Properties

Label 363.3.h.n.251.2
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,5,18,0,-32,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.2
Root \(0.974642 - 1.34148i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.n.269.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57700 - 0.512399i) q^{2} +(-0.753215 + 2.90391i) q^{3} +(-1.01168 - 0.735029i) q^{4} +(-0.664316 + 0.215849i) q^{5} +(2.67578 - 4.19352i) q^{6} +(2.11081 + 1.53360i) q^{7} +(5.11736 + 7.04345i) q^{8} +(-7.86534 - 4.37453i) q^{9} +1.15823 q^{10} +(2.89647 - 2.38419i) q^{12} +(-5.28943 + 16.2792i) q^{13} +(-2.54295 - 3.50007i) q^{14} +(-0.126434 - 2.09169i) q^{15} +(-2.91533 - 8.97246i) q^{16} +(15.3239 - 4.97905i) q^{17} +(10.1622 + 10.9288i) q^{18} +(-12.8847 + 9.36127i) q^{19} +(0.830732 + 0.269921i) q^{20} +(-6.04332 + 4.97448i) q^{21} -23.1295i q^{23} +(-24.3080 + 9.55511i) q^{24} +(-19.8307 + 14.4078i) q^{25} +(16.6829 - 22.9620i) q^{26} +(18.6275 - 19.5452i) q^{27} +(-1.00823 - 3.10302i) q^{28} +(-3.15401 + 4.34112i) q^{29} +(-0.872396 + 3.36339i) q^{30} +(-1.25541 + 3.86376i) q^{31} -19.1813i q^{32} -26.7172 q^{34} +(-1.73327 - 0.563175i) q^{35} +(4.74180 + 10.2069i) q^{36} +(-51.3978 - 37.3427i) q^{37} +(25.1159 - 8.16065i) q^{38} +(-43.2891 - 27.6217i) q^{39} +(-4.91987 - 3.57450i) q^{40} +(-39.6389 - 54.5583i) q^{41} +(12.0793 - 4.74818i) q^{42} +22.6622 q^{43} +(6.16931 + 1.20834i) q^{45} +(-11.8515 + 36.4752i) q^{46} +(-43.3908 - 59.7223i) q^{47} +(28.2511 - 1.70765i) q^{48} +(-13.0382 - 40.1275i) q^{49} +(38.6557 - 12.5600i) q^{50} +(2.91647 + 48.2496i) q^{51} +(17.3169 - 12.5815i) q^{52} +(40.7539 + 13.2417i) q^{53} +(-39.3906 + 21.2782i) q^{54} +22.7154i q^{56} +(-17.4793 - 44.4670i) q^{57} +(7.19827 - 5.22985i) q^{58} +(-16.8918 + 23.2496i) q^{59} +(-1.40955 + 2.20906i) q^{60} +(14.3079 + 44.0351i) q^{61} +(3.95957 - 5.44989i) q^{62} +(-9.89350 - 21.2961i) q^{63} +(-21.4898 + 66.1388i) q^{64} -11.9562i q^{65} -77.2821 q^{67} +(-19.1627 - 6.22634i) q^{68} +(67.1657 + 17.4214i) q^{69} +(2.44481 + 1.77626i) q^{70} +(-39.2433 + 12.7509i) q^{71} +(-9.43802 - 77.7851i) q^{72} +(-45.9302 - 33.3703i) q^{73} +(61.9201 + 85.2257i) q^{74} +(-26.9023 - 68.4387i) q^{75} +19.9160 q^{76} +(54.1137 + 65.7409i) q^{78} +(15.7368 - 48.4329i) q^{79} +(3.87340 + 5.33128i) q^{80} +(42.7270 + 68.8143i) q^{81} +(34.5551 + 106.350i) q^{82} +(-56.3118 + 18.2968i) q^{83} +(9.77030 - 0.590571i) q^{84} +(-9.10522 + 6.61533i) q^{85} +(-35.7384 - 11.6121i) q^{86} +(-10.2306 - 12.4287i) q^{87} +38.1909i q^{89} +(-9.10987 - 5.06671i) q^{90} +(-36.1307 + 26.2505i) q^{91} +(-17.0008 + 23.3996i) q^{92} +(-10.2744 - 6.55583i) q^{93} +(37.8258 + 116.416i) q^{94} +(6.53888 - 9.00000i) q^{95} +(55.7007 + 14.4476i) q^{96} +(5.03463 - 15.4950i) q^{97} +69.9620i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} + 18 q^{4} - 32 q^{6} + 34 q^{7} + 17 q^{9} + 12 q^{10} + 106 q^{12} + 2 q^{13} - 28 q^{15} + 102 q^{16} - 42 q^{18} - 66 q^{19} + 12 q^{21} + 74 q^{24} - 176 q^{25} - 55 q^{27} + 146 q^{28}+ \cdots + 252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.57700 0.512399i −0.788502 0.256200i −0.113036 0.993591i \(-0.536057\pi\)
−0.675466 + 0.737391i \(0.736057\pi\)
\(3\) −0.753215 + 2.90391i −0.251072 + 0.967969i
\(4\) −1.01168 0.735029i −0.252920 0.183757i
\(5\) −0.664316 + 0.215849i −0.132863 + 0.0431699i −0.374694 0.927149i \(-0.622252\pi\)
0.241831 + 0.970318i \(0.422252\pi\)
\(6\) 2.67578 4.19352i 0.445964 0.698920i
\(7\) 2.11081 + 1.53360i 0.301545 + 0.219085i 0.728260 0.685301i \(-0.240329\pi\)
−0.426715 + 0.904386i \(0.640329\pi\)
\(8\) 5.11736 + 7.04345i 0.639670 + 0.880431i
\(9\) −7.86534 4.37453i −0.873926 0.486059i
\(10\) 1.15823 0.115823
\(11\) 0 0
\(12\) 2.89647 2.38419i 0.241372 0.198683i
\(13\) −5.28943 + 16.2792i −0.406879 + 1.25224i 0.512437 + 0.858725i \(0.328743\pi\)
−0.919316 + 0.393520i \(0.871257\pi\)
\(14\) −2.54295 3.50007i −0.181639 0.250005i
\(15\) −0.126434 2.09169i −0.00842891 0.139446i
\(16\) −2.91533 8.97246i −0.182208 0.560779i
\(17\) 15.3239 4.97905i 0.901408 0.292885i 0.178590 0.983924i \(-0.442846\pi\)
0.722818 + 0.691038i \(0.242846\pi\)
\(18\) 10.1622 + 10.9288i 0.564564 + 0.607158i
\(19\) −12.8847 + 9.36127i −0.678141 + 0.492698i −0.872741 0.488184i \(-0.837659\pi\)
0.194599 + 0.980883i \(0.437659\pi\)
\(20\) 0.830732 + 0.269921i 0.0415366 + 0.0134961i
\(21\) −6.04332 + 4.97448i −0.287777 + 0.236880i
\(22\) 0 0
\(23\) 23.1295i 1.00563i −0.864395 0.502814i \(-0.832298\pi\)
0.864395 0.502814i \(-0.167702\pi\)
\(24\) −24.3080 + 9.55511i −1.01283 + 0.398130i
\(25\) −19.8307 + 14.4078i −0.793228 + 0.576314i
\(26\) 16.6829 22.9620i 0.641649 0.883155i
\(27\) 18.6275 19.5452i 0.689908 0.723897i
\(28\) −1.00823 3.10302i −0.0360083 0.110822i
\(29\) −3.15401 + 4.34112i −0.108759 + 0.149694i −0.859927 0.510418i \(-0.829491\pi\)
0.751168 + 0.660111i \(0.229491\pi\)
\(30\) −0.872396 + 3.36339i −0.0290799 + 0.112113i
\(31\) −1.25541 + 3.86376i −0.0404971 + 0.124637i −0.969261 0.246034i \(-0.920872\pi\)
0.928764 + 0.370672i \(0.120872\pi\)
\(32\) 19.1813i 0.599415i
\(33\) 0 0
\(34\) −26.7172 −0.785799
\(35\) −1.73327 0.563175i −0.0495221 0.0160907i
\(36\) 4.74180 + 10.2069i 0.131717 + 0.283524i
\(37\) −51.3978 37.3427i −1.38913 1.00926i −0.995960 0.0897955i \(-0.971379\pi\)
−0.393169 0.919466i \(-0.628621\pi\)
\(38\) 25.1159 8.16065i 0.660945 0.214754i
\(39\) −43.2891 27.6217i −1.10998 0.708249i
\(40\) −4.91987 3.57450i −0.122997 0.0893624i
\(41\) −39.6389 54.5583i −0.966803 1.33069i −0.943645 0.330958i \(-0.892628\pi\)
−0.0231574 0.999732i \(-0.507372\pi\)
\(42\) 12.0793 4.74818i 0.287601 0.113052i
\(43\) 22.6622 0.527028 0.263514 0.964656i \(-0.415118\pi\)
0.263514 + 0.964656i \(0.415118\pi\)
\(44\) 0 0
\(45\) 6.16931 + 1.20834i 0.137096 + 0.0268521i
\(46\) −11.8515 + 36.4752i −0.257642 + 0.792940i
\(47\) −43.3908 59.7223i −0.923209 1.27069i −0.962450 0.271458i \(-0.912494\pi\)
0.0392417 0.999230i \(-0.487506\pi\)
\(48\) 28.2511 1.70765i 0.588564 0.0355761i
\(49\) −13.0382 40.1275i −0.266086 0.818928i
\(50\) 38.6557 12.5600i 0.773113 0.251200i
\(51\) 2.91647 + 48.2496i 0.0571858 + 0.946070i
\(52\) 17.3169 12.5815i 0.333017 0.241951i
\(53\) 40.7539 + 13.2417i 0.768941 + 0.249844i 0.667112 0.744958i \(-0.267530\pi\)
0.101830 + 0.994802i \(0.467530\pi\)
\(54\) −39.3906 + 21.2782i −0.729456 + 0.394040i
\(55\) 0 0
\(56\) 22.7154i 0.405632i
\(57\) −17.4793 44.4670i −0.306655 0.780122i
\(58\) 7.19827 5.22985i 0.124108 0.0901698i
\(59\) −16.8918 + 23.2496i −0.286302 + 0.394061i −0.927809 0.373056i \(-0.878310\pi\)
0.641506 + 0.767118i \(0.278310\pi\)
\(60\) −1.40955 + 2.20906i −0.0234924 + 0.0368176i
\(61\) 14.3079 + 44.0351i 0.234555 + 0.721888i 0.997180 + 0.0750462i \(0.0239104\pi\)
−0.762625 + 0.646841i \(0.776090\pi\)
\(62\) 3.95957 5.44989i 0.0638641 0.0879014i
\(63\) −9.89350 21.2961i −0.157040 0.338033i
\(64\) −21.4898 + 66.1388i −0.335778 + 1.03342i
\(65\) 11.9562i 0.183942i
\(66\) 0 0
\(67\) −77.2821 −1.15346 −0.576732 0.816933i \(-0.695672\pi\)
−0.576732 + 0.816933i \(0.695672\pi\)
\(68\) −19.1627 6.22634i −0.281804 0.0915638i
\(69\) 67.1657 + 17.4214i 0.973417 + 0.252485i
\(70\) 2.44481 + 1.77626i 0.0349258 + 0.0253751i
\(71\) −39.2433 + 12.7509i −0.552723 + 0.179591i −0.572044 0.820223i \(-0.693849\pi\)
0.0193214 + 0.999813i \(0.493849\pi\)
