Properties

Label 363.3.h.n.251.4
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.4
Root \(-2.10855 + 2.90217i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.n.269.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.41170 + 1.10853i) q^{2} +(1.50565 - 2.59480i) q^{3} +(7.17480 + 5.21280i) q^{4} +(-1.98428 + 0.644731i) q^{5} +(8.01326 - 7.18363i) q^{6} +(7.17034 + 5.20956i) q^{7} +(10.2655 + 14.1293i) q^{8} +(-4.46601 - 7.81376i) q^{9} -7.48447 q^{10} +(24.3290 - 10.7685i) q^{12} +(0.508273 - 1.56430i) q^{13} +(18.6881 + 25.7220i) q^{14} +(-1.31469 + 6.11955i) q^{15} +(8.39811 + 25.8467i) q^{16} +(-11.8154 + 3.83907i) q^{17} +(-6.57491 - 31.6089i) q^{18} +(8.54780 - 6.21034i) q^{19} +(-17.5977 - 5.71782i) q^{20} +(24.3138 - 10.7618i) q^{21} -20.3378i q^{23} +(52.1192 - 5.36321i) q^{24} +(-16.7037 + 12.1360i) q^{25} +(3.46815 - 4.77350i) q^{26} +(-26.9994 - 0.176408i) q^{27} +(24.2894 + 74.7550i) q^{28} +(6.82340 - 9.39161i) q^{29} +(-11.2690 + 19.4207i) q^{30} +(-7.22737 + 22.2436i) q^{31} +27.6317i q^{32} -44.5665 q^{34} +(-17.5867 - 5.71427i) q^{35} +(8.68881 - 79.3425i) q^{36} +(-5.86208 - 4.25905i) q^{37} +(36.0469 - 11.7123i) q^{38} +(-3.29377 - 3.67417i) q^{39} +(-29.4793 - 21.4180i) q^{40} +(-22.8512 - 31.4520i) q^{41} +(94.8813 - 9.76355i) q^{42} +15.8444 q^{43} +(13.8996 + 12.6253i) q^{45} +(22.5450 - 69.3864i) q^{46} +(26.6317 + 36.6554i) q^{47} +(79.7118 + 17.1248i) q^{48} +(9.13245 + 28.1068i) q^{49} +(-70.4413 + 22.8878i) q^{50} +(-7.82835 + 36.4391i) q^{51} +(11.8011 - 8.57403i) q^{52} +(-38.3428 - 12.4583i) q^{53} +(-91.9184 - 30.5315i) q^{54} +154.791i q^{56} +(-3.24458 - 31.5305i) q^{57} +(33.6903 - 24.4774i) q^{58} +(-66.5264 + 91.5657i) q^{59} +(-41.3326 + 37.0534i) q^{60} +(-23.9538 - 73.7222i) q^{61} +(-49.3152 + 67.8766i) q^{62} +(8.68341 - 79.2932i) q^{63} +(2.96194 - 9.11592i) q^{64} +3.43171i q^{65} +62.9082 q^{67} +(-104.786 - 34.0470i) q^{68} +(-52.7725 - 30.6217i) q^{69} +(-53.6662 - 38.9908i) q^{70} +(-9.71270 + 3.15585i) q^{71} +(64.5570 - 143.314i) q^{72} +(-60.3706 - 43.8618i) q^{73} +(-15.2784 - 21.0289i) q^{74} +(6.34041 + 61.6155i) q^{75} +93.7020 q^{76} +(-7.16445 - 16.1864i) q^{78} +(-26.6720 + 82.0879i) q^{79} +(-33.3284 - 45.8726i) q^{80} +(-41.1096 + 69.7926i) q^{81} +(-43.0961 - 132.636i) q^{82} +(-11.2304 + 3.64896i) q^{83} +(230.546 + 49.5291i) q^{84} +(20.9700 - 15.2356i) q^{85} +(54.0563 + 17.5639i) q^{86} +(-14.0957 - 31.8459i) q^{87} -74.5782i q^{89} +(33.4257 + 58.4818i) q^{90} +(11.7938 - 8.56870i) q^{91} +(106.017 - 145.919i) q^{92} +(46.8357 + 52.2447i) q^{93} +(50.2259 + 154.579i) q^{94} +(-12.9572 + 17.8341i) q^{95} +(71.6987 + 41.6037i) q^{96} +(-23.8462 + 73.3909i) q^{97} +106.016i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} + 18 q^{4} - 32 q^{6} + 34 q^{7} + 17 q^{9} + 12 q^{10} + 106 q^{12} + 2 q^{13} - 28 q^{15} + 102 q^{16} - 42 q^{18} - 66 q^{19} + 12 q^{21} + 74 q^{24} - 176 q^{25} - 55 q^{27} + 146 q^{28}+ \cdots + 252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.41170 + 1.10853i 1.70585 + 0.554264i 0.989634 0.143614i \(-0.0458722\pi\)
0.716217 + 0.697878i \(0.245872\pi\)
\(3\) 1.50565 2.59480i 0.501885 0.864934i
\(4\) 7.17480 + 5.21280i 1.79370 + 1.30320i
\(5\) −1.98428 + 0.644731i −0.396856 + 0.128946i −0.500644 0.865653i \(-0.666903\pi\)
0.103789 + 0.994599i \(0.466903\pi\)
\(6\) 8.01326 7.18363i 1.33554 1.19727i
\(7\) 7.17034 + 5.20956i 1.02433 + 0.744222i 0.967167 0.254142i \(-0.0817932\pi\)
0.0571672 + 0.998365i \(0.481793\pi\)
\(8\) 10.2655 + 14.1293i 1.28319 + 1.76616i
\(9\) −4.46601 7.81376i −0.496223 0.868195i
\(10\) −7.48447 −0.748447
\(11\) 0 0
\(12\) 24.3290 10.7685i 2.02741 0.897377i
\(13\) 0.508273 1.56430i 0.0390979 0.120331i −0.929603 0.368564i \(-0.879850\pi\)
0.968700 + 0.248233i \(0.0798497\pi\)
\(14\) 18.6881 + 25.7220i 1.33486 + 1.83728i
\(15\) −1.31469 + 6.11955i −0.0876459 + 0.407970i
\(16\) 8.39811 + 25.8467i 0.524882 + 1.61542i
\(17\) −11.8154 + 3.83907i −0.695026 + 0.225828i −0.635162 0.772379i \(-0.719067\pi\)
−0.0598641 + 0.998207i \(0.519067\pi\)
\(18\) −6.57491 31.6089i −0.365273 1.75605i
\(19\) 8.54780 6.21034i 0.449884 0.326860i −0.339666 0.940546i \(-0.610314\pi\)
0.789550 + 0.613686i \(0.210314\pi\)
\(20\) −17.5977 5.71782i −0.879883 0.285891i
\(21\) 24.3138 10.7618i 1.15780 0.512468i
\(22\) 0 0
\(23\) 20.3378i 0.884251i −0.896953 0.442126i \(-0.854225\pi\)
0.896953 0.442126i \(-0.145775\pi\)
\(24\) 52.1192 5.36321i 2.17163 0.223467i
\(25\) −16.7037 + 12.1360i −0.668150 + 0.485439i
\(26\) 3.46815 4.77350i 0.133390 0.183596i
\(27\) −26.9994 0.176408i −0.999979 0.00653363i
\(28\) 24.2894 + 74.7550i 0.867478 + 2.66982i
\(29\) 6.82340 9.39161i 0.235290 0.323849i −0.675002 0.737816i \(-0.735857\pi\)
0.910292 + 0.413967i \(0.135857\pi\)
\(30\) −11.2690 + 19.4207i −0.375634 + 0.647357i
\(31\) −7.22737 + 22.2436i −0.233141 + 0.717534i 0.764222 + 0.644954i \(0.223123\pi\)
−0.997363 + 0.0725803i \(0.976877\pi\)
\(32\) 27.6317i 0.863489i
\(33\) 0 0
\(34\) −44.5665 −1.31078
\(35\) −17.5867 5.71427i −0.502477 0.163265i
\(36\) 8.68881 79.3425i 0.241356 2.20396i
\(37\) −5.86208 4.25905i −0.158435 0.115109i 0.505743 0.862684i \(-0.331218\pi\)
−0.664178 + 0.747575i \(0.731218\pi\)
\(38\) 36.0469 11.7123i 0.948602 0.308220i
\(39\) −3.29377 3.67417i −0.0844557 0.0942094i
\(40\) −29.4793 21.4180i −0.736983 0.535449i
\(41\) −22.8512 31.4520i −0.557347 0.767122i 0.433639 0.901087i \(-0.357229\pi\)
−0.990986 + 0.133964i \(0.957229\pi\)
\(42\) 94.8813 9.76355i 2.25908 0.232465i
\(43\) 15.8444 0.368474 0.184237 0.982882i \(-0.441019\pi\)
0.184237 + 0.982882i \(0.441019\pi\)
\(44\) 0 0
\(45\) 13.8996 + 12.6253i 0.308879 + 0.280562i
\(46\) 22.5450 69.3864i 0.490109 1.50840i
\(47\) 26.6317 + 36.6554i 0.566633 + 0.779903i 0.992151 0.125047i \(-0.0399082\pi\)
−0.425518 + 0.904950i \(0.639908\pi\)
\(48\) 79.7118 + 17.1248i 1.66066 + 0.356767i
\(49\) 9.13245 + 28.1068i 0.186376 + 0.573608i
\(50\) −70.4413 + 22.8878i −1.40883 + 0.457755i
\(51\) −7.82835 + 36.4391i −0.153497 + 0.714492i
\(52\) 11.8011 8.57403i 0.226945 0.164885i
\(53\) −38.3428 12.4583i −0.723450 0.235063i −0.0759315 0.997113i \(-0.524193\pi\)
−0.647518 + 0.762050i \(0.724193\pi\)
\(54\) −91.9184 30.5315i −1.70219 0.565398i
\(55\) 0 0
\(56\) 154.791i 2.76412i
\(57\) −3.24458 31.5305i −0.0569224 0.553167i
\(58\) 33.6903 24.4774i 0.580867 0.422024i
\(59\) −66.5264 + 91.5657i −1.12757 + 1.55196i −0.334955 + 0.942234i \(0.608721\pi\)
−0.792611 + 0.609727i \(0.791279\pi\)
\(60\) −41.3326 + 37.0534i −0.688877 + 0.617556i
\(61\) −23.9538 73.7222i −0.392685 1.20856i −0.930750 0.365657i \(-0.880844\pi\)
0.538065 0.842903i \(-0.319156\pi\)
\(62\) −49.3152 + 67.8766i −0.795407 + 1.09478i
\(63\) 8.68341 79.2932i 0.137832 1.25862i
\(64\) 2.96194 9.11592i 0.0462803 0.142436i
\(65\) 3.43171i 0.0527956i
\(66\) 0 0
\(67\) 62.9082 0.938929 0.469464 0.882951i \(-0.344447\pi\)
0.469464 + 0.882951i \(0.344447\pi\)
\(68\) −104.786 34.0470i −1.54097 0.500691i
\(69\) −52.7725 30.6217i −0.764819 0.443792i
\(70\) −53.6662 38.9908i −0.766660 0.557011i
\(71\) −9.71270 + 3.15585i −0.136799 + 0.0444486i −0.376616 0.926369i \(-0.622912\pi\)
0.239817 + 0.970818i \(0.422912\pi\)
\(72\) 64.5570 143.314i 0.896625 1.99047i
