\(346\) 42.5894 131.077i 0.123091 0.378835i
\(347\) −437.276 142.079i −1.26016 0.409451i −0.398609 0.917121i \(-0.630507\pi\)
−0.861551 + 0.507670i \(0.830507\pi\)
\(348\) −267.140 155.010i −0.767644 0.445431i
\(349\) −318.550 231.440i −0.912750 0.663152i 0.0289588 0.999581i \(-0.490781\pi\)
−0.941709 + 0.336429i \(0.890781\pi\)
\(350\) 624.323 202.855i 1.78378 0.579585i
\(351\) −13.9990 + 42.1456i −0.0398833 + 0.120073i
\(352\) 0 0
\(353\) 16.9433i 0.0479980i 0.999712 + 0.0239990i \(0.00763985\pi\)
−0.999712 + 0.0239990i \(0.992360\pi\)
\(354\) −813.054 906.952i −2.29676 2.56201i
\(355\) 17.2380 + 12.5242i 0.0485578 + 0.0352793i
\(356\) −388.761 535.084i −1.09203 1.50304i
\(357\) 328.594 33.8132i 0.920432 0.0947150i
\(358\) −150.930 + 464.516i −0.421593 + 1.29753i
\(359\) 44.6059 + 61.3948i 0.124250 + 0.171016i 0.866611 0.498985i \(-0.166294\pi\)
−0.742360 + 0.670001i \(0.766294\pi\)
\(360\) −321.073 + 66.7859i −0.891871 + 0.185516i
\(361\) −77.0586 237.162i −0.213459 0.656958i
\(362\) 467.565i 1.29162i
\(363\) 0 0
\(364\) 129.285 0.355179
\(365\) −148.071 + 48.1113i −0.405675 + 0.131812i
\(366\) 175.220 815.605i 0.478742 2.22843i
\(367\) −501.030 + 364.020i −1.36520 + 0.991879i −0.367109 + 0.930178i \(0.619653\pi\)
−0.998095 + 0.0617010i \(0.980347\pi\)
\(368\) −525.665 170.799i −1.42844 0.464127i
\(369\) 303.774 173.624i 0.823236 0.470526i
\(370\) 43.8745 31.8767i 0.118580 0.0861533i
\(371\) 210.029 289.080i 0.566115 0.779190i
\(372\) −415.364 463.334i −1.11657 1.24552i
\(373\) 365.674 0.980359 0.490179 0.871622i \(-0.336931\pi\)
0.490179 + 0.871622i \(0.336931\pi\)
\(374\) 0 0
\(375\) −115.641 261.264i −0.308376 0.696704i
\(376\) −244.527 752.576i −0.650337 2.00153i
\(377\) 11.2232 15.4474i 0.0297697 0.0409744i
\(378\) −818.142 + 259.933i −2.16440 + 0.687653i
\(379\) −126.661 + 389.823i −0.334198 + 1.02856i 0.632917 + 0.774220i \(0.281857\pi\)
−0.967116 + 0.254337i \(0.918143\pi\)
\(380\) 185.931 + 60.4126i 0.489292 + 0.158981i
\(381\) 21.4921 37.0389i 0.0564098 0.0972150i
\(382\) 915.865 + 665.415i 2.39755 + 1.74192i
\(383\) 50.3695 16.3660i 0.131513 0.0427311i −0.242521 0.970146i \(-0.577974\pi\)
0.374034 + 0.927415i \(0.377974\pi\)
\(384\) −175.956 397.532i −0.458219 1.03524i
\(385\) 0 0
\(386\) 525.213i 1.36065i
\(387\) 130.017 + 58.5673i 0.335962 + 0.151337i
\(388\) −553.664 402.260i −1.42697 1.03675i
\(389\) 53.2922 + 73.3504i 0.136998 + 0.188561i 0.872004 0.489500i \(-0.162821\pi\)
−0.735006 + 0.678061i \(0.762821\pi\)
\(390\) −3.78039 36.7375i −0.00969330 0.0941987i
\(391\) 78.0782 240.300i 0.199688 0.614578i
\(392\) 303.380 + 417.567i 0.773929 + 1.06522i
\(393\) 96.8415 450.774i 0.246416 1.14701i
\(394\) −254.361 782.844i −0.645587 1.98691i
\(395\) 180.081i 0.455902i
\(396\) 0 0
\(397\) −335.768 −0.845763 −0.422882 0.906185i \(-0.638981\pi\)
−0.422882 + 0.906185i \(0.638981\pi\)
\(398\) 1328.37 431.615i 3.33762 1.08446i
\(399\) 274.664 + 59.0072i 0.688382 + 0.147888i
\(400\) −453.955 + 329.818i −1.13489 + 0.824544i
\(401\) 17.9951 + 5.84696i 0.0448755 + 0.0145809i 0.331369 0.943501i \(-0.392490\pi\)
−0.286493 + 0.958082i \(0.592490\pi\)
\(402\) −673.451 + 69.3000i −1.67525 + 0.172388i
\(403\) 31.1222 22.6116i 0.0772262 0.0561081i
\(404\) −66.6999 + 91.8045i −0.165099 + 0.227239i
\(405\) 67.3901 + 154.980i 0.166395 + 0.382667i
\(406\) 369.087 0.909082
\(407\) 0 0
\(408\) −595.221 + 263.458i −1.45888 + 0.645730i
\(409\) 36.8542 + 113.426i 0.0901081 + 0.277324i 0.985948 0.167053i \(-0.0534250\pi\)
−0.895840 + 0.444377i \(0.853425\pi\)
\(410\) −171.029 + 235.402i −0.417145 + 0.574150i
\(411\) 209.248 + 121.418i 0.509119 + 0.295420i
\(412\) −193.383 + 595.172i −0.469376 + 1.44459i
\(413\) 954.034 + 309.984i 2.31001 + 0.750567i
\(414\) −71.4787 + 652.713i −0.172654 + 1.57660i
\(415\) 19.9315 + 14.4811i 0.0480278 + 0.0348943i
\(416\) −43.2243 + 14.0444i −0.103905 + 0.0337606i
\(417\) 581.416 257.347i 1.39428 0.617140i
\(418\) 0 0
\(419\) 412.874i 0.985381i 0.870205 + 0.492690i \(0.163986\pi\)
−0.870205 + 0.492690i \(0.836014\pi\)
\(420\) 366.332 328.405i 0.872219 0.781917i
\(421\) −489.408 355.576i −1.16249 0.844598i −0.172399 0.985027i \(-0.555152\pi\)
−0.990091 + 0.140429i \(0.955152\pi\)
\(422\) 430.121 + 592.011i 1.01924 + 1.40287i
\(423\) −354.030 + 202.349i −0.836951 + 0.478365i
\(424\) −217.582 + 669.650i −0.513166 + 1.57936i
\(425\) −150.771 207.519i −0.354756 0.488280i
\(426\) −107.454 23.0847i −0.252239 0.0541895i
\(427\) 212.303 + 653.401i 0.497197 + 1.53021i
\(428\) 1633.76i 3.81721i
