Properties

Label 363.3.h.n.251.3
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,5,18,0,-32,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.3
Root \(-0.974642 + 1.34148i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.n.269.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.57700 + 0.512399i) q^{2} +(-2.99453 - 0.181006i) q^{3} +(-1.01168 - 0.735029i) q^{4} +(0.664316 - 0.215849i) q^{5} +(-4.62964 - 1.81985i) q^{6} +(2.11081 + 1.53360i) q^{7} +(-5.11736 - 7.04345i) q^{8} +(8.93447 + 1.08406i) q^{9} +1.15823 q^{10} +(2.89647 + 2.38419i) q^{12} +(-5.28943 + 16.2792i) q^{13} +(2.54295 + 3.50007i) q^{14} +(-2.02839 + 0.526123i) q^{15} +(-2.91533 - 8.97246i) q^{16} +(-15.3239 + 4.97905i) q^{17} +(13.5342 + 6.28759i) q^{18} +(-12.8847 + 9.36127i) q^{19} +(-0.830732 - 0.269921i) q^{20} +(-6.04332 - 4.97448i) q^{21} +23.1295i q^{23} +(14.0492 + 22.0181i) q^{24} +(-19.8307 + 14.4078i) q^{25} +(-16.6829 + 22.9620i) q^{26} +(-26.5584 - 4.86345i) q^{27} +(-1.00823 - 3.10302i) q^{28} +(3.15401 - 4.34112i) q^{29} +(-3.46836 - 0.209647i) q^{30} +(-1.25541 + 3.86376i) q^{31} +19.1813i q^{32} -26.7172 q^{34} +(1.73327 + 0.563175i) q^{35} +(-8.24202 - 7.66382i) q^{36} +(-51.3978 - 37.3427i) q^{37} +(-25.1159 + 8.16065i) q^{38} +(18.7860 - 47.7911i) q^{39} +(-4.91987 - 3.57450i) q^{40} +(39.6389 + 54.5583i) q^{41} +(-6.98141 - 10.9414i) q^{42} +22.6622 q^{43} +(6.16931 - 1.20834i) q^{45} +(-11.8515 + 36.4752i) q^{46} +(43.3908 + 59.7223i) q^{47} +(7.10598 + 27.3960i) q^{48} +(-13.0382 - 40.1275i) q^{49} +(-38.6557 + 12.5600i) q^{50} +(46.7893 - 12.1362i) q^{51} +(17.3169 - 12.5815i) q^{52} +(-40.7539 - 13.2417i) q^{53} +(-39.3906 - 21.2782i) q^{54} -22.7154i q^{56} +(40.2781 - 25.7004i) q^{57} +(7.19827 - 5.22985i) q^{58} +(16.8918 - 23.2496i) q^{59} +(2.43880 + 0.958656i) q^{60} +(14.3079 + 44.0351i) q^{61} +(-3.95957 + 5.44989i) q^{62} +(17.1965 + 15.9901i) q^{63} +(-21.4898 + 66.1388i) q^{64} +11.9562i q^{65} -77.2821 q^{67} +(19.1627 + 6.22634i) q^{68} +(4.18658 - 69.2619i) q^{69} +(2.44481 + 1.77626i) q^{70} +(39.2433 - 12.7509i) q^{71} +(-38.0854 - 68.4770i) q^{72} +(-45.9302 - 33.3703i) q^{73} +(-61.9201 - 85.2257i) q^{74} +(61.9916 - 39.5553i) q^{75} +19.9160 q^{76} +(54.1137 - 65.7409i) q^{78} +(15.7368 - 48.4329i) q^{79} +(-3.87340 - 5.33128i) q^{80} +(78.6496 + 19.3710i) q^{81} +(34.5551 + 106.350i) q^{82} +(56.3118 - 18.2968i) q^{83} +(2.45752 + 9.47460i) q^{84} +(-9.10522 + 6.61533i) q^{85} +(35.7384 + 11.6121i) q^{86} +(-10.2306 + 12.4287i) q^{87} -38.1909i q^{89} +(10.3482 + 1.25559i) q^{90} +(-36.1307 + 26.2505i) q^{91} +(17.0008 - 23.3996i) q^{92} +(4.45874 - 11.3429i) q^{93} +(37.8258 + 116.416i) q^{94} +(-6.53888 + 9.00000i) q^{95} +(3.47194 - 57.4390i) q^{96} +(5.03463 - 15.4950i) q^{97} -69.9620i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} + 18 q^{4} - 32 q^{6} + 34 q^{7} + 17 q^{9} + 12 q^{10} + 106 q^{12} + 2 q^{13} - 28 q^{15} + 102 q^{16} - 42 q^{18} - 66 q^{19} + 12 q^{21} + 74 q^{24} - 176 q^{25} - 55 q^{27} + 146 q^{28}+ \cdots + 252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57700 + 0.512399i 0.788502 + 0.256200i 0.675466 0.737391i \(-0.263943\pi\)
0.113036 + 0.993591i \(0.463943\pi\)
\(3\) −2.99453 0.181006i −0.998178 0.0603355i
\(4\) −1.01168 0.735029i −0.252920 0.183757i
\(5\) 0.664316 0.215849i 0.132863 0.0431699i −0.241831 0.970318i \(-0.577748\pi\)
0.374694 + 0.927149i \(0.377748\pi\)
\(6\) −4.62964 1.81985i −0.771607 0.303308i
\(7\) 2.11081 + 1.53360i 0.301545 + 0.219085i 0.728260 0.685301i \(-0.240329\pi\)
−0.426715 + 0.904386i \(0.640329\pi\)
\(8\) −5.11736 7.04345i −0.639670 0.880431i
\(9\) 8.93447 + 1.08406i 0.992719 + 0.120451i
\(10\) 1.15823 0.115823
\(11\) 0 0
\(12\) 2.89647 + 2.38419i 0.241372 + 0.198683i
\(13\) −5.28943 + 16.2792i −0.406879 + 1.25224i 0.512437 + 0.858725i \(0.328743\pi\)
−0.919316 + 0.393520i \(0.871257\pi\)
\(14\) 2.54295 + 3.50007i 0.181639 + 0.250005i
\(15\) −2.02839 + 0.526123i −0.135226 + 0.0350749i
\(16\) −2.91533 8.97246i −0.182208 0.560779i
\(17\) −15.3239 + 4.97905i −0.901408 + 0.292885i −0.722818 0.691038i \(-0.757154\pi\)
−0.178590 + 0.983924i \(0.557154\pi\)
\(18\) 13.5342 + 6.28759i 0.751901 + 0.349310i
\(19\) −12.8847 + 9.36127i −0.678141 + 0.492698i −0.872741 0.488184i \(-0.837659\pi\)
0.194599 + 0.980883i \(0.437659\pi\)
\(20\) −0.830732 0.269921i −0.0415366 0.0134961i
\(21\) −6.04332 4.97448i −0.287777 0.236880i
\(22\) 0 0
\(23\) 23.1295i 1.00563i 0.864395 + 0.502814i \(0.167702\pi\)
−0.864395 + 0.502814i \(0.832298\pi\)
\(24\) 14.0492 + 22.0181i 0.585384 + 0.917422i
\(25\) −19.8307 + 14.4078i −0.793228 + 0.576314i
\(26\) −16.6829 + 22.9620i −0.641649 + 0.883155i
\(27\) −26.5584 4.86345i −0.983643 0.180128i
\(28\) −1.00823 3.10302i −0.0360083 0.110822i
\(29\) 3.15401 4.34112i 0.108759 0.149694i −0.751168 0.660111i \(-0.770509\pi\)
0.859927 + 0.510418i \(0.170509\pi\)
\(30\) −3.46836 0.209647i −0.115612 0.00698824i
\(31\) −1.25541 + 3.86376i −0.0404971 + 0.124637i −0.969261 0.246034i \(-0.920872\pi\)
0.928764 + 0.370672i \(0.120872\pi\)
\(32\) 19.1813i 0.599415i
\(33\) 0 0
\(34\) −26.7172 −0.785799
\(35\) 1.73327 + 0.563175i 0.0495221 + 0.0160907i
\(36\) −8.24202 7.66382i −0.228945 0.212884i
\(37\) −51.3978 37.3427i −1.38913 1.00926i −0.995960 0.0897955i \(-0.971379\pi\)
−0.393169 0.919466i \(-0.628621\pi\)
\(38\) −25.1159 + 8.16065i −0.660945 + 0.214754i
\(39\) 18.7860 47.7911i 0.481692 1.22541i
\(40\) −4.91987 3.57450i −0.122997 0.0893624i
\(41\) 39.6389 + 54.5583i 0.966803 + 1.33069i 0.943645 + 0.330958i \(0.107372\pi\)
0.0231574 + 0.999732i \(0.492628\pi\)
\(42\) −6.98141 10.9414i −0.166224 0.260509i
\(43\) 22.6622 0.527028 0.263514 0.964656i \(-0.415118\pi\)
0.263514 + 0.964656i \(0.415118\pi\)
\(44\) 0 0
\(45\) 6.16931 1.20834i 0.137096 0.0268521i
\(46\) −11.8515 + 36.4752i −0.257642 + 0.792940i
\(47\) 43.3908 + 59.7223i 0.923209 + 1.27069i 0.962450 + 0.271458i \(0.0875058\pi\)
−0.0392417 + 0.999230i \(0.512494\pi\)
\(48\) 7.10598 + 27.3960i 0.148041 + 0.570751i
\(49\) −13.0382 40.1275i −0.266086 0.818928i
\(50\) −38.6557 + 12.5600i −0.773113 + 0.251200i
\(51\) 46.7893 12.1362i 0.917438 0.237965i
\(52\) 17.3169 12.5815i 0.333017 0.241951i
\(53\) −40.7539 13.2417i −0.768941 0.249844i −0.101830 0.994802i \(-0.532470\pi\)
−0.667112 + 0.744958i \(0.732470\pi\)
\(54\) −39.3906 21.2782i −0.729456 0.394040i
\(55\) 0 0
\(56\) 22.7154i 0.405632i
\(57\) 40.2781 25.7004i 0.706633 0.450885i
\(58\) 7.19827 5.22985i 0.124108 0.0901698i
\(59\) 16.8918 23.2496i 0.286302 0.394061i −0.641506 0.767118i \(-0.721690\pi\)
0.927809 + 0.373056i \(0.121690\pi\)
\(60\) 2.43880 + 0.958656i 0.0406466 + 0.0159776i
\(61\) 14.3079 + 44.0351i 0.234555 + 0.721888i 0.997180 + 0.0750462i \(0.0239104\pi\)
−0.762625 + 0.646841i \(0.776090\pi\)
\(62\) −3.95957 + 5.44989i −0.0638641 + 0.0879014i
\(63\) 17.1965 + 15.9901i 0.272960 + 0.253812i
\(64\) −21.4898 + 66.1388i −0.335778 + 1.03342i
\(65\) 11.9562i 0.183942i
\(66\) 0 0
\(67\) −77.2821 −1.15346 −0.576732 0.816933i \(-0.695672\pi\)
−0.576732 + 0.816933i \(0.695672\pi\)
\(68\) 19.1627 + 6.22634i 0.281804 + 0.0915638i
\(69\) 4.18658 69.2619i 0.0606751 1.00380i
\(70\) 2.44481 + 1.77626i 0.0349258 + 0.0253751i
\(71\) 39.2433 12.7509i 0.552723 0.179591i −0.0193214 0.999813i \(-0.506151\pi\)
0.572044 + 0.820223i \(0.306151\pi\)