\(73\) −60.3706 43.8618i −0.826995 0.600847i 0.0917125 0.995786i \(-0.470766\pi\)
−0.918708 + 0.394938i \(0.870766\pi\)
\(74\) −15.2784 21.0289i −0.206465 0.284174i
\(75\) 6.34041 + 61.6155i 0.0845388 + 0.821540i
\(76\) 93.7020 1.23292
\(77\) 0 0
\(78\) −7.16445 16.1864i −0.0918519 0.207518i
\(79\) −26.6720 + 82.0879i −0.337620 + 1.03909i 0.627797 + 0.778377i \(0.283957\pi\)
−0.965417 + 0.260710i \(0.916043\pi\)
\(80\) −33.3284 45.8726i −0.416605 0.573407i
\(81\) −41.1096 + 69.7926i −0.507525 + 0.861637i
\(82\) −43.0961 132.636i −0.525562 1.61751i
\(83\) −11.2304 + 3.64896i −0.135305 + 0.0439634i −0.375887 0.926666i \(-0.622662\pi\)
0.240581 + 0.970629i \(0.422662\pi\)
\(84\) 230.546 + 49.5291i 2.74460 + 0.589632i
\(85\) 20.9700 15.2356i 0.246705 0.179242i
\(86\) 54.0563 + 17.5639i 0.628561 + 0.204232i
\(87\) −14.0957 31.8459i −0.162019 0.366045i
\(88\) 0 0
\(89\) 74.5782i 0.837957i −0.907996 0.418979i \(-0.862388\pi\)
0.907996 0.418979i \(-0.137612\pi\)
\(90\) 33.4257 + 58.4818i 0.371397 + 0.649798i
\(91\) 11.7938 8.56870i 0.129602 0.0941616i
\(92\) 106.017 145.919i 1.15236 1.58608i
\(93\) 46.8357 + 52.2447i 0.503610 + 0.561771i
\(94\) 50.2259 + 154.579i 0.534318 + 1.64446i
\(95\) −12.9572 + 17.8341i −0.136392 + 0.187727i
\(96\) 71.6987 + 41.6037i 0.746862 + 0.433372i
\(97\) −23.8462 + 73.3909i −0.245837 + 0.756608i 0.749661 + 0.661822i \(0.230217\pi\)
−0.995498 + 0.0947856i \(0.969783\pi\)
\(98\) 106.016i 1.08179i
\(99\) 0 0
\(100\) −183.108 −1.83108
\(101\) 12.1692 + 3.95400i 0.120487 + 0.0391485i 0.368640 0.929572i \(-0.379824\pi\)
−0.248153 + 0.968721i \(0.579824\pi\)
\(102\) −67.1017 + 115.641i −0.657860 + 1.13374i
\(103\) −57.0875 41.4765i −0.554248 0.402685i 0.275101 0.961415i \(-0.411289\pi\)
−0.829349 + 0.558731i \(0.811289\pi\)
\(104\) 27.3202 8.87688i 0.262694 0.0853546i
\(105\) −41.3069 + 37.0303i −0.393399 + 0.352670i
\(106\) −117.004 85.0083i −1.10381 0.801965i
\(107\) 108.282 + 149.037i 1.01198 + 1.39287i 0.917677 + 0.397328i \(0.130062\pi\)
0.0943034 + 0.995544i \(0.469938\pi\)
\(108\) −192.796 142.008i −1.78515 1.31489i
\(109\) 58.5394 0.537058 0.268529 0.963272i \(-0.413462\pi\)
0.268529 + 0.963272i \(0.413462\pi\)
\(110\) 0 0
\(111\) −19.8777 + 8.79828i −0.179078 + 0.0792638i
\(112\) −74.4327 + 229.080i −0.664577 + 2.04536i
\(113\) 89.3418 + 122.968i 0.790635 + 1.08822i 0.994029 + 0.109119i \(0.0348030\pi\)
−0.203393 + 0.979097i \(0.565197\pi\)
\(114\) 23.8829 111.169i 0.209500 0.975170i
\(115\) 13.1124 + 40.3558i 0.114021 + 0.350920i
\(116\) 97.9131 31.8139i 0.844078 0.274258i
\(117\) −14.4930 + 3.01467i −0.123872 + 0.0257664i
\(118\) −328.471 + 238.648i −2.78366 + 2.02244i
\(119\) −104.721 34.0258i −0.880005 0.285931i
\(120\) −99.9611 + 44.2449i −0.833009 + 0.368708i
\(121\) 0 0
\(122\) 278.071i 2.27927i
\(123\) −116.018 + 11.9386i −0.943235 + 0.0970615i
\(124\) −167.806 + 121.918i −1.35327 + 0.983212i
\(125\) 55.9792 77.0488i 0.447834 0.616390i
\(126\) 117.524 260.899i 0.932730 2.07063i
\(127\) 4.41099 + 13.5756i 0.0347322 + 0.106895i 0.966920 0.255081i \(-0.0821022\pi\)
−0.932187 + 0.361976i \(0.882102\pi\)
\(128\) 85.1764 117.235i 0.665441 0.915901i
\(129\) 23.8562 41.1130i 0.184931 0.318706i
\(130\) −3.80415 + 11.7080i −0.0292627 + 0.0900613i
\(131\) 153.686i 1.17318i −0.809885 0.586589i \(-0.800471\pi\)
0.809885 0.586589i \(-0.199529\pi\)
\(132\) 0 0
\(133\) 93.6438 0.704088
\(134\) 214.624 + 69.7356i 1.60167 + 0.520415i
\(135\) 53.6881 17.0573i 0.397690 0.126351i
\(136\) −175.535 127.534i −1.29070 0.937750i
\(137\) −76.6942 + 24.9195i −0.559812 + 0.181894i −0.575237 0.817987i \(-0.695090\pi\)
0.0154246 + 0.999881i \(0.495090\pi\)
\(138\) −146.099 162.972i −1.05869 1.18096i
\(139\) 171.464 + 124.576i 1.23356 + 0.896231i 0.997152 0.0754243i \(-0.0240311\pi\)
0.236404 + 0.971655i \(0.424031\pi\)
\(140\) −96.3938 132.675i −0.688527 0.947676i
\(141\) 135.212 13.9137i 0.958949 0.0986785i
\(142\) −36.6352 −0.257994
\(143\) 0 0
\(144\) 164.454 181.052i 1.14204 1.25731i
\(145\) −7.48447 + 23.0348i −0.0516170 + 0.158861i
\(146\) −157.344 216.566i −1.07770 1.48333i
\(147\) 86.6819 + 18.6222i 0.589673 + 0.126682i
\(148\) −19.8577 61.1156i −0.134173 0.412943i
\(149\) 215.252 69.9397i 1.44465 0.469394i 0.521303 0.853371i \(-0.325446\pi\)
0.923342 + 0.383978i \(0.125446\pi\)
\(150\) −46.6710 + 217.242i −0.311140 + 1.44828i
\(151\) 220.642 160.306i 1.46121 1.06163i 0.478161 0.878272i \(-0.341304\pi\)
0.983046 0.183357i \(-0.0586964\pi\)
\(152\) 175.496 + 57.0220i 1.15458 + 0.375145i
\(153\) 82.7654 + 75.1777i 0.540951 + 0.491357i
\(154\) 0 0
\(155\) 48.7971i 0.314820i
\(156\) −4.47948 43.5312i −0.0287146 0.279046i
\(157\) −4.90208 + 3.56157i −0.0312234 + 0.0226852i −0.603288 0.797524i \(-0.706143\pi\)
0.572064 + 0.820209i \(0.306143\pi\)
\(158\) −181.994 + 250.493i −1.15186 + 1.58540i
\(159\) −90.0580 + 80.7341i −0.566403 + 0.507762i
\(160\) −17.8150 54.8289i −0.111344 0.342681i
\(161\) 105.951 145.829i 0.658079 0.905769i
\(162\) −217.621 + 192.540i −1.34334 + 1.18852i
\(163\) 50.0381 154.002i 0.306982 0.944795i −0.671947 0.740599i \(-0.734542\pi\)
0.978930 0.204196i \(-0.0654580\pi\)
\(164\) 344.781i 2.10232i
\(165\) 0 0
\(166\) −42.3596 −0.255178
\(167\) 151.417 + 49.1982i 0.906686 + 0.294600i 0.724994 0.688755i \(-0.241842\pi\)
0.181692 + 0.983355i \(0.441842\pi\)
\(168\) 401.652 + 233.062i 2.39079 + 1.38727i
\(169\) 134.535 + 97.7455i 0.796066 + 0.578376i
\(170\) 88.4323 28.7334i 0.520190 0.169020i
\(171\) −86.7006 39.0550i −0.507021 0.228392i
\(172\) 113.680 + 82.5935i 0.660931 + 0.480195i
\(173\) 22.5826 + 31.0822i 0.130535 + 0.179666i 0.869282 0.494317i \(-0.164582\pi\)
−0.738746 + 0.673983i \(0.764582\pi\)
\(174\) −12.7882 124.274i −0.0734952 0.714219i
\(175\) −182.995 −1.04568
\(176\) 0 0
\(177\) 137.429 + 310.489i 0.776437 + 1.75418i
\(178\) 82.6721 254.439i 0.464450 1.42943i
\(179\) −80.0291 110.151i −0.447090 0.615367i 0.524679 0.851300i \(-0.324185\pi\)
−0.971769 + 0.235933i \(0.924185\pi\)
\(180\) 33.9136 + 163.040i 0.188409 + 0.905776i
\(181\) −40.2773 123.961i −0.222526 0.684865i −0.998533 0.0541412i \(-0.982758\pi\)
0.776007 0.630724i \(-0.217242\pi\)
\(182\) 49.7356 16.1601i 0.273273 0.0887916i
\(183\) −227.361 48.8448i −1.24241 0.266911i
\(184\) 287.359 208.778i 1.56173 1.13467i
\(185\) 14.3779 + 4.67167i 0.0777186 + 0.0252523i
\(186\) 101.875 + 230.162i 0.547713 + 1.23743i
\(187\) 0 0
\(188\) 401.821i 2.13735i
\(189\) −192.676 141.920i −1.01945 0.750899i
\(190\) −63.9758 + 46.4811i −0.336715 + 0.244637i
\(191\) 185.493 255.309i 0.971169 1.33670i 0.0297142 0.999558i \(-0.490540\pi\)
0.941454 0.337140i \(-0.109460\pi\)
\(192\) −19.1943 21.4111i −0.0999706 0.111516i
\(193\) −45.2431 139.244i −0.234420 0.721472i −0.997198 0.0748107i \(-0.976165\pi\)
0.762777 0.646661i \(-0.223835\pi\)
\(194\) −162.712 + 223.954i −0.838721 + 1.15440i
\(195\) 8.90461 + 5.16697i 0.0456647 + 0.0264973i
\(196\) −80.9915 + 249.266i −0.413222 + 1.27177i
\(197\) 229.459i 1.16476i 0.812915 + 0.582382i \(0.197879\pi\)
−0.812915 + 0.582382i \(0.802121\pi\)
\(198\) 0 0
\(199\) −389.358 −1.95657 −0.978287 0.207253i \(-0.933548\pi\)
−0.978287 + 0.207253i \(0.933548\pi\)
\(200\) −342.946 111.430i −1.71473 0.557150i
\(201\) 94.7181 163.235i 0.471234 0.812112i
\(202\) 37.1344 + 26.9797i 0.183834 + 0.133563i
\(203\) 97.8522 31.7941i 0.482031 0.156621i