\(429\) 0 0
\(430\) −118.587 −0.275783
\(431\) 421.718 137.024i 0.978464 0.317922i 0.224236 0.974535i \(-0.428011\pi\)
0.754228 + 0.656613i \(0.228011\pi\)
\(432\) 596.442 427.414i 1.38065 0.989385i
\(433\) −177.158 + 128.713i −0.409142 + 0.297259i −0.773254 0.634096i \(-0.781372\pi\)
0.364112 + 0.931355i \(0.381372\pi\)
\(434\) 707.214 + 229.788i 1.62953 + 0.529465i
\(435\) −7.43772 72.2791i −0.0170982 0.166159i
\(436\) 420.008 305.154i 0.963322 0.699894i
\(437\) 126.305 173.843i 0.289026 0.397811i
\(438\) 597.967 536.058i 1.36522 1.22388i
\(439\) −171.641 −0.390982 −0.195491 0.980705i \(-0.562630\pi\)
−0.195491 + 0.980705i \(0.562630\pi\)
\(440\) 0 0
\(441\) 178.834 196.884i 0.405519 0.446449i
\(442\) −22.6519 69.7155i −0.0512487 0.157727i
\(443\) −348.285 + 479.374i −0.786197 + 1.08211i 0.208374 + 0.978049i \(0.433183\pi\)
−0.994571 + 0.104059i \(0.966817\pi\)
\(444\) −96.7546 + 166.744i −0.217916 + 0.375550i
\(445\) 48.0829 147.984i 0.108051 0.332548i
\(446\) −56.3607 18.3127i −0.126369 0.0410598i
\(447\) −587.281 340.774i −1.31383 0.762358i
\(448\) 68.7280 + 49.9338i 0.153411 + 0.111459i
\(449\) −414.782 + 134.771i −0.923791 + 0.300158i −0.732021 0.681282i \(-0.761423\pi\)
−0.191770 + 0.981440i \(0.561423\pi\)
\(450\) 493.430 + 448.194i 1.09651 + 0.995986i
\(451\) 0 0
\(452\) 1347.99i 2.98229i
\(453\) 546.148 + 609.222i 1.20563 + 1.34486i
\(454\) 327.534 + 237.967i 0.721440 + 0.524157i
\(455\) 17.8777 + 24.6065i 0.0392916 + 0.0540803i
\(456\) −550.674 + 56.6658i −1.20762 + 0.124267i
\(457\) −73.7134 + 226.866i −0.161298 + 0.496425i −0.998744 0.0500945i \(-0.984048\pi\)
0.837446 + 0.546520i \(0.184048\pi\)
\(458\) 777.249 + 1069.79i 1.69705 + 2.33579i
\(459\) 195.386 + 272.654i 0.425678 + 0.594018i
\(460\) −116.288 357.897i −0.252800 0.778037i
\(461\) 711.175i 1.54268i −0.636424 0.771339i \(-0.719587\pi\)
0.636424 0.771339i \(-0.280413\pi\)
\(462\) 0 0
\(463\) −461.487 −0.996732 −0.498366 0.866967i \(-0.666066\pi\)
−0.498366 + 0.866967i \(0.666066\pi\)
\(464\) −300.046 + 97.4908i −0.646651 + 0.210110i
\(465\) 30.7483 143.126i 0.0661253 0.307797i
\(466\) 506.545 368.026i 1.08701 0.789756i
\(467\) 46.0163 + 14.9516i 0.0985361 + 0.0320163i 0.357870 0.933771i \(-0.383503\pi\)
−0.259334 + 0.965788i \(0.583503\pi\)
\(468\) 65.1457 + 113.979i 0.139200 + 0.243546i
\(469\) 451.073 327.724i 0.961777 0.698772i
\(470\) 199.324 274.346i 0.424094 0.583716i
\(471\) −12.1339 13.5353i −0.0257621 0.0287373i
\(472\) −1976.69 −4.18790
\(473\) 0 0
\(474\) 375.960 + 849.393i 0.793164 + 1.79197i
\(475\) −67.4117 207.472i −0.141919 0.436783i
\(476\) 573.980 790.015i 1.20584 1.65970i
\(477\) 360.688 + 39.4990i 0.756159 + 0.0828072i
\(478\) 382.834 1178.24i 0.800908 2.46494i
\(479\) 163.035 + 52.9731i 0.340364 + 0.110591i 0.474212 0.880411i \(-0.342733\pi\)
−0.133847 + 0.991002i \(0.542733\pi\)
\(480\) −86.8018 + 149.592i −0.180837 + 0.311650i
\(481\) −9.64197 7.00530i −0.0200457 0.0145640i
\(482\) −891.979 + 289.822i −1.85058 + 0.601290i
\(483\) −218.872 494.489i −0.453150 1.02379i
\(484\) 0 0
\(485\) 161.002i 0.331964i
\(486\) −641.415 590.306i −1.31978 1.21462i
\(487\) 400.866 + 291.247i 0.823134 + 0.598042i 0.917609 0.397485i \(-0.130117\pi\)
−0.0944742 + 0.995527i \(0.530117\pi\)
\(488\) −795.745 1095.25i −1.63062 2.24436i
\(489\) 49.7256 + 483.229i 0.101688 + 0.988198i
\(490\) −68.3515 + 210.364i −0.139493 + 0.429315i
\(491\) 194.115 + 267.177i 0.395347 + 0.544148i 0.959569 0.281475i \(-0.0908237\pi\)
−0.564222 + 0.825623i \(0.690824\pi\)
\(492\) 217.255 1011.27i 0.441575 2.05542i
\(493\) −44.5665 137.162i −0.0903986 0.278218i
\(494\) 62.3413i 0.126197i
\(495\) 0 0
\(496\) −635.619 −1.28149
\(497\) 86.0839 27.9704i 0.173207 0.0562784i
\(498\) −124.244 26.6918i −0.249486 0.0535980i
\(499\) −88.8306 + 64.5392i −0.178017 + 0.129337i −0.673226 0.739437i \(-0.735092\pi\)
0.495208 + 0.868774i \(0.335092\pi\)
\(500\) −803.279 261.001i −1.60656 0.522003i
\(501\) −475.118 + 48.8909i −0.948339 + 0.0975867i
\(502\) 575.631 418.220i 1.14668 0.833108i
\(503\) 336.038 462.516i 0.668067 0.919516i −0.331647 0.943403i \(-0.607604\pi\)
0.999715 + 0.0238878i \(0.00760445\pi\)
\(504\) −572.170 + 1270.20i −1.13526 + 2.52023i
\(505\) −26.6963 −0.0528639
\(506\) 0 0
\(507\) 456.194 201.921i 0.899791 0.398267i
\(508\) −39.1191 120.396i −0.0770060 0.237000i
\(509\) 317.947 437.617i 0.624651 0.859758i −0.373031 0.927819i \(-0.621681\pi\)
0.997681 + 0.0680613i \(0.0216813\pi\)
\(510\) −241.273 140.001i −0.473085 0.274511i