\(72\) −9.43802 77.7851i −0.131084 1.08035i
\(73\) −45.9302 33.3703i −0.629181 0.457127i 0.226935 0.973910i \(-0.427129\pi\)
−0.856117 + 0.516783i \(0.827129\pi\)
\(74\) 61.9201 + 85.2257i 0.836758 + 1.15170i
\(75\) −26.9023 68.4387i −0.358697 0.912516i
\(76\) 19.9160 0.262053
\(77\) 0 0
\(78\) 54.1137 + 65.7409i 0.693766 + 0.842831i
\(79\) 15.7368 48.4329i 0.199200 0.613074i −0.800702 0.599063i \(-0.795540\pi\)
0.999902 0.0140112i \(-0.00446005\pi\)
\(80\) 3.87340 + 5.33128i 0.0484175 + 0.0666410i
\(81\) 42.7270 + 68.8143i 0.527494 + 0.849559i
\(82\) 34.5551 + 106.350i 0.421403 + 1.29695i
\(83\) −56.3118 + 18.2968i −0.678456 + 0.220444i −0.627919 0.778279i \(-0.716093\pi\)
−0.0505367 + 0.998722i \(0.516093\pi\)
\(84\) 9.77030 0.590571i 0.116313 0.00703061i
\(85\) −9.10522 + 6.61533i −0.107120 + 0.0778274i
\(86\) −35.7384 11.6121i −0.415563 0.135024i
\(87\) −10.2306 12.4287i −0.117593 0.142859i
\(88\) 0 0
\(89\) 38.1909i 0.429112i 0.976712 + 0.214556i \(0.0688304\pi\)
−0.976712 + 0.214556i \(0.931170\pi\)
\(90\) −9.10987 5.06671i −0.101221 0.0562968i
\(91\) −36.1307 + 26.2505i −0.397041 + 0.288467i
\(92\) −17.0008 + 23.3996i −0.184792 + 0.254344i
\(93\) −10.2744 6.55583i −0.110477 0.0704928i
\(94\) 37.8258 + 116.416i 0.402402 + 1.23847i
\(95\) 6.53888 9.00000i 0.0688303 0.0947368i
\(96\) 55.7007 + 14.4476i 0.580215 + 0.150496i
\(97\) 5.03463 15.4950i 0.0519034 0.159742i −0.921745 0.387796i \(-0.873236\pi\)
0.973648 + 0.228054i \(0.0732363\pi\)
\(98\) 69.9620i 0.713898i
\(99\) 0 0
\(100\) 30.6525 0.306525
\(101\) 99.0948 + 32.1979i 0.981137 + 0.318791i 0.755303 0.655375i \(-0.227490\pi\)
0.225833 + 0.974166i \(0.427490\pi\)
\(102\) 20.1238 77.5842i 0.197292 0.760629i
\(103\) −44.0158 31.9793i −0.427338 0.310479i 0.353246 0.935531i \(-0.385078\pi\)
−0.780584 + 0.625052i \(0.785078\pi\)
\(104\) −141.729 + 46.0507i −1.36278 + 0.442795i
\(105\) 2.94093 4.60907i 0.0280089 0.0438959i
\(106\) −57.4840 41.7645i −0.542301 0.394005i
\(107\) −16.6971 22.9816i −0.156048 0.214781i 0.723834 0.689974i \(-0.242378\pi\)
−0.879881 + 0.475193i \(0.842378\pi\)
\(108\) −33.2114 + 6.08178i −0.307513 + 0.0563128i
\(109\) 41.2540 0.378477 0.189238 0.981931i \(-0.439398\pi\)
0.189238 + 0.981931i \(0.439398\pi\)
\(110\) 0 0
\(111\) 147.153 121.127i 1.32570 1.09124i
\(112\) 7.60642 23.4101i 0.0679144 0.209019i
\(113\) 85.3335 + 117.451i 0.755164 + 1.03939i 0.997601 + 0.0692265i \(0.0220531\pi\)
−0.242437 + 0.970167i \(0.577947\pi\)
\(114\) 4.78009 + 79.0809i 0.0419306 + 0.693692i
\(115\) 4.99248 + 15.3653i 0.0434129 + 0.133611i
\(116\) 6.38170 2.07354i 0.0550146 0.0178753i
\(117\) 112.817 104.902i 0.964246 0.896602i
\(118\) 38.5516 28.0094i 0.326708 0.237367i
\(119\) 39.9819 + 12.9909i 0.335982 + 0.109167i
\(120\) 14.0857 11.5945i 0.117381 0.0966207i
\(121\) 0 0
\(122\) 76.7749i 0.629303i
\(123\) 188.289 74.0136i 1.53080 0.601736i
\(124\) 4.11005 2.98613i 0.0331456 0.0240817i
\(125\) 20.3282 27.9793i 0.162625 0.223835i
\(126\) 4.68999 + 38.6534i 0.0372222 + 0.306773i
\(127\) 56.4826 + 173.835i 0.444745 + 1.36878i 0.882763 + 0.469818i \(0.155680\pi\)
−0.438019 + 0.898966i \(0.644320\pi\)
\(128\) 22.6811 31.2178i 0.177196 0.243889i
\(129\) −17.0695 + 65.8089i −0.132322 + 0.510147i
\(130\) −6.12637 + 18.8550i −0.0471259 + 0.145039i
\(131\) 84.5109i 0.645121i −0.946549 0.322561i \(-0.895456\pi\)
0.946549 0.322561i \(-0.104544\pi\)
\(132\) 0 0
\(133\) −41.5536 −0.312433
\(134\) 121.874 + 39.5993i 0.909508 + 0.295517i
\(135\) −8.15573 + 17.0050i −0.0604128 + 0.125963i
\(136\) 113.488 + 82.4538i 0.834470 + 0.606278i
\(137\) 194.370 63.1546i 1.41876 0.460982i 0.503551 0.863966i \(-0.332027\pi\)
0.915207 + 0.402983i \(0.132027\pi\)
\(138\) −96.9939 61.8894i −0.702854 0.448474i
\(139\) −40.6461 29.5311i −0.292418 0.212454i 0.431898 0.901923i \(-0.357844\pi\)
−0.724316 + 0.689468i \(0.757844\pi\)
\(140\) 1.33957 + 1.84376i 0.00956836 + 0.0131697i
\(141\) 206.111 81.0191i 1.46178 0.574603i
\(142\) 68.4204 0.481834
\(143\) 0 0
\(144\) −16.3203 + 83.3246i −0.113335 + 0.578643i
\(145\) 1.15823 3.56467i 0.00798779 0.0245839i
\(146\) 55.3332 + 76.1597i 0.378995 + 0.521642i
\(147\) 126.347 7.63712i 0.859504 0.0519532i
\(148\) 24.5502 + 75.5578i 0.165880 + 0.510526i
\(149\) −149.698 + 48.6400i −1.00469 + 0.326443i −0.764737 0.644343i \(-0.777131\pi\)
−0.239950 + 0.970785i \(0.577131\pi\)
\(150\) 7.35700 + 121.713i 0.0490467 + 0.811418i
\(151\) −138.650 + 100.735i −0.918215 + 0.667122i −0.943079 0.332569i \(-0.892085\pi\)
0.0248642 + 0.999691i \(0.492085\pi\)
\(152\) −131.871 42.8476i −0.867574 0.281892i
\(153\) −142.309 27.8731i −0.930124 0.182177i
\(154\) 0 0
\(155\) 2.83774i 0.0183080i
\(156\) 23.4920 + 59.7631i 0.150590 + 0.383097i
\(157\) 52.8595 38.4047i 0.336685 0.244616i −0.406577 0.913617i \(-0.633278\pi\)
0.743262 + 0.669001i \(0.233278\pi\)
\(158\) −49.6339 + 68.3153i −0.314139 + 0.432375i
\(159\) −69.1492 + 108.372i −0.434901 + 0.681582i
\(160\) 4.14027 + 12.7424i 0.0258767 + 0.0796403i
\(161\) 35.4712 48.8220i 0.220318 0.303242i
\(162\) −32.1202 130.414i −0.198273 0.805022i
\(163\) −4.77074 + 14.6828i −0.0292684 + 0.0900787i −0.964624 0.263631i \(-0.915080\pi\)
0.935355 + 0.353710i \(0.115080\pi\)
\(164\) 84.3314i 0.514216i
\(165\) 0 0
\(166\) 98.1792 0.591441
\(167\) −146.561 47.6206i −0.877612 0.285154i −0.164647 0.986353i \(-0.552648\pi\)
−0.712966 + 0.701199i \(0.752648\pi\)
\(168\) −65.9633 17.1096i −0.392639 0.101843i
\(169\) −100.310 72.8793i −0.593549 0.431238i
\(170\) 17.7487 5.76689i 0.104404 0.0339229i
\(171\) 142.294 17.2651i 0.832126 0.100966i
\(172\) −22.9269 16.6574i −0.133296 0.0968453i
\(173\) −14.7552 20.3087i −0.0852900 0.117392i 0.764240 0.644932i \(-0.223114\pi\)
−0.849530 + 0.527540i \(0.823114\pi\)
\(174\) 9.76514 + 24.8423i 0.0561215 + 0.142772i
\(175\) −63.9548 −0.365456
\(176\) 0 0
\(177\) −54.7915 66.5642i −0.309556 0.376069i
\(178\) 19.5690 60.2272i 0.109938 0.338355i
\(179\) −36.3280 50.0013i −0.202950 0.279337i 0.695395 0.718628i \(-0.255230\pi\)
−0.898345 + 0.439291i \(0.855230\pi\)
\(180\) −5.35321 5.75708i −0.0297400 0.0319838i
\(181\) −45.8596 141.141i −0.253368 0.779786i −0.994147 0.108037i \(-0.965544\pi\)
0.740779 0.671749i \(-0.234456\pi\)
\(182\) 70.4290 22.8838i 0.386972 0.125735i
\(183\) −138.651 + 8.38083i −0.757655 + 0.0457969i
\(184\) 162.911 118.362i 0.885386 0.643271i
\(185\) 42.2048 + 13.7132i 0.228134 + 0.0741252i
\(186\) 12.8435 + 15.6032i 0.0690513 + 0.0838880i
\(187\) 0 0
\(188\) 92.3135i 0.491029i
\(189\) 69.2937 12.6893i 0.366633 0.0671391i
\(190\) −14.9234 + 10.8425i −0.0785444 + 0.0570658i
\(191\) −33.0352 + 45.4691i −0.172959 + 0.238058i −0.886692 0.462360i \(-0.847003\pi\)
0.713733 + 0.700418i \(0.247003\pi\)
\(192\) −175.874 112.221i −0.916013 0.584485i
\(193\) −46.6529 143.583i −0.241725 0.743953i −0.996158 0.0875759i \(-0.972088\pi\)
0.754433 0.656377i \(-0.227912\pi\)
\(194\) −15.8793 + 21.8559i −0.0818519 + 0.112659i
\(195\) 34.7198 + 9.00562i 0.178050 + 0.0461827i
\(196\) −16.3044 + 50.1797i −0.0831856 + 0.256019i
\(197\) 22.3374i 0.113388i 0.998392 + 0.0566938i \(0.0180559\pi\)
−0.998392 + 0.0566938i \(0.981944\pi\)
\(198\) 0 0
\(199\) −150.930 −0.758444 −0.379222 0.925306i \(-0.623808\pi\)
−0.379222 + 0.925306i \(0.623808\pi\)
\(200\) −202.962 65.9463i −1.01481 0.329731i
\(201\) 58.2100 224.420i 0.289602 1.11652i
\(202\) −139.775 101.552i −0.691954 0.502734i