\(204\) −246.116 + 220.635i −1.20645 + 1.08155i
\(205\) 65.6213 + 47.6767i 0.320104 + 0.232569i
\(206\) −148.788 204.789i −0.722270 0.994120i
\(207\) −158.914 + 90.8287i −0.767703 + 0.438786i
\(208\) 44.7006 0.214907
\(209\) 0 0
\(210\) −181.976 + 80.5465i −0.866553 + 0.383555i
\(211\) −63.0362 + 194.005i −0.298750 + 0.919457i 0.683186 + 0.730244i \(0.260594\pi\)
−0.981936 + 0.189213i \(0.939406\pi\)
\(212\) −210.159 289.260i −0.991318 1.36443i
\(213\) −6.43517 + 29.9542i −0.0302121 + 0.140630i
\(214\) 204.213 + 628.504i 0.954268 + 2.93693i
\(215\) −31.4396 + 10.2154i −0.146231 + 0.0475133i
\(216\) −274.671 383.294i −1.27163 1.77451i
\(217\) −167.702 + 121.842i −0.772819 + 0.561486i
\(218\) 199.719 + 64.8926i 0.916141 + 0.297672i
\(219\) −204.710 + 90.6091i −0.934750 + 0.413740i
\(220\) 0 0
\(221\) 20.4342i 0.0924626i
\(222\) −77.5698 + 7.98214i −0.349413 + 0.0359556i
\(223\) 13.3648 9.71010i 0.0599319 0.0435431i −0.557416 0.830233i \(-0.688207\pi\)
0.617348 + 0.786690i \(0.288207\pi\)
\(224\) −143.949 + 198.128i −0.642628 + 0.884502i
\(225\) 169.427 + 76.3196i 0.753007 + 0.339198i
\(226\) 168.493 + 518.569i 0.745546 + 2.29456i
\(227\) 66.3365 91.3043i 0.292231 0.402222i −0.637506 0.770445i \(-0.720034\pi\)
0.929737 + 0.368224i \(0.120034\pi\)
\(228\) 141.083 243.138i 0.618785 1.06640i
\(229\) −113.909 + 350.577i −0.497421 + 1.53090i 0.315730 + 0.948849i \(0.397751\pi\)
−0.813150 + 0.582054i \(0.802249\pi\)
\(230\) 152.217i 0.661815i
\(231\) 0 0
\(232\) 202.743 0.873892
\(233\) 165.998 + 53.9359i 0.712436 + 0.231485i 0.642741 0.766084i \(-0.277797\pi\)
0.0696955 + 0.997568i \(0.477797\pi\)
\(234\) −52.7877 5.78079i −0.225589 0.0247042i
\(235\) −76.4777 55.5643i −0.325437 0.236444i
\(236\) −954.627 + 310.177i −4.04503 + 1.31431i
\(237\) 172.843 + 192.805i 0.729296 + 0.813521i
\(238\) −319.557 232.172i −1.34268 0.975511i
\(239\) 202.993 + 279.397i 0.849345 + 1.16902i 0.984007 + 0.178132i \(0.0570053\pi\)
−0.134661 + 0.990892i \(0.542995\pi\)
\(240\) −169.211 + 17.4123i −0.705047 + 0.0725513i
\(241\) 261.447 1.08484 0.542421 0.840107i \(-0.317508\pi\)
0.542421 + 0.840107i \(0.317508\pi\)
\(242\) 0 0
\(243\) 119.201 + 211.755i 0.490540 + 0.871419i
\(244\) 212.435 653.808i 0.870636 2.67954i
\(245\) −36.2426 49.8837i −0.147929 0.203607i
\(246\) −409.052 87.8783i −1.66282 0.357229i
\(247\) −5.37024 16.5279i −0.0217419 0.0669146i
\(248\) −388.479 + 126.224i −1.56645 + 0.508970i
\(249\) −7.44069 + 34.6346i −0.0298823 + 0.139095i
\(250\) 276.395 200.813i 1.10558 0.803251i
\(251\) 188.638 + 61.2921i 0.751544 + 0.244192i 0.659646 0.751577i \(-0.270706\pi\)
0.0918987 + 0.995768i \(0.470706\pi\)
\(252\) 475.641 523.648i 1.88746 2.07797i
\(253\) 0 0
\(254\) 51.2057i 0.201597i
\(255\) −7.95978 77.3524i −0.0312148 0.303343i
\(256\) 389.537 283.016i 1.52163 1.10553i
\(257\) 1.09633 1.50897i 0.00426588 0.00587148i −0.806879 0.590717i \(-0.798845\pi\)
0.811145 + 0.584846i \(0.198845\pi\)
\(258\) 126.965 113.820i 0.492113 0.441163i
\(259\) −19.8453 61.0776i −0.0766229 0.235821i
\(260\) −17.8888 + 24.6218i −0.0688031 + 0.0946994i
\(261\) −103.857 11.3734i −0.397920 0.0435763i
\(262\) 170.366 524.332i 0.650251 2.00127i
\(263\) 27.0901i 0.103004i −0.998673 0.0515020i \(-0.983599\pi\)
0.998673 0.0515020i \(-0.0164009\pi\)
\(264\) 0 0
\(265\) 84.1151 0.317416
\(266\) 319.485 + 103.807i 1.20107 + 0.390251i
\(267\) −193.516 112.289i −0.724778 0.420558i
\(268\) 451.354 + 327.928i 1.68416 + 1.22361i
\(269\) 135.856 44.1424i 0.505042 0.164098i −0.0454041 0.998969i \(-0.514458\pi\)
0.550446 + 0.834871i \(0.314458\pi\)
\(270\) 202.076 + 1.32032i 0.748431 + 0.00489008i
\(271\) −85.2115 61.9098i −0.314434 0.228449i 0.419363 0.907819i \(-0.362254\pi\)
−0.733797 + 0.679369i \(0.762254\pi\)
\(272\) −198.455 273.150i −0.729613 1.00423i
\(273\) −4.47669 43.5041i −0.0163981 0.159356i
\(274\) −289.282 −1.05577
\(275\) 0 0
\(276\) −219.008 494.797i −0.793507 1.79274i
\(277\) −75.6843 + 232.932i −0.273229 + 0.840911i 0.716454 + 0.697634i \(0.245764\pi\)
−0.989683 + 0.143277i \(0.954236\pi\)
\(278\) 446.889 + 615.089i 1.60751 + 2.21255i
\(279\) 206.083 42.8670i 0.738649 0.153645i
\(280\) −99.7985 307.148i −0.356423 1.09696i
\(281\) 61.9247 20.1206i 0.220373 0.0716034i −0.196750 0.980454i \(-0.563039\pi\)
0.417122 + 0.908850i \(0.363039\pi\)
\(282\) 476.726 + 102.417i 1.69052 + 0.363181i
\(283\) −127.482 + 92.6208i −0.450465 + 0.327282i −0.789779 0.613391i \(-0.789805\pi\)
0.339314 + 0.940673i \(0.389805\pi\)
\(284\) −86.1375 27.9878i −0.303301 0.0985485i
\(285\) 26.7668 + 60.4734i 0.0939187 + 0.212187i
\(286\) 0 0
\(287\) 344.566i 1.20058i
\(288\) 215.907 123.403i 0.749677 0.428483i
\(289\) −108.940 + 79.1493i −0.376954 + 0.273873i
\(290\) −51.0695 + 70.2912i −0.176102 + 0.242383i
\(291\) 154.531 + 172.378i 0.531034 + 0.592363i
\(292\) −204.504 629.400i −0.700358 2.15548i
\(293\) −108.158 + 148.867i −0.369139 + 0.508077i −0.952667 0.304017i \(-0.901672\pi\)
0.583527 + 0.812094i \(0.301672\pi\)
\(294\) 275.089 + 159.623i 0.935678 + 0.542935i
\(295\) 72.9716 224.584i 0.247361 0.761300i
\(296\) 126.549i 0.427529i
\(297\) 0 0
\(298\) 811.906 2.72452
\(299\) −31.8144 10.3371i −0.106403 0.0345724i
\(300\) −275.698 + 475.130i −0.918994 + 1.58377i
\(301\) 113.610 + 82.5421i 0.377440 + 0.274226i
\(302\) 930.469 302.328i 3.08102 1.00109i
\(303\) 28.5824 25.6232i 0.0943313 0.0845650i
\(304\) 232.302 + 168.778i 0.764153 + 0.555189i
\(305\) 95.0619 + 130.842i 0.311679 + 0.428989i
\(306\) 199.034 + 348.232i 0.650439 + 1.13801i
\(307\) −386.672 −1.25952 −0.629759 0.776790i \(-0.716846\pi\)
−0.629759 + 0.776790i \(0.716846\pi\)
\(308\) 0 0
\(309\) −193.578 + 85.6816i −0.626465 + 0.277287i
\(310\) 54.0930 166.481i 0.174494 0.537036i
\(311\) 54.2185 + 74.6253i 0.174336 + 0.239953i 0.887239 0.461309i \(-0.152620\pi\)
−0.712903 + 0.701262i \(0.752620\pi\)
\(312\) 18.1011 84.2561i 0.0580162 0.270052i
\(313\) −22.9902 70.7565i −0.0734510 0.226059i 0.907591 0.419856i \(-0.137920\pi\)
−0.981042 + 0.193797i \(0.937920\pi\)
\(314\) −20.6725 + 6.71691i −0.0658361 + 0.0213914i
\(315\) 33.8925 + 162.938i 0.107595 + 0.517264i
\(316\) −619.274 + 449.929i −1.95973 + 1.42382i
\(317\) −498.144 161.857i −1.57143 0.510589i −0.611600 0.791167i \(-0.709474\pi\)
−0.959831 + 0.280578i \(0.909474\pi\)
\(318\) −396.747 + 175.609i −1.24763 + 0.552229i
\(319\) 0 0
\(320\) 19.9982i 0.0624943i
\(321\) 549.757 56.5716i 1.71264 0.176235i
\(322\) 523.128 380.075i 1.62462 1.18036i
\(323\) −77.1542 + 106.194i −0.238867 + 0.328773i
\(324\) −658.767 + 286.452i −2.03323 + 0.884111i
\(325\) 10.4943 + 32.2981i 0.0322901 + 0.0993787i
\(326\) 341.430 469.939i 1.04733 1.44153i
\(327\) 88.1401 151.898i 0.269542 0.464520i
\(328\) 209.815 645.744i 0.639680 1.96873i
\(329\) 401.571i 1.22058i
\(330\) 0 0
\(331\) 251.706 0.760441 0.380221 0.924896i \(-0.375848\pi\)
0.380221 + 0.924896i \(0.375848\pi\)
\(332\) −99.5968 32.3610i −0.299990 0.0974728i
\(333\) −7.09908 + 64.8258i −0.0213186 + 0.194672i
\(334\) 462.051 + 335.699i 1.38339 + 1.00509i
\(335\) −124.827 + 40.5589i −0.372619 + 0.121071i
\(336\) 482.348 + 538.054i 1.43556 + 1.60135i
\(337\) −40.1679 29.1837i −0.119193 0.0865985i 0.526592 0.850118i \(-0.323470\pi\)
−0.645785 + 0.763520i \(0.723470\pi\)