\(511\) −204.377 + 629.008i −0.399955 + 1.23094i
\(512\) −1091.44 354.631i −2.13172 0.692639i
\(513\) 86.3797 + 271.881i 0.168381 + 0.529982i
\(514\) 5.41310 + 3.93284i 0.0105313 + 0.00765145i
\(515\) −140.019 + 45.4949i −0.271881 + 0.0883395i
\(516\) 385.477 170.620i 0.747049 0.330660i
\(517\) 0 0
\(518\) 230.378i 0.444745i
\(519\) −85.8221 + 76.9368i −0.165361 + 0.148240i
\(520\) −48.4877 35.2284i −0.0932456 0.0677469i
\(521\) 198.606 + 273.357i 0.381201 + 0.524678i 0.955902 0.293685i \(-0.0948818\pi\)
−0.574701 + 0.818363i \(0.694882\pi\)
\(522\) 185.980 + 325.392i 0.356284 + 0.623356i
\(523\) −95.0022 + 292.387i −0.181649 + 0.559057i −0.999875 0.0158400i \(-0.994958\pi\)
0.818226 + 0.574897i \(0.194958\pi\)
\(524\) −801.135 1102.67i −1.52888 2.10433i
\(525\) −536.737 115.309i −1.02236 0.219637i
\(526\) 30.0301 + 92.4232i 0.0570915 + 0.175710i
\(527\) 290.564i 0.551355i
\(528\) 0 0
\(529\) 115.375 0.218100
\(530\) −286.976 + 93.2441i −0.541464 + 0.175932i
\(531\) 207.444 + 997.287i 0.390666 + 1.87813i
\(532\) 671.875 488.146i 1.26292 0.917568i
\(533\) 60.8151 + 19.7600i 0.114100 + 0.0370732i
\(534\) 82.1557 + 798.382i 0.153850 + 1.49510i
\(535\) −310.950 + 225.919i −0.581216 + 0.422278i
\(536\) −645.788 + 888.850i −1.20483 + 1.65830i
\(537\) 304.140 272.652i 0.566369 0.507732i
\(538\) 512.434 0.952480
\(539\) 0 0
\(540\) 474.118 + 157.482i 0.877996 + 0.291634i
\(541\) 25.5563 + 78.6541i 0.0472389 + 0.145387i 0.971894 0.235420i \(-0.0756465\pi\)
−0.924655 + 0.380806i \(0.875646\pi\)
\(542\) 222.088 305.677i 0.409756 0.563980i
\(543\) −196.247 + 338.206i −0.361412 + 0.622848i
\(544\) −106.080 + 326.480i −0.195000 + 0.600148i
\(545\) 116.158 + 37.7422i 0.213135 + 0.0692517i
\(546\) −135.696 78.7384i −0.248527 0.144209i
\(547\) −320.933 233.172i −0.586715 0.426273i 0.254424 0.967093i \(-0.418114\pi\)
−0.841139 + 0.540819i \(0.818114\pi\)
\(548\) 680.166 220.999i 1.24118 0.403283i
\(549\) −469.069 + 516.413i −0.854407 + 0.940642i
\(550\) 0 0
\(551\) 122.653i 0.222601i
\(552\) 711.289 + 793.435i 1.28857 + 1.43738i
\(553\) −618.888 449.649i −1.11915 0.813108i
\(554\) 516.425 + 710.798i 0.932174 + 1.28303i
\(555\) −45.1153 + 4.64249i −0.0812889 + 0.00836485i
\(556\) 580.832 1787.62i 1.04466 3.21514i
\(557\) 225.174 + 309.925i 0.404262 + 0.556419i 0.961807 0.273728i \(-0.0882567\pi\)
−0.557545 + 0.830146i \(0.688257\pi\)
\(558\) 153.776 + 739.277i 0.275584 + 1.32487i
\(559\) 8.05326 + 24.7854i 0.0144066 + 0.0443388i
\(560\) 502.548i 0.897407i
\(561\) 0 0
\(562\) 233.573 0.415610
\(563\) −137.748 + 44.7570i −0.244667 + 0.0794973i −0.428784 0.903407i \(-0.641058\pi\)
0.184116 + 0.982904i \(0.441058\pi\)
\(564\) −253.197 + 1178.57i −0.448932 + 2.08967i
\(565\) −256.561 + 186.402i −0.454089 + 0.329915i
\(566\) 537.602 + 174.677i 0.949827 + 0.308617i
\(567\) 700.890 + 155.373i 1.23614 + 0.274026i
\(568\) −144.296 + 104.837i −0.254043 + 0.184573i
\(569\) 542.614 746.845i 0.953628 1.31256i 0.00373108 0.999993i \(-0.498812\pi\)
0.949897 0.312563i \(-0.101188\pi\)
\(570\) −158.357 176.645i −0.277819 0.309904i
\(571\) −421.725 −0.738573 −0.369287 0.929316i \(-0.620398\pi\)
−0.369287 + 0.929316i \(0.620398\pi\)
\(572\) 0 0
\(573\) −383.189 865.726i −0.668742 1.51087i
\(574\) 381.962 + 1175.56i 0.665439 + 2.04801i
\(575\) −246.819 + 339.717i −0.429250 + 0.590812i
\(576\) −9.39080 + 85.7527i −0.0163035 + 0.148876i
\(577\) 142.274 437.874i 0.246575 0.758880i −0.748798 0.662798i \(-0.769369\pi\)
0.995373 0.0960821i \(-0.0306311\pi\)
\(578\) 459.409 + 149.271i 0.794825 + 0.258254i
\(579\) −220.443 + 379.905i −0.380730 + 0.656140i
\(580\) −173.775 126.255i −0.299613 0.217681i
\(581\) 99.5349 32.3409i 0.171317 0.0556641i
\(582\) 336.128 + 759.403i 0.577539 + 1.30482i
\(583\) 0 0
\(584\) 1303.26i 2.23161i
\(585\) −12.6850 + 28.1602i −0.0216838 + 0.0481371i
\(586\) −534.025 387.992i −0.911306 0.662102i
\(587\) 24.9599 + 34.3544i 0.0425212 + 0.0585254i 0.829748 0.558138i \(-0.188484\pi\)
−0.787227 + 0.616663i \(0.788484\pi\)
\(588\) −80.4856 782.152i −0.136880 1.33019i
\(589\) 76.3620 235.018i 0.129647 0.399012i
\(590\) −497.915 685.321i −0.843923 1.16156i
\(591\) −144.587 + 673.020i −0.244649 + 1.13878i
\(592\) 60.8521 + 187.283i 0.102791 + 0.316357i
\(593\) 106.267i 0.179203i 0.995978 + 0.0896015i \(0.0285593\pi\)
−0.995978 + 0.0896015i \(0.971441\pi\)
\(594\) 0 0
\(595\) 229.732 0.386105
\(596\) −1908.97 + 620.263i −3.20297 + 1.04071i
\(597\) −1142.02 245.344i −1.91293 0.410962i
\(598\) −97.0823 + 70.5344i −0.162345 + 0.117951i