\(72\) −38.0854 68.4770i −0.528964 0.951070i
\(73\) −45.9302 33.3703i −0.629181 0.457127i 0.226935 0.973910i \(-0.427129\pi\)
−0.856117 + 0.516783i \(0.827129\pi\)
\(74\) −61.9201 85.2257i −0.836758 1.15170i
\(75\) 61.9916 39.5553i 0.826555 0.527404i
\(76\) 19.9160 0.262053
\(77\) 0 0
\(78\) 54.1137 65.7409i 0.693766 0.842831i
\(79\) 15.7368 48.4329i 0.199200 0.613074i −0.800702 0.599063i \(-0.795540\pi\)
0.999902 0.0140112i \(-0.00446005\pi\)
\(80\) −3.87340 5.33128i −0.0484175 0.0666410i
\(81\) 78.6496 + 19.3710i 0.970983 + 0.239148i
\(82\) 34.5551 + 106.350i 0.421403 + 1.29695i
\(83\) 56.3118 18.2968i 0.678456 0.220444i 0.0505367 0.998722i \(-0.483907\pi\)
0.627919 + 0.778279i \(0.283907\pi\)
\(84\) 2.45752 + 9.47460i 0.0292562 + 0.112793i
\(85\) −9.10522 + 6.61533i −0.107120 + 0.0778274i
\(86\) 35.7384 + 11.6121i 0.415563 + 0.135024i
\(87\) −10.2306 + 12.4287i −0.117593 + 0.142859i
\(88\) 0 0
\(89\) 38.1909i 0.429112i −0.976712 0.214556i \(-0.931170\pi\)
0.976712 0.214556i \(-0.0688304\pi\)
\(90\) 10.3482 + 1.25559i 0.114980 + 0.0139510i
\(91\) −36.1307 + 26.2505i −0.397041 + 0.288467i
\(92\) 17.0008 23.3996i 0.184792 0.254344i
\(93\) 4.45874 11.3429i 0.0479434 0.121967i
\(94\) 37.8258 + 116.416i 0.402402 + 1.23847i
\(95\) −6.53888 + 9.00000i −0.0688303 + 0.0947368i
\(96\) 3.47194 57.4390i 0.0361660 0.598323i
\(97\) 5.03463 15.4950i 0.0519034 0.159742i −0.921745 0.387796i \(-0.873236\pi\)
0.973648 + 0.228054i \(0.0732363\pi\)
\(98\) 69.9620i 0.713898i
\(99\) 0 0
\(100\) 30.6525 0.306525
\(101\) −99.0948 32.1979i −0.981137 0.318791i −0.225833 0.974166i \(-0.572510\pi\)
−0.755303 + 0.655375i \(0.772510\pi\)
\(102\) 80.0055 + 4.83598i 0.784368 + 0.0474116i
\(103\) −44.0158 31.9793i −0.427338 0.310479i 0.353246 0.935531i \(-0.385078\pi\)
−0.780584 + 0.625052i \(0.785078\pi\)
\(104\) 141.729 46.0507i 1.36278 0.442795i
\(105\) −5.08841 2.00018i −0.0484611 0.0190493i
\(106\) −57.4840 41.7645i −0.542301 0.394005i
\(107\) 16.6971 + 22.9816i 0.156048 + 0.214781i 0.879881 0.475193i \(-0.157622\pi\)
−0.723834 + 0.689974i \(0.757622\pi\)
\(108\) 23.2938 + 24.4414i 0.215684 + 0.226310i
\(109\) 41.2540 0.378477 0.189238 0.981931i \(-0.439398\pi\)
0.189238 + 0.981931i \(0.439398\pi\)
\(110\) 0 0
\(111\) 147.153 + 121.127i 1.32570 + 1.09124i
\(112\) 7.60642 23.4101i 0.0679144 0.209019i
\(113\) −85.3335 117.451i −0.755164 1.03939i −0.997601 0.0692265i \(-0.977947\pi\)
0.242437 0.970167i \(-0.422053\pi\)
\(114\) 76.6876 19.8912i 0.672698 0.174484i
\(115\) 4.99248 + 15.3653i 0.0434129 + 0.133611i
\(116\) −6.38170 + 2.07354i −0.0550146 + 0.0178753i
\(117\) −64.9058 + 139.712i −0.554751 + 1.19412i
\(118\) 38.5516 28.0094i 0.326708 0.237367i
\(119\) −39.9819 12.9909i −0.335982 0.109167i
\(120\) 14.0857 + 11.5945i 0.117381 + 0.0966207i
\(121\) 0 0
\(122\) 76.7749i 0.629303i
\(123\) −108.825 170.552i −0.884754 1.38660i
\(124\) 4.11005 2.98613i 0.0331456 0.0240817i
\(125\) −20.3282 + 27.9793i −0.162625 + 0.223835i
\(126\) 18.9256 + 34.0280i 0.150203 + 0.270063i
\(127\) 56.4826 + 173.835i 0.444745 + 1.36878i 0.882763 + 0.469818i \(0.155680\pi\)
−0.438019 + 0.898966i \(0.644320\pi\)
\(128\) −22.6811 + 31.2178i −0.177196 + 0.243889i
\(129\) −67.8628 4.10200i −0.526068 0.0317985i
\(130\) −6.12637 + 18.8550i −0.0471259 + 0.145039i
\(131\) 84.5109i 0.645121i 0.946549 + 0.322561i \(0.104544\pi\)
−0.946549 + 0.322561i \(0.895456\pi\)
\(132\) 0 0
\(133\) −41.5536 −0.312433
\(134\) −121.874 39.5993i −0.909508 0.295517i
\(135\) −18.6929 + 2.50174i −0.138466 + 0.0185314i
\(136\) 113.488 + 82.4538i 0.834470 + 0.606278i
\(137\) −194.370 + 63.1546i −1.41876 + 0.460982i −0.915207 0.402983i \(-0.867973\pi\)
−0.503551 + 0.863966i \(0.667973\pi\)
\(138\) 42.0920 107.081i 0.305015 0.775950i
\(139\) −40.6461 29.5311i −0.292418 0.212454i 0.431898 0.901923i \(-0.357844\pi\)
−0.724316 + 0.689468i \(0.757844\pi\)
\(140\) −1.33957 1.84376i −0.00956836 0.0131697i
\(141\) −119.125 186.695i −0.844859 1.32407i
\(142\) 68.4204 0.481834
\(143\) 0 0
\(144\) −16.3203 83.3246i −0.113335 0.578643i
\(145\) 1.15823 3.56467i 0.00798779 0.0245839i
\(146\) −55.3332 76.1597i −0.378995 0.521642i
\(147\) 31.7800 + 122.523i 0.216191 + 0.833491i
\(148\) 24.5502 + 75.5578i 0.165880 + 0.510526i
\(149\) 149.698 48.6400i 1.00469 0.326443i 0.239950 0.970785i \(-0.422869\pi\)
0.764737 + 0.644343i \(0.222869\pi\)
\(150\) 118.029 30.6144i 0.786861 0.204096i
\(151\) −138.650 + 100.735i −0.918215 + 0.667122i −0.943079 0.332569i \(-0.892085\pi\)
0.0248642 + 0.999691i \(0.492085\pi\)
\(152\) 131.871 + 42.8476i 0.867574 + 0.281892i
\(153\) −142.309 + 27.8731i −0.930124 + 0.182177i
\(154\) 0 0
\(155\) 2.83774i 0.0183080i
\(156\) −54.1333 + 34.5411i −0.347009 + 0.221418i
\(157\) 52.8595 38.4047i 0.336685 0.244616i −0.406577 0.913617i \(-0.633278\pi\)
0.743262 + 0.669001i \(0.233278\pi\)
\(158\) 49.6339 68.3153i 0.314139 0.432375i
\(159\) 119.642 + 47.0296i 0.752466 + 0.295783i
\(160\) 4.14027 + 12.7424i 0.0258767 + 0.0796403i
\(161\) −35.4712 + 48.8220i −0.220318 + 0.303242i
\(162\) 114.105 + 70.8482i 0.704352 + 0.437334i
\(163\) −4.77074 + 14.6828i −0.0292684 + 0.0900787i −0.964624 0.263631i \(-0.915080\pi\)
0.935355 + 0.353710i \(0.115080\pi\)
\(164\) 84.3314i 0.514216i
\(165\) 0 0
\(166\) 98.1792 0.591441
\(167\) 146.561 + 47.6206i 0.877612 + 0.285154i 0.712966 0.701199i \(-0.247352\pi\)
0.164647 + 0.986353i \(0.447352\pi\)
\(168\) −4.11163 + 68.0220i −0.0244740 + 0.404893i
\(169\) −100.310 72.8793i −0.593549 0.431238i
\(170\) −17.7487 + 5.76689i −0.104404 + 0.0339229i
\(171\) −125.266 + 69.6703i −0.732550 + 0.407428i
\(172\) −22.9269 16.6574i −0.133296 0.0968453i
\(173\) 14.7552 + 20.3087i 0.0852900 + 0.117392i 0.849530 0.527540i \(-0.176886\pi\)
−0.764240 + 0.644932i \(0.776886\pi\)
\(174\) −22.5021 + 14.3580i −0.129322 + 0.0825174i
\(175\) −63.9548 −0.365456
\(176\) 0 0
\(177\) −54.7915 + 66.5642i −0.309556 + 0.376069i
\(178\) 19.5690 60.2272i 0.109938 0.338355i
\(179\) 36.3280 + 50.0013i 0.202950 + 0.279337i 0.898345 0.439291i \(-0.144770\pi\)
−0.695395 + 0.718628i \(0.744770\pi\)
\(180\) −7.12954 3.31217i −0.0396086 0.0184009i
\(181\) −45.8596 141.141i −0.253368 0.779786i −0.994147 0.108037i \(-0.965544\pi\)
0.740779 0.671749i \(-0.234456\pi\)
\(182\) −70.4290 + 22.8838i −0.386972 + 0.125735i
\(183\) −34.8748 134.455i −0.190573 0.734724i
\(184\) 162.911 118.362i 0.885386 0.643271i
\(185\) −42.2048 13.7132i −0.228134 0.0741252i
\(186\) 12.8435 15.6032i 0.0690513 0.0838880i
\(187\) 0 0
\(188\) 92.3135i 0.491029i
\(189\) −48.6012 50.9957i −0.257149 0.269818i
\(190\) −14.9234 + 10.8425i −0.0785444 + 0.0570658i
\(191\) 33.0352 45.4691i 0.172959 0.238058i −0.713733 0.700418i \(-0.752997\pi\)
0.886692 + 0.462360i \(0.152997\pi\)
\(192\) 76.3235 194.165i 0.397518 1.01128i
\(193\) −46.6529 143.583i −0.241725 0.743953i −0.996158 0.0875759i \(-0.972088\pi\)
0.754433 0.656377i \(-0.227912\pi\)
\(194\) 15.8793 21.8559i 0.0818519 0.112659i
\(195\) 2.16416 35.8034i 0.0110982 0.183607i
\(196\) −16.3044 + 50.1797i −0.0831856 + 0.256019i
\(197\) 22.3374i 0.113388i −0.998392 0.0566938i \(-0.981944\pi\)
0.998392 0.0566938i \(-0.0180559\pi\)
\(198\) 0 0
\(199\) −150.930 −0.758444 −0.379222 0.925306i \(-0.623808\pi\)
−0.379222 + 0.925306i \(0.623808\pi\)
\(200\) 202.962 + 65.9463i 1.01481 + 0.329731i
\(201\) 231.424 + 13.9886i 1.15136 + 0.0695948i