\(203\) −13.3150 + 4.32632i −0.0655914 + 0.0213119i
\(204\) 32.5143 50.9569i 0.159384 0.249789i
\(205\) 38.1092 + 27.6879i 0.185898 + 0.135063i
\(206\) 53.0269 + 72.9852i 0.257412 + 0.354297i
\(207\) −101.180 + 181.921i −0.488794 + 0.878845i
\(208\) 161.485 0.776369
\(209\) 0 0
\(210\) −6.99955 + 5.76159i −0.0333312 + 0.0274362i
\(211\) −56.1107 + 172.691i −0.265927 + 0.818440i 0.725551 + 0.688168i \(0.241585\pi\)
−0.991478 + 0.130272i \(0.958415\pi\)
\(212\) −31.4969 43.3517i −0.148570 0.204489i
\(213\) −7.46884 123.563i −0.0350650 0.580108i
\(214\) 14.5556 + 44.7976i 0.0680169 + 0.209335i
\(215\) −15.0549 + 4.89162i −0.0700227 + 0.0227517i
\(216\) 232.989 + 31.1818i 1.07866 + 0.144360i
\(217\) −8.57538 + 6.23038i −0.0395179 + 0.0287114i
\(218\) −65.0577 21.1385i −0.298430 0.0969657i
\(219\) 131.499 108.242i 0.600454 0.494256i
\(220\) 0 0
\(221\) 275.798i 1.24795i
\(222\) −294.127 + 115.617i −1.32489 + 0.520797i
\(223\) −152.123 + 110.524i −0.682166 + 0.495623i −0.874076 0.485790i \(-0.838532\pi\)
0.191909 + 0.981413i \(0.438532\pi\)
\(224\) 29.4164 40.4882i 0.131323 0.180751i
\(225\) 219.003 26.5726i 0.973345 0.118100i
\(226\) −74.3891 228.946i −0.329155 1.01304i
\(227\) −252.293 + 347.252i −1.11142 + 1.52974i −0.292122 + 0.956381i \(0.594361\pi\)
−0.819302 + 0.573362i \(0.805639\pi\)
\(228\) −15.0010 + 57.8342i −0.0657940 + 0.253659i
\(229\) 41.9569 129.130i 0.183218 0.563887i −0.816695 0.577069i \(-0.804196\pi\)
0.999913 + 0.0131824i \(0.00419621\pi\)
\(230\) 26.7892i 0.116475i
\(231\) 0 0
\(232\) −46.7166 −0.201365
\(233\) −310.890 101.014i −1.33429 0.433538i −0.446913 0.894577i \(-0.647477\pi\)
−0.887380 + 0.461039i \(0.847477\pi\)
\(234\) −231.665 + 107.624i −0.990019 + 0.459933i
\(235\) 41.7162 + 30.3086i 0.177516 + 0.128973i
\(236\) 34.1783 11.1052i 0.144823 0.0470559i
\(237\) 128.791 + 82.1785i 0.543423 + 0.346745i
\(238\) −56.3950 40.9734i −0.236954 0.172157i
\(239\) −54.9303 75.6050i −0.229834 0.316339i 0.678488 0.734612i \(-0.262636\pi\)
−0.908322 + 0.418273i \(0.862636\pi\)
\(240\) −18.3990 + 7.23240i −0.0766627 + 0.0301350i
\(241\) −206.766 −0.857952 −0.428976 0.903316i \(-0.641125\pi\)
−0.428976 + 0.903316i \(0.641125\pi\)
\(242\) 0 0
\(243\) −232.013 + 72.2432i −0.954785 + 0.297297i
\(244\) 17.8921 55.0662i 0.0733283 0.225681i
\(245\) 17.3230 + 23.8431i 0.0707061 + 0.0973186i
\(246\) −334.857 + 20.2406i −1.36121 + 0.0822789i
\(247\) −84.2412 259.268i −0.341058 1.04967i
\(248\) −33.6386 + 10.9298i −0.135639 + 0.0440719i
\(249\) −10.7173 177.306i −0.0430416 0.712071i
\(250\) −46.3942 + 33.7074i −0.185577 + 0.134829i
\(251\) 2.65372 + 0.862246i 0.0105726 + 0.00343524i 0.314299 0.949324i \(-0.398231\pi\)
−0.303726 + 0.952759i \(0.598231\pi\)
\(252\) −5.64417 + 28.8168i −0.0223975 + 0.114353i
\(253\) 0 0
\(254\) 303.081i 1.19323i
\(255\) −12.3521 31.4235i −0.0484396 0.123229i
\(256\) 173.280 125.895i 0.676875 0.491779i
\(257\) 235.235 323.774i 0.915313 1.25982i −0.0500071 0.998749i \(-0.515924\pi\)
0.965320 0.261071i \(-0.0840756\pi\)
\(258\) 60.6391 95.0345i 0.235035 0.368351i
\(259\) −51.2226 157.647i −0.197771 0.608675i
\(260\) −8.78819 + 12.0959i −0.0338007 + 0.0465227i
\(261\) 43.7977 20.3471i 0.167807 0.0779581i
\(262\) −43.3033 + 133.274i −0.165280 + 0.508679i
\(263\) 379.212i 1.44187i 0.693003 + 0.720935i \(0.256287\pi\)
−0.693003 + 0.720935i \(0.743713\pi\)
\(264\) 0 0
\(265\) −29.9317 −0.112950
\(266\) 65.5302 + 21.2920i 0.246354 + 0.0800453i
\(267\) −110.903 28.7660i −0.415366 0.107738i
\(268\) 78.1848 + 56.8046i 0.291734 + 0.211957i
\(269\) −29.6737 + 9.64156i −0.110311 + 0.0358422i −0.363652 0.931535i \(-0.618470\pi\)
0.253341 + 0.967377i \(0.418470\pi\)
\(270\) 21.5749 22.6379i 0.0799072 0.0838440i
\(271\) 419.157 + 304.535i 1.54670 + 1.12375i 0.945950 + 0.324312i \(0.105133\pi\)
0.600754 + 0.799434i \(0.294867\pi\)
\(272\) −89.3487 122.978i −0.328488 0.452125i
\(273\) −49.0148 124.692i −0.179541 0.456749i
\(274\) −338.882 −1.23680
\(275\) 0 0
\(276\) −55.1450 66.9937i −0.199801 0.242731i
\(277\) −113.705 + 349.949i −0.410488 + 1.26335i 0.505737 + 0.862688i \(0.331221\pi\)
−0.916225 + 0.400664i \(0.868779\pi\)
\(278\) 48.9673 + 67.3977i 0.176141 + 0.242438i
\(279\) 26.7763 24.8979i 0.0959726 0.0892398i
\(280\) −4.90310 15.0902i −0.0175111 0.0538936i
\(281\) 304.711 99.0066i 1.08438 0.352337i 0.288308 0.957538i \(-0.406907\pi\)
0.796073 + 0.605201i \(0.206907\pi\)
\(282\) −366.551 + 22.1564i −1.29983 + 0.0785688i
\(283\) −130.086 + 94.5128i −0.459667 + 0.333968i −0.793401 0.608700i \(-0.791691\pi\)
0.333734 + 0.942667i \(0.391691\pi\)
\(284\) 49.0740 + 15.9451i 0.172796 + 0.0561448i
\(285\) 21.2100 + 25.7672i 0.0744209 + 0.0904113i
\(286\) 0 0
\(287\) 175.953i 0.613075i
\(288\) −83.9091 + 150.867i −0.291351 + 0.523845i
\(289\) −23.7736 + 17.2725i −0.0822616 + 0.0597665i
\(290\) −3.65307 + 5.02801i −0.0125968 + 0.0173380i
\(291\) 41.2039 + 26.2912i 0.141594 + 0.0903476i
\(292\) 21.9386 + 67.5202i 0.0751323 + 0.231233i
\(293\) 171.011 235.377i 0.583657 0.803335i −0.410434 0.911891i \(-0.634623\pi\)
0.994090 + 0.108556i \(0.0346226\pi\)
\(294\) −203.163 52.6964i −0.691030 0.179239i
\(295\) 6.20310 19.0912i 0.0210275 0.0647159i
\(296\) 553.114i 1.86863i
\(297\) 0 0
\(298\) 260.998 0.875832
\(299\) 376.528 + 122.342i 1.25929 + 0.409169i
\(300\) −23.0879 + 89.0121i −0.0769598 + 0.296707i
\(301\) 47.8357 + 34.7547i 0.158923 + 0.115464i
\(302\) 270.269 87.8157i 0.894931 0.290781i
\(303\) −168.139 + 263.510i −0.554915 + 0.869670i
\(304\) 121.557 + 88.3162i 0.399858 + 0.290514i
\(305\) −19.0099 26.1649i −0.0623276 0.0857866i
\(306\) 210.140 + 116.875i 0.686731 + 0.381945i
\(307\) 281.800 0.917915 0.458957 0.888458i \(-0.348223\pi\)
0.458957 + 0.888458i \(0.348223\pi\)
\(308\) 0 0
\(309\) 126.018 103.730i 0.407826 0.335697i
\(310\) −1.45405 + 4.47512i −0.00469050 + 0.0144359i
\(311\) −278.465 383.274i −0.895385 1.23239i −0.971917 0.235325i \(-0.924385\pi\)
0.0765316 0.997067i \(-0.475615\pi\)
\(312\) −26.9741 446.255i −0.0864556 1.43030i
\(313\) −9.26252 28.5071i −0.0295927 0.0910771i 0.935169 0.354201i \(-0.115247\pi\)
−0.964762 + 0.263124i \(0.915247\pi\)
\(314\) −103.038 + 33.4791i −0.328147 + 0.106621i
\(315\) 11.1692 + 12.0118i 0.0354576 + 0.0381328i
\(316\) −51.5202 + 37.4316i −0.163039 + 0.118454i
\(317\) 151.481 + 49.2192i 0.477858 + 0.155266i 0.538036 0.842922i \(-0.319167\pi\)
−0.0601773 + 0.998188i \(0.519167\pi\)
\(318\) 164.578 135.470i 0.517541 0.426007i
\(319\) 0 0
\(320\) 48.5757i 0.151799i
\(321\) 79.3128 31.1767i 0.247080 0.0971237i
\(322\) −80.9546 + 58.8170i −0.251412 + 0.182661i
\(323\) −150.834 + 207.605i −0.466978 + 0.642740i
\(324\) 7.35442 101.024i 0.0226988 0.311802i
\(325\) −129.655 399.037i −0.398938 1.22781i
\(326\) 15.0470 20.7104i 0.0461563 0.0635287i
\(327\) −31.0731 + 119.798i −0.0950248 + 0.366354i
\(328\) 181.432 558.389i 0.553145 1.70241i
\(329\) 192.607i 0.585431i
\(330\) 0 0
\(331\) 332.709 1.00516 0.502582 0.864530i \(-0.332384\pi\)
0.502582 + 0.864530i \(0.332384\pi\)
\(332\) 70.4183 + 22.8803i 0.212103 + 0.0689166i
\(333\) 240.904 + 518.554i 0.723436 + 1.55722i
\(334\) 206.727 + 150.196i 0.618943 + 0.449688i
\(335\) 51.3397 16.6813i 0.153253 0.0497949i
\(336\) 62.2516 + 39.7212i 0.185273 + 0.118218i
\(337\) 44.8239 + 32.5664i 0.133008 + 0.0966363i 0.652300 0.757961i \(-0.273804\pi\)