\(599\) −692.381 224.968i −1.15589 0.375573i −0.332534 0.943091i \(-0.607904\pi\)
−0.823361 + 0.567518i \(0.807904\pi\)
\(600\) 1076.10 110.734i 1.79350 0.184557i
\(601\) −95.9442 + 69.7075i −0.159641 + 0.115986i −0.664738 0.747077i \(-0.731457\pi\)
0.505097 + 0.863063i \(0.331457\pi\)
\(602\) −296.101 + 407.549i −0.491863 + 0.676991i
\(603\) 516.218 + 232.535i 0.856083 + 0.385629i
\(604\) 2418.71 4.00448
\(605\) 0 0
\(606\) 125.919 55.7343i 0.207787 0.0919708i
\(607\) −220.392 678.296i −0.363084 1.11746i −0.951172 0.308660i \(-0.900119\pi\)
0.588089 0.808796i \(-0.299881\pi\)
\(608\) −171.602 + 236.190i −0.282240 + 0.388470i
\(609\) −266.974 154.914i −0.438381 0.254374i
\(610\) 179.281 551.771i 0.293904 0.904543i
\(611\) −70.8764 23.0291i −0.116001 0.0376909i
\(612\) 985.711 + 107.945i 1.61064 + 0.176381i
\(613\) 556.171 + 404.082i 0.907294 + 0.659188i 0.940329 0.340267i \(-0.110517\pi\)
−0.0330350 + 0.999454i \(0.510517\pi\)
\(614\) 1319.21 428.637i 2.14855 0.698106i
\(615\) 222.515 98.4898i 0.361812 0.160146i
\(616\) 0 0
\(617\) 762.156i 1.23526i −0.786468 0.617631i \(-0.788093\pi\)
0.786468 0.617631i \(-0.211907\pi\)
\(618\) 565.448 506.906i 0.914965 0.820237i
\(619\) 429.344 + 311.937i 0.693609 + 0.503936i 0.877845 0.478946i \(-0.158981\pi\)
−0.184236 + 0.982882i \(0.558981\pi\)
\(620\) −254.369 350.110i −0.410273 0.564693i
\(621\) 325.660 442.129i 0.524413 0.711963i
\(622\) 102.253 314.702i 0.164394 0.505952i
\(623\) −388.519 534.751i −0.623626 0.858348i
\(624\) 131.110 + 28.1670i 0.210113 + 0.0451394i
\(625\) 98.1039 + 301.933i 0.156966 + 0.483093i
\(626\) 266.885i 0.426334i
\(627\) 0 0
\(628\) −53.7372 −0.0855688
\(629\) −85.6138 + 27.8176i −0.136111 + 0.0442252i
\(630\) −584.504 + 121.582i −0.927784 + 0.192987i
\(631\) −547.258 + 397.607i −0.867288 + 0.630121i −0.929858 0.367919i \(-0.880070\pi\)
0.0625701 + 0.998041i \(0.480070\pi\)
\(632\) 1433.65 + 465.820i 2.26843 + 0.737058i
\(633\) −62.6424 608.754i −0.0989612 0.961696i
\(634\) −1520.09 + 1104.41i −2.39763 + 1.74198i
\(635\) 17.5053 24.0939i 0.0275674 0.0379432i
\(636\) 798.683 715.994i 1.25579 1.12578i
\(637\) 48.6093 0.0763097
\(638\) 0 0
\(639\) 68.0360 + 61.7987i 0.106473 + 0.0967115i
\(640\) −93.4285 287.543i −0.145982 0.449287i
\(641\) 461.931 635.794i 0.720641 0.991878i −0.278861 0.960331i \(-0.589957\pi\)
0.999502 0.0315462i \(-0.0100431\pi\)
\(642\) 995.009 1714.77i 1.54986 2.67098i
\(643\) −262.574 + 808.119i −0.408357 + 1.25679i 0.509702 + 0.860351i \(0.329756\pi\)
−0.918059 + 0.396443i \(0.870244\pi\)
\(644\) −1520.35 493.992i −2.36079 0.767069i
\(645\) 85.7780 + 49.7733i 0.132989 + 0.0771680i
\(646\) −380.946 276.773i −0.589699 0.428441i
\(647\) −1112.14 + 361.357i −1.71892 + 0.558512i −0.991778 0.127971i \(-0.959154\pi\)
−0.727146 + 0.686483i \(0.759154\pi\)
\(648\) −1408.13 + 135.609i −2.17305 + 0.209274i
\(649\) 0 0
\(650\) 121.825i 0.187423i
\(651\) −415.106 463.046i −0.637644 0.711284i
\(652\) 1161.79 + 844.092i 1.78189 + 1.29462i
\(653\) 314.778 + 433.255i 0.482049 + 0.663484i 0.978897 0.204354i \(-0.0655092\pi\)
−0.496848 + 0.867838i \(0.665509\pi\)
\(654\) −626.681 + 64.4872i −0.958228 + 0.0986043i
\(655\) 99.0863 304.956i 0.151277 0.465582i
\(656\) −621.024 854.767i −0.946684 1.30300i
\(657\) −657.526 + 136.771i −1.00080 + 0.208175i
\(658\) −445.153 1370.04i −0.676525 2.08213i
\(659\) 138.756i 0.210555i −0.994443 0.105278i \(-0.966427\pi\)
0.994443 0.105278i \(-0.0335731\pi\)
\(660\) 0 0
\(661\) 27.1690 0.0411029 0.0205515 0.999789i \(-0.493458\pi\)
0.0205515 + 0.999789i \(0.493458\pi\)
\(662\) −858.746 + 279.023i −1.29720 + 0.421485i
\(663\) −12.8761 + 59.9352i −0.0194210 + 0.0903999i
\(664\) −166.843 + 121.219i −0.251270 + 0.182558i
\(665\) 185.815 + 60.3751i 0.279422 + 0.0907895i
\(666\) 203.104 116.085i 0.304961 0.174303i
\(667\) −191.004 + 138.773i −0.286363 + 0.208055i
\(668\) −829.924 + 1142.29i −1.24240 + 1.71002i
\(669\) 33.0814 + 36.9020i 0.0494491 + 0.0551599i
\(670\) −470.835 −0.702738
\(671\) 0 0
\(672\) 297.367 + 671.831i 0.442511 + 0.999749i
\(673\) 203.174 + 625.305i 0.301893 + 0.929131i 0.980818 + 0.194924i \(0.0624459\pi\)
−0.678926 + 0.734207i \(0.737554\pi\)
\(674\) 104.690 144.093i 0.155326 0.213788i
\(675\) −168.799 531.298i −0.250073 0.787108i
\(676\) 455.735 1402.61i 0.674165 2.07487i
\(677\) −581.347 188.891i −0.858711 0.279012i −0.153621 0.988130i \(-0.549093\pi\)
−0.705090 + 0.709118i \(0.749093\pi\)
\(678\) 820.968 1414.83i 1.21087 2.08677i
\(679\) −553.319 402.010i −0.814903 0.592062i