\(202\) −139.775 101.552i −0.691954 0.502734i
\(203\) 13.3150 4.32632i 0.0655914 0.0213119i
\(204\) −56.2563 22.1136i −0.275766 0.108400i
\(205\) 38.1092 + 27.6879i 0.185898 + 0.135063i
\(206\) −53.0269 72.9852i −0.257412 0.354297i
\(207\) −25.0737 + 206.649i −0.121129 + 0.998307i
\(208\) 161.485 0.776369
\(209\) 0 0
\(210\) −6.99955 5.76159i −0.0333312 0.0274362i
\(211\) −56.1107 + 172.691i −0.265927 + 0.818440i 0.725551 + 0.688168i \(0.241585\pi\)
−0.991478 + 0.130272i \(0.958415\pi\)
\(212\) 31.4969 + 43.3517i 0.148570 + 0.204489i
\(213\) −119.823 + 31.0798i −0.562551 + 0.145915i
\(214\) 14.5556 + 44.7976i 0.0680169 + 0.209335i
\(215\) 15.0549 4.89162i 0.0700227 0.0227517i
\(216\) 101.653 + 211.950i 0.470617 + 0.981252i
\(217\) −8.57538 + 6.23038i −0.0395179 + 0.0287114i
\(218\) 65.0577 + 21.1385i 0.298430 + 0.0969657i
\(219\) 131.499 + 108.242i 0.600454 + 0.494256i
\(220\) 0 0
\(221\) 275.798i 1.24795i
\(222\) 169.996 + 266.419i 0.765746 + 1.20009i
\(223\) −152.123 + 110.524i −0.682166 + 0.495623i −0.874076 0.485790i \(-0.838532\pi\)
0.191909 + 0.981413i \(0.438532\pi\)
\(224\) −29.4164 + 40.4882i −0.131323 + 0.180751i
\(225\) −192.796 + 107.229i −0.856870 + 0.476573i
\(226\) −74.3891 228.946i −0.329155 1.01304i
\(227\) 252.293 347.252i 1.11142 1.52974i 0.292122 0.956381i \(-0.405639\pi\)
0.819302 0.573362i \(-0.194361\pi\)
\(228\) −59.6392 3.60492i −0.261575 0.0158111i
\(229\) 41.9569 129.130i 0.183218 0.563887i −0.816695 0.577069i \(-0.804196\pi\)
0.999913 + 0.0131824i \(0.00419621\pi\)
\(230\) 26.7892i 0.116475i
\(231\) 0 0
\(232\) −46.7166 −0.201365
\(233\) 310.890 + 101.014i 1.33429 + 0.433538i 0.887380 0.461039i \(-0.152523\pi\)
0.446913 + 0.894577i \(0.352523\pi\)
\(234\) −173.945 + 187.068i −0.743355 + 0.799437i
\(235\) 41.7162 + 30.3086i 0.177516 + 0.128973i
\(236\) −34.1783 + 11.1052i −0.144823 + 0.0470559i
\(237\) −55.8910 + 142.185i −0.235827 + 0.599938i
\(238\) −56.3950 40.9734i −0.236954 0.172157i
\(239\) 54.9303 + 75.6050i 0.229834 + 0.316339i 0.908322 0.418273i \(-0.137364\pi\)
−0.678488 + 0.734612i \(0.737364\pi\)
\(240\) 10.6340 + 16.6658i 0.0443085 + 0.0694409i
\(241\) −206.766 −0.857952 −0.428976 0.903316i \(-0.641125\pi\)
−0.428976 + 0.903316i \(0.641125\pi\)
\(242\) 0 0
\(243\) −232.013 72.2432i −0.954785 0.297297i
\(244\) 17.8921 55.0662i 0.0733283 0.225681i
\(245\) −17.3230 23.8431i −0.0707061 0.0973186i
\(246\) −84.2264 324.722i −0.342384 1.32001i
\(247\) −84.2412 259.268i −0.341058 1.04967i
\(248\) 33.6386 10.9298i 0.135639 0.0440719i
\(249\) −171.940 + 44.5977i −0.690520 + 0.179107i
\(250\) −46.3942 + 33.7074i −0.185577 + 0.134829i
\(251\) −2.65372 0.862246i −0.0105726 0.00343524i 0.303726 0.952759i \(-0.401769\pi\)
−0.314299 + 0.949324i \(0.601769\pi\)
\(252\) −5.64417 28.8168i −0.0223975 0.114353i
\(253\) 0 0
\(254\) 303.081i 1.19323i
\(255\) 28.4633 18.1617i 0.111621 0.0712225i
\(256\) 173.280 125.895i 0.676875 0.491779i
\(257\) −235.235 + 323.774i −0.915313 + 1.25982i 0.0500071 + 0.998749i \(0.484076\pi\)
−0.965320 + 0.261071i \(0.915924\pi\)
\(258\) −104.918 41.2417i −0.406659 0.159852i
\(259\) −51.2226 157.647i −0.197771 0.608675i
\(260\) 8.78819 12.0959i 0.0338007 0.0465227i
\(261\) 32.8854 35.3665i 0.125998 0.135504i
\(262\) −43.3033 + 133.274i −0.165280 + 0.508679i
\(263\) 379.212i 1.44187i −0.693003 0.720935i \(-0.743713\pi\)
0.693003 0.720935i \(-0.256287\pi\)
\(264\) 0 0
\(265\) −29.9317 −0.112950
\(266\) −65.5302 21.2920i −0.246354 0.0800453i
\(267\) −6.91280 + 114.364i −0.0258906 + 0.428330i
\(268\) 78.1848 + 56.8046i 0.291734 + 0.211957i
\(269\) 29.6737 9.64156i 0.110311 0.0358422i −0.253341 0.967377i \(-0.581530\pi\)
0.363652 + 0.931535i \(0.381530\pi\)
\(270\) −30.7607 5.63300i −0.113929 0.0208630i
\(271\) 419.157 + 304.535i 1.54670 + 1.12375i 0.945950 + 0.324312i \(0.105133\pi\)
0.600754 + 0.799434i \(0.294867\pi\)
\(272\) 89.3487 + 122.978i 0.328488 + 0.452125i
\(273\) 112.946 72.0681i 0.413722 0.263986i
\(274\) −338.882 −1.23680
\(275\) 0 0
\(276\) −55.1450 + 66.9937i −0.199801 + 0.242731i
\(277\) −113.705 + 349.949i −0.410488 + 1.26335i 0.505737 + 0.862688i \(0.331221\pi\)
−0.916225 + 0.400664i \(0.868779\pi\)
\(278\) −48.9673 67.3977i −0.176141 0.242438i
\(279\) −15.4050 + 33.1597i −0.0552150 + 0.118852i
\(280\) −4.90310 15.0902i −0.0175111 0.0538936i
\(281\) −304.711 + 99.0066i −1.08438 + 0.352337i −0.796073 0.605201i \(-0.793093\pi\)
−0.288308 + 0.957538i \(0.593093\pi\)
\(282\) −92.1986 355.458i −0.326945 1.26049i
\(283\) −130.086 + 94.5128i −0.459667 + 0.333968i −0.793401 0.608700i \(-0.791691\pi\)
0.333734 + 0.942667i \(0.391691\pi\)
\(284\) −49.0740 15.9451i −0.172796 0.0561448i
\(285\) 21.2100 25.7672i 0.0744209 0.0904113i
\(286\) 0 0
\(287\) 175.953i 0.613075i
\(288\) −20.7937 + 171.375i −0.0722002 + 0.595051i
\(289\) −23.7736 + 17.2725i −0.0822616 + 0.0597665i
\(290\) 3.65307 5.02801i 0.0125968 0.0173380i
\(291\) −17.8811 + 45.4890i −0.0614470 + 0.156320i
\(292\) 21.9386 + 67.5202i 0.0751323 + 0.231233i
\(293\) −171.011 + 235.377i −0.583657 + 0.803335i −0.994090 0.108556i \(-0.965377\pi\)
0.410434 + 0.911891i \(0.365377\pi\)
\(294\) −12.6636 + 209.504i −0.0430734 + 0.712597i
\(295\) 6.20310 19.0912i 0.0210275 0.0647159i
\(296\) 553.114i 1.86863i
\(297\) 0 0
\(298\) 260.998 0.875832
\(299\) −376.528 122.342i −1.25929 0.409169i
\(300\) −91.7901 5.54831i −0.305967 0.0184944i
\(301\) 47.8357 + 34.7547i 0.158923 + 0.115464i
\(302\) −270.269 + 87.8157i −0.894931 + 0.290781i
\(303\) 290.915 + 114.354i 0.960115 + 0.377407i
\(304\) 121.557 + 88.3162i 0.399858 + 0.290514i
\(305\) 19.0099 + 26.1649i 0.0623276 + 0.0857866i
\(306\) −238.704 28.9630i −0.780078 0.0946504i
\(307\) 281.800 0.917915 0.458957 0.888458i \(-0.348223\pi\)
0.458957 + 0.888458i \(0.348223\pi\)
\(308\) 0 0
\(309\) 126.018 + 103.730i 0.407826 + 0.335697i
\(310\) −1.45405 + 4.47512i −0.00469050 + 0.0144359i
\(311\) 278.465 + 383.274i 0.895385 + 1.23239i 0.971917 + 0.235325i \(0.0756154\pi\)
−0.0765316 + 0.997067i \(0.524385\pi\)
\(312\) −432.749 + 112.246i −1.38702 + 0.359764i
\(313\) −9.26252 28.5071i −0.0295927 0.0910771i 0.935169 0.354201i \(-0.115247\pi\)
−0.964762 + 0.263124i \(0.915247\pi\)
\(314\) 103.038 33.4791i 0.328147 0.106621i
\(315\) 14.8754 + 6.91065i 0.0472234 + 0.0219386i
\(316\) −51.5202 + 37.4316i −0.163039 + 0.118454i
\(317\) −151.481 49.2192i −0.477858 0.155266i 0.0601773 0.998188i \(-0.480833\pi\)
−0.538036 + 0.842922i \(0.680833\pi\)
\(318\) 164.578 + 135.470i 0.517541 + 0.426007i
\(319\) 0 0
\(320\) 48.5757i 0.151799i
\(321\) −45.8402 71.8414i −0.142804 0.223805i
\(322\) −80.9546 + 58.8170i −0.251412 + 0.182661i
\(323\) 150.834 207.605i 0.466978 0.642740i
\(324\) −65.3301 77.4071i −0.201636 0.238911i
\(325\) −129.655 399.037i −0.398938 1.22781i
\(326\) −15.0470 + 20.7104i −0.0461563 + 0.0635287i
\(327\) −123.536 7.46723i −0.377787 0.0228356i
\(328\) 181.432 558.389i 0.553145 1.70241i
\(329\) 192.607i 0.585431i
\(330\) 0 0
\(331\) 332.709 1.00516 0.502582 0.864530i \(-0.332384\pi\)
0.502582 + 0.864530i \(0.332384\pi\)
\(332\) −70.4183 22.8803i −0.212103 0.0689166i
\(333\) −418.730 389.355i −1.25745 1.16924i
\(334\) 206.727 + 150.196i 0.618943 + 0.449688i
\(335\) −51.3397 + 16.6813i −0.153253 + 0.0497949i
\(336\) −27.0151 + 68.7257i −0.0804020 + 0.204541i
\(337\) 44.8239 + 32.5664i 0.133008 + 0.0966363i 0.652300 0.757961i \(-0.273804\pi\)