\(338\) 350.640 + 482.615i 1.03740 + 1.42785i
\(339\) 453.597 46.6764i 1.33804 0.137688i
\(340\) 229.875 0.676104
\(341\) 0 0
\(342\) −252.503 229.354i −0.738313 0.670626i
\(343\) 53.2613 163.922i 0.155281 0.477905i
\(344\) 162.651 + 223.870i 0.472823 + 0.650785i
\(345\) 124.458 + 26.7378i 0.360748 + 0.0775010i
\(346\) 42.5894 + 131.077i 0.123091 + 0.378835i
\(347\) 437.276 142.079i 1.26016 0.409451i 0.398609 0.917121i \(-0.369493\pi\)
0.861551 + 0.507670i \(0.169493\pi\)
\(348\) 64.8725 301.966i 0.186415 0.867718i
\(349\) −318.550 + 231.440i −0.912750 + 0.663152i −0.941709 0.336429i \(-0.890781\pi\)
0.0289588 + 0.999581i \(0.490781\pi\)
\(350\) −624.323 202.855i −1.78378 0.579585i
\(351\) −13.9990 + 42.1456i −0.0398833 + 0.120073i
\(352\) 0 0
\(353\) 16.9433i 0.0479980i 0.999712 + 0.0239990i \(0.00763985\pi\)
−0.999712 + 0.0239990i \(0.992360\pi\)
\(354\) 124.681 + 1211.64i 0.352207 + 3.42271i
\(355\) 17.2380 12.5242i 0.0485578 0.0352793i
\(356\) 388.761 535.084i 1.09203 1.50304i
\(357\) −245.963 + 220.498i −0.688973 + 0.617642i
\(358\) −150.930 464.516i −0.421593 1.29753i
\(359\) −44.6059 + 61.3948i −0.124250 + 0.171016i −0.866611 0.498985i \(-0.833706\pi\)
0.742360 + 0.670001i \(0.233706\pi\)
\(360\) −35.7000 + 325.997i −0.0991666 + 0.905547i
\(361\) −77.0586 + 237.162i −0.213459 + 0.656958i
\(362\) 467.565i 1.29162i
\(363\) 0 0
\(364\) 129.285 0.355179
\(365\) 148.071 + 48.1113i 0.405675 + 0.131812i
\(366\) −721.541 418.680i −1.97142 1.14393i
\(367\) −501.030 364.020i −1.36520 0.991879i −0.998095 0.0617010i \(-0.980347\pi\)
−0.367109 0.930178i \(-0.619653\pi\)
\(368\) 525.665 170.799i 1.42844 0.464127i
\(369\) −143.705 + 319.019i −0.389443 + 0.864550i
\(370\) 43.8745 + 31.8767i 0.118580 + 0.0861533i
\(371\) −210.029 289.080i −0.566115 0.779190i
\(372\) 63.6958 + 618.990i 0.171225 + 1.66395i
\(373\) 365.674 0.980359 0.490179 0.871622i \(-0.336931\pi\)
0.490179 + 0.871622i \(0.336931\pi\)
\(374\) 0 0
\(375\) −115.641 261.264i −0.308376 0.696704i
\(376\) −244.527 + 752.576i −0.650337 + 2.00153i
\(377\) −11.2232 15.4474i −0.0297697 0.0409744i
\(378\) −500.031 697.775i −1.32283 1.84597i
\(379\) −126.661 389.823i −0.334198 1.02856i −0.967116 0.254337i \(-0.918143\pi\)
0.632917 0.774220i \(-0.281857\pi\)
\(380\) −185.931 + 60.4126i −0.489292 + 0.158981i
\(381\) 41.8675 + 8.99457i 0.109889 + 0.0236078i
\(382\) 915.865 665.415i 2.39755 1.74192i
\(383\) −50.3695 16.3660i −0.131513 0.0427311i 0.242521 0.970146i \(-0.422026\pi\)
−0.374034 + 0.927415i \(0.622026\pi\)
\(384\) −175.956 397.532i −0.458219 1.03524i
\(385\) 0 0
\(386\) 525.213i 1.36065i
\(387\) −70.7611 123.804i −0.182845 0.319907i
\(388\) −553.664 + 402.260i −1.42697 + 1.03675i
\(389\) −53.2922 + 73.3504i −0.136998 + 0.188561i −0.872004 0.489500i \(-0.837179\pi\)
0.735006 + 0.678061i \(0.237179\pi\)
\(390\) 24.6521 + 27.4992i 0.0632106 + 0.0705107i
\(391\) 78.0782 + 240.300i 0.199688 + 0.614578i
\(392\) −303.380 + 417.567i −0.773929 + 1.06522i
\(393\) −398.786 231.398i −1.01472 0.588800i
\(394\) −254.361 + 782.844i −0.645587 + 1.98691i
\(395\) 180.081i 0.455902i
\(396\) 0 0
\(397\) −335.768 −0.845763 −0.422882 0.906185i \(-0.638981\pi\)
−0.422882 + 0.906185i \(0.638981\pi\)
\(398\) −1328.37 431.615i −3.33762 1.08446i
\(399\) 140.995 242.987i 0.353371 0.608990i
\(400\) −453.955 329.818i −1.13489 0.824544i
\(401\) −17.9951 + 5.84696i −0.0448755 + 0.0145809i −0.331369 0.943501i \(-0.607510\pi\)
0.286493 + 0.958082i \(0.407510\pi\)
\(402\) 504.100 451.910i 1.25398 1.12415i
\(403\) 31.1222 + 22.6116i 0.0772262 + 0.0561081i
\(404\) 66.6999 + 91.8045i 0.165099 + 0.227239i
\(405\) 36.5754 164.993i 0.0903095 0.407389i
\(406\) 369.087 0.909082
\(407\) 0 0
\(408\) −595.221 + 263.458i −1.45888 + 0.645730i
\(409\) 36.8542 113.426i 0.0901081 0.277324i −0.895840 0.444377i \(-0.853425\pi\)
0.985948 + 0.167053i \(0.0534250\pi\)
\(410\) 171.029 + 235.402i 0.417145 + 0.574150i
\(411\) −50.8139 + 236.527i −0.123635 + 0.575490i
\(412\) −193.383 595.172i −0.469376 1.44459i
\(413\) −954.034 + 309.984i −2.31001 + 0.750567i
\(414\) −642.855 + 133.719i −1.55279 + 0.322993i
\(415\) 19.9315 14.4811i 0.0480278 0.0348943i
\(416\) 43.2243 + 14.0444i 0.103905 + 0.0337606i
\(417\) 581.416 257.347i 1.39428 0.617140i
\(418\) 0 0
\(419\) 412.874i 0.985381i 0.870205 + 0.492690i \(0.163986\pi\)
−0.870205 + 0.492690i \(0.836014\pi\)
\(420\) −489.401 + 50.3607i −1.16524 + 0.119906i
\(421\) −489.408 + 355.576i −1.16249 + 0.844598i −0.990091 0.140429i \(-0.955152\pi\)
−0.172399 + 0.985027i \(0.555152\pi\)
\(422\) −430.121 + 592.011i −1.01924 + 1.40287i
\(423\) 167.479 371.797i 0.395932 0.878953i
\(424\) −217.582 669.650i −0.513166 1.57936i
\(425\) 150.771 207.519i 0.354756 0.488280i
\(426\) −55.1600 + 95.0611i −0.129483 + 0.223148i
\(427\) 212.303 653.401i 0.497197 1.53021i
\(428\) 1633.76i 3.81721i
\(429\) 0 0
\(430\) −118.587 −0.275783
\(431\) −421.718 137.024i −0.978464 0.317922i −0.224236 0.974535i \(-0.571989\pi\)
−0.754228 + 0.656613i \(0.771989\pi\)
\(432\) −222.185 699.328i −0.514316 1.61882i
\(433\) −177.158 128.713i −0.409142 0.297259i 0.364112 0.931355i \(-0.381372\pi\)
−0.773254 + 0.634096i \(0.781372\pi\)
\(434\) −707.214 + 229.788i −1.62953 + 0.529465i
\(435\) 48.5018 + 54.1032i 0.111498 + 0.124375i
\(436\) 420.008 + 305.154i 0.963322 + 0.699894i
\(437\) −126.305 173.843i −0.289026 0.397811i
\(438\) −798.853 + 82.2042i −1.82386 + 0.187681i
\(439\) −171.641 −0.390982 −0.195491 0.980705i \(-0.562630\pi\)
−0.195491 + 0.980705i \(0.562630\pi\)
\(440\) 0 0
\(441\) 178.834 196.884i 0.405519 0.446449i
\(442\) −22.6519 + 69.7155i −0.0512487 + 0.157727i
\(443\) 348.285 + 479.374i 0.786197 + 1.08211i 0.994571 + 0.104059i \(0.0331830\pi\)
−0.208374 + 0.978049i \(0.566817\pi\)
\(444\) −188.482 40.4923i −0.424509 0.0911989i
\(445\) 48.0829 + 147.984i 0.108051 + 0.332548i
\(446\) 56.3607 18.3127i 0.126369 0.0410598i
\(447\) 142.616 663.842i 0.319051 1.48511i
\(448\) 68.7280 49.9338i 0.153411 0.111459i
\(449\) 414.782 + 134.771i 0.923791 + 0.300158i 0.732021 0.681282i \(-0.238577\pi\)
0.191770 + 0.981440i \(0.438577\pi\)
\(450\) 493.430 + 448.194i 1.09651 + 0.995986i
\(451\) 0 0
\(452\) 1347.99i 2.98229i
\(453\) −83.7514 813.889i −0.184882 1.79666i
\(454\) 327.534 237.967i 0.721440 0.524157i
\(455\) −17.8777 + 24.6065i −0.0392916 + 0.0540803i
\(456\) 412.197 369.521i 0.903941 0.810354i
\(457\) −73.7134 226.866i −0.161298 0.496425i 0.837446 0.546520i \(-0.184048\pi\)
−0.998744 + 0.0500945i \(0.984048\pi\)
\(458\) −777.249 + 1069.79i −1.69705 + 2.33579i
\(459\) 319.687 101.568i 0.696487 0.221282i
\(460\) −116.288 + 357.897i −0.252800 + 0.778037i
\(461\) 711.175i 1.54268i −0.636424 0.771339i \(-0.719587\pi\)
0.636424 0.771339i \(-0.280413\pi\)
\(462\) 0 0
\(463\) −461.487 −0.996732 −0.498366 0.866967i \(-0.666066\pi\)
−0.498366 + 0.866967i \(0.666066\pi\)
\(464\) 300.046 + 97.4908i 0.646651 + 0.210110i
\(465\) −126.619 73.4716i −0.272299 0.158003i
\(466\) 506.545 + 368.026i 1.08701 + 0.789756i
\(467\) −46.0163 + 14.9516i −0.0985361 + 0.0320163i −0.357870 0.933771i \(-0.616497\pi\)
0.259334 + 0.965788i \(0.416497\pi\)
\(468\) −119.699 53.9196i −0.255768 0.115213i
\(469\) 451.073 + 327.724i 0.961777 + 0.698772i
\(470\) −199.324 274.346i −0.424094 0.583716i
\(471\) 1.86073 + 18.0824i 0.00395060 + 0.0383916i