−0.519292 + 0.854597i \(0.673804\pi\)
\(338\) 120.846 + 166.330i 0.357531 + 0.492099i
\(339\) −405.342 + 159.334i −1.19570 + 0.470012i
\(340\) 14.0740 0.0413942
\(341\) 0 0
\(342\) −233.244 45.6840i −0.682000 0.133579i
\(343\) 73.5248 226.286i 0.214358 0.659727i
\(344\) 115.971 + 159.620i 0.337124 + 0.464012i
\(345\) −48.3797 + 2.92434i −0.140231 + 0.00847635i
\(346\) 12.8628 + 39.5875i 0.0371756 + 0.114415i
\(347\) 131.761 42.8117i 0.379714 0.123377i −0.112940 0.993602i \(-0.536027\pi\)
0.492654 + 0.870225i \(0.336027\pi\)
\(348\) 1.21457 + 20.0937i 0.00349016 + 0.0577404i
\(349\) 183.255 133.143i 0.525087 0.381498i −0.293430 0.955981i \(-0.594797\pi\)
0.818517 + 0.574482i \(0.194797\pi\)
\(350\) 100.857 + 32.7704i 0.288162 + 0.0936297i
\(351\) 219.652 + 406.624i 0.625788 + 1.15847i
\(352\) 0 0
\(353\) 258.939i 0.733538i −0.930312 0.366769i \(-0.880464\pi\)
0.930312 0.366769i \(-0.119536\pi\)
\(354\) 52.2989 + 133.047i 0.147737 + 0.375839i
\(355\) 23.3177 16.9413i 0.0656836 0.0477220i
\(356\) 28.0715 38.6370i 0.0788524 0.108531i
\(357\) −67.8393 + 106.319i −0.190026 + 0.297811i
\(358\) 31.6688 + 97.4666i 0.0884604 + 0.272253i
\(359\) 152.258 209.565i 0.424116 0.583745i −0.542474 0.840072i \(-0.682512\pi\)
0.966590 + 0.256327i \(0.0825124\pi\)
\(360\) 23.0597 + 49.6367i 0.0640547 + 0.137880i
\(361\) −33.1734 + 102.097i −0.0918932 + 0.282818i
\(362\) 246.079i 0.679775i
\(363\) 0 0
\(364\) 55.8476 0.153428
\(365\) 37.7152 + 12.2544i 0.103329 + 0.0335737i
\(366\) 222.947 + 57.8280i 0.609145 + 0.158000i
\(367\) 160.814 + 116.838i 0.438186 + 0.318361i 0.784914 0.619605i \(-0.212707\pi\)
−0.346728 + 0.937966i \(0.612707\pi\)
\(368\) −207.528 + 67.4300i −0.563935 + 0.183234i
\(369\) 73.1066 + 602.521i 0.198121 + 1.63285i
\(370\) −59.5305 43.2514i −0.160893 0.116896i
\(371\) 65.7164 + 90.4509i 0.177133 + 0.243803i
\(372\) 5.57568 + 14.1844i 0.0149884 + 0.0381301i
\(373\) −670.467 −1.79750 −0.898750 0.438462i \(-0.855523\pi\)
−0.898750 + 0.438462i \(0.855523\pi\)
\(374\) 0 0
\(375\) 65.9379 + 80.1056i 0.175834 + 0.213615i
\(376\) 198.604 611.242i 0.528203 1.62564i
\(377\) −53.9870 74.3067i −0.143201 0.197100i
\(378\) −115.778 15.4950i −0.306292 0.0409921i
\(379\) 121.255 + 373.186i 0.319935 + 0.984659i 0.973675 + 0.227940i \(0.0731990\pi\)
−0.653740 + 0.756719i \(0.726801\pi\)
\(380\) −13.2305 + 4.29886i −0.0348172 + 0.0113128i
\(381\) −547.345 + 33.0846i −1.43660 + 0.0868363i
\(382\) 75.3950 54.7777i 0.197369 0.143397i
\(383\) −473.343 153.798i −1.23588 0.401562i −0.383040 0.923732i \(-0.625123\pi\)
−0.852842 + 0.522170i \(0.825123\pi\)
\(384\) 73.5699 + 89.3774i 0.191588 + 0.232754i
\(385\) 0 0
\(386\) 250.336i 0.648538i
\(387\) −178.246 99.1365i −0.460584 0.256167i
\(388\) −16.4827 + 11.9754i −0.0424813 + 0.0308644i
\(389\) −242.332 + 333.541i −0.622961 + 0.857433i −0.997564 0.0697526i \(-0.977779\pi\)
0.374603 + 0.927185i \(0.377779\pi\)
\(390\) −50.1388 31.9923i −0.128561 0.0820315i
\(391\) −115.163 354.434i −0.294534 0.906482i
\(392\) 215.915 297.181i 0.550802 0.758115i
\(393\) 245.412 + 63.6548i 0.624457 + 0.161972i
\(394\) 11.4456 35.2261i 0.0290499 0.0894063i
\(395\) 35.5715i 0.0900544i
\(396\) 0 0
\(397\) 171.230 0.431310 0.215655 0.976470i \(-0.430811\pi\)
0.215655 + 0.976470i \(0.430811\pi\)
\(398\) 238.018 + 77.3366i 0.598034 + 0.194313i
\(399\) 31.2988 120.668i 0.0784430 0.302425i
\(400\) 187.087 + 135.927i 0.467717 + 0.339816i
\(401\) −690.485 + 224.352i −1.72191 + 0.559482i −0.992242 0.124323i \(-0.960324\pi\)
−0.729665 + 0.683804i \(0.760324\pi\)
\(402\) −206.790 + 324.084i −0.514403 + 0.806179i
\(403\) −56.2584 40.8741i −0.139599 0.101425i
\(404\) −76.5860 105.412i −0.189569 0.260920i
\(405\) −43.2378 36.4918i −0.106760 0.0901033i
\(406\) 23.2147 0.0571790
\(407\) 0 0
\(408\) −324.919 + 267.453i −0.796369 + 0.655521i
\(409\) −93.1348 + 286.639i −0.227713 + 0.700830i 0.770291 + 0.637692i \(0.220111\pi\)
−0.998005 + 0.0631377i \(0.979889\pi\)
\(410\) −45.9110 63.1911i −0.111978 0.154125i
\(411\) 36.9927 + 612.001i 0.0900067 + 1.48905i
\(412\) 21.0242 + 64.7058i 0.0510296 + 0.157053i
\(413\) −71.3110 + 23.1704i −0.172666 + 0.0561026i
\(414\) 252.778 235.045i 0.610575 0.567742i
\(415\) 33.4595 24.3098i 0.0806253 0.0585777i
\(416\) 312.256 + 101.458i 0.750615 + 0.243889i
\(417\) 116.371 95.7892i 0.279067 0.229710i
\(418\) 0 0
\(419\) 573.195i 1.36801i 0.729478 + 0.684004i \(0.239763\pi\)
−0.729478 + 0.684004i \(0.760237\pi\)
\(420\) −6.36309 + 2.50124i −0.0151502 + 0.00595533i
\(421\) 452.468 328.737i 1.07475 0.780849i 0.0979865 0.995188i \(-0.468760\pi\)
0.976759 + 0.214339i \(0.0687598\pi\)
\(422\) 176.973 243.583i 0.419368 0.577211i
\(423\) 80.0262 + 659.550i 0.189187 + 1.55922i
\(424\) 115.285 + 354.811i 0.271898 + 0.836817i
\(425\) −232.147 + 319.523i −0.546229 + 0.751819i
\(426\) −51.5353 + 198.686i −0.120975 + 0.466400i
\(427\) −37.3308 + 114.893i −0.0874259 + 0.269069i
\(428\) 35.5229i 0.0829973i
\(429\) 0 0
\(430\) 26.2480 0.0610420
\(431\) 190.066 + 61.7562i 0.440988 + 0.143286i 0.521092 0.853501i \(-0.325525\pi\)
−0.0801033 + 0.996787i \(0.525525\pi\)
\(432\) −229.674 110.154i −0.531653 0.254986i
\(433\) 83.7223 + 60.8278i 0.193354 + 0.140480i 0.680250 0.732980i \(-0.261871\pi\)
−0.486896 + 0.873460i \(0.661871\pi\)
\(434\) 16.7159 5.43131i 0.0385158 0.0125145i
\(435\) 9.47906 + 6.04835i 0.0217909 + 0.0139043i
\(436\) −41.7359 30.3229i −0.0957245 0.0695479i
\(437\) 216.521 + 298.016i 0.495472 + 0.681958i
\(438\) −262.838 + 103.318i −0.600087 + 0.235886i
\(439\) 662.550 1.50923 0.754613 0.656171i \(-0.227825\pi\)
0.754613 + 0.656171i \(0.227825\pi\)
\(440\) 0 0
\(441\) −72.9890 + 372.652i −0.165508 + 0.845016i
\(442\) 141.319 434.934i 0.319725 0.984013i
\(443\) 123.922 + 170.565i 0.279735 + 0.385022i 0.925646 0.378391i \(-0.123522\pi\)
−0.645911 + 0.763412i \(0.723522\pi\)
\(444\) −237.904 + 14.3803i −0.535820 + 0.0323880i
\(445\) −8.24349 25.3709i −0.0185247 0.0570132i
\(446\) 296.531 96.3488i 0.664868 0.216029i
\(447\) −28.4908 471.346i −0.0637378 1.05447i
\(448\) −146.791 + 106.650i −0.327659 + 0.238058i
\(449\) 227.560 + 73.9387i 0.506815 + 0.164674i 0.551253 0.834338i \(-0.314150\pi\)
−0.0444383 + 0.999012i \(0.514150\pi\)
\(450\) −358.984 70.3118i −0.797742 0.156248i
\(451\) 0 0
\(452\) 181.546i 0.401651i
\(453\) −188.093 478.503i −0.415216 1.05630i
\(454\) 575.799 418.342i 1.26828 0.921459i
\(455\) 18.3361 25.2374i 0.0402990 0.0554668i
\(456\) 223.753 350.668i 0.490685 0.769009i
\(457\) −8.24694 25.3815i −0.0180458 0.0555393i 0.941628 0.336655i \(-0.109296\pi\)
−0.959674 + 0.281116i \(0.909296\pi\)
\(458\) −132.332 + 182.140i −0.288935 + 0.397685i
\(459\) 188.130 392.257i 0.409870 0.854591i
\(460\) 6.24313 19.2144i 0.0135720 0.0417704i
\(461\) 393.125i 0.852766i −0.904543 0.426383i \(-0.859788\pi\)
0.904543 0.426383i \(-0.140212\pi\)
\(462\) 0 0
\(463\) 106.954 0.231002 0.115501 0.993307i \(-0.463153\pi\)
0.115501 + 0.993307i \(0.463153\pi\)
\(464\) 48.1455 + 15.6434i 0.103762 + 0.0337143i
\(465\) 8.24052 + 2.13742i 0.0177215 + 0.00459661i
\(466\) 438.515 + 318.600i 0.941020 + 0.683691i
\(467\) −402.211 + 130.686i −0.861265 + 0.279842i −0.706157 0.708055i \(-0.749573\pi\)
−0.155108 + 0.987897i \(0.549573\pi\)
\(468\) −191.241 + 23.2041i −0.408635 + 0.0495815i
\(469\) −163.128 118.520i −0.347821 0.252707i
\(470\) −50.2565 69.1722i −0.106929 0.147175i