\(680\) −430.536 + 139.890i −0.633142 + 0.205720i
\(681\) −137.037 309.603i −0.201229 0.454630i
\(682\) 0 0
\(683\) 990.520i 1.45025i 0.688618 + 0.725124i \(0.258218\pi\)
−0.688618 + 0.725124i \(0.741782\pi\)
\(684\) 768.908 + 346.361i 1.12413 + 0.506376i
\(685\) 136.116 + 98.8943i 0.198710 + 0.144371i
\(686\) −363.423 500.209i −0.529772 0.729168i
\(687\) −113.198 1100.05i −0.164771 1.60123i
\(688\) 133.063 409.525i 0.193405 0.595240i
\(689\) 38.9772 + 53.6476i 0.0565707 + 0.0778629i
\(690\) −95.9159 + 446.466i −0.139009 + 0.647052i
\(691\) 177.091 + 545.029i 0.256282 + 0.788754i 0.993574 + 0.113181i \(0.0361038\pi\)
−0.737293 + 0.675573i \(0.763896\pi\)
\(692\) 340.727i 0.492380i
\(693\) 0 0
\(694\) 1649.35 2.37659
\(695\) 420.551 136.645i 0.605109 0.196612i
\(696\) 594.661 + 127.753i 0.854398 + 0.183554i
\(697\) 390.744 283.892i 0.560608 0.407306i
\(698\) 1343.35 + 436.482i 1.92458 + 0.625333i
\(699\) −520.870 + 53.5990i −0.745165 + 0.0766795i
\(700\) −1312.95 + 953.913i −1.87564 + 1.36273i
\(701\) −481.412 + 662.606i −0.686750 + 0.945230i −0.999990 0.00444396i \(-0.998585\pi\)
0.313240 + 0.949674i \(0.398585\pi\)
\(702\) 1.04087 159.307i 0.00148272 0.226932i
\(703\) −76.5580 −0.108902
\(704\) 0 0
\(705\) −259.327 + 114.784i −0.367840 + 0.162814i
\(706\) −18.7821 57.8054i −0.0266036 0.0818774i
\(707\) −66.6584 + 91.7474i −0.0942834 + 0.129770i
\(708\) 2604.55 + 1511.31i 3.67874 + 2.13462i
\(709\) 55.5742 171.040i 0.0783840 0.241241i −0.904185 0.427142i \(-0.859520\pi\)
0.982568 + 0.185901i \(0.0595204\pi\)
\(710\) −72.6944 23.6199i −0.102387 0.0332674i
\(711\) 84.5631 772.194i 0.118935 1.08607i
\(712\) 1053.74 + 765.586i 1.47997 + 1.07526i
\(713\) −452.384 + 146.989i −0.634480 + 0.206155i
\(714\) −1083.58 + 479.617i −1.51762 + 0.671732i
\(715\) 0 0
\(716\) 1207.48i 1.68643i
\(717\) −771.450 + 691.581i −1.07594 + 0.964548i
\(718\) −220.240 160.014i −0.306741 0.222860i
\(719\) −391.663 539.078i −0.544733 0.749761i 0.444553 0.895753i \(-0.353363\pi\)
−0.989286 + 0.145992i \(0.953363\pi\)
\(720\) 443.053 253.230i 0.615351 0.351708i
\(721\) −193.263 + 594.801i −0.268048 + 0.824967i
\(722\) 525.802 + 723.704i 0.728257 + 1.00236i
\(723\) 766.845 + 164.744i 1.06064 + 0.227862i
\(724\) 357.200 + 1099.35i 0.493371 + 1.51844i
\(725\) 239.684i 0.330598i
\(726\) 0 0
\(727\) 162.429 0.223424 0.111712 0.993741i \(-0.464367\pi\)
0.111712 + 0.993741i \(0.464367\pi\)
\(728\) −242.140 + 78.6760i −0.332610 + 0.108071i
\(729\) 216.195 + 696.205i 0.296563 + 0.955013i
\(730\) 451.842 328.283i 0.618962 0.449702i
\(731\) 187.208 + 60.8277i 0.256099 + 0.0832116i
\(732\) 211.108 + 2051.53i 0.288399 + 2.80264i
\(733\) 946.453 687.638i 1.29120 0.938115i 0.291376 0.956609i \(-0.405887\pi\)
0.999829 + 0.0184934i \(0.00588696\pi\)
\(734\) 1305.84 1797.33i 1.77907 2.44868i
\(735\) 137.735 123.475i 0.187395 0.167994i
\(736\) 561.967 0.763542
\(737\) 0 0
\(738\) −843.919 + 929.096i −1.14352 + 1.25894i
\(739\) 74.8985 + 230.514i 0.101351 + 0.311927i 0.988857 0.148870i \(-0.0475636\pi\)
−0.887506 + 0.460797i \(0.847564\pi\)
\(740\) −78.8063 + 108.468i −0.106495 + 0.146578i
\(741\) −26.1660 + 45.0937i −0.0353117 + 0.0608552i
\(742\) −396.102 + 1219.08i −0.533830 + 1.64296i
\(743\) 783.342 + 254.523i 1.05430 + 0.342562i 0.784353 0.620314i \(-0.212995\pi\)
0.269943 + 0.962876i \(0.412995\pi\)
\(744\) 1059.90 + 615.016i 1.42460 + 0.826635i
\(745\) −382.028 277.560i −0.512789 0.372563i
\(746\) −1247.57 + 405.360i −1.67235 + 0.543378i
\(747\) 78.6669 + 71.4549i 0.105310 + 0.0956559i
\(748\) 0 0
\(749\) 1632.75i 2.17990i
\(750\) 684.151 + 763.163i 0.912202 + 1.01755i
\(751\) 4.96588 + 3.60793i 0.00661236 + 0.00480416i 0.591087 0.806608i \(-0.298699\pi\)
−0.584474 + 0.811412i \(0.698699\pi\)
\(752\) 723.767 + 996.179i 0.962456 + 1.32471i
\(753\) −591.910 + 60.9092i −0.786069 + 0.0808887i
\(754\) −21.1662 + 65.1430i −0.0280719 + 0.0863965i
\(755\) 334.461 + 460.347i 0.442995 + 0.609731i
\(756\) 1725.06 1236.19i 2.28182 1.63517i
\(757\) −340.620 1048.32i −0.449961 1.38484i −0.876951 0.480580i \(-0.840426\pi\)
0.426990 0.904256i \(-0.359574\pi\)
\(758\) 1470.37i 1.93980i
\(759\) 0 0
\(760\) −384.996 −0.506574
\(761\) 1141.53 370.907i 1.50004 0.487394i 0.560013 0.828484i \(-0.310796\pi\)
0.940031 + 0.341090i \(0.110796\pi\)
\(762\) −32.2660 + 150.190i −0.0423438 + 0.197100i
\(763\) 419.747 304.964i 0.550127 0.399691i
\(764\) −2661.75 864.856i −3.48397 1.13201i
\(765\) 115.760 + 202.535i 0.151321 + 0.264752i