\(472\) −1976.69 −4.18790
\(473\) 0 0
\(474\) 375.960 + 849.393i 0.793164 + 1.79197i
\(475\) −67.4117 + 207.472i −0.141919 + 0.436783i
\(476\) −573.980 790.015i −1.20584 1.65970i
\(477\) 73.8929 + 355.241i 0.154912 + 0.744739i
\(478\) 382.834 + 1178.24i 0.800908 + 2.46494i
\(479\) −163.035 + 52.9731i −0.340364 + 0.110591i −0.474212 0.880411i \(-0.657267\pi\)
0.133847 + 0.991002i \(0.457267\pi\)
\(480\) −169.093 36.3270i −0.352278 0.0756813i
\(481\) −9.64197 + 7.00530i −0.0200457 + 0.0145640i
\(482\) 891.979 + 289.822i 1.85058 + 0.601290i
\(483\) −218.872 494.489i −0.453150 1.02379i
\(484\) 0 0
\(485\) 161.002i 0.331964i
\(486\) 171.943 + 854.582i 0.353792 + 1.75840i
\(487\) 400.866 291.247i 0.823134 0.598042i −0.0944742 0.995527i \(-0.530117\pi\)
0.917609 + 0.397485i \(0.130117\pi\)
\(488\) 795.745 1095.25i 1.63062 2.24436i
\(489\) −324.264 361.712i −0.663116 0.739698i
\(490\) −68.3515 210.364i −0.139493 0.429315i
\(491\) −194.115 + 267.177i −0.395347 + 0.544148i −0.959569 0.281475i \(-0.909176\pi\)
0.564222 + 0.825623i \(0.309176\pi\)
\(492\) −894.638 519.121i −1.81837 1.05512i
\(493\) −44.5665 + 137.162i −0.0903986 + 0.278218i
\(494\) 62.3413i 0.126197i
\(495\) 0 0
\(496\) −635.619 −1.28149
\(497\) −86.0839 27.9704i −0.173207 0.0562784i
\(498\) −63.7789 + 109.915i −0.128070 + 0.220712i
\(499\) −88.8306 64.5392i −0.178017 0.129337i 0.495208 0.868774i \(-0.335092\pi\)
−0.673226 + 0.739437i \(0.735092\pi\)
\(500\) 803.279 261.001i 1.60656 0.522003i
\(501\) 355.641 318.821i 0.709862 0.636369i
\(502\) 575.631 + 418.220i 1.14668 + 0.833108i
\(503\) −336.038 462.516i −0.668067 0.919516i 0.331647 0.943403i \(-0.392396\pi\)
−0.999715 + 0.0238878i \(0.992396\pi\)
\(504\) 1209.50 691.297i 2.39980 1.37162i
\(505\) −26.6963 −0.0528639
\(506\) 0 0
\(507\) 456.194 201.921i 0.899791 0.398267i
\(508\) −39.1191 + 120.396i −0.0770060 + 0.237000i
\(509\) −317.947 437.617i −0.624651 0.859758i 0.373031 0.927819i \(-0.378319\pi\)
−0.997681 + 0.0680613i \(0.978319\pi\)
\(510\) 58.5910 272.727i 0.114884 0.534759i
\(511\) −204.377 629.008i −0.399955 1.23094i
\(512\) 1091.44 354.631i 2.13172 0.692639i
\(513\) −231.881 + 166.168i −0.452010 + 0.323914i
\(514\) 5.41310 3.93284i 0.0105313 0.00765145i
\(515\) 140.019 + 45.4949i 0.271881 + 0.0883395i
\(516\) 385.477 170.620i 0.747049 0.330660i
\(517\) 0 0
\(518\) 230.378i 0.444745i
\(519\) 114.654 11.7982i 0.220913 0.0227326i
\(520\) −48.4877 + 35.2284i −0.0932456 + 0.0677469i
\(521\) −198.606 + 273.357i −0.381201 + 0.524678i −0.955902 0.293685i \(-0.905118\pi\)
0.574701 + 0.818363i \(0.305118\pi\)
\(522\) −341.722 153.931i −0.654639 0.294887i
\(523\) −95.0022 292.387i −0.181649 0.559057i 0.818226 0.574897i \(-0.194958\pi\)
−0.999875 + 0.0158400i \(0.994958\pi\)
\(524\) 801.135 1102.67i 1.52888 2.10433i
\(525\) −275.527 + 474.835i −0.524813 + 0.904447i
\(526\) 30.0301 92.4232i 0.0570915 0.175710i
\(527\) 290.564i 0.551355i
\(528\) 0 0
\(529\) 115.375 0.218100
\(530\) 286.976 + 93.2441i 0.541464 + 0.175932i
\(531\) 1012.58 + 110.888i 1.90693 + 0.208828i
\(532\) 671.875 + 488.146i 1.26292 + 0.917568i
\(533\) −60.8151 + 19.7600i −0.114100 + 0.0370732i
\(534\) −535.742 597.614i −1.00326 1.11913i
\(535\) −310.950 225.919i −0.581216 0.422278i
\(536\) 645.788 + 888.850i 1.20483 + 1.65830i
\(537\) −406.315 + 41.8110i −0.756639 + 0.0778603i
\(538\) 512.434 0.952480
\(539\) 0 0
\(540\) 474.118 + 157.482i 0.877996 + 0.291634i
\(541\) 25.5563 78.6541i 0.0472389 0.145387i −0.924655 0.380806i \(-0.875646\pi\)
0.971894 + 0.235420i \(0.0756465\pi\)
\(542\) −222.088 305.677i −0.409756 0.563980i
\(543\) −382.297 82.1304i −0.704046 0.151253i
\(544\) −106.080 326.480i −0.195000 0.600148i
\(545\) −116.158 + 37.7422i −0.213135 + 0.0692517i
\(546\) 32.9524 153.386i 0.0603524 0.280926i
\(547\) −320.933 + 233.172i −0.586715 + 0.426273i −0.841139 0.540819i \(-0.818114\pi\)
0.254424 + 0.967093i \(0.418114\pi\)
\(548\) −680.166 220.999i −1.24118 0.403283i
\(549\) −469.069 + 516.413i −0.854407 + 0.940642i
\(550\) 0 0
\(551\) 122.653i 0.222601i
\(552\) −109.076 1059.99i −0.197601 1.92027i
\(553\) −618.888 + 449.649i −1.11915 + 0.813108i
\(554\) −516.425 + 710.798i −0.932174 + 1.28303i
\(555\) 33.7703 30.2740i 0.0608473 0.0545477i
\(556\) 580.832 + 1787.62i 1.04466 + 3.21514i
\(557\) −225.174 + 309.925i −0.404262 + 0.556419i −0.961807 0.273728i \(-0.911743\pi\)
0.557545 + 0.830146i \(0.311743\pi\)
\(558\) 750.613 + 82.1998i 1.34519 + 0.147312i
\(559\) 8.05326 24.7854i 0.0144066 0.0443388i
\(560\) 502.548i 0.897407i
\(561\) 0 0
\(562\) 233.573 0.415610
\(563\) 137.748 + 44.7570i 0.244667 + 0.0794973i 0.428784 0.903407i \(-0.358942\pi\)
−0.184116 + 0.982904i \(0.558942\pi\)
\(564\) 1042.65 + 605.004i 1.84866 + 1.07270i
\(565\) −256.561 186.402i −0.454089 0.329915i
\(566\) −537.602 + 174.677i −0.949827 + 0.308617i
\(567\) −658.358 + 286.274i −1.16112 + 0.504892i
\(568\) −144.296 104.837i −0.254043 0.184573i
\(569\) −542.614 746.845i −0.953628 1.31256i −0.949897 0.312563i \(-0.898812\pi\)
−0.00373108 0.999993i \(-0.501188\pi\)
\(570\) 24.2839 + 235.989i 0.0426034 + 0.414016i
\(571\) −421.725 −0.738573 −0.369287 0.929316i \(-0.620398\pi\)
−0.369287 + 0.929316i \(0.620398\pi\)
\(572\) 0 0
\(573\) −383.189 865.726i −0.668742 1.51087i
\(574\) 381.962 1175.56i 0.665439 2.04801i
\(575\) 246.819 + 339.717i 0.429250 + 0.590812i
\(576\) −84.4576 + 17.5679i −0.146628 + 0.0304998i
\(577\) 142.274 + 437.874i 0.246575 + 0.758880i 0.995373 + 0.0960821i \(0.0306311\pi\)
−0.748798 + 0.662798i \(0.769369\pi\)
\(578\) −459.409 + 149.271i −0.794825 + 0.258254i
\(579\) −429.432 92.2565i −0.741678 0.159338i
\(580\) −173.775 + 126.255i −0.299613 + 0.217681i
\(581\) −99.5349 32.3409i −0.171317 0.0556641i
\(582\) 336.128 + 759.403i 0.577539 + 1.30482i
\(583\) 0 0
\(584\) 1303.26i 2.23161i
\(585\) 26.8146 15.3260i 0.0458368 0.0261984i
\(586\) −534.025 + 387.992i −0.911306 + 0.662102i
\(587\) −24.9599 + 34.3544i −0.0425212 + 0.0585254i −0.829748 0.558138i \(-0.811516\pi\)
0.787227 + 0.616663i \(0.211516\pi\)
\(588\) 524.851 + 585.466i 0.892604 + 0.995690i
\(589\) 76.3620 + 235.018i 0.129647 + 0.399012i
\(590\) 497.915 685.321i 0.843923 1.16156i
\(591\) 595.400 + 345.485i 1.00744 + 0.584578i
\(592\) 60.8521 187.283i 0.102791 0.316357i
\(593\) 106.267i 0.179203i 0.995978 + 0.0896015i \(0.0285593\pi\)
−0.995978 + 0.0896015i \(0.971441\pi\)
\(594\) 0 0
\(595\) 229.732 0.386105
\(596\) 1908.97 + 620.263i 3.20297 + 1.04071i
\(597\) −586.239 + 1010.31i −0.981975 + 1.69231i
\(598\) −97.0823 70.5344i −0.162345 0.117951i
\(599\) 692.381 224.968i 1.15589 0.375573i 0.332534 0.943091i \(-0.392096\pi\)
0.823361 + 0.567518i \(0.192096\pi\)
\(600\) −805.497 + 722.103i −1.34250 + 1.20350i
\(601\) −95.9442 69.7075i −0.159641 0.115986i 0.505097 0.863063i \(-0.331457\pi\)
−0.664738 + 0.747077i \(0.731457\pi\)
\(602\) 296.101 + 407.549i 0.491863 + 0.676991i
\(603\) −280.949 491.550i −0.465918 0.815173i
\(604\) 2418.71 4.00448
\(605\) 0 0
\(606\) 125.919 55.7343i 0.207787 0.0919708i
\(607\) −220.392 + 678.296i −0.363084 + 1.11746i 0.588089 + 0.808796i \(0.299881\pi\)
−0.951172 + 0.308660i \(0.900119\pi\)
\(608\) 171.602 + 236.190i 0.282240 + 0.388470i
\(609\) 64.8322 301.778i 0.106457 0.495531i
\(610\) 179.281 + 551.771i 0.293904 + 0.904543i