−0.519292 + 0.854597i \(0.673804\pi\)
\(338\) −120.846 166.330i −0.357531 0.492099i
\(339\) 234.275 + 367.158i 0.691076 + 1.08306i
\(340\) 14.0740 0.0413942
\(341\) 0 0
\(342\) −233.244 + 45.6840i −0.682000 + 0.133579i
\(343\) 73.5248 226.286i 0.214358 0.659727i
\(344\) −115.971 159.620i −0.337124 0.464012i
\(345\) −12.1689 46.9155i −0.0352723 0.135987i
\(346\) 12.8628 + 39.5875i 0.0371756 + 0.114415i
\(347\) −131.761 + 42.8117i −0.379714 + 0.123377i −0.492654 0.870225i \(-0.663973\pi\)
0.112940 + 0.993602i \(0.463973\pi\)
\(348\) 19.4855 5.05416i 0.0559929 0.0145234i
\(349\) 183.255 133.143i 0.525087 0.381498i −0.293430 0.955981i \(-0.594797\pi\)
0.818517 + 0.574482i \(0.194797\pi\)
\(350\) −100.857 32.7704i −0.288162 0.0936297i
\(351\) 219.652 406.624i 0.625788 1.15847i
\(352\) 0 0
\(353\) 258.939i 0.733538i 0.930312 + 0.366769i \(0.119536\pi\)
−0.930312 + 0.366769i \(0.880464\pi\)
\(354\) −120.514 + 76.8969i −0.340435 + 0.217223i
\(355\) 23.3177 16.9413i 0.0656836 0.0477220i
\(356\) −28.0715 + 38.6370i −0.0788524 + 0.108531i
\(357\) 117.376 + 46.1387i 0.328783 + 0.129240i
\(358\) 31.6688 + 97.4666i 0.0884604 + 0.272253i
\(359\) −152.258 + 209.565i −0.424116 + 0.583745i −0.966590 0.256327i \(-0.917488\pi\)
0.542474 + 0.840072i \(0.317488\pi\)
\(360\) −40.0815 37.2697i −0.111337 0.103527i
\(361\) −33.1734 + 102.097i −0.0918932 + 0.282818i
\(362\) 246.079i 0.679775i
\(363\) 0 0
\(364\) 55.8476 0.153428
\(365\) −37.7152 12.2544i −0.103329 0.0335737i
\(366\) 13.8968 229.905i 0.0379693 0.628156i
\(367\) 160.814 + 116.838i 0.438186 + 0.318361i 0.784914 0.619605i \(-0.212707\pi\)
−0.346728 + 0.937966i \(0.612707\pi\)
\(368\) 207.528 67.4300i 0.563935 0.183234i
\(369\) 295.008 + 530.421i 0.799481 + 1.43745i
\(370\) −59.5305 43.2514i −0.160893 0.116896i
\(371\) −65.7164 90.4509i −0.177133 0.243803i
\(372\) −12.8482 + 8.19811i −0.0345382 + 0.0220379i
\(373\) −670.467 −1.79750 −0.898750 0.438462i \(-0.855523\pi\)
−0.898750 + 0.438462i \(0.855523\pi\)
\(374\) 0 0
\(375\) 65.9379 80.1056i 0.175834 0.213615i
\(376\) 198.604 611.242i 0.528203 1.62564i
\(377\) 53.9870 + 74.3067i 0.143201 + 0.197100i
\(378\) −50.5141 105.324i −0.133635 0.278634i
\(379\) 121.255 + 373.186i 0.319935 + 0.984659i 0.973675 + 0.227940i \(0.0731990\pi\)
−0.653740 + 0.756719i \(0.726801\pi\)
\(380\) 13.2305 4.29886i 0.0348172 0.0113128i
\(381\) −137.674 530.780i −0.361348 1.39312i
\(382\) 75.3950 54.7777i 0.197369 0.143397i
\(383\) 473.343 + 153.798i 1.23588 + 0.401562i 0.852842 0.522170i \(-0.174877\pi\)
0.383040 + 0.923732i \(0.374877\pi\)
\(384\) 73.5699 89.3774i 0.191588 0.232754i
\(385\) 0 0
\(386\) 250.336i 0.648538i
\(387\) 202.475 + 24.5672i 0.523191 + 0.0634811i
\(388\) −16.4827 + 11.9754i −0.0424813 + 0.0308644i
\(389\) 242.332 333.541i 0.622961 0.857433i −0.374603 0.927185i \(-0.622221\pi\)
0.997564 + 0.0697526i \(0.0222210\pi\)
\(390\) 21.7585 55.3531i 0.0557911 0.141931i
\(391\) −115.163 354.434i −0.294534 0.906482i
\(392\) −215.915 + 297.181i −0.550802 + 0.758115i
\(393\) 15.2970 253.071i 0.0389237 0.643946i
\(394\) 11.4456 35.2261i 0.0290499 0.0894063i
\(395\) 35.5715i 0.0900544i
\(396\) 0 0
\(397\) 171.230 0.431310 0.215655 0.976470i \(-0.430811\pi\)
0.215655 + 0.976470i \(0.430811\pi\)
\(398\) −238.018 77.3366i −0.598034 0.194313i
\(399\) 124.434 + 7.52147i 0.311864 + 0.0188508i
\(400\) 187.087 + 135.927i 0.467717 + 0.339816i
\(401\) 690.485 224.352i 1.72191 0.559482i 0.729665 0.683804i \(-0.239676\pi\)
0.992242 + 0.124323i \(0.0396758\pi\)
\(402\) 357.788 + 140.641i 0.890021 + 0.349854i
\(403\) −56.2584 40.8741i −0.139599 0.101425i
\(404\) 76.5860 + 105.412i 0.189569 + 0.260920i
\(405\) 56.4294 4.10800i 0.139332 0.0101432i
\(406\) 23.2147 0.0571790
\(407\) 0 0
\(408\) −324.919 267.453i −0.796369 0.655521i
\(409\) −93.1348 + 286.639i −0.227713 + 0.700830i 0.770291 + 0.637692i \(0.220111\pi\)
−0.998005 + 0.0631377i \(0.979889\pi\)
\(410\) 45.9110 + 63.1911i 0.111978 + 0.154125i
\(411\) 593.479 153.936i 1.44399 0.374541i
\(412\) 21.0242 + 64.7058i 0.0510296 + 0.157053i
\(413\) 71.3110 23.1704i 0.172666 0.0561026i
\(414\) −145.428 + 313.039i −0.351276 + 0.756133i
\(415\) 33.4595 24.3098i 0.0806253 0.0585777i
\(416\) −312.256 101.458i −0.750615 0.243889i
\(417\) 116.371 + 95.7892i 0.279067 + 0.229710i
\(418\) 0 0
\(419\) 573.195i 1.36801i −0.729478 0.684004i \(-0.760237\pi\)
0.729478 0.684004i \(-0.239763\pi\)
\(420\) 3.67766 + 5.76368i 0.00875633 + 0.0137230i
\(421\) 452.468 328.737i 1.07475 0.780849i 0.0979865 0.995188i \(-0.468760\pi\)
0.976759 + 0.214339i \(0.0687598\pi\)
\(422\) −176.973 + 243.583i −0.419368 + 0.577211i
\(423\) 322.931 + 580.626i 0.763431 + 1.37264i
\(424\) 115.285 + 354.811i 0.271898 + 0.836817i
\(425\) 232.147 319.523i 0.546229 0.751819i
\(426\) −204.887 12.3845i −0.480956 0.0290717i
\(427\) −37.3308 + 114.893i −0.0874259 + 0.269069i
\(428\) 35.5229i 0.0829973i
\(429\) 0 0
\(430\) 26.2480 0.0610420
\(431\) −190.066 61.7562i −0.440988 0.143286i 0.0801033 0.996787i \(-0.474475\pi\)
−0.521092 + 0.853501i \(0.674475\pi\)
\(432\) 33.7893 + 252.473i 0.0782159 + 0.584427i
\(433\) 83.7223 + 60.8278i 0.193354 + 0.140480i 0.680250 0.732980i \(-0.261871\pi\)
−0.486896 + 0.873460i \(0.661871\pi\)
\(434\) −16.7159 + 5.43131i −0.0385158 + 0.0125145i
\(435\) −4.11359 + 10.4649i −0.00945652 + 0.0240572i
\(436\) −41.7359 30.3229i −0.0957245 0.0695479i
\(437\) −216.521 298.016i −0.495472 0.681958i
\(438\) 151.912 + 238.078i 0.346831 + 0.543558i
\(439\) 662.550 1.50923 0.754613 0.656171i \(-0.227825\pi\)
0.754613 + 0.656171i \(0.227825\pi\)
\(440\) 0 0
\(441\) −72.9890 372.652i −0.165508 0.845016i
\(442\) 141.319 434.934i 0.319725 0.984013i
\(443\) −123.922 170.565i −0.279735 0.385022i 0.645911 0.763412i \(-0.276478\pi\)
−0.925646 + 0.378391i \(0.876478\pi\)
\(444\) −59.8400 230.704i −0.134775 0.519604i
\(445\) −8.24349 25.3709i −0.0185247 0.0570132i
\(446\) −296.531 + 96.3488i −0.664868 + 0.216029i
\(447\) −457.081 + 118.558i −1.02255 + 0.265230i
\(448\) −146.791 + 106.650i −0.327659 + 0.238058i
\(449\) −227.560 73.9387i −0.506815 0.164674i 0.0444383 0.999012i \(-0.485850\pi\)
−0.551253 + 0.834338i \(0.685850\pi\)
\(450\) −358.984 + 70.3118i −0.797742 + 0.156248i
\(451\) 0 0
\(452\) 181.546i 0.401651i
\(453\) 433.427 276.559i 0.956793 0.610506i
\(454\) 575.799 418.342i 1.26828 0.921459i
\(455\) −18.3361 + 25.2374i −0.0402990 + 0.0554668i
\(456\) −387.137 152.178i −0.848985 0.333724i
\(457\) −8.24694 25.3815i −0.0180458 0.0555393i 0.941628 0.336655i \(-0.109296\pi\)
−0.959674 + 0.281116i \(0.909296\pi\)
\(458\) 132.332 182.140i 0.288935 0.397685i
\(459\) 431.194 57.7082i 0.939421 0.125726i
\(460\) 6.24313 19.2144i 0.0135720 0.0417704i
\(461\) 393.125i 0.852766i 0.904543 + 0.426383i \(0.140212\pi\)
−0.904543 + 0.426383i \(0.859788\pi\)
\(462\) 0 0
\(463\) 106.954 0.231002 0.115501 0.993307i \(-0.463153\pi\)
0.115501 + 0.993307i \(0.463153\pi\)
\(464\) −48.1455 15.6434i −0.103762 0.0337143i
\(465\) 0.513648 8.49770i 0.00110462 0.0182746i
\(466\) 438.515 + 318.600i 0.941020 + 0.683691i
\(467\) 402.211 130.686i 0.861265 0.279842i 0.155108 0.987897i \(-0.450427\pi\)
0.706157 + 0.708055i \(0.250427\pi\)
\(468\) 168.356 93.6361i 0.359736 0.200077i
\(469\) −163.128 118.520i −0.347821 0.252707i
\(470\) 50.2565 + 69.1722i 0.106929 + 0.147175i