\(766\) −153.703 + 111.672i −0.200657 + 0.145786i
\(767\) −109.423 + 150.608i −0.142664 + 0.196360i
\(768\) 964.209 + 1075.56i 1.25548 + 1.40047i
\(769\) 1038.16 1.35001 0.675007 0.737811i \(-0.264141\pi\)
0.675007 + 0.737811i \(0.264141\pi\)
\(770\) 0 0
\(771\) −2.26479 5.11676i −0.00293747 0.00663652i
\(772\) 401.241 + 1234.89i 0.519742 + 1.59960i
\(773\) 344.566 474.255i 0.445752 0.613525i −0.525726 0.850654i \(-0.676206\pi\)
0.971478 + 0.237129i \(0.0762063\pi\)
\(774\) −508.503 55.6863i −0.656981 0.0719461i
\(775\) −149.223 + 459.262i −0.192546 + 0.592596i
\(776\) 1281.76 + 416.468i 1.65175 + 0.536686i
\(777\) −96.6944 + 166.640i −0.124446 + 0.214466i
\(778\) −263.128 191.174i −0.338211 0.245725i
\(779\) 390.656 126.932i 0.501483 0.162942i
\(780\) 36.9545 + 83.4899i 0.0473775 + 0.107038i
\(781\) 0 0
\(782\) 906.383i 1.15906i
\(783\) 2.04786 313.427i 0.00261541 0.400290i
\(784\) −649.773 472.088i −0.828792 0.602153i
\(785\) −7.43084 10.2277i −0.00946603 0.0130289i
\(786\) 169.301 + 1645.26i 0.215396 + 2.09320i
\(787\) −115.407 + 355.185i −0.146641 + 0.451315i −0.997218 0.0745349i \(-0.976253\pi\)
0.850577 + 0.525850i \(0.176253\pi\)
\(788\) 1196.12 + 1646.32i 1.51792 + 2.08924i
\(789\) 17.0701 79.4573i 0.0216351 0.100706i
\(790\) 199.626 + 614.384i 0.252691 + 0.777701i
\(791\) 1347.16i 1.70311i
\(792\) 0 0
\(793\) −127.499 −0.160780
\(794\) 1145.54 372.208i 1.44275 0.468776i
\(795\) 246.716 + 53.0030i 0.310335 + 0.0666704i
\(796\) −2793.57 + 2029.65i −3.50951 + 2.54981i
\(797\) 795.852 + 258.588i 0.998560 + 0.324452i 0.762290 0.647236i \(-0.224075\pi\)
0.236270 + 0.971687i \(0.424075\pi\)
\(798\) −1002.48 + 103.158i −1.25625 + 0.129271i
\(799\) −455.389 + 330.859i −0.569948 + 0.414092i
\(800\) 335.337 461.552i 0.419172 0.576940i
\(801\) 275.671 611.980i 0.344159 0.764020i
\(802\) −67.8754 −0.0846326
\(803\) 0 0
\(804\) 1530.49 677.429i 1.90360 0.842573i
\(805\) −116.216 357.675i −0.144367 0.444316i
\(806\) −81.1140 + 111.644i −0.100638 + 0.138516i
\(807\) −370.662 215.080i −0.459309 0.266517i
\(808\) 69.0558 212.532i 0.0854650 0.263034i
\(809\) −493.440 160.328i −0.609938 0.198181i −0.0122700 0.999925i \(-0.503906\pi\)
−0.597668 + 0.801744i \(0.703906\pi\)
\(810\) −401.715 454.042i −0.495944 0.560546i
\(811\) 633.194 + 460.042i 0.780757 + 0.567253i 0.905206 0.424973i \(-0.139716\pi\)
−0.124449 + 0.992226i \(0.539716\pi\)
\(812\) −867.806 + 281.967i −1.06873 + 0.347250i
\(813\) −288.943 + 127.892i −0.355403 + 0.157309i
\(814\) 0 0
\(815\) 337.843i 0.414531i
\(816\) 754.202 676.118i 0.924267 0.828576i
\(817\) 135.435 + 98.3990i 0.165771 + 0.120439i
\(818\) −251.471 346.120i −0.307422 0.423130i
\(819\) 65.1052 + 113.909i 0.0794936 + 0.139082i
\(820\) 222.291 684.141i 0.271086 0.834318i
\(821\) 324.234 + 446.270i 0.394926 + 0.543569i 0.959462 0.281840i \(-0.0909446\pi\)
−0.564535 + 0.825409i \(0.690945\pi\)
\(822\) −848.486 182.284i −1.03222 0.221756i
\(823\) −14.2681 43.9128i −0.0173367 0.0533570i 0.942014 0.335574i \(-0.108930\pi\)
−0.959351 + 0.282217i \(0.908930\pi\)
\(824\) 1232.39i 1.49562i
\(825\) 0 0
\(826\) −3598.50 −4.35654
\(827\) −567.030 + 184.239i −0.685648 + 0.222780i −0.631066 0.775729i \(-0.717382\pi\)
−0.0545813 + 0.998509i \(0.517382\pi\)
\(828\) −330.583 1589.28i −0.399255 1.91942i
\(829\) 1122.16 815.300i 1.35364 0.983474i 0.354815 0.934937i \(-0.384544\pi\)
0.998821 0.0485378i \(-0.0154561\pi\)
\(830\) −84.0532 27.3105i −0.101269 0.0329043i
\(831\) −75.2116 730.899i −0.0905073 0.879542i
\(832\) −12.7546 + 9.26674i −0.0153300 + 0.0111379i
\(833\) 215.808 297.034i 0.259073 0.356584i
\(834\) −1698.34 + 1522.51i −2.03638 + 1.82555i
\(835\) −332.172 −0.397811
\(836\) 0 0
\(837\) 199.059 599.288i 0.237824 0.715995i
\(838\) −457.683 1408.60i −0.546161 1.68091i
\(839\) 978.665 1347.02i 1.16647 1.60550i 0.482739 0.875764i \(-0.339642\pi\)
0.683727 0.729738i \(-0.260358\pi\)
\(840\) −486.258 + 838.004i −0.578879 + 0.997624i
\(841\) 218.240 671.673i 0.259500 0.798660i
\(842\) 2063.88 + 670.595i 2.45116 + 0.796432i
\(843\) −168.951 98.0354i −0.200417 0.116293i
\(844\) −1463.58 1063.36i −1.73410 1.25990i
\(845\) 329.975 107.215i 0.390503 0.126882i
\(846\) 983.537 1082.81i 1.16257 1.27991i
\(847\) 0 0
\(848\) 1095.66i 1.29206i
\(849\) −315.551 351.993i −0.371673 0.414597i
\(850\) 744.427 + 540.858i 0.875797 + 0.636303i
\(851\) 86.6196 + 119.222i 0.101786 + 0.140096i
\(852\) 270.284 27.8130i 0.317234 0.0326443i
\(853\) 251.091 772.780i 0.294363 0.905956i −0.689072 0.724693i \(-0.741982\pi\)