\(611\) 70.8764 23.0291i 0.116001 0.0376909i
\(612\) 201.939 + 970.824i 0.329966 + 1.58631i
\(613\) 556.171 404.082i 0.907294 0.659188i −0.0330350 0.999454i \(-0.510517\pi\)
0.940329 + 0.340267i \(0.110517\pi\)
\(614\) −1319.21 428.637i −2.14855 0.698106i
\(615\) 222.515 98.4898i 0.361812 0.160146i
\(616\) 0 0
\(617\) 762.156i 1.23526i −0.786468 0.617631i \(-0.788093\pi\)
0.786468 0.617631i \(-0.211907\pi\)
\(618\) −755.409 + 77.7337i −1.22235 + 0.125783i
\(619\) 429.344 311.937i 0.693609 0.503936i −0.184236 0.982882i \(-0.558981\pi\)
0.877845 + 0.478946i \(0.158981\pi\)
\(620\) 254.369 350.110i 0.410273 0.564693i
\(621\) −3.58775 + 549.108i −0.00577737 + 0.884232i
\(622\) 102.253 + 314.702i 0.164394 + 0.505952i
\(623\) 388.519 534.751i 0.623626 0.858348i
\(624\) 67.3037 115.989i 0.107858 0.185880i
\(625\) 98.1039 301.933i 0.156966 0.483093i
\(626\) 266.885i 0.426334i
\(627\) 0 0
\(628\) −53.7372 −0.0855688
\(629\) 85.6138 + 27.8176i 0.136111 + 0.0442252i
\(630\) −64.9907 + 593.467i −0.103160 + 0.942012i
\(631\) −547.258 397.607i −0.867288 0.630121i 0.0625701 0.998041i \(-0.480070\pi\)
−0.929858 + 0.367919i \(0.880070\pi\)
\(632\) −1433.65 + 465.820i −2.26843 + 0.737058i
\(633\) 408.495 + 455.672i 0.645332 + 0.719861i
\(634\) −1520.09 1104.41i −2.39763 1.74198i
\(635\) −17.5053 24.0939i −0.0275674 0.0379432i
\(636\) −1067.00 + 109.797i −1.67767 + 0.172637i
\(637\) 48.6093 0.0763097
\(638\) 0 0
\(639\) 68.0360 + 61.7987i 0.106473 + 0.0967115i
\(640\) −93.4285 + 287.543i −0.145982 + 0.449287i
\(641\) −461.931 635.794i −0.720641 0.991878i −0.999502 0.0315462i \(-0.989957\pi\)
0.278861 0.960331i \(-0.410043\pi\)
\(642\) 1938.32 + 416.417i 3.01919 + 0.648624i
\(643\) −262.574 808.119i −0.408357 1.25679i −0.918059 0.396443i \(-0.870244\pi\)
0.509702 0.860351i \(-0.329756\pi\)
\(644\) 1520.35 493.992i 2.36079 0.767069i
\(645\) −20.8304 + 96.9605i −0.0322952 + 0.150326i
\(646\) −380.946 + 276.773i −0.589699 + 0.428441i
\(647\) 1112.14 + 361.357i 1.71892 + 0.558512i 0.991778 0.127971i \(-0.0408463\pi\)
0.727146 + 0.686483i \(0.240846\pi\)
\(648\) −1408.13 + 135.609i −2.17305 + 0.209274i
\(649\) 0 0
\(650\) 121.825i 0.187423i
\(651\) 63.6562 + 618.606i 0.0977822 + 0.950239i
\(652\) 1161.79 844.092i 1.78189 1.29462i
\(653\) −314.778 + 433.255i −0.482049 + 0.663484i −0.978897 0.204354i \(-0.934491\pi\)
0.496848 + 0.867838i \(0.334491\pi\)
\(654\) 469.091 420.525i 0.717265 0.643005i
\(655\) 99.0863 + 304.956i 0.151277 + 0.465582i
\(656\) 621.024 854.767i 0.946684 1.30300i
\(657\) −73.1100 + 667.609i −0.111278 + 1.01615i
\(658\) −445.153 + 1370.04i −0.676525 + 2.08213i
\(659\) 138.756i 0.210555i −0.994443 0.105278i \(-0.966427\pi\)
0.994443 0.105278i \(-0.0335731\pi\)
\(660\) 0 0
\(661\) 27.1690 0.0411029 0.0205515 0.999789i \(-0.493458\pi\)
0.0205515 + 0.999789i \(0.493458\pi\)
\(662\) 858.746 + 279.023i 1.29720 + 0.421485i
\(663\) 53.0228 + 30.7669i 0.0799740 + 0.0464056i
\(664\) −166.843 121.219i −0.251270 0.182558i
\(665\) −185.815 + 60.3751i −0.279422 + 0.0907895i
\(666\) −96.0812 + 213.297i −0.144266 + 0.320265i
\(667\) −191.004 138.773i −0.286363 0.208055i
\(668\) 829.924 + 1142.29i 1.24240 + 1.71002i
\(669\) −5.07302 49.2991i −0.00758298 0.0736908i
\(670\) −470.835 −0.702738
\(671\) 0 0
\(672\) 297.367 + 671.831i 0.442511 + 0.999749i
\(673\) 203.174 625.305i 0.301893 0.929131i −0.678926 0.734207i \(-0.737554\pi\)
0.980818 0.194924i \(-0.0624459\pi\)
\(674\) −104.690 144.093i −0.155326 0.213788i
\(675\) 453.132 324.718i 0.671307 0.481063i
\(676\) 455.735 + 1402.61i 0.674165 + 2.07487i
\(677\) 581.347 188.891i 0.858711 0.279012i 0.153621 0.988130i \(-0.450907\pi\)
0.705090 + 0.709118i \(0.250907\pi\)
\(678\) 1599.28 + 343.579i 2.35882 + 0.506754i
\(679\) −553.319 + 402.010i −0.814903 + 0.592062i
\(680\) 430.536 + 139.890i 0.633142 + 0.205720i
\(681\) −137.037 309.603i −0.201229 0.454630i
\(682\) 0 0
\(683\) 990.520i 1.45025i 0.688618 + 0.725124i \(0.258218\pi\)
−0.688618 + 0.725124i \(0.741782\pi\)
\(684\) −418.474 732.165i −0.611804 1.07042i
\(685\) 136.116 98.8943i 0.198710 0.144371i
\(686\) 363.423 500.209i 0.529772 0.729168i
\(687\) 738.170 + 823.420i 1.07448 + 1.19857i
\(688\) 133.063 + 409.525i 0.193405 + 0.595240i
\(689\) −38.9772 + 53.6476i −0.0565707 + 0.0778629i
\(690\) 394.974 + 229.187i 0.572427 + 0.332155i
\(691\) 177.091 545.029i 0.256282 0.788754i −0.737293 0.675573i \(-0.763896\pi\)
0.993574 0.113181i \(-0.0361038\pi\)
\(692\) 340.727i 0.492380i
\(693\) 0 0
\(694\) 1649.35 2.37659
\(695\) −420.551 136.645i −0.605109 0.196612i
\(696\) 305.261 526.078i 0.438593 0.755859i
\(697\) 390.744 + 283.892i 0.560608 + 0.407306i
\(698\) −1343.35 + 436.482i −1.92458 + 0.625333i
\(699\) 389.888 349.522i 0.557780 0.500032i
\(700\) −1312.95 953.913i −1.87564 1.36273i
\(701\) 481.412 + 662.606i 0.686750 + 0.945230i 0.999990 0.00444396i \(-0.00141456\pi\)
−0.313240 + 0.949674i \(0.601415\pi\)
\(702\) −94.4801 + 128.270i −0.134587 + 0.182721i
\(703\) −76.5580 −0.108902
\(704\) 0 0
\(705\) −259.327 + 114.784i −0.367840 + 0.162814i
\(706\) −18.7821 + 57.8054i −0.0266036 + 0.0818774i
\(707\) 66.6584 + 91.7474i 0.0942834 + 0.129770i
\(708\) −632.490 + 2944.09i −0.893348 + 4.15832i
\(709\) 55.5742 + 171.040i 0.0783840 + 0.241241i 0.982568 0.185901i \(-0.0595204\pi\)
−0.904185 + 0.427142i \(0.859520\pi\)
\(710\) 72.6944 23.6199i 0.102387 0.0332674i
\(711\) 760.532 158.197i 1.06967 0.222499i
\(712\) 1053.74 765.586i 1.47997 1.07526i
\(713\) 452.384 + 146.989i 0.634480 + 0.206155i
\(714\) −1083.58 + 479.617i −1.51762 + 0.671732i
\(715\) 0 0
\(716\) 1207.48i 1.68643i
\(717\) 1030.62 106.053i 1.43740 0.147913i
\(718\) −220.240 + 160.014i −0.306741 + 0.222860i
\(719\) 391.663 539.078i 0.544733 0.749761i −0.444553 0.895753i \(-0.646637\pi\)
0.989286 + 0.145992i \(0.0466373\pi\)
\(720\) −209.592 + 465.287i −0.291100 + 0.646232i
\(721\) −193.263 594.801i −0.268048 0.824967i
\(722\) −525.802 + 723.704i −0.728257 + 1.00236i
\(723\) 393.649 678.404i 0.544466 0.938318i
\(724\) 357.200 1099.35i 0.493371 1.51844i
\(725\) 239.684i 0.330598i
\(726\) 0 0
\(727\) 162.429 0.223424 0.111712 0.993741i \(-0.464367\pi\)
0.111712 + 0.993741i \(0.464367\pi\)
\(728\) 242.140 + 78.6760i 0.332610 + 0.108071i
\(729\) 728.938 + 9.52583i 0.999915 + 0.0130670i
\(730\) 451.842 + 328.283i 0.618962 + 0.449702i
\(731\) −187.208 + 60.8277i −0.256099 + 0.0832116i
\(732\) −1376.65 1535.64i −1.88067 2.09786i
\(733\) 946.453 + 687.638i 1.29120 + 0.938115i 0.999829 0.0184934i \(-0.00588696\pi\)
0.291376 + 0.956609i \(0.405887\pi\)
\(734\) −1305.84 1797.33i −1.77907 2.44868i
\(735\) −184.007 + 18.9349i −0.250350 + 0.0257617i
\(736\) 561.967 0.763542
\(737\) 0 0
\(738\) −843.919 + 929.096i −1.14352 + 1.25894i
\(739\) 74.8985 230.514i 0.101351 0.311927i −0.887506 0.460797i \(-0.847564\pi\)
0.988857 + 0.148870i \(0.0475636\pi\)
\(740\) 78.8063 + 108.468i 0.106495 + 0.146578i
\(741\) −50.9724 10.9506i −0.0687886 0.0147781i
\(742\) −396.102 1219.08i −0.533830 1.64296i
\(743\) −783.342 + 254.523i −1.05430 + 0.342562i −0.784353 0.620314i \(-0.787005\pi\)
−0.269943 + 0.962876i \(0.587005\pi\)
\(744\) −257.388 + 1198.08i −0.345951 + 1.61032i
\(745\) −382.028 + 277.560i −0.512789 + 0.372563i
\(746\) 1247.57 + 405.360i 1.67235 + 0.543378i