\(471\) 71.7090 + 182.426i 0.152248 + 0.387316i
\(472\) −250.199 −0.530083
\(473\) 0 0
\(474\) −160.996 195.588i −0.339654 0.412634i
\(475\) 120.637 371.281i 0.253972 0.781644i
\(476\) −30.9002 42.5305i −0.0649164 0.0893498i
\(477\) −262.617 282.430i −0.550559 0.592096i
\(478\) 47.8853 + 147.376i 0.100178 + 0.308317i
\(479\) −513.299 + 166.781i −1.07161 + 0.348186i −0.791113 0.611670i \(-0.790498\pi\)
−0.280493 + 0.959856i \(0.590498\pi\)
\(480\) −40.1214 + 2.42516i −0.0835862 + 0.00505242i
\(481\) 879.773 639.192i 1.82905 1.32888i
\(482\) 326.071 + 105.947i 0.676497 + 0.219807i
\(483\) 115.057 + 139.779i 0.238213 + 0.289397i
\(484\) 0 0
\(485\) 11.3803i 0.0234645i
\(486\) 402.902 + 4.95537i 0.829017 + 0.0101962i
\(487\) −494.023 + 358.929i −1.01442 + 0.737020i −0.965132 0.261765i \(-0.915696\pi\)
−0.0492892 + 0.998785i \(0.515696\pi\)
\(488\) −236.940 + 326.121i −0.485534 + 0.668280i
\(489\) −39.0442 24.9131i −0.0798449 0.0509471i
\(490\) −15.1013 46.4769i −0.0308189 0.0948508i
\(491\) 33.4298 46.0121i 0.0680851 0.0937111i −0.773616 0.633654i \(-0.781554\pi\)
0.841702 + 0.539943i \(0.181554\pi\)
\(492\) −244.890 63.5196i −0.497745 0.129105i
\(493\) −26.7172 + 82.2270i −0.0541931 + 0.166789i
\(494\) 452.031i 0.915043i
\(495\) 0 0
\(496\) 38.3274 0.0772729
\(497\) −102.390 33.2686i −0.206016 0.0669388i
\(498\) −73.9501 + 285.103i −0.148494 + 0.572497i
\(499\) −379.330 275.600i −0.760181 0.552304i 0.138785 0.990323i \(-0.455680\pi\)
−0.898966 + 0.438019i \(0.855680\pi\)
\(500\) −41.1313 + 13.3644i −0.0822626 + 0.0267287i
\(501\) 248.678 389.731i 0.496363 0.777907i
\(502\) −3.74311 2.71953i −0.00745640 0.00541739i
\(503\) −269.307 370.669i −0.535401 0.736916i 0.452540 0.891744i \(-0.350518\pi\)
−0.987942 + 0.154827i \(0.950518\pi\)
\(504\) 99.3691 178.664i 0.197161 0.354492i
\(505\) −72.7802 −0.144119
\(506\) 0 0
\(507\) 287.189 236.396i 0.566448 0.466265i
\(508\) 70.6318 217.382i 0.139039 0.427918i
\(509\) 161.552 + 222.357i 0.317391 + 0.436851i 0.937668 0.347531i \(-0.112980\pi\)
−0.620277 + 0.784383i \(0.712980\pi\)
\(510\) 3.37795 + 55.8841i 0.00662343 + 0.109577i
\(511\) −45.7737 140.877i −0.0895767 0.275689i
\(512\) −484.567 + 157.445i −0.946420 + 0.307510i
\(513\) −57.0413 + 426.211i −0.111192 + 0.830821i
\(514\) −536.868 + 390.058i −1.04449 + 0.758867i
\(515\) 36.1431 + 11.7436i 0.0701808 + 0.0228031i
\(516\) 65.6404 54.0310i 0.127210 0.104711i
\(517\) 0 0
\(518\) 274.856i 0.530610i
\(519\) 70.0885 27.5508i 0.135045 0.0530843i
\(520\) 84.2131 61.1844i 0.161948 0.117662i
\(521\) −146.004 + 200.957i −0.280237 + 0.385714i −0.925812 0.377983i \(-0.876618\pi\)
0.645575 + 0.763697i \(0.276618\pi\)
\(522\) −79.4949 + 9.64547i −0.152289 + 0.0184779i
\(523\) −43.4437 133.706i −0.0830663 0.255652i 0.900894 0.434039i \(-0.142912\pi\)
−0.983960 + 0.178387i \(0.942912\pi\)
\(524\) −62.1180 + 85.4981i −0.118546 + 0.163164i
\(525\) 48.1717 185.719i 0.0917555 0.353750i
\(526\) 194.308 598.018i 0.369407 1.13692i
\(527\) 65.4587i 0.124210i
\(528\) 0 0
\(529\) −5.97152 −0.0112883
\(530\) 47.2024 + 15.3370i 0.0890611 + 0.0289377i
\(531\) 234.566 108.972i 0.441744 0.205221i
\(532\) 42.0390 + 30.5431i 0.0790207 + 0.0574119i
\(533\) 1097.83 356.707i 2.05972 0.669244i
\(534\) 160.155 + 102.191i 0.299915 + 0.191368i
\(535\) 16.0527 + 11.6630i 0.0300051 + 0.0217999i
\(536\) −395.480 544.332i −0.737837 1.01555i
\(537\) 172.562 67.8315i 0.321344 0.126316i
\(538\) 51.7358 0.0961633
\(539\) 0 0
\(540\) 20.7501 11.2089i 0.0384262 0.0207572i
\(541\) −185.692 + 571.503i −0.343239 + 1.05638i 0.619280 + 0.785170i \(0.287424\pi\)
−0.962520 + 0.271212i \(0.912576\pi\)
\(542\) −504.968 695.029i −0.931675 1.28234i
\(543\) 444.403 26.8622i 0.818421 0.0494700i
\(544\) −95.5046 293.933i −0.175560 0.540318i
\(545\) −27.4057 + 8.90465i −0.0502857 + 0.0163388i
\(546\) 13.4041 + 221.755i 0.0245497 + 0.406145i
\(547\) −502.297 + 364.940i −0.918276 + 0.667166i −0.943094 0.332526i \(-0.892099\pi\)
0.0248187 + 0.999692i \(0.492099\pi\)
\(548\) −243.061 78.9752i −0.443542 0.144115i
\(549\) 80.0967 408.941i 0.145896 0.744884i
\(550\) 0 0
\(551\) 85.4594i 0.155099i
\(552\) 221.005 + 562.230i 0.400370 + 1.01853i
\(553\) 107.494 78.0989i 0.194383 0.141228i
\(554\) 358.627 493.608i 0.647341 0.890988i
\(555\) −71.6110 + 112.230i −0.129029 + 0.202216i
\(556\) 19.4147 + 59.7522i 0.0349185 + 0.107468i
\(557\) 317.419 436.890i 0.569873 0.784363i −0.422666 0.906285i \(-0.638906\pi\)
0.992540 + 0.121922i \(0.0389058\pi\)
\(558\) −54.9841 + 25.5439i −0.0985377 + 0.0457776i
\(559\) −119.870 + 368.922i −0.214437 + 0.659968i
\(560\) 17.1936i 0.0307028i
\(561\) 0 0
\(562\) −531.261 −0.945305
\(563\) −265.027 86.1126i −0.470741 0.152953i 0.0640335 0.997948i \(-0.479604\pi\)
−0.534775 + 0.844995i \(0.679604\pi\)
\(564\) −268.070 69.5319i −0.475301 0.123283i
\(565\) −82.0403 59.6057i −0.145204 0.105497i
\(566\) 253.574 82.3912i 0.448011 0.145567i
\(567\) −15.3446 + 210.780i −0.0270627 + 0.371746i
\(568\) −290.633 211.157i −0.511677 0.371755i
\(569\) 628.675 + 865.297i 1.10488 + 1.52073i 0.828755 + 0.559611i \(0.189050\pi\)
0.276122 + 0.961122i \(0.410950\pi\)
\(570\) −20.2451 51.5030i −0.0355177 0.0903561i
\(571\) −470.660 −0.824274 −0.412137 0.911122i \(-0.635217\pi\)
−0.412137 + 0.911122i \(0.635217\pi\)
\(572\) 0 0
\(573\) −107.155 130.179i −0.187007 0.227189i
\(574\) −90.1580 + 277.478i −0.157070 + 0.483411i
\(575\) 333.246 + 458.673i 0.579558 + 0.797693i
\(576\) 458.351 426.196i 0.795748 0.739924i
\(577\) 70.8100 + 217.931i 0.122721 + 0.377696i 0.993479 0.114015i \(-0.0363714\pi\)
−0.870758 + 0.491712i \(0.836371\pi\)
\(578\) 46.3415 15.0573i 0.0801756 0.0260506i
\(579\) 452.091 27.3269i 0.780814 0.0471967i
\(580\) −3.79189 + 2.75497i −0.00653775 + 0.00474995i
\(581\) −146.924 47.7384i −0.252881 0.0821660i
\(582\) −51.5071 62.5741i −0.0885001 0.107516i
\(583\) 0 0
\(584\) 494.275i 0.846361i
\(585\) −52.3029 + 94.0399i −0.0894067 + 0.160752i
\(586\) −390.293 + 283.564i −0.666029 + 0.483898i
\(587\) −0.435454 + 0.599351i −0.000741830 + 0.00102104i −0.809388 0.587275i \(-0.800201\pi\)
0.808646 + 0.588296i \(0.200201\pi\)
\(588\) −133.436 85.1424i −0.226933 0.144800i
\(589\) −19.9941 61.5355i −0.0339458 0.104475i
\(590\) −19.5646 + 26.9284i −0.0331604 + 0.0456414i
\(591\) −64.8656 16.8248i −0.109756 0.0284684i
\(592\) −185.214 + 570.031i −0.312862 + 0.962890i
\(593\) 498.413i 0.840494i −0.907410 0.420247i \(-0.861943\pi\)
0.907410 0.420247i \(-0.138057\pi\)
\(594\) 0 0
\(595\) −29.3647 −0.0493524
\(596\) 187.199 + 60.8246i 0.314092 + 0.102055i
\(597\) 113.683 438.287i 0.190424 0.734150i
\(598\) −531.099 385.866i −0.888125 0.645261i
\(599\) −182.035 + 59.1467i −0.303898 + 0.0987425i −0.456997 0.889468i \(-0.651075\pi\)
0.153098 + 0.988211i \(0.451075\pi\)
\(600\) 344.376 539.710i 0.573959 0.899517i
\(601\) 672.631 + 488.695i 1.11919 + 0.813137i 0.984086 0.177695i \(-0.0568640\pi\)
0.135101 + 0.990832i \(0.456864\pi\)
\(602\) −57.6288 79.3192i −0.0957289 0.131760i
\(603\) 607.849 + 338.073i 1.00804 + 0.560651i
\(604\) 214.314 0.354824
\(605\) 0 0
\(606\) 400.178 329.402i 0.660361 0.543567i
\(607\) −244.029 + 751.044i −0.402025 + 1.23731i 0.521329 + 0.853356i \(0.325436\pi\)
−0.923354 + 0.383950i \(0.874564\pi\)
\(608\) 179.561 + 247.145i 0.295331 + 0.406488i
\(609\) −2.53414 41.9243i −0.00416115 0.0688412i