\(471\) −165.241 + 105.436i −0.350830 + 0.223856i
\(472\) −250.199 −0.530083
\(473\) 0 0
\(474\) −160.996 + 195.588i −0.339654 + 0.412634i
\(475\) 120.637 371.281i 0.253972 0.781644i
\(476\) 30.9002 + 42.5305i 0.0649164 + 0.0893498i
\(477\) −349.760 162.488i −0.733249 0.340645i
\(478\) 47.8853 + 147.376i 0.100178 + 0.308317i
\(479\) 513.299 166.781i 1.07161 0.348186i 0.280493 0.959856i \(-0.409502\pi\)
0.791113 + 0.611670i \(0.209502\pi\)
\(480\) −10.0917 38.9071i −0.0210244 0.0810565i
\(481\) 879.773 639.192i 1.82905 1.32888i
\(482\) −326.071 105.947i −0.676497 0.219807i
\(483\) 115.057 139.779i 0.238213 0.289397i
\(484\) 0 0
\(485\) 11.3803i 0.0234645i
\(486\) −328.868 232.811i −0.676682 0.479035i
\(487\) −494.023 + 358.929i −1.01442 + 0.737020i −0.965132 0.261765i \(-0.915696\pi\)
−0.0492892 + 0.998785i \(0.515696\pi\)
\(488\) 236.940 326.121i 0.485534 0.668280i
\(489\) 16.9438 43.1047i 0.0346500 0.0881487i
\(490\) −15.1013 46.4769i −0.0308189 0.0948508i
\(491\) −33.4298 + 46.0121i −0.0680851 + 0.0937111i −0.841702 0.539943i \(-0.818446\pi\)
0.773616 + 0.633654i \(0.218446\pi\)
\(492\) −15.2645 + 252.533i −0.0310254 + 0.513279i
\(493\) −26.7172 + 82.2270i −0.0541931 + 0.166789i
\(494\) 452.031i 0.915043i
\(495\) 0 0
\(496\) 38.3274 0.0772729
\(497\) 102.390 + 33.2686i 0.206016 + 0.0669388i
\(498\) −294.001 17.7711i −0.590364 0.0356849i
\(499\) −379.330 275.600i −0.760181 0.552304i 0.138785 0.990323i \(-0.455680\pi\)
−0.898966 + 0.438019i \(0.855680\pi\)
\(500\) 41.1313 13.3644i 0.0822626 0.0267287i
\(501\) −430.263 169.130i −0.858809 0.337585i
\(502\) −3.74311 2.71953i −0.00745640 0.00541739i
\(503\) 269.307 + 370.669i 0.535401 + 0.736916i 0.987942 0.154827i \(-0.0494822\pi\)
−0.452540 + 0.891744i \(0.649482\pi\)
\(504\) 24.6248 202.950i 0.0488588 0.402678i
\(505\) −72.7802 −0.144119
\(506\) 0 0
\(507\) 287.189 + 236.396i 0.566448 + 0.466265i
\(508\) 70.6318 217.382i 0.139039 0.427918i
\(509\) −161.552 222.357i −0.317391 0.436851i 0.620277 0.784383i \(-0.287020\pi\)
−0.937668 + 0.347531i \(0.887020\pi\)
\(510\) 54.1928 14.0565i 0.106260 0.0275618i
\(511\) −45.7737 140.877i −0.0895767 0.275689i
\(512\) 484.567 157.445i 0.946420 0.307510i
\(513\) 387.724 185.956i 0.755798 0.362487i
\(514\) −536.868 + 390.058i −1.04449 + 0.758867i
\(515\) −36.1431 11.7436i −0.0701808 0.0228031i
\(516\) 65.6404 + 54.0310i 0.127210 + 0.104711i
\(517\) 0 0
\(518\) 274.856i 0.530610i
\(519\) −40.5088 63.4860i −0.0780517 0.122324i
\(520\) 84.2131 61.1844i 0.161948 0.117662i
\(521\) 146.004 200.957i 0.280237 0.385714i −0.645575 0.763697i \(-0.723382\pi\)
0.925812 + 0.377983i \(0.123382\pi\)
\(522\) 69.9822 38.9226i 0.134065 0.0745643i
\(523\) −43.4437 133.706i −0.0830663 0.255652i 0.900894 0.434039i \(-0.142912\pi\)
−0.983960 + 0.178387i \(0.942912\pi\)
\(524\) 62.1180 85.4981i 0.118546 0.163164i
\(525\) 191.515 + 11.5762i 0.364790 + 0.0220499i
\(526\) 194.308 598.018i 0.369407 1.13692i
\(527\) 65.4587i 0.124210i
\(528\) 0 0
\(529\) −5.97152 −0.0112883
\(530\) −47.2024 15.3370i −0.0890611 0.0289377i
\(531\) 176.124 189.411i 0.331683 0.356707i
\(532\) 42.0390 + 30.5431i 0.0790207 + 0.0574119i
\(533\) −1097.83 + 356.707i −2.05972 + 0.669244i
\(534\) −69.5016 + 176.810i −0.130153 + 0.331106i
\(535\) 16.0527 + 11.6630i 0.0300051 + 0.0217999i
\(536\) 395.480 + 544.332i 0.737837 + 1.01555i
\(537\) −99.7350 156.306i −0.185726 0.291073i
\(538\) 51.7358 0.0961633
\(539\) 0 0
\(540\) 20.7501 + 11.2089i 0.0384262 + 0.0207572i
\(541\) −185.692 + 571.503i −0.343239 + 1.05638i 0.619280 + 0.785170i \(0.287424\pi\)
−0.962520 + 0.271212i \(0.912576\pi\)
\(542\) 504.968 + 695.029i 0.931675 + 1.28234i
\(543\) 111.781 + 430.953i 0.205857 + 0.793652i
\(544\) −95.5046 293.933i −0.175560 0.540318i
\(545\) 27.4057 8.90465i 0.0502857 0.0163388i
\(546\) 215.044 55.7781i 0.393854 0.102158i
\(547\) −502.297 + 364.940i −0.918276 + 0.667166i −0.943094 0.332526i \(-0.892099\pi\)
0.0248187 + 0.999692i \(0.492099\pi\)
\(548\) 243.061 + 78.9752i 0.443542 + 0.144115i
\(549\) 80.0967 + 408.941i 0.145896 + 0.744884i
\(550\) 0 0
\(551\) 85.4594i 0.155099i
\(552\) −509.267 + 324.951i −0.922585 + 0.588679i
\(553\) 107.494 78.0989i 0.194383 0.141228i
\(554\) −358.627 + 493.608i −0.647341 + 0.890988i
\(555\) 123.902 + 48.7039i 0.223246 + 0.0877547i
\(556\) 19.4147 + 59.7522i 0.0349185 + 0.107468i
\(557\) −317.419 + 436.890i −0.569873 + 0.784363i −0.992540 0.121922i \(-0.961094\pi\)
0.422666 + 0.906285i \(0.361094\pi\)
\(558\) −41.2847 + 44.3994i −0.0739869 + 0.0795689i
\(559\) −119.870 + 368.922i −0.214437 + 0.659968i
\(560\) 17.1936i 0.0307028i
\(561\) 0 0
\(562\) −531.261 −0.945305
\(563\) 265.027 + 86.1126i 0.470741 + 0.152953i 0.534775 0.844995i \(-0.320396\pi\)
−0.0640335 + 0.997948i \(0.520396\pi\)
\(564\) −16.7093 + 276.436i −0.0296265 + 0.490135i
\(565\) −82.0403 59.6057i −0.145204 0.105497i
\(566\) −253.574 + 82.3912i −0.448011 + 0.145567i
\(567\) 136.307 + 161.505i 0.240401 + 0.284842i
\(568\) −290.633 211.157i −0.511677 0.371755i
\(569\) −628.675 865.297i −1.10488 1.52073i −0.828755 0.559611i \(-0.810950\pi\)
−0.276122 0.961122i \(-0.589050\pi\)
\(570\) 46.6513 29.7670i 0.0818444 0.0522228i
\(571\) −470.660 −0.824274 −0.412137 0.911122i \(-0.635217\pi\)
−0.412137 + 0.911122i \(0.635217\pi\)
\(572\) 0 0
\(573\) −107.155 + 130.179i −0.187007 + 0.227189i
\(574\) −90.1580 + 277.478i −0.157070 + 0.483411i
\(575\) −333.246 458.673i −0.579558 0.797693i
\(576\) −263.699 + 567.619i −0.457810 + 0.985450i
\(577\) 70.8100 + 217.931i 0.122721 + 0.377696i 0.993479 0.114015i \(-0.0363714\pi\)
−0.870758 + 0.491712i \(0.836371\pi\)
\(578\) −46.3415 + 15.0573i −0.0801756 + 0.0260506i
\(579\) 113.714 + 438.409i 0.196398 + 0.757182i
\(580\) −3.79189 + 2.75497i −0.00653775 + 0.00474995i
\(581\) 146.924 + 47.7384i 0.252881 + 0.0821660i
\(582\) −51.5071 + 62.5741i −0.0885001 + 0.107516i
\(583\) 0 0
\(584\) 494.275i 0.846361i
\(585\) −12.9613 + 106.823i −0.0221560 + 0.182603i
\(586\) −390.293 + 283.564i −0.666029 + 0.483898i
\(587\) 0.435454 0.599351i 0.000741830 0.00102104i −0.808646 0.588296i \(-0.799799\pi\)
0.809388 + 0.587275i \(0.199799\pi\)
\(588\) 57.9069 147.314i 0.0984810 0.250533i
\(589\) −19.9941 61.5355i −0.0339458 0.104475i
\(590\) 19.5646 26.9284i 0.0331604 0.0456414i
\(591\) −4.04320 + 66.8900i −0.00684129 + 0.113181i
\(592\) −185.214 + 570.031i −0.312862 + 0.962890i
\(593\) 498.413i 0.840494i 0.907410 + 0.420247i \(0.138057\pi\)
−0.907410 + 0.420247i \(0.861943\pi\)
\(594\) 0 0
\(595\) −29.3647 −0.0493524
\(596\) −187.199 60.8246i −0.314092 0.102055i
\(597\) 451.966 + 27.3194i 0.757062 + 0.0457611i
\(598\) −531.099 385.866i −0.888125 0.645261i
\(599\) 182.035 59.1467i 0.303898 0.0987425i −0.153098 0.988211i \(-0.548925\pi\)
0.456997 + 0.889468i \(0.348925\pi\)
\(600\) −595.839 234.216i −0.993066 0.390360i
\(601\) 672.631 + 488.695i 1.11919 + 0.813137i 0.984086 0.177695i \(-0.0568640\pi\)
0.135101 + 0.990832i \(0.456864\pi\)
\(602\) 57.6288 + 79.3192i 0.0957289 + 0.131760i
\(603\) −690.475 83.7784i −1.14507 0.138936i
\(604\) 214.314 0.354824
\(605\) 0 0
\(606\) 400.178 + 329.402i 0.660361 + 0.543567i
\(607\) −244.029 + 751.044i −0.402025 + 1.23731i 0.521329 + 0.853356i \(0.325436\pi\)
−0.923354 + 0.383950i \(0.874564\pi\)
\(608\) −179.561 247.145i −0.295331 0.406488i
\(609\) −40.6555 + 10.5452i −0.0667577 + 0.0173156i