\(747\) 78.6669 + 71.4549i 0.105310 + 0.0956559i
\(748\) 0 0
\(749\) 1632.75i 2.17990i
\(750\) −104.914 1019.55i −0.139885 1.35939i
\(751\) 4.96588 3.60793i 0.00661236 0.00480416i −0.584474 0.811412i \(-0.698699\pi\)
0.591087 + 0.806608i \(0.298699\pi\)
\(752\) −723.767 + 996.179i −0.962456 + 1.32471i
\(753\) 443.064 397.193i 0.588398 0.527480i
\(754\) −21.1662 65.1430i −0.0280719 0.0863965i
\(755\) −334.461 + 460.347i −0.442995 + 0.609731i
\(756\) −642.612 2022.63i −0.850016 2.67543i
\(757\) −340.620 + 1048.32i −0.449961 + 1.38484i 0.426990 + 0.904256i \(0.359574\pi\)
−0.876951 + 0.480580i \(0.840426\pi\)
\(758\) 1470.37i 1.93980i
\(759\) 0 0
\(760\) −384.996 −0.506574
\(761\) −1141.53 370.907i −1.50004 0.487394i −0.560013 0.828484i \(-0.689204\pi\)
−0.940031 + 0.341090i \(0.889204\pi\)
\(762\) 132.869 + 77.0981i 0.174368 + 0.101179i
\(763\) 419.747 + 304.964i 0.550127 + 0.399691i
\(764\) 2661.75 864.856i 3.48397 1.13201i
\(765\) −212.699 95.8120i −0.278038 0.125244i
\(766\) −153.703 111.672i −0.200657 0.145786i
\(767\) 109.423 + 150.608i 0.142664 + 0.196360i
\(768\) −147.861 1436.90i −0.192527 1.87096i
\(769\) 1038.16 1.35001 0.675007 0.737811i \(-0.264141\pi\)
0.675007 + 0.737811i \(0.264141\pi\)
\(770\) 0 0
\(771\) −2.26479 5.11676i −0.00293747 0.00663652i
\(772\) 401.241 1234.89i 0.519742 1.59960i
\(773\) −344.566 474.255i −0.445752 0.613525i 0.525726 0.850654i \(-0.323794\pi\)
−0.971478 + 0.237129i \(0.923794\pi\)
\(774\) −104.175 500.823i −0.134593 0.647058i
\(775\) −149.223 459.262i −0.192546 0.592596i
\(776\) −1281.76 + 416.468i −1.65175 + 0.536686i
\(777\) −188.365 40.4671i −0.242426 0.0520812i
\(778\) −263.128 + 191.174i −0.338211 + 0.245725i
\(779\) −390.656 126.932i −0.501483 0.162942i
\(780\) 36.9545 + 83.4899i 0.0473775 + 0.107038i
\(781\) 0 0
\(782\) 906.383i 1.15906i
\(783\) −185.885 + 252.364i −0.237401 + 0.322304i
\(784\) −649.773 + 472.088i −0.828792 + 0.602153i
\(785\) 7.43084 10.2277i 0.00946603 0.0130289i
\(786\) −1104.03 1231.53i −1.40461 1.56683i
\(787\) −115.407 355.185i −0.146641 0.451315i 0.850577 0.525850i \(-0.176253\pi\)
−0.997218 + 0.0745349i \(0.976253\pi\)
\(788\) −1196.12 + 1646.32i −1.51792 + 2.08924i
\(789\) −70.2934 40.7883i −0.0890917 0.0516962i
\(790\) 199.626 614.384i 0.252691 0.777701i
\(791\) 1347.16i 1.70311i
\(792\) 0 0
\(793\) −127.499 −0.160780
\(794\) −1145.54 372.208i −1.44275 0.468776i
\(795\) 126.648 218.262i 0.159306 0.274544i
\(796\) −2793.57 2029.65i −3.50951 2.54981i
\(797\) −795.852 + 258.588i −0.998560 + 0.324452i −0.762290 0.647236i \(-0.775925\pi\)
−0.236270 + 0.971687i \(0.575925\pi\)
\(798\) 750.392 672.702i 0.940340 0.842985i
\(799\) −455.389 330.859i −0.569948 0.414092i
\(800\) −335.337 461.552i −0.419172 0.576940i
\(801\) −582.736 + 333.067i −0.727510 + 0.415814i
\(802\) −67.8754 −0.0846326
\(803\) 0 0
\(804\) 1530.49 677.429i 1.90360 0.842573i
\(805\) −116.216 + 357.675i −0.144367 + 0.444316i
\(806\) 81.1140 + 111.644i 0.100638 + 0.138516i
\(807\) 90.0119 418.984i 0.111539 0.519187i
\(808\) 69.0558 + 212.532i 0.0854650 + 0.263034i
\(809\) 493.440 160.328i 0.609938 0.198181i 0.0122700 0.999925i \(-0.496094\pi\)
0.597668 + 0.801744i \(0.296094\pi\)
\(810\) 307.683 522.360i 0.379856 0.644889i
\(811\) 633.194 460.042i 0.780757 0.567253i −0.124449 0.992226i \(-0.539716\pi\)
0.905206 + 0.424973i \(0.139716\pi\)
\(812\) 867.806 + 281.967i 1.06873 + 0.347250i
\(813\) −288.943 + 127.892i −0.355403 + 0.157309i
\(814\) 0 0
\(815\) 337.843i 0.414531i
\(816\) −1007.57 + 103.682i −1.23477 + 0.127061i
\(817\) 135.435 98.3990i 0.165771 0.120439i
\(818\) 251.471 346.120i 0.307422 0.423130i
\(819\) −119.625 53.8860i −0.146062 0.0657949i
\(820\) 222.291 + 684.141i 0.271086 + 0.834318i
\(821\) −324.234 + 446.270i −0.394926 + 0.543569i −0.959462 0.281840i \(-0.909055\pi\)
0.564535 + 0.825409i \(0.309055\pi\)
\(822\) −435.558 + 750.629i −0.529877 + 0.913174i
\(823\) −14.2681 + 43.9128i −0.0173367 + 0.0533570i −0.959351 0.282217i \(-0.908930\pi\)
0.942014 + 0.335574i \(0.108930\pi\)
\(824\) 1232.39i 1.49562i
\(825\) 0 0
\(826\) −3598.50 −4.35654
\(827\) 567.030 + 184.239i 0.685648 + 0.222780i 0.631066 0.775729i \(-0.282618\pi\)
0.0545813 + 0.998509i \(0.482618\pi\)
\(828\) −1613.65 176.711i −1.94885 0.213419i
\(829\) 1122.16 + 815.300i 1.35364 + 0.983474i 0.998821 + 0.0485378i \(0.0154561\pi\)
0.354815 + 0.934937i \(0.384544\pi\)
\(830\) 84.0532 27.3105i 0.101269 0.0329043i
\(831\) 490.459 + 547.102i 0.590204 + 0.658366i
\(832\) −12.7546 9.26674i −0.0153300 0.0111379i
\(833\) −215.808 297.034i −0.259073 0.356584i
\(834\) 2268.90 233.476i 2.72050 0.279947i
\(835\) −332.172 −0.397811
\(836\) 0 0
\(837\) 199.059 599.288i 0.237824 0.715995i
\(838\) −457.683 + 1408.60i −0.546161 + 1.68091i
\(839\) −978.665 1347.02i −1.16647 1.60550i −0.683727 0.729738i \(-0.739642\pi\)
−0.482739 0.875764i \(-0.660358\pi\)
\(840\) −947.251 203.502i −1.12768 0.242264i
\(841\) 218.240 + 671.673i 0.259500 + 0.798660i
\(842\) −2063.88 + 670.595i −2.45116 + 0.796432i
\(843\) 41.0283 190.977i 0.0486694 0.226545i
\(844\) −1463.58 + 1063.36i −1.73410 + 1.25990i
\(845\) −329.975 107.215i −0.390503 0.126882i
\(846\) 983.537 1082.81i 1.16257 1.27991i
\(847\) 0 0
\(848\) 1095.66i 1.29206i
\(849\) 48.3895 + 470.245i 0.0569958 + 0.553880i
\(850\) 744.427 540.858i 0.875797 0.636303i
\(851\) −86.6196 + 119.222i −0.101786 + 0.140096i
\(852\) −202.316 + 181.370i −0.237460 + 0.212876i
\(853\) 251.091 + 772.780i 0.294363 + 0.905956i 0.983435 + 0.181263i \(0.0580184\pi\)
−0.689072 + 0.724693i \(0.741982\pi\)
\(854\) 1448.63 1993.87i 1.69629 2.33474i
\(855\) 197.218 + 21.5974i 0.230665 + 0.0252601i
\(856\) −994.221 + 3059.90i −1.16147 + 3.57465i
\(857\) 551.421i 0.643431i 0.946836 + 0.321716i \(0.104260\pi\)
−0.946836 + 0.321716i \(0.895740\pi\)
\(858\) 0 0
\(859\) −1196.04 −1.39236 −0.696180 0.717868i \(-0.745118\pi\)
−0.696180 + 0.717868i \(0.745118\pi\)
\(860\) −278.824 90.5953i −0.324214 0.105343i
\(861\) −894.082 518.798i −1.03842 0.602553i
\(862\) −1286.88 934.973i −1.49290 1.08466i
\(863\) −681.319 + 221.374i −0.789478 + 0.256517i −0.675882 0.737010i \(-0.736237\pi\)
−0.113596 + 0.993527i \(0.536237\pi\)
\(864\) 4.87445 746.039i 0.00564172 0.863471i
\(865\) −64.8498 47.1161i −0.0749709 0.0544695i
\(866\) −461.729 635.516i −0.533175 0.733852i
\(867\) 41.3513 + 401.848i 0.0476947 + 0.463493i
\(868\) −1838.37 −2.11793
\(869\) 0 0
\(870\) 105.499 + 238.350i 0.121263 + 0.273965i
\(871\) 31.9745 98.4075i 0.0367101 0.112982i
\(872\) 600.939 + 827.121i 0.689150 + 0.948534i
\(873\) 679.956 141.436i 0.778873 0.162012i
\(874\) −238.203 733.114i −0.272544 0.838803i
\(875\) 802.780 260.839i 0.917463 0.298102i
\(876\) −1941.08 417.010i −2.21585 0.476039i
\(877\) 802.250 582.869i 0.914766 0.664616i −0.0274497 0.999623i \(-0.508739\pi\)
0.942216 + 0.335007i \(0.108739\pi\)
\(878\) −585.588 190.269i −0.666957 0.216707i
\(879\) 223.431 + 504.790i 0.254188 + 0.574278i
\(880\) 0 0
\(881\) 1256.55i 1.42628i 0.701021 + 0.713140i \(0.252728\pi\)
−0.701021 + 0.713140i \(0.747272\pi\)
\(882\) 828.379 473.466i 0.939206 0.536810i
\(883\) −225.170 + 163.596i −0.255006 + 0.185273i −0.707943 0.706270i \(-0.750376\pi\)
0.452936 + 0.891543i \(0.350376\pi\)
\(884\) −106.519 + 146.611i −0.120497 + 0.165850i
\(885\) −472.880 527.492i −0.534328 0.596036i