\(610\) 16.5718 + 51.0028i 0.0271669 + 0.0836112i
\(611\) 1201.74 390.470i 1.96685 0.639067i
\(612\) 123.484 + 132.800i 0.201771 + 0.216993i
\(613\) −224.256 + 162.932i −0.365834 + 0.265794i −0.755481 0.655170i \(-0.772597\pi\)
0.389647 + 0.920964i \(0.372597\pi\)
\(614\) −444.399 144.394i −0.723777 0.235170i
\(615\) −109.107 + 89.8104i −0.177411 + 0.146033i
\(616\) 0 0
\(617\) 928.547i 1.50494i −0.658628 0.752469i \(-0.728863\pi\)
0.658628 0.752469i \(-0.271137\pi\)
\(618\) −251.883 + 99.0115i −0.407577 + 0.160213i
\(619\) −773.156 + 561.731i −1.24904 + 0.907481i −0.998166 0.0605380i \(-0.980718\pi\)
−0.250875 + 0.968019i \(0.580718\pi\)
\(620\) −2.08582 + 2.87088i −0.00336423 + 0.00463046i
\(621\) −452.070 430.844i −0.727972 0.693791i
\(622\) 242.751 + 747.109i 0.390274 + 1.20114i
\(623\) −58.5695 + 80.6140i −0.0940120 + 0.129396i
\(624\) −121.633 + 468.936i −0.194924 + 0.751501i
\(625\) 181.901 559.835i 0.291042 0.895735i
\(626\) 49.7019i 0.0793961i
\(627\) 0 0
\(628\) −81.7055 −0.130104
\(629\) −973.548 316.325i −1.54777 0.502901i
\(630\) −11.4590 24.6658i −0.0181888 0.0391520i
\(631\) 4.25502 + 3.09145i 0.00674330 + 0.00489929i 0.591152 0.806560i \(-0.298673\pi\)
−0.584409 + 0.811460i \(0.698673\pi\)
\(632\) 421.665 137.007i 0.667192 0.216784i
\(633\) −459.215 293.013i −0.725458 0.462896i
\(634\) −213.666 155.238i −0.337013 0.244854i
\(635\) −75.0446 103.290i −0.118180 0.162661i
\(636\) 149.613 58.8108i 0.235241 0.0924698i
\(637\) 722.207 1.13376
\(638\) 0 0
\(639\) 364.441 + 71.3807i 0.570330 + 0.111707i
\(640\) −8.32906 + 25.6342i −0.0130141 + 0.0400534i
\(641\) 285.666 + 393.185i 0.445657 + 0.613394i 0.971457 0.237214i \(-0.0762343\pi\)
−0.525801 + 0.850608i \(0.676234\pi\)
\(642\) −141.051 + 8.52594i −0.219706 + 0.0132803i
\(643\) −228.326 702.715i −0.355095 1.09287i −0.955955 0.293515i \(-0.905175\pi\)
0.600860 0.799354i \(-0.294825\pi\)
\(644\) −71.7712 + 23.3199i −0.111446 + 0.0362110i
\(645\) −2.86526 47.4024i −0.00444227 0.0734920i
\(646\) 344.242 250.107i 0.532883 0.387162i
\(647\) −1093.99 355.458i −1.69086 0.549394i −0.703892 0.710307i \(-0.748556\pi\)
−0.986969 + 0.160913i \(0.948556\pi\)
\(648\) −266.040 + 653.093i −0.410556 + 1.00786i
\(649\) 0 0
\(650\) 695.717i 1.07033i
\(651\) −11.6333 29.5949i −0.0178699 0.0454607i
\(652\) 15.6188 11.3477i 0.0239552 0.0174045i
\(653\) 355.641 489.498i 0.544626 0.749614i −0.444645 0.895707i \(-0.646670\pi\)
0.989271 + 0.146093i \(0.0466700\pi\)
\(654\) 110.387 172.999i 0.168787 0.264525i
\(655\) 18.2416 + 56.1419i 0.0278498 + 0.0857129i
\(656\) −373.962 + 514.714i −0.570064 + 0.784625i
\(657\) 215.278 + 463.392i 0.327667 + 0.705314i
\(658\) −98.6916 + 303.741i −0.149987 + 0.461613i
\(659\) 956.314i 1.45116i 0.688138 + 0.725580i \(0.258428\pi\)
−0.688138 + 0.725580i \(0.741572\pi\)
\(660\) 0 0
\(661\) 57.8747 0.0875563 0.0437781 0.999041i \(-0.486061\pi\)
0.0437781 + 0.999041i \(0.486061\pi\)
\(662\) −524.684 170.480i −0.792573 0.257523i
\(663\) −800.890 207.735i −1.20798 0.313325i
\(664\) −417.041 302.998i −0.628074 0.456322i
\(665\) 27.6047 8.96932i 0.0415109 0.0134877i
\(666\) −114.200 941.200i −0.171472 1.41321i
\(667\) 100.408 + 72.9505i 0.150536 + 0.109371i
\(668\) 113.271 + 155.904i 0.169567 + 0.233389i
\(669\) −206.370 524.999i −0.308475 0.784753i
\(670\) −89.5104 −0.133598
\(671\) 0 0
\(672\) 95.4169 + 115.919i 0.141989 + 0.172498i
\(673\) −263.174 + 809.965i −0.391045 + 1.20351i 0.540953 + 0.841053i \(0.318064\pi\)
−0.931999 + 0.362461i \(0.881936\pi\)
\(674\) −54.0004 74.3251i −0.0801192 0.110275i
\(675\) −87.7918 + 655.978i −0.130062 + 0.971819i
\(676\) 47.9131 + 147.461i 0.0708773 + 0.218138i
\(677\) −256.528 + 83.3509i −0.378918 + 0.123118i −0.492282 0.870436i \(-0.663837\pi\)
0.113364 + 0.993553i \(0.463837\pi\)
\(678\) 720.869 43.5734i 1.06323 0.0642675i
\(679\) 34.3903 24.9860i 0.0506484 0.0367982i
\(680\) −93.1894 30.2791i −0.137043 0.0445281i
\(681\) −818.355 994.191i −1.20170 1.45990i
\(682\) 0 0
\(683\) 254.016i 0.371913i 0.982558 + 0.185956i \(0.0595383\pi\)
−0.982558 + 0.185956i \(0.940462\pi\)
\(684\) −156.646 87.1231i −0.229015 0.127373i
\(685\) −115.491 + 83.9092i −0.168600 + 0.122495i
\(686\) −231.898 + 319.180i −0.338044 + 0.465277i
\(687\) 343.379 + 219.102i 0.499824 + 0.318925i
\(688\) −66.0678 203.336i −0.0960288 0.295546i
\(689\) −431.129 + 593.399i −0.625732 + 0.861246i
\(690\) 77.7934 + 20.1780i 0.112744 + 0.0292435i
\(691\) −116.992 + 360.065i −0.169309 + 0.521078i −0.999328 0.0366564i \(-0.988329\pi\)
0.830019 + 0.557735i \(0.188329\pi\)
\(692\) 31.3914i 0.0453634i
\(693\) 0 0
\(694\) −229.724 −0.331014
\(695\) 33.3762 + 10.8446i 0.0480232 + 0.0156037i
\(696\) 35.1877 135.661i 0.0505570 0.194915i
\(697\) −879.073 638.684i −1.26122 0.916333i
\(698\) −357.217 + 116.067i −0.511772 + 0.166285i
\(699\) 527.503 826.711i 0.754654 1.18270i
\(700\) 64.7018 + 47.0086i 0.0924312 + 0.0671552i
\(701\) 188.061 + 258.843i 0.268275 + 0.369249i 0.921806 0.387651i \(-0.126713\pi\)
−0.653531 + 0.756899i \(0.726713\pi\)
\(702\) −138.037 753.796i −0.196635 1.07378i
\(703\) 1011.82 1.43929
\(704\) 0 0
\(705\) −119.435 + 98.3111i −0.169411 + 0.139448i
\(706\) −132.680 + 408.347i −0.187932 + 0.578396i
\(707\) 159.792 + 219.935i 0.226014 + 0.311082i
\(708\) 6.50486 + 107.615i 0.00918766 + 0.151999i
\(709\) −70.6162 217.334i −0.0995997 0.306536i 0.888825 0.458246i \(-0.151522\pi\)
−0.988425 + 0.151710i \(0.951522\pi\)
\(710\) −45.4528 + 14.7685i −0.0640180 + 0.0208007i
\(711\) −335.646 + 312.100i −0.472076 + 0.438959i
\(712\) −268.996 + 195.437i −0.377803 + 0.274490i
\(713\) 89.3666 + 29.0370i 0.125339 + 0.0407251i
\(714\) 161.460 132.904i 0.226135 0.186140i
\(715\) 0 0
\(716\) 77.2875i 0.107943i
\(717\) 260.924 102.566i 0.363911 0.143048i
\(718\) −347.492 + 252.467i −0.483972 + 0.351626i
\(719\) 473.254 651.379i 0.658212 0.905951i −0.341209 0.939988i \(-0.610836\pi\)
0.999421 + 0.0340364i \(0.0108362\pi\)
\(720\) −7.14377 58.8766i −0.00992190 0.0817731i
\(721\) −43.8658 135.005i −0.0608402 0.187247i
\(722\) 104.629 144.010i 0.144916 0.199460i
\(723\) 155.739 600.430i 0.215407 0.830470i
\(724\) −57.3477 + 176.498i −0.0792095 + 0.243782i
\(725\) 131.530i 0.181420i
\(726\) 0 0
\(727\) −1002.31 −1.37869 −0.689345 0.724434i \(-0.742101\pi\)
−0.689345 + 0.724434i \(0.742101\pi\)
\(728\) −369.788 120.151i −0.507950 0.165043i
\(729\) −35.0321 728.158i −0.0480550 0.998845i
\(730\) −53.1978 38.6505i −0.0728737 0.0529458i
\(731\) 347.274 112.836i 0.475068 0.154359i
\(732\) 146.431 + 93.4337i 0.200042 + 0.127642i
\(733\) −586.218 425.913i −0.799752 0.581054i 0.111089 0.993810i \(-0.464566\pi\)
−0.910841 + 0.412757i \(0.864566\pi\)
\(734\) −193.737 266.656i −0.263946 0.363291i
\(735\) −82.2859 + 32.3454i −0.111954 + 0.0440073i
\(736\) −443.653 −0.602789
\(737\) 0 0
\(738\) 193.442 987.637i 0.262117 1.33826i
\(739\) 265.858 818.228i 0.359754 1.10721i −0.593447 0.804873i \(-0.702233\pi\)
0.953201 0.302337i \(-0.0977666\pi\)
\(740\) −32.6182 44.8951i −0.0440787 0.0606691i
\(741\) 816.341 49.3442i 1.10167 0.0665914i
\(742\) −57.2880 176.314i −0.0772076 0.237620i
\(743\) −371.211 + 120.614i −0.499611 + 0.162333i −0.547972 0.836497i \(-0.684600\pi\)
0.0483616 + 0.998830i \(0.484600\pi\)
\(744\) −6.40214 105.916i −0.00860502 0.142360i
\(745\) 88.9482 64.6246i 0.119394 0.0867445i
\(746\) 1057.33 + 343.547i 1.41733 + 0.460519i