\(610\) 16.5718 + 51.0028i 0.0271669 + 0.0836112i
\(611\) −1201.74 + 390.470i −1.96685 + 0.639067i
\(612\) 164.459 + 76.4026i 0.268724 + 0.124841i
\(613\) −224.256 + 162.932i −0.365834 + 0.265794i −0.755481 0.655170i \(-0.772597\pi\)
0.389647 + 0.920964i \(0.372597\pi\)
\(614\) 444.399 + 144.394i 0.723777 + 0.235170i
\(615\) −109.107 89.8104i −0.177411 0.146033i
\(616\) 0 0
\(617\) 928.547i 1.50494i 0.658628 + 0.752469i \(0.271137\pi\)
−0.658628 + 0.752469i \(0.728863\pi\)
\(618\) 145.580 + 228.155i 0.235566 + 0.369183i
\(619\) −773.156 + 561.731i −1.24904 + 0.907481i −0.998166 0.0605380i \(-0.980718\pi\)
−0.250875 + 0.968019i \(0.580718\pi\)
\(620\) 2.08582 2.87088i 0.00336423 0.00463046i
\(621\) 112.489 614.280i 0.181142 0.989179i
\(622\) 242.751 + 747.109i 0.390274 + 1.20114i
\(623\) 58.5695 80.6140i 0.0940120 0.129396i
\(624\) −483.572 29.2298i −0.774955 0.0468426i
\(625\) 181.901 559.835i 0.291042 0.895735i
\(626\) 49.7019i 0.0793961i
\(627\) 0 0
\(628\) −81.7055 −0.130104
\(629\) 973.548 + 316.325i 1.54777 + 0.502901i
\(630\) 19.9175 + 18.5202i 0.0316151 + 0.0293972i
\(631\) 4.25502 + 3.09145i 0.00674330 + 0.00489929i 0.591152 0.806560i \(-0.298673\pi\)
−0.584409 + 0.811460i \(0.698673\pi\)
\(632\) −421.665 + 137.007i −0.667192 + 0.216784i
\(633\) 199.283 506.972i 0.314824 0.800904i
\(634\) −213.666 155.238i −0.337013 0.244854i
\(635\) 75.0446 + 103.290i 0.118180 + 0.162661i
\(636\) −86.4715 135.519i −0.135962 0.213081i
\(637\) 722.207 1.13376
\(638\) 0 0
\(639\) 364.441 71.3807i 0.570330 0.111707i
\(640\) −8.32906 + 25.6342i −0.0130141 + 0.0400534i
\(641\) −285.666 393.185i −0.445657 0.613394i 0.525801 0.850608i \(-0.323766\pi\)
−0.971457 + 0.237214i \(0.923766\pi\)
\(642\) −35.4786 136.783i −0.0552627 0.213057i
\(643\) −228.326 702.715i −0.355095 1.09287i −0.955955 0.293515i \(-0.905175\pi\)
0.600860 0.799354i \(-0.294825\pi\)
\(644\) 71.7712 23.3199i 0.111446 0.0362110i
\(645\) −45.9677 + 11.9231i −0.0712678 + 0.0184854i
\(646\) 344.242 250.107i 0.532883 0.387162i
\(647\) 1093.99 + 355.458i 1.69086 + 0.549394i 0.986969 0.160913i \(-0.0514438\pi\)
0.703892 + 0.710307i \(0.251444\pi\)
\(648\) −266.040 653.093i −0.410556 1.00786i
\(649\) 0 0
\(650\) 695.717i 1.07033i
\(651\) 26.8070 17.1049i 0.0411782 0.0262748i
\(652\) 15.6188 11.3477i 0.0239552 0.0174045i
\(653\) −355.641 + 489.498i −0.544626 + 0.749614i −0.989271 0.146093i \(-0.953330\pi\)
0.444645 + 0.895707i \(0.353330\pi\)
\(654\) −190.991 75.0759i −0.292035 0.114795i
\(655\) 18.2416 + 56.1419i 0.0278498 + 0.0857129i
\(656\) 373.962 514.714i 0.570064 0.784625i
\(657\) −374.187 347.937i −0.569539 0.529584i
\(658\) −98.6916 + 303.741i −0.149987 + 0.461613i
\(659\) 956.314i 1.45116i −0.688138 0.725580i \(-0.741572\pi\)
0.688138 0.725580i \(-0.258428\pi\)
\(660\) 0 0
\(661\) 57.8747 0.0875563 0.0437781 0.999041i \(-0.486061\pi\)
0.0437781 + 0.999041i \(0.486061\pi\)
\(662\) 524.684 + 170.480i 0.792573 + 0.257523i
\(663\) −49.9211 + 825.885i −0.0752958 + 1.24568i
\(664\) −417.041 302.998i −0.628074 0.456322i
\(665\) −27.6047 + 8.96932i −0.0415109 + 0.0134877i
\(666\) −460.834 828.572i −0.691943 1.24410i
\(667\) 100.408 + 72.9505i 0.150536 + 0.109371i
\(668\) −113.271 155.904i −0.169567 0.233389i
\(669\) 475.543 303.432i 0.710827 0.453561i
\(670\) −89.5104 −0.133598
\(671\) 0 0
\(672\) 95.4169 115.919i 0.141989 0.172498i
\(673\) −263.174 + 809.965i −0.391045 + 1.20351i 0.540953 + 0.841053i \(0.318064\pi\)
−0.931999 + 0.362461i \(0.881936\pi\)
\(674\) 54.0004 + 74.3251i 0.0801192 + 0.110275i
\(675\) 596.743 286.203i 0.884063 0.424005i
\(676\) 47.9131 + 147.461i 0.0708773 + 0.218138i
\(677\) 256.528 83.3509i 0.378918 0.123118i −0.113364 0.993553i \(-0.536163\pi\)
0.492282 + 0.870436i \(0.336163\pi\)
\(678\) 181.320 + 699.052i 0.267434 + 1.03105i
\(679\) 34.3903 24.9860i 0.0506484 0.0367982i
\(680\) 93.1894 + 30.2791i 0.137043 + 0.0445281i
\(681\) −818.355 + 994.191i −1.20170 + 1.45990i
\(682\) 0 0
\(683\) 254.016i 0.371913i −0.982558 0.185956i \(-0.940462\pi\)
0.982558 0.185956i \(-0.0595383\pi\)
\(684\) 177.939 + 21.5901i 0.260145 + 0.0315645i
\(685\) −115.491 + 83.9092i −0.168600 + 0.122495i
\(686\) 231.898 319.180i 0.338044 0.465277i
\(687\) −149.015 + 379.090i −0.216907 + 0.551805i
\(688\) −66.0678 203.336i −0.0960288 0.295546i
\(689\) 431.129 593.399i 0.625732 0.861246i
\(690\) 4.84902 80.2213i 0.00702757 0.116263i
\(691\) −116.992 + 360.065i −0.169309 + 0.521078i −0.999328 0.0366564i \(-0.988329\pi\)
0.830019 + 0.557735i \(0.188329\pi\)
\(692\) 31.3914i 0.0453634i
\(693\) 0 0
\(694\) −229.724 −0.331014
\(695\) −33.3762 10.8446i −0.0480232 0.0156037i
\(696\) 139.895 + 8.45601i 0.200998 + 0.0121494i
\(697\) −879.073 638.684i −1.26122 0.916333i
\(698\) 357.217 116.067i 0.511772 0.166285i
\(699\) −912.687 358.764i −1.30570 0.513253i
\(700\) 64.7018 + 47.0086i 0.0924312 + 0.0671552i
\(701\) −188.061 258.843i −0.268275 0.369249i 0.653531 0.756899i \(-0.273287\pi\)
−0.921806 + 0.387651i \(0.873287\pi\)
\(702\) 554.745 528.697i 0.790235 0.753130i
\(703\) 1011.82 1.43929
\(704\) 0 0
\(705\) −119.435 98.3111i −0.169411 0.139448i
\(706\) −132.680 + 408.347i −0.187932 + 0.578396i
\(707\) −159.792 219.935i −0.226014 0.311082i
\(708\) 104.358 27.0684i 0.147399 0.0382322i
\(709\) −70.6162 217.334i −0.0995997 0.306536i 0.888825 0.458246i \(-0.151522\pi\)
−0.988425 + 0.151710i \(0.951522\pi\)
\(710\) 45.4528 14.7685i 0.0640180 0.0208007i
\(711\) 193.104 415.662i 0.271595 0.584617i
\(712\) −268.996 + 195.437i −0.377803 + 0.274490i
\(713\) −89.3666 29.0370i −0.125339 0.0407251i
\(714\) 161.460 + 132.904i 0.226135 + 0.186140i
\(715\) 0 0
\(716\) 77.2875i 0.107943i
\(717\) −150.806 236.345i −0.210329 0.329630i
\(718\) −347.492 + 252.467i −0.483972 + 0.351626i
\(719\) −473.254 + 651.379i −0.658212 + 0.905951i −0.999421 0.0340364i \(-0.989164\pi\)
0.341209 + 0.939988i \(0.389164\pi\)
\(720\) −28.8274 51.8312i −0.0400380 0.0719878i
\(721\) −43.8658 135.005i −0.0608402 0.187247i
\(722\) −104.629 + 144.010i −0.144916 + 0.199460i
\(723\) 619.169 + 37.4260i 0.856389 + 0.0517649i
\(724\) −57.3477 + 176.498i −0.0792095 + 0.243782i
\(725\) 131.530i 0.181420i
\(726\) 0 0
\(727\) −1002.31 −1.37869 −0.689345 0.724434i \(-0.742101\pi\)
−0.689345 + 0.724434i \(0.742101\pi\)
\(728\) 369.788 + 120.151i 0.507950 + 0.165043i
\(729\) 681.694 + 258.331i 0.935108 + 0.354363i
\(730\) −53.1978 38.6505i −0.0728737 0.0529458i
\(731\) −347.274 + 112.836i −0.475068 + 0.154359i
\(732\) −63.5459 + 161.659i −0.0868113 + 0.220846i
\(733\) −586.218 425.913i −0.799752 0.581054i 0.111089 0.993810i \(-0.464566\pi\)
−0.910841 + 0.412757i \(0.864566\pi\)
\(734\) 193.737 + 266.656i 0.263946 + 0.363291i
\(735\) 47.5586 + 74.5344i 0.0647055 + 0.101407i
\(736\) −443.653 −0.602789
\(737\) 0 0
\(738\) 193.442 + 987.637i 0.262117 + 1.33826i
\(739\) 265.858 818.228i 0.359754 1.10721i −0.593447 0.804873i \(-0.702233\pi\)
0.953201 0.302337i \(-0.0977666\pi\)
\(740\) 32.6182 + 44.8951i 0.0440787 + 0.0606691i
\(741\) 205.334 + 791.635i 0.277104 + 1.06833i
\(742\) −57.2880 176.314i −0.0772076 0.237620i
\(743\) 371.211 120.614i 0.499611 0.162333i −0.0483616 0.998830i \(-0.515400\pi\)
0.547972 + 0.836497i \(0.315400\pi\)
\(744\) −102.710 + 26.6410i −0.138051 + 0.0358077i
\(745\) 88.9482 64.6246i 0.119394 0.0867445i
\(746\) −1057.33 343.547i −1.41733 0.460519i