0.983435 0.181263i \(-0.0580184\pi\)
\(854\) −1448.63 1993.87i −1.69629 2.33474i
\(855\) 40.4034 + 194.240i 0.0472555 + 0.227181i
\(856\) −994.221 3059.90i −1.16147 3.57465i
\(857\) 551.421i 0.643431i 0.946836 + 0.321716i \(0.104260\pi\)
−0.946836 + 0.321716i \(0.895740\pi\)
\(858\) 0 0
\(859\) −1196.04 −1.39236 −0.696180 0.717868i \(-0.745118\pi\)
−0.696180 + 0.717868i \(0.745118\pi\)
\(860\) 278.824 90.5953i 0.324214 0.105343i
\(861\) 217.120 1010.64i 0.252172 1.17380i
\(862\) −1286.88 + 934.973i −1.49290 + 1.08466i
\(863\) 681.319 + 221.374i 0.789478 + 0.256517i 0.675882 0.737010i \(-0.263763\pi\)
0.113596 + 0.993527i \(0.463763\pi\)
\(864\) −442.454 + 600.693i −0.512100 + 0.695247i
\(865\) −64.8498 + 47.1161i −0.0749709 + 0.0544695i
\(866\) 461.729 635.516i 0.533175 0.733852i
\(867\) −269.654 300.796i −0.311020 0.346939i
\(868\) −1838.37 −2.11793
\(869\) 0 0
\(870\) 105.499 + 238.350i 0.121263 + 0.273965i
\(871\) 31.9745 + 98.4075i 0.0367101 + 0.112982i
\(872\) −600.939 + 827.121i −0.689150 + 0.948534i
\(873\) 75.6040 690.383i 0.0866025 0.790817i
\(874\) −238.203 + 733.114i −0.272544 + 0.838803i
\(875\) −802.780 260.839i −0.917463 0.298102i
\(876\) −996.428 + 1717.22i −1.13747 + 1.96029i
\(877\) 802.250 + 582.869i 0.914766 + 0.664616i 0.942216 0.335007i \(-0.108739\pi\)
−0.0274497 + 0.999623i \(0.508739\pi\)
\(878\) 585.588 190.269i 0.666957 0.216707i
\(879\) 223.431 + 504.790i 0.254188 + 0.574278i
\(880\) 0 0
\(881\) 1256.55i 1.42628i 0.701021 + 0.713140i \(0.252728\pi\)
−0.701021 + 0.713140i \(0.747272\pi\)
\(882\) −391.877 + 869.951i −0.444305 + 0.986339i
\(883\) −225.170 163.596i −0.255006 0.185273i 0.452936 0.891543i \(-0.350376\pi\)
−0.707943 + 0.706270i \(0.750376\pi\)
\(884\) 106.519 + 146.611i 0.120497 + 0.165850i
\(885\) 72.5158 + 704.702i 0.0819388 + 0.796274i
\(886\) 656.846 2021.56i 0.741361 2.28168i
\(887\) −690.062 949.789i −0.777973 1.07079i −0.995503 0.0947346i \(-0.969800\pi\)
0.217529 0.976054i \(-0.430200\pi\)
\(888\) 79.7414 371.177i 0.0897988 0.417992i
\(889\) −39.0947 120.321i −0.0439761 0.135344i
\(890\) 558.178i 0.627166i
\(891\) 0 0
\(892\) 146.507 0.164245
\(893\) −455.286 + 147.931i −0.509838 + 0.165656i
\(894\) 2381.38 + 511.602i 2.66374 + 0.572262i
\(895\) 229.818 166.972i 0.256779 0.186561i
\(896\) −1221.49 396.885i −1.36327 0.442953i
\(897\) 99.8279 10.2726i 0.111291 0.0114521i
\(898\) 1265.71 919.596i 1.40948 1.02405i
\(899\) −159.587 + 219.653i −0.177517 + 0.244331i
\(900\) −1502.57 676.843i −1.66952 0.752048i
\(901\) 500.866 0.555900
\(902\) 0 0
\(903\) 385.237 170.514i 0.426619 0.188831i
\(904\) −820.317 2524.68i −0.907430 2.79278i
\(905\) −159.843 + 220.004i −0.176622 + 0.243099i
\(906\) −2538.63 1473.06i −2.80203 1.62590i
\(907\) 44.9979 138.489i 0.0496118 0.152690i −0.923181 0.384365i \(-0.874421\pi\)
0.972793 + 0.231675i \(0.0744206\pi\)
\(908\) −951.902 309.292i −1.04835 0.340630i
\(909\) −114.474 12.5361i −0.125934 0.0137911i
\(910\) −88.2704 64.1322i −0.0970004 0.0704749i
\(911\) 1024.00 332.718i 1.12404 0.365223i 0.312732 0.949841i \(-0.398756\pi\)
0.811308 + 0.584619i \(0.198756\pi\)
\(912\) 787.712 348.658i 0.863719 0.382301i
\(913\) 0 0
\(914\) 855.714i 0.936230i
\(915\) −361.271 + 323.868i −0.394831 + 0.353954i
\(916\) −2644.76 1921.53i −2.88730 2.09774i
\(917\) −800.637 1101.98i −0.873105 1.20173i
\(918\) −968.844 713.624i −1.05539 0.777369i
\(919\) −97.6839 + 300.640i −0.106294 + 0.327138i −0.990032 0.140843i \(-0.955019\pi\)
0.883738 + 0.467982i \(0.155019\pi\)
\(920\) 435.594 + 599.544i 0.473472 + 0.651678i
\(921\) −1134.14 243.652i −1.23142 0.264551i
\(922\) 788.358 + 2426.32i 0.855052 + 2.63158i
\(923\) 16.7976i 0.0181990i
\(924\) 0 0
\(925\) 149.606 0.161737
\(926\) 1574.45 511.571i 1.70028 0.552453i
\(927\) −621.768 + 129.333i −0.670731 + 0.139518i
\(928\) 259.506 188.542i 0.279640 0.203170i
\(929\) −1063.90 345.682i −1.14521 0.372101i −0.325872 0.945414i \(-0.605658\pi\)
−0.819337 + 0.573313i \(0.805658\pi\)
\(930\) 53.7551 + 522.387i 0.0578012 + 0.561707i
\(931\) 252.615 183.536i 0.271337 0.197138i
\(932\) −909.843 + 1252.29i −0.976226 + 1.34366i
\(933\) −206.050 + 184.717i −0.220847 + 0.197982i
\(934\) −173.568 −0.185833
\(935\) 0 0
\(936\) −191.374 173.829i −0.204459 0.185715i
\(937\) −324.843 999.765i −0.346684 1.06699i −0.960676 0.277672i \(-0.910437\pi\)
0.613991 0.789313i \(-0.289563\pi\)
\(938\) −1175.64 + 1618.12i −1.25334 + 1.72508i
\(939\) −112.017 + 193.048i −0.119294 + 0.205588i
\(940\) −259.067 + 797.325i −0.275603 + 0.848218i