\(747\) 522.951 + 102.427i 0.700069 + 0.137118i
\(748\) 0 0
\(749\) 74.1164i 0.0989538i
\(750\) −62.9382 160.113i −0.0839176 0.213484i
\(751\) 698.777 507.691i 0.930461 0.676020i −0.0156443 0.999878i \(-0.504980\pi\)
0.946106 + 0.323858i \(0.104980\pi\)
\(752\) −409.358 + 563.433i −0.544359 + 0.749246i
\(753\) −4.50270 + 7.05669i −0.00597968 + 0.00937144i
\(754\) 47.0629 + 144.845i 0.0624177 + 0.192102i
\(755\) 70.3641 96.8478i 0.0931974 0.128275i
\(756\) −79.4301 38.0954i −0.105066 0.0503907i
\(757\) −261.252 + 804.051i −0.345115 + 1.06215i 0.616408 + 0.787427i \(0.288587\pi\)
−0.961522 + 0.274727i \(0.911413\pi\)
\(758\) 650.647i 0.858373i
\(759\) 0 0
\(760\) 96.8528 0.127438
\(761\) 167.271 + 54.3497i 0.219805 + 0.0714188i 0.416849 0.908976i \(-0.363134\pi\)
−0.197045 + 0.980395i \(0.563134\pi\)
\(762\) 880.118 + 228.285i 1.15501 + 0.299587i
\(763\) 87.0795 + 63.2670i 0.114128 + 0.0829187i
\(764\) 66.8422 21.7184i 0.0874898 0.0284272i
\(765\) 100.555 12.2007i 0.131444 0.0159487i
\(766\) 667.657 + 485.081i 0.871614 + 0.633265i
\(767\) −289.136 397.962i −0.376971 0.518856i
\(768\) 235.071 + 598.015i 0.306082 + 0.778665i
\(769\) −1341.04 −1.74388 −0.871941 0.489611i \(-0.837139\pi\)
−0.871941 + 0.489611i \(0.837139\pi\)
\(770\) 0 0
\(771\) 763.025 + 926.972i 0.989657 + 1.20230i
\(772\) −58.3398 + 179.551i −0.0755697 + 0.232580i
\(773\) −461.195 634.781i −0.596630 0.821191i 0.398764 0.917054i \(-0.369439\pi\)
−0.995395 + 0.0958621i \(0.969439\pi\)
\(774\) 230.297 + 247.672i 0.297541 + 0.319989i
\(775\) −30.7727 94.7088i −0.0397068 0.122205i
\(776\) 134.902 43.8324i 0.173843 0.0564851i
\(777\) 496.373 30.0036i 0.638833 0.0386147i
\(778\) 553.065 401.825i 0.710880 0.516485i
\(779\) 1021.47 + 331.896i 1.31126 + 0.426053i
\(780\) −28.5060 34.6309i −0.0365461 0.0443986i
\(781\) 0 0
\(782\) 617.954i 0.790222i
\(783\) 26.0969 + 142.510i 0.0333293 + 0.182005i
\(784\) −322.032 + 233.970i −0.410755 + 0.298431i
\(785\) −26.8258 + 36.9225i −0.0341730 + 0.0470351i
\(786\) −354.398 226.133i −0.450888 0.287701i
\(787\) 447.595 + 1377.55i 0.568735 + 1.75039i 0.656584 + 0.754253i \(0.272001\pi\)
−0.0878489 + 0.996134i \(0.527999\pi\)
\(788\) 16.4186 22.5983i 0.0208358 0.0286780i
\(789\) −1101.20 285.628i −1.39568 0.362013i
\(790\) 18.2268 56.0964i 0.0230719 0.0710081i
\(791\) 378.785i 0.478869i
\(792\) 0 0
\(793\) −792.536 −0.999415
\(794\) −270.030 87.7382i −0.340089 0.110501i
\(795\) 22.5450 86.9188i 0.0283585 0.109332i
\(796\) 152.693 + 110.938i 0.191826 + 0.139370i
\(797\) −329.440 + 107.041i −0.413350 + 0.134305i −0.508307 0.861176i \(-0.669728\pi\)
0.0949575 + 0.995481i \(0.469728\pi\)
\(798\) −111.188 + 174.256i −0.139334 + 0.218366i
\(799\) −962.279 699.136i −1.20435 0.875014i
\(800\) 276.361 + 380.378i 0.345451 + 0.475473i
\(801\) 167.067 300.384i 0.208573 0.375012i
\(802\) 1203.85 1.50107
\(803\) 0 0
\(804\) −223.845 + 184.255i −0.278414 + 0.229173i
\(805\) −13.0259 + 40.0897i −0.0161813 + 0.0498009i
\(806\) 67.7758 + 93.2854i 0.0840891 + 0.115739i
\(807\) −5.64754 93.4317i −0.00699819 0.115777i
\(808\) 280.320 + 862.737i 0.346931 + 1.06774i
\(809\) −497.588 + 161.676i −0.615066 + 0.199847i −0.599948 0.800039i \(-0.704812\pi\)
−0.0151173 + 0.999886i \(0.504812\pi\)
\(810\) 49.4877 + 79.7028i 0.0610959 + 0.0983985i
\(811\) −836.093 + 607.457i −1.03094 + 0.749022i −0.968497 0.249026i \(-0.919889\pi\)
−0.0624439 + 0.998048i \(0.519889\pi\)
\(812\) 16.6506 + 5.41009i 0.0205056 + 0.00666268i
\(813\) −1200.06 + 987.811i −1.47608 + 1.21502i
\(814\) 0 0
\(815\) 10.7838i 0.0132317i
\(816\) 424.415 166.831i 0.520117 0.204450i
\(817\) −291.995 + 212.147i −0.357399 + 0.259666i
\(818\) 293.748 404.309i 0.359105 0.494265i
\(819\) 399.013 48.4141i 0.487196 0.0591137i
\(820\) −18.2029 56.0227i −0.0221986 0.0683204i
\(821\) 57.4727 79.1044i 0.0700033 0.0963513i −0.772580 0.634918i \(-0.781034\pi\)
0.842583 + 0.538567i \(0.181034\pi\)
\(822\) 255.251 984.082i 0.310524 1.19718i
\(823\) 223.007 686.344i 0.270968 0.833954i −0.719290 0.694710i \(-0.755533\pi\)
0.990258 0.139244i \(-0.0444672\pi\)
\(824\) 473.673i 0.574846i
\(825\) 0 0
\(826\) 124.330 0.150521
\(827\) 1169.10 + 379.865i 1.41367 + 0.459328i 0.913584 0.406649i \(-0.133303\pi\)
0.500083 + 0.865978i \(0.333303\pi\)
\(828\) 236.080 109.675i 0.285120 0.132458i
\(829\) 156.467 + 113.680i 0.188742 + 0.137129i 0.678144 0.734929i \(-0.262785\pi\)
−0.489402 + 0.872059i \(0.662785\pi\)
\(830\) −65.2221 + 21.1919i −0.0785808 + 0.0255325i
\(831\) −930.573 593.775i −1.11982 0.714531i
\(832\) −963.017 699.673i −1.15747 0.840953i
\(833\) −399.594 549.994i −0.479704 0.660256i
\(834\) −232.600 + 91.4315i −0.278896 + 0.109630i
\(835\) 107.642 0.128912
\(836\) 0 0
\(837\) 52.1329 + 96.5094i 0.0622854 + 0.115304i
\(838\) 293.705 903.931i 0.350483 1.07868i
\(839\) −342.849 471.891i −0.408640 0.562445i 0.554246 0.832353i \(-0.313007\pi\)
−0.962886 + 0.269908i \(0.913007\pi\)
\(840\) 47.5136 2.87199i 0.0565638 0.00341903i
\(841\) 250.986 + 772.455i 0.298437 + 0.918495i
\(842\) −881.988 + 286.575i −1.04749 + 0.340351i
\(843\) 57.9930 + 959.425i 0.0687936 + 1.13811i
\(844\) 183.699 133.465i 0.217653 0.158134i
\(845\) 82.3684 + 26.7631i 0.0974773 + 0.0316723i
\(846\) 211.752 1081.12i 0.250297 1.27792i
\(847\) 0 0
\(848\) 404.267i 0.476730i
\(849\) −176.474 448.945i −0.207861 0.528793i
\(850\) 529.820 384.937i 0.623318 0.452867i
\(851\) −863.716 + 1188.80i −1.01494 + 1.39695i
\(852\) −83.2664 + 130.496i −0.0977305 + 0.153165i
\(853\) 133.256 + 410.119i 0.156220 + 0.480796i 0.998282 0.0585840i \(-0.0186586\pi\)
−0.842062 + 0.539380i \(0.818659\pi\)
\(854\) 117.742 162.058i 0.137871 0.189763i
\(855\) −90.8012 + 42.1835i −0.106200 + 0.0493374i
\(856\) 76.4244 235.210i 0.0892808 0.274778i
\(857\) 580.461i 0.677317i 0.940909 + 0.338659i \(0.109973\pi\)
−0.940909 + 0.338659i \(0.890027\pi\)
\(858\) 0 0
\(859\) −812.241 −0.945566 −0.472783 0.881179i \(-0.656751\pi\)
−0.472783 + 0.881179i \(0.656751\pi\)
\(860\) 18.8262 + 6.11701i 0.0218910 + 0.00711280i
\(861\) 510.950 + 132.530i 0.593437 + 0.153926i
\(862\) −268.091 194.779i −0.311010 0.225962i
\(863\) 597.471 194.130i 0.692318 0.224948i 0.0583378 0.998297i \(-0.481420\pi\)
0.633980 + 0.773349i \(0.281420\pi\)
\(864\) −374.903 357.300i −0.433915 0.413541i
\(865\) 14.1857 + 10.3065i 0.0163997 + 0.0119151i
\(866\) −100.862 138.825i −0.116469 0.160306i
\(867\) −32.2512 82.0462i −0.0371986 0.0946323i
\(868\) 13.2551 0.0152708
\(869\) 0 0
\(870\) −11.8493 14.3953i −0.0136199 0.0165464i
\(871\) 408.778 1258.09i 0.469320 1.44442i
\(872\) 211.112 + 290.570i 0.242100 + 0.333223i
\(873\) −107.382 + 99.8493i −0.123004 + 0.114375i
\(874\) −188.751 580.917i −0.215963 0.664665i
\(875\) 85.8180 27.8840i 0.0980778 0.0318674i
\(876\) −212.597 + 12.8505i −0.242690 + 0.0146696i
\(877\) 971.470 705.814i 1.10772 0.804805i 0.125416 0.992104i \(-0.459973\pi\)
0.982303 + 0.187299i \(0.0599734\pi\)
\(878\) −1044.84 339.490i −1.19003 0.386663i
\(879\) 554.704 + 673.891i 0.631063 + 0.766656i
\(880\) 0 0
\(881\) 131.219i 0.148943i 0.997223 + 0.0744714i \(0.0237269\pi\)
−0.997223 + 0.0744714i \(0.976273\pi\)
\(882\) 306.051 550.274i 0.346996 0.623894i
\(883\) 102.745 74.6486i 0.116359 0.0845398i −0.528084 0.849192i \(-0.677089\pi\)
0.644443 + 0.764652i \(0.277089\pi\)
\(884\) 202.719 279.019i 0.229320 0.315633i