\(747\) 522.951 102.427i 0.700069 0.137118i
\(748\) 0 0
\(749\) 74.1164i 0.0989538i
\(750\) 145.030 92.5402i 0.193374 0.123387i
\(751\) 698.777 507.691i 0.930461 0.676020i −0.0156443 0.999878i \(-0.504980\pi\)
0.946106 + 0.323858i \(0.104980\pi\)
\(752\) 409.358 563.433i 0.544359 0.749246i
\(753\) 7.79058 + 3.06236i 0.0103461 + 0.00406689i
\(754\) 47.0629 + 144.845i 0.0624177 + 0.192102i
\(755\) −70.3641 + 96.8478i −0.0931974 + 0.128275i
\(756\) 11.6856 + 87.3147i 0.0154572 + 0.115496i
\(757\) −261.252 + 804.051i −0.345115 + 1.06215i 0.616408 + 0.787427i \(0.288587\pi\)
−0.961522 + 0.274727i \(0.911413\pi\)
\(758\) 650.647i 0.858373i
\(759\) 0 0
\(760\) 96.8528 0.127438
\(761\) −167.271 54.3497i −0.219805 0.0714188i 0.197045 0.980395i \(-0.436866\pi\)
−0.416849 + 0.908976i \(0.636866\pi\)
\(762\) 54.8596 907.586i 0.0719942 1.19106i
\(763\) 87.0795 + 63.2670i 0.114128 + 0.0829187i
\(764\) −66.8422 + 21.7184i −0.0874898 + 0.0284272i
\(765\) −88.5218 + 49.2339i −0.115715 + 0.0643580i
\(766\) 667.657 + 485.081i 0.871614 + 0.633265i
\(767\) 289.136 + 397.962i 0.376971 + 0.518856i
\(768\) −541.681 + 345.633i −0.705314 + 0.450043i
\(769\) −1341.04 −1.74388 −0.871941 0.489611i \(-0.837139\pi\)
−0.871941 + 0.489611i \(0.837139\pi\)
\(770\) 0 0
\(771\) 763.025 926.972i 0.989657 1.20230i
\(772\) −58.3398 + 179.551i −0.0755697 + 0.232580i
\(773\) 461.195 + 634.781i 0.596630 + 0.821191i 0.995395 0.0958621i \(-0.0305608\pi\)
−0.398764 + 0.917054i \(0.630561\pi\)
\(774\) 306.715 + 142.491i 0.396273 + 0.184096i
\(775\) −30.7727 94.7088i −0.0397068 0.122205i
\(776\) −134.902 + 43.8324i −0.173843 + 0.0564851i
\(777\) 124.853 + 481.351i 0.160686 + 0.619499i
\(778\) 553.065 401.825i 0.710880 0.516485i
\(779\) −1021.47 331.896i −1.31126 0.426053i
\(780\) −28.5060 + 34.6309i −0.0365461 + 0.0443986i
\(781\) 0 0
\(782\) 617.954i 0.790222i
\(783\) −104.878 + 99.9536i −0.133944 + 0.127655i
\(784\) −322.032 + 233.970i −0.410755 + 0.298431i
\(785\) 26.8258 36.9225i 0.0341730 0.0470351i
\(786\) 153.797 391.255i 0.195670 0.497780i
\(787\) 447.595 + 1377.55i 0.568735 + 1.75039i 0.656584 + 0.754253i \(0.272001\pi\)
−0.0878489 + 0.996134i \(0.527999\pi\)
\(788\) −16.4186 + 22.5983i −0.0208358 + 0.0286780i
\(789\) −68.6398 + 1135.56i −0.0869959 + 1.43924i
\(790\) 18.2268 56.0964i 0.0230719 0.0710081i
\(791\) 378.785i 0.478869i
\(792\) 0 0
\(793\) −792.536 −0.999415
\(794\) 270.030 + 87.7382i 0.340089 + 0.110501i
\(795\) 89.6315 + 5.41783i 0.112744 + 0.00681488i
\(796\) 152.693 + 110.938i 0.191826 + 0.139370i
\(797\) 329.440 107.041i 0.413350 0.134305i −0.0949575 0.995481i \(-0.530272\pi\)
0.508307 + 0.861176i \(0.330272\pi\)
\(798\) 192.378 + 75.6211i 0.241076 + 0.0947633i
\(799\) −962.279 699.136i −1.20435 0.875014i
\(800\) −276.361 380.378i −0.345451 0.475473i
\(801\) 41.4013 341.216i 0.0516870 0.425987i
\(802\) 1203.85 1.50107
\(803\) 0 0
\(804\) −223.845 184.255i −0.278414 0.229173i
\(805\) −13.0259 + 40.0897i −0.0161813 + 0.0498009i
\(806\) −67.7758 93.2854i −0.0840891 0.115739i
\(807\) −90.6041 + 23.5009i −0.112273 + 0.0291213i
\(808\) 280.320 + 862.737i 0.346931 + 1.06774i
\(809\) 497.588 161.676i 0.615066 0.199847i 0.0151173 0.999886i \(-0.495188\pi\)
0.599948 + 0.800039i \(0.295188\pi\)
\(810\) 91.0944 + 22.4361i 0.112462 + 0.0276989i
\(811\) −836.093 + 607.457i −1.03094 + 0.749022i −0.968497 0.249026i \(-0.919889\pi\)
−0.0624439 + 0.998048i \(0.519889\pi\)
\(812\) −16.6506 5.41009i −0.0205056 0.00666268i
\(813\) −1200.06 987.811i −1.47608 1.21502i
\(814\) 0 0
\(815\) 10.7838i 0.0132317i
\(816\) −245.298 384.434i −0.300610 0.471121i
\(817\) −291.995 + 212.147i −0.357399 + 0.259666i
\(818\) −293.748 + 404.309i −0.359105 + 0.494265i
\(819\) −351.266 + 195.366i −0.428896 + 0.238543i
\(820\) −18.2029 56.0227i −0.0221986 0.0683204i
\(821\) −57.4727 + 79.1044i −0.0700033 + 0.0963513i −0.842583 0.538567i \(-0.818966\pi\)
0.772580 + 0.634918i \(0.218966\pi\)
\(822\) 1014.79 + 61.3399i 1.23454 + 0.0746227i
\(823\) 223.007 686.344i 0.270968 0.833954i −0.719290 0.694710i \(-0.755533\pi\)
0.990258 0.139244i \(-0.0444672\pi\)
\(824\) 473.673i 0.574846i
\(825\) 0 0
\(826\) 124.330 0.150521
\(827\) −1169.10 379.865i −1.41367 0.459328i −0.500083 0.865978i \(-0.666697\pi\)
−0.913584 + 0.406649i \(0.866697\pi\)
\(828\) 177.260 190.633i 0.214082 0.230234i
\(829\) 156.467 + 113.680i 0.188742 + 0.137129i 0.678144 0.734929i \(-0.262785\pi\)
−0.489402 + 0.872059i \(0.662785\pi\)
\(830\) 65.2221 21.1919i 0.0785808 0.0255325i
\(831\) 403.837 1027.35i 0.485965 1.23628i
\(832\) −963.017 699.673i −1.15747 0.840953i
\(833\) 399.594 + 549.994i 0.479704 + 0.660256i
\(834\) 134.435 + 210.688i 0.161193 + 0.252624i
\(835\) 107.642 0.128912
\(836\) 0 0
\(837\) 52.1329 96.5094i 0.0622854 0.115304i
\(838\) 293.705 903.931i 0.350483 1.07868i
\(839\) 342.849 + 471.891i 0.408640 + 0.562445i 0.962886 0.269908i \(-0.0869934\pi\)
−0.554246 + 0.832353i \(0.686993\pi\)
\(840\) 11.9511 + 46.0756i 0.0142275 + 0.0548519i
\(841\) 250.986 + 772.455i 0.298437 + 0.918495i
\(842\) 881.988 286.575i 1.04749 0.340351i
\(843\) 930.388 241.324i 1.10366 0.286268i
\(844\) 183.699 133.465i 0.217653 0.158134i
\(845\) −82.3684 26.7631i −0.0974773 0.0316723i
\(846\) 211.752 + 1081.12i 0.250297 + 1.27792i
\(847\) 0 0
\(848\) 404.267i 0.476730i
\(849\) 406.654 259.476i 0.478980 0.305625i
\(850\) 529.820 384.937i 0.623318 0.452867i
\(851\) 863.716 1188.80i 1.01494 1.39695i
\(852\) 144.068 + 56.6309i 0.169094 + 0.0664682i
\(853\) 133.256 + 410.119i 0.156220 + 0.480796i 0.998282 0.0585840i \(-0.0186586\pi\)
−0.842062 + 0.539380i \(0.818659\pi\)
\(854\) −117.742 + 162.058i −0.137871 + 0.189763i
\(855\) −68.1780 + 73.3217i −0.0797403 + 0.0857564i
\(856\) 76.4244 235.210i 0.0892808 0.274778i
\(857\) 580.461i 0.677317i −0.940909 0.338659i \(-0.890027\pi\)
0.940909 0.338659i \(-0.109973\pi\)
\(858\) 0 0
\(859\) −812.241 −0.945566 −0.472783 0.881179i \(-0.656751\pi\)
−0.472783 + 0.881179i \(0.656751\pi\)
\(860\) −18.8262 6.11701i −0.0218910 0.00711280i
\(861\) 31.8485 526.896i 0.0369902 0.611958i
\(862\) −268.091 194.779i −0.311010 0.225962i
\(863\) −597.471 + 194.130i −0.692318 + 0.224948i −0.633980 0.773349i \(-0.718580\pi\)
−0.0583378 + 0.998297i \(0.518580\pi\)
\(864\) 93.2873 509.424i 0.107971 0.589611i
\(865\) 14.1857 + 10.3065i 0.0163997 + 0.0119151i
\(866\) 100.862 + 138.825i 0.116469 + 0.160306i
\(867\) 74.3173 47.4200i 0.0857178 0.0546944i
\(868\) 13.2551 0.0152708
\(869\) 0 0
\(870\) −11.8493 + 14.3953i −0.0136199 + 0.0165464i
\(871\) 408.778 1258.09i 0.469320 1.44442i
\(872\) −211.112 290.570i −0.242100 0.333223i
\(873\) 61.7793 132.982i 0.0707667 0.152327i
\(874\) −188.751 580.917i −0.215963 0.664665i
\(875\) −85.8180 + 27.8840i −0.0980778 + 0.0318674i
\(876\) −53.4744 206.162i −0.0610438 0.235345i
\(877\) 971.470 705.814i 1.10772 0.804805i 0.125416 0.992104i \(-0.459973\pi\)
0.982303 + 0.187299i \(0.0599734\pi\)
\(878\) 1044.84 + 339.490i 1.19003 + 0.386663i
\(879\) 554.704 673.891i 0.631063 0.766656i
\(880\) 0 0
\(881\) 131.219i 0.148943i −0.997223 0.0744714i \(-0.976273\pi\)
0.997223 0.0744714i \(-0.0237269\pi\)
\(882\) 75.8430 625.073i 0.0859898 0.708700i
\(883\) 102.745 74.6486i 0.116359 0.0845398i −0.528084 0.849192i \(-0.677089\pi\)
0.644443 + 0.764652i \(0.277089\pi\)
\(884\) −202.719 + 279.019i −0.229320 + 0.315633i