\(941\) 304.866 + 99.0570i 0.323981 + 0.105268i 0.466492 0.884525i \(-0.345518\pi\)
−0.142511 + 0.989793i \(0.545518\pi\)
\(942\) 56.4016 + 32.7275i 0.0598744 + 0.0347426i
\(943\) −639.664 464.743i −0.678329 0.492835i
\(944\) 2925.37 950.510i 3.09891 1.00690i
\(945\) 473.823 + 157.384i 0.501400 + 0.166544i
\(946\) 0 0
\(947\) 689.980i 0.728596i −0.931283 0.364298i \(-0.881309\pi\)
0.931283 0.364298i \(-0.118691\pi\)
\(948\) −1532.87 1709.89i −1.61695 1.80369i
\(949\) −99.2979 72.1442i −0.104634 0.0760213i
\(950\) 459.977 + 633.104i 0.484187 + 0.666426i
\(951\) 1563.08 160.846i 1.64362 0.169133i
\(952\) −594.253 + 1828.92i −0.624216 + 1.92114i
\(953\) 788.855 + 1085.77i 0.827760 + 1.13931i 0.988336 + 0.152290i \(0.0486647\pi\)
−0.160576 + 0.987023i \(0.551335\pi\)
\(954\) −1274.35 + 265.074i −1.33579 + 0.277856i
\(955\) −203.464 626.198i −0.213051 0.655705i
\(956\) 3062.78i 3.20374i
\(957\) 0 0
\(958\) −614.947 −0.641907
\(959\) 679.743 220.862i 0.708804 0.230304i
\(960\) −12.6013 + 58.6562i −0.0131264 + 0.0611002i
\(961\) 334.925 243.337i 0.348517 0.253212i
\(962\) 40.6611 + 13.2116i 0.0422673 + 0.0137335i
\(963\) −1439.45 + 822.728i −1.49476 + 0.854339i
\(964\) 1875.83 1362.87i 1.94588 1.41377i
\(965\) −179.550 + 247.129i −0.186062 + 0.256093i
\(966\) 1294.88 + 1444.42i 1.34046 + 1.49526i
\(967\) −1283.30 −1.32709 −0.663546 0.748135i \(-0.730949\pi\)
−0.663546 + 0.748135i \(0.730949\pi\)
\(968\) 0 0
\(969\) 159.384 + 360.091i 0.164483 + 0.371611i
\(970\) 178.476 + 549.292i 0.183996 + 0.566281i
\(971\) −500.100 + 688.328i −0.515036 + 0.708886i −0.984758 0.173928i \(-0.944354\pi\)
0.469722 + 0.882814i \(0.344354\pi\)
\(972\) 1959.08 + 897.926i 2.01551 + 0.923792i
\(973\) 580.471 1786.50i 0.596578 1.83608i
\(974\) −1690.49 549.274i −1.73562 0.563936i
\(975\) 51.1324 88.1201i 0.0524435 0.0903796i
\(976\) 1704.31 + 1238.25i 1.74622 + 1.26870i
\(977\) 1153.28 374.724i 1.18043 0.383545i 0.347904 0.937530i \(-0.386893\pi\)
0.832527 + 0.553985i \(0.186893\pi\)
\(978\) −705.322 1593.51i −0.721188 1.62936i
\(979\) 0 0
\(980\) 546.831i 0.557991i
\(981\) 480.367 + 216.385i 0.489671 + 0.220576i
\(982\) −958.436 696.345i −0.976004 0.709109i
\(983\) 267.240 + 367.825i 0.271862 + 0.374186i 0.923017 0.384759i \(-0.125715\pi\)
−0.651155 + 0.758945i \(0.725715\pi\)
\(984\) 208.504 + 2026.23i 0.211895 + 2.05917i
\(985\) −147.939 + 455.310i −0.150192 + 0.462243i
\(986\) 304.095 + 418.551i 0.308413 + 0.424494i
\(987\) −253.040 + 1177.84i −0.256373 + 1.19335i
\(988\) 47.6262 + 146.578i 0.0482046 + 0.148359i
\(989\) 322.239i 0.325823i
\(990\) 0 0
\(991\) 697.554 0.703889 0.351945 0.936021i \(-0.385521\pi\)
0.351945 + 0.936021i \(0.385521\pi\)
\(992\) 614.626 199.704i 0.619583 0.201315i
\(993\) 738.273 + 158.606i 0.743478 + 0.159724i
\(994\) −262.687 + 190.853i −0.264272 + 0.192005i
\(995\) −772.595 251.031i −0.776478 0.252293i
\(996\) 312.517 32.1588i 0.313772 0.0322880i
\(997\) 529.077 384.397i 0.530669 0.385553i −0.289939 0.957045i \(-0.593635\pi\)
0.820608 + 0.571492i \(0.193635\pi\)
\(998\) 231.520 318.660i 0.231984 0.319299i
\(999\) −195.636 1.27824i −0.195832 0.00127952i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.n.269.1 16
3.2 odd 2 inner 363.3.h.n.269.4 16
11.2 odd 10 363.3.h.o.251.1 16
11.3 even 5 363.3.b.l.122.8 8
11.4 even 5 363.3.h.j.245.1 16
11.5 even 5 363.3.h.j.323.4 16
11.6 odd 10 33.3.h.b.26.1 yes 16
11.7 odd 10 33.3.h.b.14.4 yes 16
11.8 odd 10 363.3.b.m.122.1 8
11.9 even 5 inner 363.3.h.n.251.4 16
11.10 odd 2 363.3.h.o.269.4 16
33.2 even 10 363.3.h.o.251.4 16
33.5 odd 10 363.3.h.j.323.1 16
33.8 even 10 363.3.b.m.122.8 8
33.14 odd 10 363.3.b.l.122.1 8
33.17 even 10 33.3.h.b.26.4 yes 16
33.20 odd 10 inner 363.3.h.n.251.1 16
33.26 odd 10 363.3.h.j.245.4 16
33.29 even 10 33.3.h.b.14.1 16
33.32 even 2 363.3.h.o.269.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.14.1 16 33.29 even 10
33.3.h.b.14.4 yes 16 11.7 odd 10
33.3.h.b.26.1 yes 16 11.6 odd 10
33.3.h.b.26.4 yes 16 33.17 even 10
363.3.b.l.122.1 8 33.14 odd 10
363.3.b.l.122.8 8 11.3 even 5
363.3.b.m.122.1 8 11.8 odd 10
363.3.b.m.122.8 8 33.8 even 10
363.3.h.j.245.1 16 11.4 even 5
363.3.h.j.245.4 16 33.26 odd 10
363.3.h.j.323.1 16 33.5 odd 10
363.3.h.j.323.4 16 11.5 even 5
363.3.h.n.251.1 16 33.20 odd 10 inner
363.3.h.n.251.4 16 11.9 even 5 inner
363.3.h.n.269.1 16 1.1 even 1 trivial
363.3.h.n.269.4 16 3.2 odd 2 inner
363.3.h.o.251.1 16 11.2 odd 10
363.3.h.o.251.4 16 33.2 even 10
363.3.h.o.269.1 16 33.32 even 2
363.3.h.o.269.4 16 11.10 odd 2