\(885\) 50.7667 + 32.3930i 0.0573635 + 0.0366022i
\(886\) −108.029 332.479i −0.121929 0.375258i
\(887\) 702.278 966.602i 0.791745 1.08974i −0.202144 0.979356i \(-0.564791\pi\)
0.993889 0.110388i \(-0.0352092\pi\)
\(888\) 1606.19 + 416.613i 1.80877 + 0.469159i
\(889\) −147.369 + 453.556i −0.165770 + 0.510187i
\(890\) 44.2339i 0.0497010i
\(891\) 0 0
\(892\) 235.138 0.263608
\(893\) 1118.15 + 363.310i 1.25213 + 0.406842i
\(894\) −196.587 + 757.913i −0.219897 + 0.847778i
\(895\) 34.9261 + 25.3753i 0.0390235 + 0.0283522i
\(896\) 95.7511 31.1114i 0.106865 0.0347226i
\(897\) −638.875 + 1001.25i −0.712235 + 1.11622i
\(898\) −320.977 233.203i −0.357435 0.259692i
\(899\) −12.8135 17.6362i −0.0142530 0.0196176i
\(900\) −241.092 134.090i −0.267881 0.148989i
\(901\) 690.442 0.766306
\(902\) 0 0
\(903\) −136.955 + 112.733i −0.151667 + 0.124842i
\(904\) −390.581 + 1202.08i −0.432058 + 1.32974i
\(905\) 60.9305 + 83.8636i 0.0673265 + 0.0926670i
\(906\) 51.4380 + 850.980i 0.0567748 + 0.939271i
\(907\) 162.105 + 498.908i 0.178727 + 0.550064i 0.999784 0.0207814i \(-0.00661541\pi\)
−0.821057 + 0.570846i \(0.806615\pi\)
\(908\) 510.481 165.865i 0.562203 0.182671i
\(909\) −638.563 686.740i −0.702490 0.755489i
\(910\) −41.8477 + 30.4041i −0.0459864 + 0.0334111i
\(911\) 167.014 + 54.2660i 0.183330 + 0.0595675i 0.399243 0.916845i \(-0.369273\pi\)
−0.215913 + 0.976413i \(0.569273\pi\)
\(912\) −348.020 + 286.468i −0.381601 + 0.314110i
\(913\) 0 0
\(914\) 44.2524i 0.0484162i
\(915\) 90.2990 35.4952i 0.0986874 0.0387926i
\(916\) −137.361 + 99.7989i −0.149958 + 0.108951i
\(917\) 129.606 178.387i 0.141337 0.194533i
\(918\) −497.674 + 522.193i −0.542129 + 0.568838i
\(919\) 403.301 + 1241.23i 0.438848 + 1.35063i 0.889092 + 0.457729i \(0.151337\pi\)
−0.450244 + 0.892905i \(0.648663\pi\)
\(920\) −82.6761 + 113.794i −0.0898654 + 0.123689i
\(921\) −212.256 + 818.320i −0.230462 + 0.888513i
\(922\) −201.437 + 619.960i −0.218478 + 0.672407i
\(923\) 706.294i 0.765216i
\(924\) 0 0
\(925\) 1557.28 1.68355
\(926\) −168.667 54.8031i −0.182145 0.0591826i
\(927\) 206.304 + 444.077i 0.222551 + 0.479047i
\(928\) 83.2683 + 60.4979i 0.0897287 + 0.0651917i
\(929\) −1483.17 + 481.913i −1.59653 + 0.518743i −0.966246 0.257623i \(-0.917061\pi\)
−0.630282 + 0.776366i \(0.717061\pi\)
\(930\) −11.9001 7.59316i −0.0127958 0.00816469i
\(931\) 543.638 + 394.976i 0.583929 + 0.424249i
\(932\) 240.273 + 330.708i 0.257804 + 0.354837i
\(933\) 1322.73 519.948i 1.41772 0.557286i
\(934\) 701.251 0.750804
\(935\) 0 0
\(936\) 1316.20 + 257.795i 1.40620 + 0.275422i
\(937\) 222.292 684.144i 0.237238 0.730143i −0.759579 0.650415i \(-0.774595\pi\)
0.996817 0.0797279i \(-0.0254051\pi\)
\(938\) 196.524 + 270.492i 0.209514 + 0.288372i
\(939\) 89.7587 5.42552i 0.0955896 0.00577797i
\(940\) −19.9258 61.3253i −0.0211977 0.0652397i
\(941\) 1115.86 362.566i 1.18583 0.385298i 0.351298 0.936264i \(-0.385740\pi\)
0.834528 + 0.550965i \(0.185740\pi\)
\(942\) −19.6104 324.430i −0.0208178 0.344406i
\(943\) −1261.90 + 916.826i −1.33818 + 0.972244i
\(944\) 257.852 + 83.7810i 0.273148 + 0.0887511i
\(945\) −43.2940 + 23.3867i −0.0458137 + 0.0247478i
\(946\) 0 0
\(947\) 266.119i 0.281013i −0.990080 0.140506i \(-0.955127\pi\)
0.990080 0.140506i \(-0.0448730\pi\)
\(948\) −69.8921 177.804i −0.0737258 0.187557i
\(949\) 786.185 571.197i 0.828435 0.601894i
\(950\) −380.488 + 523.697i −0.400514 + 0.551261i
\(951\) −257.026 + 402.814i −0.270269 + 0.423569i
\(952\) 113.101 + 348.089i 0.118804 + 0.365640i
\(953\) 75.3267 103.678i 0.0790417 0.108792i −0.767665 0.640851i \(-0.778582\pi\)
0.846707 + 0.532059i \(0.178582\pi\)
\(954\) 269.430 + 579.957i 0.282422 + 0.607922i
\(955\) 12.1314 37.3365i 0.0127030 0.0390958i
\(956\) 116.864i 0.122242i
\(957\) 0 0
\(958\) 894.933 0.934168
\(959\) 507.132 + 164.777i 0.528814 + 0.171822i
\(960\) 141.059 + 36.5879i 0.146937 + 0.0381124i
\(961\) 764.113 + 555.160i 0.795123 + 0.577690i
\(962\) −1714.93 + 557.214i −1.78267 + 0.579224i
\(963\) 30.7946 + 253.800i 0.0319778 + 0.263551i
\(964\) 209.182 + 151.979i 0.216993 + 0.157655i
\(965\) 61.9846 + 85.3145i 0.0642328 + 0.0884088i
\(966\) −109.823 279.386i −0.113688 0.289220i
\(967\) −1324.17 −1.36936 −0.684682 0.728842i \(-0.740059\pi\)
−0.684682 + 0.728842i \(0.740059\pi\)
\(968\) 0 0
\(969\) −489.255 594.379i −0.504907 0.613394i
\(970\) 5.83126 17.9468i 0.00601161 0.0185018i
\(971\) −343.782 473.176i −0.354050 0.487308i 0.594429 0.804148i \(-0.297378\pi\)
−0.948479 + 0.316840i \(0.897378\pi\)
\(972\) 287.824 + 97.4491i 0.296115 + 0.100256i
\(973\) −40.5076 124.669i −0.0416316 0.128129i
\(974\) 962.991 312.895i 0.988697 0.321247i
\(975\) 1256.42 75.9452i 1.28864 0.0778925i
\(976\) 353.391 256.754i 0.362081 0.263068i
\(977\) −657.510 213.638i −0.672988 0.218667i −0.0474654 0.998873i \(-0.515114\pi\)
−0.625523 + 0.780206i \(0.715114\pi\)
\(978\) 48.8073 + 59.2943i 0.0499052 + 0.0606281i
\(979\) 0 0
\(980\) 36.8545i 0.0376066i
\(981\) −324.476 180.467i −0.330761 0.183962i
\(982\) −76.2955 + 55.4319i −0.0776939 + 0.0564480i
\(983\) 385.287 530.302i 0.391950 0.539473i −0.566751 0.823889i \(-0.691800\pi\)
0.958701 + 0.284416i \(0.0917998\pi\)
\(984\) 1484.85 + 947.447i 1.50900 + 0.962853i
\(985\) −4.82151 14.8391i −0.00489493 0.0150650i
\(986\) 84.2662 115.982i 0.0854626 0.117629i
\(987\) 559.312 + 145.074i 0.566679 + 0.146985i
\(988\) −105.344 + 324.216i −0.106624 + 0.328154i
\(989\) 524.164i 0.529994i
\(990\) 0 0
\(991\) 95.0559 0.0959192 0.0479596 0.998849i \(-0.484728\pi\)
0.0479596 + 0.998849i \(0.484728\pi\)
\(992\) 74.1119 + 24.0804i 0.0747095 + 0.0242746i
\(993\) −250.601 + 966.156i −0.252368 + 0.972967i
\(994\) 144.423 + 104.929i 0.145295 + 0.105563i
\(995\) 100.265 32.5782i 0.100769 0.0327419i
\(996\) −119.482 + 187.254i −0.119962 + 0.188006i
\(997\) −632.168 459.297i −0.634070 0.460679i 0.223738 0.974649i \(-0.428174\pi\)
−0.857808 + 0.513970i \(0.828174\pi\)
\(998\) 456.988 + 628.990i 0.457904 + 0.630251i
\(999\) −1687.28 + 308.981i −1.68897 + 0.309290i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.n.251.2 16
3.2 odd 2 inner 363.3.h.n.251.3 16
11.2 odd 10 33.3.h.b.14.2 16
11.3 even 5 363.3.h.j.323.2 16
11.4 even 5 363.3.b.l.122.4 8
11.5 even 5 inner 363.3.h.n.269.3 16
11.6 odd 10 363.3.h.o.269.2 16
11.7 odd 10 363.3.b.m.122.5 8
11.8 odd 10 33.3.h.b.26.3 yes 16
11.9 even 5 363.3.h.j.245.3 16
11.10 odd 2 363.3.h.o.251.3 16
33.2 even 10 33.3.h.b.14.3 yes 16
33.5 odd 10 inner 363.3.h.n.269.2 16
33.8 even 10 33.3.h.b.26.2 yes 16
33.14 odd 10 363.3.h.j.323.3 16
33.17 even 10 363.3.h.o.269.3 16
33.20 odd 10 363.3.h.j.245.2 16
33.26 odd 10 363.3.b.l.122.5 8
33.29 even 10 363.3.b.m.122.4 8
33.32 even 2 363.3.h.o.251.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.14.2 16 11.2 odd 10
33.3.h.b.14.3 yes 16 33.2 even 10
33.3.h.b.26.2 yes 16 33.8 even 10
33.3.h.b.26.3 yes 16 11.8 odd 10
363.3.b.l.122.4 8 11.4 even 5
363.3.b.l.122.5 8 33.26 odd 10
363.3.b.m.122.4 8 33.29 even 10
363.3.b.m.122.5 8 11.7 odd 10
363.3.h.j.245.2 16 33.20 odd 10
363.3.h.j.245.3 16 11.9 even 5
363.3.h.j.323.2 16 11.3 even 5
363.3.h.j.323.3 16 33.14 odd 10
363.3.h.n.251.2 16 1.1 even 1 trivial
363.3.h.n.251.3 16 3.2 odd 2 inner
363.3.h.n.269.2 16 33.5 odd 10 inner
363.3.h.n.269.3 16 11.5 even 5 inner
363.3.h.o.251.2 16 33.32 even 2
363.3.h.o.251.3 16 11.10 odd 2
363.3.h.o.269.2 16 11.6 odd 10
363.3.h.o.269.3 16 33.17 even 10