\(885\) −22.0310 + 56.0464i −0.0248938 + 0.0633293i
\(886\) −108.029 332.479i −0.121929 0.375258i
\(887\) −702.278 + 966.602i −0.791745 + 1.08974i 0.202144 + 0.979356i \(0.435209\pi\)
−0.993889 + 0.110388i \(0.964791\pi\)
\(888\) 100.117 1656.32i 0.112744 1.86522i
\(889\) −147.369 + 453.556i −0.165770 + 0.510187i
\(890\) 44.2339i 0.0497010i
\(891\) 0 0
\(892\) 235.138 0.263608
\(893\) −1118.15 363.310i −1.25213 0.406842i
\(894\) −781.567 47.2423i −0.874236 0.0528437i
\(895\) 34.9261 + 25.3753i 0.0390235 + 0.0283522i
\(896\) −95.7511 + 31.1114i −0.106865 + 0.0347226i
\(897\) 1105.38 + 434.510i 1.23231 + 0.484404i
\(898\) −320.977 233.203i −0.357435 0.259692i
\(899\) 12.8135 + 17.6362i 0.0142530 + 0.0196176i
\(900\) 273.864 + 33.2292i 0.304294 + 0.0369213i
\(901\) 690.442 0.766306
\(902\) 0 0
\(903\) −136.955 112.733i −0.151667 0.124842i
\(904\) −390.581 + 1202.08i −0.432058 + 1.32974i
\(905\) −60.9305 83.8636i −0.0673265 0.0926670i
\(906\) 825.225 214.047i 0.910844 0.236255i
\(907\) 162.105 + 498.908i 0.178727 + 0.550064i 0.999784 0.0207814i \(-0.00661541\pi\)
−0.821057 + 0.570846i \(0.806615\pi\)
\(908\) −510.481 + 165.865i −0.562203 + 0.182671i
\(909\) −850.455 395.096i −0.935595 0.434649i
\(910\) −41.8477 + 30.4041i −0.0459864 + 0.0334111i
\(911\) −167.014 54.2660i −0.183330 0.0595675i 0.215913 0.976413i \(-0.430727\pi\)
−0.399243 + 0.916845i \(0.630727\pi\)
\(912\) −348.020 286.468i −0.381601 0.314110i
\(913\) 0 0
\(914\) 44.2524i 0.0484162i
\(915\) −52.1898 81.7926i −0.0570381 0.0893909i
\(916\) −137.361 + 99.7989i −0.149958 + 0.108951i
\(917\) −129.606 + 178.387i −0.141337 + 0.194533i
\(918\) 709.565 + 129.938i 0.772946 + 0.141544i
\(919\) 403.301 + 1241.23i 0.438848 + 1.35063i 0.889092 + 0.457729i \(0.151337\pi\)
−0.450244 + 0.892905i \(0.648663\pi\)
\(920\) 82.6761 113.794i 0.0898654 0.123689i
\(921\) −843.859 51.0076i −0.916242 0.0553828i
\(922\) −201.437 + 619.960i −0.218478 + 0.672407i
\(923\) 706.294i 0.765216i
\(924\) 0 0
\(925\) 1557.28 1.68355
\(926\) 168.667 + 54.8031i 0.182145 + 0.0591826i
\(927\) −358.590 333.434i −0.386829 0.359692i
\(928\) 83.2683 + 60.4979i 0.0897287 + 0.0651917i
\(929\) 1483.17 481.913i 1.59653 0.518743i 0.630282 0.776366i \(-0.282939\pi\)
0.966246 + 0.257623i \(0.0829392\pi\)
\(930\) 5.16424 13.1377i 0.00555295 0.0141266i
\(931\) 543.638 + 394.976i 0.583929 + 0.424249i
\(932\) −240.273 330.708i −0.257804 0.354837i
\(933\) −764.497 1198.13i −0.819397 1.28417i
\(934\) 701.251 0.750804
\(935\) 0 0
\(936\) 1316.20 257.795i 1.40620 0.275422i
\(937\) 222.292 684.144i 0.237238 0.730143i −0.759579 0.650415i \(-0.774595\pi\)
0.996817 0.0797279i \(-0.0254051\pi\)
\(938\) −196.524 270.492i −0.209514 0.288372i
\(939\) 22.5770 + 87.0421i 0.0240436 + 0.0926966i
\(940\) −19.9258 61.3253i −0.0211977 0.0652397i
\(941\) −1115.86 + 362.566i −1.18583 + 0.385298i −0.834528 0.550965i \(-0.814260\pi\)
−0.351298 + 0.936264i \(0.614260\pi\)
\(942\) −314.611 + 81.6038i −0.333982 + 0.0866283i
\(943\) −1261.90 + 916.826i −1.33818 + 0.972244i
\(944\) −257.852 83.7810i −0.273148 0.0887511i
\(945\) −43.2940 23.3867i −0.0458137 0.0247478i
\(946\) 0 0
\(947\) 266.119i 0.281013i 0.990080 + 0.140506i \(0.0448730\pi\)
−0.990080 + 0.140506i \(0.955127\pi\)
\(948\) 161.054 102.765i 0.169889 0.108402i
\(949\) 786.185 571.197i 0.828435 0.601894i
\(950\) 380.488 523.697i 0.400514 0.551261i
\(951\) 444.706 + 174.808i 0.467620 + 0.183814i
\(952\) 113.101 + 348.089i 0.118804 + 0.365640i
\(953\) −75.3267 + 103.678i −0.0790417 + 0.108792i −0.846707 0.532059i \(-0.821418\pi\)
0.767665 + 0.640851i \(0.221418\pi\)
\(954\) −468.314 435.460i −0.490895 0.456457i
\(955\) 12.1314 37.3365i 0.0127030 0.0390958i
\(956\) 116.864i 0.122242i
\(957\) 0 0
\(958\) 894.933 0.934168
\(959\) −507.132 164.777i −0.528814 0.171822i
\(960\) 8.79251 145.461i 0.00915886 0.151522i
\(961\) 764.113 + 555.160i 0.795123 + 0.577690i
\(962\) 1714.93 557.214i 1.78267 0.579224i
\(963\) 124.266 + 223.429i 0.129041 + 0.232013i
\(964\) 209.182 + 151.979i 0.216993 + 0.157655i
\(965\) −61.9846 85.3145i −0.0642328 0.0884088i
\(966\) 253.068 161.476i 0.261975 0.167160i
\(967\) −1324.17 −1.36936 −0.684682 0.728842i \(-0.740059\pi\)
−0.684682 + 0.728842i \(0.740059\pi\)
\(968\) 0 0
\(969\) −489.255 + 594.379i −0.504907 + 0.613394i
\(970\) 5.83126 17.9468i 0.00601161 0.0185018i
\(971\) 343.782 + 473.176i 0.354050 + 0.487308i 0.948479 0.316840i \(-0.102622\pi\)
−0.594429 + 0.804148i \(0.702622\pi\)
\(972\) 181.622 + 243.623i 0.186854 + 0.250641i
\(973\) −40.5076 124.669i −0.0416316 0.128129i
\(974\) −962.991 + 312.895i −0.988697 + 0.321247i
\(975\) 316.028 + 1218.40i 0.324131 + 1.24964i
\(976\) 353.391 256.754i 0.362081 0.263068i
\(977\) 657.510 + 213.638i 0.672988 + 0.218667i 0.625523 0.780206i \(-0.284886\pi\)
0.0474654 + 0.998873i \(0.484886\pi\)
\(978\) 48.8073 59.2943i 0.0499052 0.0606281i
\(979\) 0 0
\(980\) 36.8545i 0.0376066i
\(981\) 368.583 + 44.7218i 0.375721 + 0.0455880i
\(982\) −76.2955 + 55.4319i −0.0776939 + 0.0564480i
\(983\) −385.287 + 530.302i −0.391950 + 0.539473i −0.958701 0.284416i \(-0.908200\pi\)
0.566751 + 0.823889i \(0.308200\pi\)
\(984\) −644.375 + 1639.28i −0.654853 + 1.66593i
\(985\) −4.82151 14.8391i −0.00489493 0.0150650i
\(986\) −84.2662 + 115.982i −0.0854626 + 0.117629i
\(987\) 34.8631 576.768i 0.0353222 0.584364i
\(988\) −105.344 + 324.216i −0.106624 + 0.328154i
\(989\) 524.164i 0.529994i
\(990\) 0 0
\(991\) 95.0559 0.0959192 0.0479596 0.998849i \(-0.484728\pi\)
0.0479596 + 0.998849i \(0.484728\pi\)
\(992\) −74.1119 24.0804i −0.0747095 0.0242746i
\(993\) −996.309 60.2225i −1.00333 0.0606470i
\(994\) 144.423 + 104.929i 0.145295 + 0.105563i
\(995\) −100.265 + 32.5782i −0.100769 + 0.0327419i
\(996\) 206.729 + 81.2620i 0.207559 + 0.0815884i
\(997\) −632.168 459.297i −0.634070 0.460679i 0.223738 0.974649i \(-0.428174\pi\)
−0.857808 + 0.513970i \(0.828174\pi\)
\(998\) −456.988 628.990i −0.457904 0.630251i
\(999\) 1183.43 + 1241.73i 1.18461 + 1.24297i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.n.251.3 16
3.2 odd 2 inner 363.3.h.n.251.2 16
11.2 odd 10 33.3.h.b.14.3 yes 16
11.3 even 5 363.3.h.j.323.3 16
11.4 even 5 363.3.b.l.122.5 8
11.5 even 5 inner 363.3.h.n.269.2 16
11.6 odd 10 363.3.h.o.269.3 16
11.7 odd 10 363.3.b.m.122.4 8
11.8 odd 10 33.3.h.b.26.2 yes 16
11.9 even 5 363.3.h.j.245.2 16
11.10 odd 2 363.3.h.o.251.2 16
33.2 even 10 33.3.h.b.14.2 16
33.5 odd 10 inner 363.3.h.n.269.3 16
33.8 even 10 33.3.h.b.26.3 yes 16
33.14 odd 10 363.3.h.j.323.2 16
33.17 even 10 363.3.h.o.269.2 16
33.20 odd 10 363.3.h.j.245.3 16
33.26 odd 10 363.3.b.l.122.4 8
33.29 even 10 363.3.b.m.122.5 8
33.32 even 2 363.3.h.o.251.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.14.2 16 33.2 even 10
33.3.h.b.14.3 yes 16 11.2 odd 10
33.3.h.b.26.2 yes 16 11.8 odd 10
33.3.h.b.26.3 yes 16 33.8 even 10
363.3.b.l.122.4 8 33.26 odd 10
363.3.b.l.122.5 8 11.4 even 5
363.3.b.m.122.4 8 11.7 odd 10
363.3.b.m.122.5 8 33.29 even 10
363.3.h.j.245.2 16 11.9 even 5
363.3.h.j.245.3 16 33.20 odd 10
363.3.h.j.323.2 16 33.14 odd 10
363.3.h.j.323.3 16 11.3 even 5
363.3.h.n.251.2 16 3.2 odd 2 inner
363.3.h.n.251.3 16 1.1 even 1 trivial
363.3.h.n.269.2 16 11.5 even 5 inner
363.3.h.n.269.3 16 33.5 odd 10 inner
363.3.h.o.251.2 16 11.10 odd 2
363.3.h.o.251.3 16 33.32 even 2
363.3.h.o.269.2 16 33.17 even 10
363.3.h.o.269.3 16 11.6 odd 10