\(886\) 656.846 + 2021.56i 0.741361 + 2.28168i
\(887\) 690.062 949.789i 0.777973 1.07079i −0.217529 0.976054i \(-0.569800\pi\)
0.995503 0.0947346i \(-0.0302003\pi\)
\(888\) −328.369 190.538i −0.369785 0.214570i
\(889\) −39.0947 + 120.321i −0.0439761 + 0.135344i
\(890\) 558.178i 0.627166i
\(891\) 0 0
\(892\) 146.507 0.164245
\(893\) 455.286 + 147.931i 0.509838 + 0.165656i
\(894\) 1222.45 2106.74i 1.36739 2.35653i
\(895\) 229.818 + 166.972i 0.256779 + 0.186561i
\(896\) 1221.49 396.885i 1.36327 0.442953i
\(897\) −74.7244 + 66.9880i −0.0833048 + 0.0746801i
\(898\) 1265.71 + 919.596i 1.40948 + 1.02405i
\(899\) 159.587 + 219.653i 0.177517 + 0.244331i
\(900\) 817.764 + 1430.76i 0.908626 + 1.58974i
\(901\) 500.866 0.555900
\(902\) 0 0
\(903\) 385.237 170.514i 0.426619 0.188831i
\(904\) −820.317 + 2524.68i −0.907430 + 2.79278i
\(905\) 159.843 + 220.004i 0.176622 + 0.243099i
\(906\) 616.484 2869.59i 0.680446 3.16731i
\(907\) 44.9979 + 138.489i 0.0496118 + 0.152690i 0.972793 0.231675i \(-0.0744206\pi\)
−0.923181 + 0.384365i \(0.874421\pi\)
\(908\) 951.902 309.292i 1.04835 0.340630i
\(909\) −23.4520 112.745i −0.0257997 0.124032i
\(910\) −88.2704 + 64.1322i −0.0970004 + 0.0704749i
\(911\) −1024.00 332.718i −1.12404 0.365223i −0.312732 0.949841i \(-0.601244\pi\)
−0.811308 + 0.584619i \(0.801244\pi\)
\(912\) 787.712 348.658i 0.863719 0.382301i
\(913\) 0 0
\(914\) 855.714i 0.936230i
\(915\) 482.639 49.6648i 0.527474 0.0542785i
\(916\) −2644.76 + 1921.53i −2.88730 + 2.09774i
\(917\) 800.637 1101.98i 0.873105 1.20173i
\(918\) 1203.27 + 7.86189i 1.31075 + 0.00856415i
\(919\) −97.6839 300.640i −0.106294 0.327138i 0.883738 0.467982i \(-0.155019\pi\)
−0.990032 + 0.140843i \(0.955019\pi\)
\(920\) −435.594 + 599.544i −0.473472 + 0.651678i
\(921\) −582.195 + 1003.34i −0.632133 + 1.08940i
\(922\) 788.358 2426.32i 0.855052 2.63158i
\(923\) 16.7976i 0.0181990i
\(924\) 0 0
\(925\) 149.606 0.161737
\(926\) −1574.45 511.571i −1.70028 0.552453i
\(927\) −69.1341 + 631.303i −0.0745783 + 0.681017i
\(928\) 259.506 + 188.542i 0.279640 + 0.203170i
\(929\) 1063.90 345.682i 1.14521 0.372101i 0.325872 0.945414i \(-0.394342\pi\)
0.819337 + 0.573313i \(0.194342\pi\)
\(930\) −350.540 391.024i −0.376925 0.420456i
\(931\) 252.615 + 183.536i 0.271337 + 0.197138i
\(932\) 909.843 + 1252.29i 0.976226 + 1.34366i
\(933\) 275.272 28.3263i 0.295040 0.0303604i
\(934\) −173.568 −0.185833
\(935\) 0 0
\(936\) −191.374 173.829i −0.204459 0.185715i
\(937\) −324.843 + 999.765i −0.346684 + 1.06699i 0.613991 + 0.789313i \(0.289563\pi\)
−0.960676 + 0.277672i \(0.910437\pi\)
\(938\) 1175.64 + 1618.12i 1.25334 + 1.72508i
\(939\) −218.214 46.8798i −0.232390 0.0499253i
\(940\) −259.067 797.325i −0.275603 0.848218i
\(941\) −304.866 + 99.0570i −0.323981 + 0.105268i −0.466492 0.884525i \(-0.654482\pi\)
0.142511 + 0.989793i \(0.454482\pi\)
\(942\) −13.6966 + 63.7545i −0.0145399 + 0.0676799i
\(943\) −639.664 + 464.743i −0.678329 + 0.492835i
\(944\) −2925.37 950.510i −3.09891 1.00690i
\(945\) 473.823 + 157.384i 0.501400 + 0.166544i
\(946\) 0 0
\(947\) 689.980i 0.728596i −0.931283 0.364298i \(-0.881309\pi\)
0.931283 0.364298i \(-0.118691\pi\)
\(948\) 235.064 + 2284.33i 0.247958 + 2.40963i
\(949\) −99.2979 + 72.1442i −0.104634 + 0.0760213i
\(950\) −459.977 + 633.104i −0.484187 + 0.666426i
\(951\) −1170.02 + 1048.88i −1.23030 + 1.10293i
\(952\) −594.253 1828.92i −0.624216 1.92114i
\(953\) −788.855 + 1085.77i −0.827760 + 1.13931i 0.160576 + 0.987023i \(0.448665\pi\)
−0.988336 + 0.152290i \(0.951335\pi\)
\(954\) −141.694 + 1293.89i −0.148526 + 1.35628i
\(955\) −203.464 + 626.198i −0.213051 + 0.655705i
\(956\) 3062.78i 3.20374i
\(957\) 0 0
\(958\) −614.947 −0.641907
\(959\) −679.743 220.862i −0.708804 0.230304i
\(960\) 51.8913 + 30.1103i 0.0540535 + 0.0313649i
\(961\) 334.925 + 243.337i 0.348517 + 0.253212i
\(962\) −40.6611 + 13.2116i −0.0422673 + 0.0137335i
\(963\) 680.953 1511.69i 0.707116 1.56977i
\(964\) 1875.83 + 1362.87i 1.94588 + 1.41377i
\(965\) 179.550 + 247.129i 0.186062 + 0.256093i
\(966\) −198.569 1929.67i −0.205558 1.99759i
\(967\) −1283.30 −1.32709 −0.663546 0.748135i \(-0.730949\pi\)
−0.663546 + 0.748135i \(0.730949\pi\)
\(968\) 0 0
\(969\) 159.384 + 360.091i 0.164483 + 0.371611i
\(970\) 178.476 549.292i 0.183996 0.566281i
\(971\) 500.100 + 688.328i 0.515036 + 0.708886i 0.984758 0.173928i \(-0.0556460\pi\)
−0.469722 + 0.882814i \(0.655646\pi\)
\(972\) −248.590 + 2140.67i −0.255751 + 2.20234i
\(973\) 580.471 + 1786.50i 0.596578 + 1.83608i
\(974\) 1690.49 549.274i 1.73562 0.563936i
\(975\) 99.6080 + 21.3992i 0.102162 + 0.0219479i
\(976\) 1704.31 1238.25i 1.74622 1.26870i
\(977\) −1153.28 374.724i −1.18043 0.383545i −0.347904 0.937530i \(-0.613107\pi\)
−0.832527 + 0.553985i \(0.813107\pi\)
\(978\) −705.322 1593.51i −0.721188 1.62936i
\(979\) 0 0
\(980\) 546.831i 0.557991i
\(981\) −261.437 457.412i −0.266501 0.466272i
\(982\) −958.436 + 696.345i −0.976004 + 0.709109i
\(983\) −267.240 + 367.825i −0.271862 + 0.374186i −0.923017 0.384759i \(-0.874285\pi\)
0.651155 + 0.758945i \(0.274285\pi\)
\(984\) −1359.67 1516.70i −1.38178 1.54136i
\(985\) −147.939 455.310i −0.150192 0.462243i
\(986\) −304.095 + 418.551i −0.308413 + 0.424494i
\(987\) 1042.00 + 604.628i 1.05572 + 0.612591i
\(988\) 47.6262 146.578i 0.0482046 0.148359i
\(989\) 322.239i 0.325823i
\(990\) 0 0
\(991\) 697.554 0.703889 0.351945 0.936021i \(-0.385521\pi\)
0.351945 + 0.936021i \(0.385521\pi\)
\(992\) −614.626 199.704i −0.619583 0.201315i
\(993\) 378.982 653.128i 0.381654 0.657732i
\(994\) −262.687 190.853i −0.264272 0.192005i
\(995\) 772.595 251.031i 0.776478 0.252293i
\(996\) −233.929 + 209.710i −0.234868 + 0.210552i
\(997\) 529.077 + 384.397i 0.530669 + 0.385553i 0.820608 0.571492i \(-0.193635\pi\)
−0.289939 + 0.957045i \(0.593635\pi\)
\(998\) −231.520 318.660i −0.231984 0.319299i
\(999\) 157.521 + 116.026i 0.157679 + 0.116142i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.n.251.4 16
3.2 odd 2 inner 363.3.h.n.251.1 16
11.2 odd 10 33.3.h.b.14.4 yes 16
11.3 even 5 363.3.h.j.323.4 16
11.4 even 5 363.3.b.l.122.8 8
11.5 even 5 inner 363.3.h.n.269.1 16
11.6 odd 10 363.3.h.o.269.4 16
11.7 odd 10 363.3.b.m.122.1 8
11.8 odd 10 33.3.h.b.26.1 yes 16
11.9 even 5 363.3.h.j.245.1 16
11.10 odd 2 363.3.h.o.251.1 16
33.2 even 10 33.3.h.b.14.1 16
33.5 odd 10 inner 363.3.h.n.269.4 16
33.8 even 10 33.3.h.b.26.4 yes 16
33.14 odd 10 363.3.h.j.323.1 16
33.17 even 10 363.3.h.o.269.1 16
33.20 odd 10 363.3.h.j.245.4 16
33.26 odd 10 363.3.b.l.122.1 8
33.29 even 10 363.3.b.m.122.8 8
33.32 even 2 363.3.h.o.251.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.14.1 16 33.2 even 10
33.3.h.b.14.4 yes 16 11.2 odd 10
33.3.h.b.26.1 yes 16 11.8 odd 10
33.3.h.b.26.4 yes 16 33.8 even 10
363.3.b.l.122.1 8 33.26 odd 10
363.3.b.l.122.8 8 11.4 even 5
363.3.b.m.122.1 8 11.7 odd 10
363.3.b.m.122.8 8 33.29 even 10
363.3.h.j.245.1 16 11.9 even 5
363.3.h.j.245.4 16 33.20 odd 10
363.3.h.j.323.1 16 33.14 odd 10
363.3.h.j.323.4 16 11.3 even 5
363.3.h.n.251.1 16 3.2 odd 2 inner
363.3.h.n.251.4 16 1.1 even 1 trivial
363.3.h.n.269.1 16 11.5 even 5 inner
363.3.h.n.269.4 16 33.5 odd 10 inner
363.3.h.o.251.1 16 11.10 odd 2
363.3.h.o.251.4 16 33.32 even 2
363.3.h.o.269.1 16 33.17 even 10
363.3.h.o.269.4 16 11.6 odd 10